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The purpose of this paper is to prove the strong convergence theorem for finding a common

element of the set of fixed point problems of strictly pseudocontractive mapping in Hilbert spaces
and two sets of generalized equilibrium problems by using the hybrid method.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H, and let F : C x C — R be
a bifunction. Recall that the equilibrium problem for a bifunction F is to find x € C such that

F(x,y) >0, VYyeC (1.1)

The set of solutions of (1.1) is denoted by EP(F). Given a mapping T : C — H, let F(x,y) =
(Tx,y — x) for all x,y € C. Then, z € EP(F) if and only if (Tz,y —z) > Oforall y € C;
that is, z is a solution of the variational inequality. Let A : C — H be a nonlinear mapping.
The variational inequality problem is to find a # € C such that

(v-u,Au) >0 (1.2)
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for all v € C. The set of solutions of the variational inequality is denoted by VI(C, A). Now,
we consider the following generalized equilibrium problem:

Find z € C such that F(z,y) + (Az,y-z) >0, VyeC. (1.3)

The set of z € C is denoted by EP(F, A), that is,
EP(F,A) ={z€C:F(zy)+(Az,y-z) >0, Vy e C}. (1.4)

In the case of A = 0, EP(F, A) is denoted by EP(F). In the case of F = 0, EP(F, A) is also
denoted by VI(C, A). Numerous problems in physics, optimization, variational inequalities,
minimax problems, the Nash equilibrium problem in noncooperative games, and economics
are reduced to find a solution of (1.3); see, for instance, [1-3].

A mapping A of C into H is called inverse strongly monotone mapping, see [4], if there
exists a positive real number a such that

(x -y, Ax - Ay) > a||Ax - Ay|® (1.5)

for all x, y € C. The following definition is well known.

Definition 1.1. Amapping T : C — C is said to be a k-strict pseudocontraction if there exists
x € [0,1) such that

|Tx = Ty|)* < ||x - y||* + || I - T)x - T -T)y|>, Vx,yeC. (1.6)
A mapping T is called nonexpansive if
I T =Tyl < [|lx - v (17)

forall x,y € C.

We know that x-strict pseudocontraction includes a class of nonexpansive mappings.
If « = 1, T is said to be a pseudocontractive mapping. T is strong pseudocontraction if there
exists a positive constant A € (0,1) such that T + AI is pseudocontraction. In a real Hilbert
space H, (1.6) is equivalent to

1-—

K
(Tx-Ty,x-y) < ||x—y||2— 3 |I-T)x-(I-T)y 2, Vx,y € D(T). (1.8)
T is pseudocontraction if and only if
Tx-Ty,x-y)<||x-vy|> Vx,yeDT). (1.9)
y y y y

Then, T is strong pseudocontraction if there exists positive constant A € (0, 1)

(Tx-Ty,x-y)<1-V)|x-y|*>, Vx,yeDT). (1.10)
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The class of x-strict pseudocontractions falls into the one between classes of nonex-
pansive mappings, and the pseudocontraction mappings, and the class of strong pseudocon-
traction mappings is independent of the class of x-strict pseudocontraction.

We denote by F(T) the set of fixed points of T. If C C H isbounded, closed, and convex,
and T is a nonexpansive mapping of C into itself, then F(T) is nonempty; for instance, see [5].
Browder and Petryshyn [6] show that if a x-strict pseudocontraction T has a fixed point in C,
then starting with an initial xy € C, the sequence {x,} generated by the recursive formula:

Xpi1 =ax, + (1 —a)Tx,, (1.11)

where a is a constant such that 0 < a < 1, converges weakly to a fixed point of T. Marino and
Xu [7] have extended Browder and Petryshyns above-mentioned result by proving that the
sequence {x,} generated by the following Manns algorithm [8]:

Xn+l = ApXpy + (1 - an)Txn (112)

converges weakly to a fixed point of T provided the control sequence {a,},-, satisfies the
conditions that ¥ < a, < 1 forall nand >, (@, — k) (1 - a,) = 0. In 1974, S. Ishikawa proved
the following strong convergence theorem of pseudocontractive mapping.

Theorem 1.2 (see [9]). Let C be a convex compact subset of a Hilbert space H, and let T : C — C
be a Lipschitzian pseudocontractive mapping. For any x1 € C, suppose that the sequence {x,} is
defined by

Yn = (1 - ﬂn)xn + ,BnTxnr

Xpi1 = (1 —ay)xy +a,Ty,, YneN,

(1.13)

where {a,}, { B} are two real sequences in [0, 1] satisfying

(i) an < B, forall n €N,
(H) hmn—moﬁn =0,
(iil) 3,2 anPn = co.

Then {x,} converges strongly to a fixed point of T.

In order to prove a strong convergence theorem of Mann algorithm (1.12) associated
with strictly pseudocontractive mapping, in 2006, Marino and Xu [7] proved the following
theorem for strict pseudocontractive mapping in Hilbert space by using CQ method.
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Theorem 1.3 (see [7]). Let C be a closed convex subset of a Hilbert space H. Let T : C — C be
a k-strict pseudocontraction for some 0 < k < 1, and assume that the fixed point set F(T) of T is
nonempty. Let {x,},—; be the sequence generated by the following (CQ) algorithm:

x1 € C,
Yn = anXp + (1 - an)Txy,
Co={z€C: lyn—2I" < (1 - ) (= ) 0~ T}, (1.14)
Qn={z€C:(xp-2z,x1-Xn)},
Xns1 = Pc,ng, X1
Assume that the control sequence {a, ), is chosen so that a, < 1 for all n € N. Then {x,}

converges strongly to Prryxi. Very recently, in 2010, [10] established the hybrid algorithm for
Lipschitz pseudocontractive mapping as follows:

For C; =C, x1 = Pc,xq,
Yn=(1—-an)x, +a,Tz,,
zn = (1= Pn)xn + PnTxy,

1.15
Cpi = {z €Cp: ||an(I- T)yn”2 <20, (xn — 2z, (I = T)Yn) (1.15)

L

+20,BuLl|2xn = Txu|l||yn — X0 + an(I = T)ya|

Xps1 = Pcx1, VYneN.

n+l

Under suitable conditions of {a,} and {pB,}, they proved that the sequence {x,} defined by (1.15)
converges strongly to Ppr)x1.

Many authors study the problem for finding a common element of the set of fixed point problem
and the set of equilibrium problem in Hilbert spaces, for instance, [2, 3, 11-15]. The motivation of
(1.14), (1.15), and the research in this direction, we prove the strong convergence theorem for finding
solution of the set of fixed points of strictly pseudocontractive mapping and two sets of generalized
equilibrium problems by using the hybrid method.

2. Preliminaries

In order to prove our main results, we need the following lemmas. Let C be closed convex
subset of a real Hilbert space H, and let Pc be the metric projection of H onto C; that is, for
x € H, Pcx satisfies the property

[lx = Pex|| =r;1€iél||x—y||. (2.1)

The following characterizes the projection Pc.
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Lemma 2.1 (see [5]). Given that x € H and y € C, then Pcx = y if and only if the following
inequality holds:

(x-y,y-2z)>0, VzeC. (2.2)

The following lemma is well known.

Lemma 2.2. Let H be Hilbert space, and let C be a nonempty closed convex subset of H. Let T :
C — C be x-strictly pseudocontractive, then the fixed point set F(T) of T is closed and convex so that
the projection Prry is well defined.

Lemma 2.3 ((demiclosedness principle) (see [16])). If T is a x-strict pseudocontraction on closed
convex subset C of a real Hilbert space H, then I — T is demiclosed at any point y € H.

To solve the equilibrium problem for a bifunction F : C x C — R, assume that F
satisfies the following conditions:

(A1) F(x,x) =0 for all x € C,
(A2) F is monotone, that is, F(x,y) + F(y,x) <0, for all x,y € C,
(A3) for all x,y,z € C,

tlin&F(tz +(1-tx,y) <F(x,y), (2.3)

(A4) for all x € C,y — F(x,y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

Lemma 2.4 (see [1]). Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0, and x € H. Then, there exists z € C such that

F(zy) + %(y -z,2-x), (2.4)
forall x € C.
Lemma 2.5 (see [11]). Assume that F : C x C — R satisfies (A1)—(A4). For r > 0 and x € H,
define a mapping T, : H — C as follows:

T,(x)={zeC:F(z,y)+%(y—z,z—x>20, VyeC}, (2.5)

forall z € H. Then, the following hold:

(1) T, is single-valued;
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(2) T, is firmly nonexpansive, that is,

”Tr(x) - Tr(y)llz < <Tr(x) - Tr(]/)/-x - ]/>/ Vx/y € H, (2.6)

(3) E(T;) = EP(F);
(4) EP(F) is closed and convex.

Lemma 2.6 (see [17]). Let C be a closed convex subset of H. Let {x,} be a sequence in H and u € H.
Let q = Pcu; if {x,} is such that w(x,) C C and satisfy the condition

o, —ull < ||lu-gq|, VneN, (2.7)

then x, — q, as n — oo.

Lemma 2.7 (see [7]). For a real Hilbert space H, the following identities hold: if {x,} is a sequence
in H weak convergence to z, then

2 (2.8)

limsup||x, — ]/”2 = limsupl|x, - z|* + ||z -y

n—oo n—oo

forally € H.

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let F and G be
bifunctions from C x C into R satisfying (A1)—(As), respectively. Let A : C — H be an a-inverse
strongly monotone mapping, and let B : C — H be a p-inverse strongly monotone mapping. Let
T : C — C be a x-strict pseudocontraction mapping with § = F(T) N EP(F, A) N EP(G, B) #0. Let
{xn} be a sequence generated by x, € C = Cy and

1
F(u,,u) + (Ax,, u—u,) + r—(u—un,un—xn> >0, YuedC,
n

1
G(v,,0) + (Bx,,v—vy) + S—(v —Un, Uy —xp) 20, YoeC,
n

Zn = Oty + (1 = 6,)vy, (3.1)
Yn = anzn + (1 - an)Tzy,

Cun={z€Cy:|lyn—2z| <lxn—zll},

x1, VYn>1,

Xn+1 = Pc

n+l

where {a, }, is sequence in [0,1], r, € [a,b] C (0,2a), and s, C [c,d] C (0,2p) satisfy the
following conditions:
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(1) hmn—>006n =0¢€ (Orl)/

(i) 0<k<a, <1, forall n>1.
Then x, converges strongly to Pzx;.

Proof. First, we show that (I-r,A) is nonexpansive. Let x, y € C. Since A is a-inverse strongly
monotone mapping and r, < 2a, we have

1T = ruA)yx = (0 = 1Ay ||” = ||~y = ra(Ax = Ay) |
= [lx = ylI” - 2ru(x —y, Ax - Ay) + 12| Ax - Ay
< ||x—y||2—20(1"n||Ax—Ay||2+rﬁ||Ax—Ay||2 (3.2)
= [lx = ylI* + ru(r - 20| Ax — Ay

<llx-yll*

Thus (I — r,A) is nonexpansive, so are I —s,B, T\, (I —r,A), and T, (I — s,B). Since
1
Fuy,u) + (Axy, u—uy) + r—(u — Uy, Uy —Xxy) >0, YuecC, (3.3)
n

then we have

F(u,,u) + rl(u — Uy, Uy — (I =1, A)x,) > 0. (3.4)

By Lemma 2.5, we have u, = T,, (I — r,A)x,. By the same argument as above, we conclude
thatv, =T, (I — 5,B)xy.
Letz € §. Then F(z,y) + (y — z,Az) > 0and G(z,y) + (y — z, Bz) > 0. Hence

F(Z,y) + %(y—z,z—z+rnAz> >0,
; (3.5)
G(zy) + S-(y—z,z—z+s,,Bz> >0.

Again by Lemma 2.5, we have z = T,, (z — r,Az) = T;,(z — s,Bz). By nonexpansiveness of
T, (I -r,A)and T;, (I - s,B), we have

lun = zll = | Ty, (I = 1 A)xy = T}, (I = 1, A)Z]|

n

< |lxn =z,
(3.6)
lon =zl = |Ts,(I = $0A)xn — Ts, (I — 5, A)z||

< Hloen — 2.
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By (3.6), we have
1zn = 2l < llxn = z|I. (3.7)

Next, we show that C,, is closed and convex for every n € N. It is obvious that C,, is closed.
In fact, we know that, for z € C,,,

lyn—z|| < llxn -zl is equivalent to ||y, — xn”2 +2(Yn — X, X — 2) < 0. (3.8)
So, we have that for all z1,z, € C,, and t € (0, 1), it follows that

”yn - xn”2 + 2<yn — Xn, Xn — (tzl + (1 - t)22)>
= t(2(yn = XX = 21} + |y — )

# (1) (2000 = %30 2) + 10 =5

<0.

(3.9)

Then, we have that C, is convex. By Lemmas 2.5 and 2.2, we conclude that § is closed and
convex. This implies that Pz is well defined. Next, we show that § ¢ C,, for every n € N.
Taking p € §, we have

Iyn = pII* = Nlaw(za = p) + (0 = 22) (Tza - p) |

= a||zn - p|I” + (1= @) || Tz0 - p||* — @n(1 = @) |20 — Tzall®

< anllza=pl* + (1 = @) (2 = pl* + x| (L - T)z, - (1= T)p ")
— ap(1 = ap)l|zn — Tz,

= a||zn - p|I* + (1 = )|z — p||* + (1 = @) [|20 — Tzl ? (3.10)
— (1= @) |20 — Tz

= |za = pII* + (k= ) (L - @n)l|zn — Tz

< |lza-pll*

< Jlxa=pll*

It follows that p € C,,. Then, we have § C C,, for all n € N. Since x,, = Pc,x1, for every w € C,,
we have

|y, — x1|| < ||Jw — x1||, VneN. (3.11)
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In particular, we have

llxn = x1]] < ||Pgx1 — x4 (3.12)
By (3.11), we have that {x,} is bounded, so are {u,}, {v.}, {z4}, {ya}. Since x,41 = Pc,.,x1 €
Cys1 € Cy and x, = P, x1, we have
0 < (X1 = X, X = Xns1)
= (X1 = Xp, X — X1 + X1 — Xp41) (3.13)
2
< =llxn = x| + [lxn = 21l 21 = xp1 -
It is implied that
ll26n = 21| < [|26n41 = 21l (3.14)
Hence, we have that lim,,_, ., ||x,, — x1]| exists. Since
[l = et |I* = [|2cn = 21 + 21 = X |
= {2y = 2x1]* + 2(2 = 21, X1 = X1 ) + |21 = Xt ||
2 2
= oy — 217 + 2{x — X1, X1 — Xy + X — Xpa1) + || X1 — X1 || (3.15)
= llotn = 111 = 2l20n = 2117 + 220 = 21, X5 = Xi1 ) + 201 = Xt I
< lx1 - xn+l“2 = [lxn = x1“2/
it is implied that
lim ||x, — xp21|| = 0. (3.16)
n— oo
Since x,41 = Pc,,,x1 € Cy41, we have
”]/n — Xn+l ” < ”xn - xn+1||/ (3.17)
And by (3.16), we have
lim ||y, — X4 ] = 0. (3.18)

n— oo
Since

”yn - xn” < ”yn - xn+1|| + ||xn+1 - xn”/ (319)
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by (3.16) and (3.18), we have

nhf;o”y" - x| =0. (3.20)

Next, we show that

lim ||u, —x4]| =0, lim ||v, — x| =0. (3.21)
Letp € §, by (3.10) and (3.7), we have

yn = pII* = llan(za = p) + (0 = ) (Tzu — p)||?

= |20~ p|[* + (1~ @) | T2zu — p||* ~ @n (1~ ) 120 — Tzl

< allza = plI* + (1 = ) (|20 = plI* + ]| (L = T)zo = (L = T)p||*)
— (1 = ap) |20 = Tz

= | za = p|* + (1= an) |20 = p||* + (1 = @) |20 = Tzl (3.22)
— (1 - ay)l|zn = Tzl

= aul|zn = plI* + (1= @) |z = pI* + (c = @) (1 = @) 120 = T2all?

<anllxn=pl*+ A -an) |z -p|°

< a5 = pIP + (1= ) (ullea = pI* + (1= 60)[ow = pI).
Since u, =Ty, (I - r,A)xy, p = T, (I — r,A)p, we have

l[un = pII* = |75, (I = 7 A)xa = T, (1 = 7 A)p |
< =1 A)x, = (I = 1 A)pll*
= || = raAx, — p + ra Ap||®
= ||xn = p — ra(Axn - Ap) || (3.23)
= ||lxtn = p||* + r2|| Axw = Ap||® - 27 (20 — p, Axn — Ap)
< |lxn = plI* + r2l| Axo = Ap||* - 2rua|| Ax, - Ap||®

= || xn —p||2 + 1 (rn — 20) || Ax — Ap”z.
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Since v, = Ts, (I — s,B)xp, p = Ts, (I — 5,B)p, we have

llon = p|* = | T, (I = 5uB)x = T, (I - 5, B)p||”
< || = $:B)xs - (I - s,B)p|?
= ||xp — suBxy —p + s,,Bp”2
= ||xu =P = su(Bxu - Bp)|I°
= |la = pI|* + 52| Bx, — Bp||* ~ 254 (xw — p, Bx, - Bp)
< ||x = pl|* + 53| Bxu = Bp||* - 25,|| Bx. - Bp|®

= [lxa = plI* + su(sn — 2) || Bxu — Bp|".

Substituting (3.23) and (3.24) into (3.22),

lyn = pII* < @ullcn = pII* + (1 = @) (6nllun = pII* + 0 = 6 [|ow - pII*)
<ay||lx.-pl®
+(1- an)(6n<||xn —Iﬂ||2 + 1 (rn — 20) || Ax — Ap||2>
2 2
+(1= 60 (I =PI + 50 (50~ 26) B, - Bl
= a,||x. - pl®

+(1-ay) (6n||xn - p||2 + Ot (1 — 2a) || Axy, — Ap||2

+(1=6)[|xn —Pllz +8u(1 = 6y) (50 = 2) || Bxn — Bp||2>

= aullocu = p||” + (1 - )

11

(3.24)

x <||xn - p||2 + 6ty (1 = 2a) || Ax, — Ap||2 +5,(1 = 6) (50— 2P) || Bxr — Bp||2>

= ay|xn — p||2 +(1—ay)||xn - p||2 + (1= an)8tu(ry — 2a) || Axy, — Ap||2

4 80(1— @) (1= 6,) (50 — 2) || B - Bp||”
= ”xn - p”2 + (1= an)ontu(rn _za)llen - Apllz

+ 5u(1 = ) (1 = 6,) (50 — 2B)|| Bx - Bp||.

(3.25)
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It is implied that

(1= @) ura (2 = 1) || A = Ap||” < Jlocw = p|I” = Iy~ pII°

+50(1 = a0,) (1= 8,) (50 — 2B) || B - Bp|”

< (1w = pll + [y = PID 0 = yul-
By (3.20) and condition (i), we have

lim || Ax, - Ap] = 0.

By using the same method as (3.27), we have

1im ||Bx, - Bp|| = 0.

By Lemma 2.5 and firm nonexpansiveness of T,,, we have
i = I = 1T (1 = a0 = T, (1 = ra )|
< <(I - 1mA)x, — (I - TnA)P, Uy — P>
1
= 5 (I = ru )z = (I = raA)p|* + [ = |
_”(I — 1, A)xy — (I =1, A)p - (”" _P)”2>
1
= 5 (1 = rayx, = (1= ra A)p ||+ [t = I
~lxn =t = 1 (A = AP) [1*)
1 2 2
e (L e |
_<||xn — |+ ral|Axn - Ap||2 = 21 (% — Up, AXy — Ap>>>
1
<5 (e =PI + laen = p* =l = 0al* = 17| A — Ap |

21 (X — Uy, AXy — Ap)).

(3.26)

(3.27)

(3.28)

(3.29)
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By (3.29), it is implied that

it = pII” <l = pI* = llxa = all* = 73| Ao = Ap|*

+ 21, (xp — U, Ax, — Ap)
(3.30)
< lotn = p|I* = llxn — unl® - 72]| Ax, - Ap|®

+ 21| — unll|| Ax, — Ap||-
Again, by Lemma 2.5 and firm nonexpansiveness of Ts,, we have
lon = pII* = 1T, (T = $uB)n = T, (T = suA)p |
< (I = $uB)xn = (I = 4B)p, 0 = p)
= 2 (1T = 5By = (1= 5,B)p + o = I
[T = $uB)x, = (I = s,B)p - (v - )|
= (I = 0By, = (= 5Bl + o= pI = [0 = 20 - 50 (B, - Bp) )
= 2 (T = 5By = (1= 5,B)p + o = I
~(11n = vall? + 52| Bx = Bp||* = 25, (x — v, Bx, ~ Bp)) )
< 3 (I =PI+ l[om = pII = = 0l = 2B~ B

+28,(%p — Up, Bxy — Bp)).
(3.31)

By (3.31), it is implied that
lon = pII* < llxa = pII” = 12 = 0al* = 53 [|Bxn = Bp||* + 250 (xx = 04, Bxn ~ Bp)

< |lxn - p”2 — |20 = va|* = 82| Bxn — Bp||2 +25,|x, — vl || Bxs — Bp|.
(332)
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Substituting (3.30) and (3.32) into (3.22), we have

lyn =PI < cnllva = pI* + (1= tn) (8 lltn = pI” + (1= B [0 = I
< allxn = pl* + (1 - an)
(80l =PI = It~ 10l = 72| A = AP + 21l — sl A, — Ap]))
2 2 2 2
+(1—5n)<“xn_]9” = 10 — vall _Sn"Bx"_Bp”
+25n||xn_Un””Bx"_BP”>>
< aul|xu = p|°
2 2
(1= ) (8 (|2 = pII* = ltn = wall® + 27l — ][] Ay - Ap])
+(1—6n)<||xn—p||2—||xn—vn||2+2sn||xn—vn||||an—Bp||>>
= aul|x = pl|”
2 2
+ (1= ) (8all0 = pII* = Bullxn =l + 28,7l = wall[| Axo = Ap]| + (1 = 6,)
x [lacu = pII* = (1 = 82) 1% = al* + 2(1 = 8,4l — vull|| B - Bp]|)
= |20 = p|I* + (1 - @)
% ([0 = pII” = Sulln = snll> + 26,7lls = el ]| Ay = Ap| = (1 = 6,) 0, = 0]
+2(1 = 84)$ullxn — vall || Bxy — Bp||)
< [|otn = pII* = (1 = an)Bullxn — tnl® + 26,712 — ||| Axo — Ap|

- (1 =au)(1-064)llxn - Un”2 +2(1 = 64)sullxn - vn“”an - BP”/
(3.33)

which implies that

(1= )8l = tall” < |60 = pII* = [y = pII* + 2607l = weall[| A = Ap|
= (1= @) (1 = 8a) |10 = ©all* + 2(1 = 84) $ull 2w — vull|| Bx, — Bp|
< lxn = yall (llxn =PIl + lym = pII) + 2607nllocn = unll || Axn - Apl|
= (1= ) (1 = 8a) 1 = vall® + 2(1 = 84)5ul| X — 0all|| B ~ Bp|
< lxn = yull ([l =PIl + lyn =PI +2607ullo0n = uall]| Axa ~ Apl|

+2(1 = 6)snllxn — vl ”an -Bp

7

(3.34)
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and by (3.27), (3.28), (3.20), and conditions (i), (ii), we have
Tim ||, — 1| = 0. (3.35)
By using the same method as (3.35), we have
Tim |, — o] = 0. (3.36)
Since
120 = Xull < Onllttn = x| + (1 = 6n) |00 = Xnll, (3.37)

from (3.35), (3.36), and condition (i), we have

im [z, = x[| = 0. (3.38)
By (3.20) and (3.38), we have
)1113;10”% -z =0. (3.39)
Since
Yn—2n= (1= an)(Tzn - zn), (3.40)

from (3.39) and condition (ii), we have

lim ||Tz, — z,|| = 0. (3.41)
n— oo

Let w(x,) be the set of all weaks w-limit of {x,}. We will show that w(x,) C §. Since {x,}
is bounded, then w(x,)#0. Letting g € w(x,), there exists a subsequence {x,} of {x,}
converging to gq. By (3.35), we have u,, — gasi — oo. Since u, = T, (I — r,A)x,, for any
y € C, we have

! (Y = thn, U — x) > 0. (3.42)

F(un,y) + (Axp,y — up) + —
n

From (A2), we have

(Axy, y —up) + %(y—un,un—xn> > F(y,un). (3.43)
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This implies that
1
<Ax71i/y - u"i) + 1"_<y — Un;y Un; — xni> 2 F(y' uni)' (3.44)

Putz; =ty + (1 -t)gforallt € (0,1] and y € C. Then, we have z; € C. So, from (3.44), we
have

Un

(2t = Un, Azy) 2 (2t — Up,, AZp) — (2t — Up,, AXp,) — <Zt ~ Un,,

L= Xy
X > + F(z1,1tn)
Tni

Uy, — X,

= (2t — Up, Azt — Ally,) + (24 — Up,, Ally, — AXy,) — <zt — Up,, . >
n;

+ F(zi, up,).
(3.45)

Since ||[uy, — xp;|| — 0, we have || Au,,, — Ax,,|| — 0. Further, from monotonicity of A, we have
(z¢ — Un,, Azt — Auy,) > 0. So, we have

(zt—q,Az) > F(z,q) asi— oo. (3.46)
From (A1), (A4), and (3.46), we also have

0= F(z,z) <tF(zi,y) + (1 -t)F(z,q)
<tF(z,y) + (1 —t)(z — g, Az) (3.47)
=tF(z,y) + (1 - )K(y — q, Az).

Thus
0<F(zi,y)+ 1 -t){y—q,Az). (3.48)
Letting t — 0, we have, for each y € C,
0<F(q,y)+(y—q,Aq). (3.49)
This implies that
q € EP(F, A). (3.50)

From (3.36), we have v,; — g. Since v, = T, (I — s,B)xy,, for any y € C, we have

G(vn y) + (Bxn,y —0n) + %(y—vn,vn —xy) 2 0. (3.51)
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By using the same method as (3.50), we have

q € EP(G, B). (3.52)

Since x,, = gasi — oo and (3.38), we have z,, — gasi — oo. By Lemma 2.3, - T is
demiclosed at zero, and by (3.41), we have

g€ F(T). (3.53)

From (3.50), (3.52), and (3.53), we have g € §. Hence w(x,) C §. Therefore, by (3.12) and
Lemma 2.6, we have that {x,} converges strongly to Pyx;. The proof is completed. O

4. Applications
By using our main result, we have the following results in Hilbert spaces.

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let F and G be
bifunctions from C x C into R satisfying (A1)—(As), respectively. Let T : C — C be a k-strict
pseudocontraction mapping with § = F(T) N EP(F) N EP(G) #0. Let {x,} be a sequence generated
by x1 € C=Cyand

F(u,,u) + rl(u—un,un —-x,) >0, Yuec,
n

1
G(v,,v) + S—(v — Uy, Uy —xy) >0, YveC(,
n
Zp = 6nun + (1 - 6n)vn/ (41)
Yn = ApnZy + (1 - an)TZn/
Cunn={z€Cu:|lyn—2z| < llxn -z},

Xn+1 = PC X1, Vn— Z ]-/

n+1

where {a, }, is sequence in [0,1], r, € [a,b], and s, C [c, d] satisfy the following conditions:
(1) limn—>oo6n =06¢€ (011)/
(i) 0<k<a, <1, forall n>1.

Then x,, converges strongly to Pzx;.

Proof. Putting A = B = 0 in Theorem 3.1, we have the desired conclusions. O
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Theorem 4.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let F be bifunctions
from C x C into R satisfying (A1)—(As), respectively. Let A : C — H be an a-inverse strongly
monotone mapping, and let {x,} be a sequence generated by x; € C = Cy and

1
F(uy,u) + (Ax,, u—u,) + T—(u—un,un—xn) >0, YuedC,
n

Yn = iy + (1 —ay)Tuy, 4.2)
Cpi = {Z €Cy: “yn - Z” <lxn = Z”}r
xn+1 = PC,H.lxl/ Vn Z 1/

where {a, }%,_ is sequence in [0,1], r, € [a,b] C (0,2a),and 0 < k < a, <1, forall n > 1. Then x,
converges strongly to Pyxy.

Proof. Putting G = F, A = B, and u,, = vy, for all n > 1, in Theorem 3.1, we have the desired
conclusions. O
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