Advance Publication

Experimental Animals

Received: 2022.8.4

Accepted: 2022.11.13

J-STAGE Advance Published Date: 2022.11.25

1	Model Animals
2	Review article
3	Title
4	The Common Marmoset in Biomedical Research: Experimental Disease Models and
5	Veterinary Management
6	
7	Running head
8	MARMOSET DISEASE MODEL & VETERINARY CARE
9	
10	Takashi Inoue ¹ *, Terumi Yurimoto ¹ , Fumiko Seki ² , Kenya Sato ¹ and Erika Sasaki ¹
11	
12	¹ Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals,
13	Kawasaki, Japan.
14	² Live Animal Imaging Center, Central Institute for Experimental Animals, Kawasaki, Japan.
15	
16	*Corresponding author
17	Takashi Inoue
18	Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-
19	0821, Japan., E-mail: inoue-t@ciea.or.jp
20	

21 Abstract

22 The common marmoset, *Callithrix jacchus*, is increasingly being used as the preferred nonhuman 23 primate (NHP) model in biomedical research. Marmosets share several physiological and 24 biological similarities with humans, as a Simiiformes species, and their use in research programs 25 advances knowledge of several fields. Their unique characteristics, such as small size, high 26 fecundity, and rapid growth, offer additional advances in laboratory settings. This article reviews 27 the developments in experimental disease models using marmosets based on our experience at 28 the Central Institute for Experimental Animals (CIEA) in Japan. The development of genetically 29 modified marmoset models using advanced genome editing technology attracts researchers, 30 particularly in neuroscience-related fields. In parallel, various marmoset models of human 31 diseases induced by surgery or drug administration have contributed to preclinical and translational studies. Among these are models for Parkinson's disease, induced by 1-methyl-4-32 33 phenyl-1,2,3,6-tetrahydropyridine; spinal cord injury models; a model for type 1 diabetes, 34 induced by the combination of partial pancreatectomy and streptozotocin administration; and a 35 hepatic fibrosis model induced by thioacetamides. The development of these models has been 36 supported by refinements in veterinary care, such as the careful design of anesthetic protocols and 37 better understanding of pathogenic microorganisms. In the second part of this review, we present 38 a compilation of practices currently in use at CIEA that provide optimal animal care and enable 39 safe experimentation.

41 Keywords: anesthesia protocols, disease model, marmoset, microbiology, translational research

44 Introduction

45 The common marmoset (Callithrix jacchus), a species of New World monkeys, shares many 46 biological and physiological similarities with humans and is an increasingly valuable laboratory 47 animal model. Several unique traits make marmosets an advantageous model, such as small size 48 (average body weight: 350 g), easy handling, high fecundity with frequent twin delivery, 49 relatively short lifecycle, and rapid sexual maturity (by 12-18 months of age) [1]. Marmoset 50 models have been widely used in biomedical research particularly in neuroscience, infectious 51 diseases, and preclinical studies for the development of novel drugs and therapies [1, 2]. Recent 52 advances in genetic engineering based on stable assisted reproductive technology have further 53 expanded the usefulness of marmoset models [3, 4]. Since the 1970s, the Central Institute for 54 Experimental Animals (CIEA) in Japan has conducted research and development programs using 55 marmosets as a nonhuman primate (NHP) model to bridge the critical gap between rodent models 56 and humans. In particular, over the last decade, marmoset models of human disease for preclinical 57 research developed at CIEA include genetically modified models and experimental models 58 induced by drug administration or surgery. Development of these programs has been largely 59 supported by refinements in veterinary care and animal management. In the first part of this article, 60 we review the current status of experimental marmoset models of disease at CIEA; a discussion 61 on current anesthetic protocols and microbiome surveys as part of veterinary management of the 62 marmoset colony follows.

64 1. Experimental disease models for translational research using marmosets

65 1.1 Overview of marmoset research at CIEA

66 Historically, marmosets have been maintained as pets and zoo animals; their use as laboratory 67 animals begun in earnest in the 1960s and 1970s [5]. During this period, breeding colonies of 68 common marmosets for laboratory use were founded in the United Kingdom and European 69 countries, and the United States. CIEA imported 12 species of small NHPs, including marmosets 70 and tamarins, in the 1970s to develop NHP models for biomedical research. Since the introduction 71 of common marmosets in 1976, CIEA has improved husbandry methods and established a 72 breeding colony of this species from 12 marmoset pairs originally imported from the former 73 Imperial Chemical Industries, UK in 1983 [6]. The breeding colony was transferred to a 74 commercial breeder, CLEA Japan (formerly Japan EDM), in 1991. CLEA Japan has maintained the colony until now without crossbreeding with animals from other origins, while they have 75 76 introduced animals a few times from other colonies of domestic facilities. Animals bred from this 77 colony have been supplied to research institutes in Japan and worldwide, including in Korea and 78 the United States.

Since the introduction of marmosets, CIEA has continued basic research projects for animal care and scientific use, such as husbandry, reproduction, experimental techniques, and veterinary care and published these outcomes as handbooks for researchers and animal technicians in Japan [7, 8]. Over the last two decades, alongside basic research programs, CIEA has conducted translational biomedical research projects using marmosets, particularly in the fields of

84	developmental biology, magnetic resonance imaging (MRI) applications, and preclinical
85	evaluation of novel therapies. In particular, the development of genetically modified marmosets
86	has been promoted with the advancement of developmental engineering technology [4]. Sasaki
87	and colleagues have established a protocol for stable assisted reproductive technology [9, 10],
88	developed a method for producing transgenic marmosets using the lentiviral vector, and were the
89	first to report the germline transmission of a transgene in primates [11]. Recently, they proposed
90	technologies for the knockout of target genes and point mutagenesis by genome editing tools and
91	produced novel disease models, including models for immunodeficiency and Alzheimer's disease
92	[12-14].
93	
94	1.2 Experimental disease models for transrational research using marmosets
94 95	1.2 Experimental disease models for transrational research using marmosets In addition to use in genetically modified (GM) disease models, marmosets have been used
94 95 96	1.2 Experimental disease models for transrational research using marmosets In addition to use in genetically modified (GM) disease models, marmosets have been used in non-GM disease studies [1, 2, 15]. CIEA and collaborating institutes have developed various
94 95 96 97	1.2 Experimental disease models for transrational research using marmosets In addition to use in genetically modified (GM) disease models, marmosets have been used in non-GM disease studies [1, 2, 15]. CIEA and collaborating institutes have developed various non-GM disease models induced by surgery and/or drug administration (mentioned below) and
94 95 96 97 98	1.2 Experimental disease models for transrational research using marmosets In addition to use in genetically modified (GM) disease models, marmosets have been used in non-GM disease studies [1, 2, 15]. CIEA and collaborating institutes have developed various non-GM disease models induced by surgery and/or drug administration (mentioned below) and models for infectious [16, 17] and spontaneous diseases [18] for preclinical research, as outlined
94 95 96 97 98 99	1.2 Experimental disease models for transrational research using marmosets In addition to use in genetically modified (GM) disease models, marmosets have been used in non-GM disease studies [1, 2, 15]. CIEA and collaborating institutes have developed various non-GM disease models induced by surgery and/or drug administration (mentioned below) and models for infectious [16, 17] and spontaneous diseases [18] for preclinical research, as outlined in Table 1.
94 95 96 97 98 99 100	1.2 Experimental disease models for transrational research using marmosets In addition to use in genetically modified (GM) disease models, marmosets have been used in non-GM disease studies [1, 2, 15]. CIEA and collaborating institutes have developed various non-GM disease models induced by surgery and/or drug administration (mentioned below) and models for infectious [16, 17] and spontaneous diseases [18] for preclinical research, as outlined in Table 1. Marmosets and humans share the basic plan of nervous system organization, and marmoset
94 95 96 97 98 99 100	1.2 Experimental disease models for transrational research using marmosets In addition to use in genetically modified (GM) disease models, marmosets have been used in non-GM disease studies [1, 2, 15]. CIEA and collaborating institutes have developed various non-GM disease models induced by surgery and/or drug administration (mentioned below) and models for infectious [16, 17] and spontaneous diseases [18] for preclinical research, as outlined in Table 1. Marmosets and humans share the basic plan of nervous system organization, and marmoset models of neurodegenerative disease are valuable for translational research [1]. A Parkinson's
94 95 96 97 98 99 100 101	1.2 Experimental disease models for transrational research using marmosets In addition to use in genetically modified (GM) disease models, marmosets have been used in non-GM disease studies [1, 2, 15]. CIEA and collaborating institutes have developed various non-GM disease models induced by surgery and/or drug administration (mentioned below) and models for infectious [16, 17] and spontaneous diseases [18] for preclinical research, as outlined in Table 1. Marmosets and humans share the basic plan of nervous system organization, and marmoset models of neurodegenerative disease are valuable for translational research [1]. A Parkinson's disease (PD) model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

103 administration that causes degeneration of dopaminergic neurons in the substantia nigra is a

104	flagship marmoset model; the model has been extensively used in various applications, from basic
105	pathophysiological studies to the preclinical evaluation of novel drugs and therapies worldwide
106	[19, 20], whereas another PD model induced by 6-hydroxydopamine (6-OHDA) injection into
107	dopaminergic neural areas has been used in marmosets as in rodents [21]. Compared to other
108	NHPs, marmosets are particularly suited for behavioral measurements in parkinsonism and for
109	monitoring the safe management of the MPTP toxin because of their small body size and abundant
110	motor activity. Ando and colleagues [22, 23] established a simple dosing schedule of MPTP
111	administration to induce PD with subcutaneous injections of 2 or 1 mg/kg/day for three
112	consecutive days; the authors have also established care protocols for the acute toxic phase that
113	include oral administration of nutrient solution and subcutaneous infusion for hydration, as well
114	as protocols for behavioral measurements, such as automated counting of spontaneous motor
115	activity and dysfunction scoring systems. The MPTP-treated marmosets exhibited major signs of
116	PD, such as immobility (decrease of spontaneous motor activity), tremor, muscle rigidity, and
117	postural dysfunction in conjunction with dopaminergic degeneration of the substantia nigra [22,
118	24]. Furthermore, in MRI studies of MPTP-treated marmosets, voxel-based morphometry has
119	revealed decreased local tissue volume in the substantia nigra, and diffusion-tensor imaging
120	demonstrated fiber loss in the nigrostriatal pathway; these findings suggest a novel role for MRI
121	in the clinical diagnosis of PD [25, 26]. Furthermore, in the MPTP model, dyskinesia (involuntary
122	movements of the body), a side effect of long-term dopamine replacement therapy with L-DOPA,
123	was induced by repeated L-DOPA administration (10 mg/kg/day on 3 days/week for 6 weeks)

124 [27].

125 Marmoset models have further contributed to the preclinical evaluation of novel therapies, such 126 as regenerative medicine research. For example, during the early stages of research and 127 development projects, preparing large amounts of testing materials, such as induced cells, can 128 prove technically and economically challenging. The small body weight of marmosets equivalent 129 to that of rats (approximately one tenth of that of cynomolgus macaques) can facilitate 130 experiments at a lower cost. In this vein, marmoset models of cervical spinal cord injury [28] 131 have been used for the evaluation of regeneration-based therapies using hepatocyte growth factor 132 (HGF) [29] and transplantation of iPS cell-derived neural stem/progenitor cells [30]. 133 Several experimental disease models for translational research have been developed in 134 marmosets; for example, a hypertrophic scar [31] model to test nucleic acid-targeting drugs, and 135 models for myocardial infarction (Hattori et al., unpublished) and type 1 diabetes mellitus [32] 136 for the preclinical assessment of cell transplantation therapies (Table 1). Preclinical models for 137 liver regeneration therapies for cirrhosis would also be useful; however, marmoset models of 138 experimental hepatic fibrosis were not available at the time. We attempted to induce liver fibrosis 139 by administration of thioacetamide (TAA), a common hepatotoxin in rodents, and found that 140 subcutaneous injection (SC) of TAA at doses of 2.5-40 mg/kg two or three times for more than 141 11 weeks caused hepatic fibrosis [33]. In a subsequent study, marked fibrotic lesions were induced 142 by adjusting TAA doses at 30 mg/kg twice a week for an additional period of 12 months (Fig. 1a, 143 b); TAA administration terminated when acute liver failure was suspected by weekly monitoring

144	of blood chemistry. Furthermore, non-invasive evaluation of the hepatic lesion by contrast-
145	enhanced MRI using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-
146	DTPA), a hepatocyte-targeted contrast agent [34], was tested as an alternative to invasive hepatic
147	biopsy. MRI data were obtained on a 7.0T Biospec 70/16 scanner system (Bruker BioSpin GmbH;
148	Ettlingen, Germany) equipped with actively shielded gradients at a maximum strength of 700
149	mT/m and an imaging coil with an inner diameter 60 mm. Dynamic contrast-enhanced MRI was
150	performed with intravenous administration of 0.025 mmoL Gd/kg (0.1 ml/kg) of Gd-EOB-DTPA
151	(Primovist, Bayer, Leverkusen, Germany). Three marmosets underwent MRI using T1-weighted
152	fast low angle shot sequences before and 65 weeks after continuous TAA administration using
153	the above protocol. Relative enhancement (RE) of signal intensity [35, 36] obtained from the
154	regions of interest in the liver and the gallbladder was significantly decreased post TAA
155	administration (Fig. 1c), indicating decreased uptake of Gd-EOB-DTPA in the hepatocytes in the
156	context of TAA-induced fibrosis. The protocols for inducing stable liver fibrosis and non-invasive
157	assessment of the hepatic lesion are an attractive option in preclinical research for novel
158	transplantation therapies.

159

2. Veterinary management for marmosets in biomedical research 160

2.1 Research on veterinary management of marmosets at CIEA 161

162 In the past 15 years, research in marmoset veterinary care has mainly involved clinical and pathological studies as well as design of anesthetic protocols and microbiological surveys; the 163

164	latter two topics are presented in detail in the following sections. Our clinical and pathological
165	surveys in the past five years (2017-2021) revealed that primary spontaneous diseases in
166	marmosets leading to death or euthanasia were marmoset wasting syndrome (MWS), followed
167	by duodenal dilation and neoplasms. This result indicates that gastrointestinal (GI) diseases are
168	common in captive marmosets and a major health problem for the colony [37, 38]. MWS is
169	clinically characterized by impaired weight gain, weight loss, muscle atrophy, and alopecia
170	commonly accompanied with anemia and hypoalbuminemia [39, 40]. The etiology remains
171	unknown, but MWS is associated with chronic lymphocytic enteritis [37, 38, 41]. Histological
172	examination of MWS cases in our facility also showed considerable mononuclear cell infiltration
173	in the lamina propria of small intestinal mucosa. Recently, our group described "duodenal dilation
174	syndrome" as a novel GI disease characterized by proximal duodenal obstruction and dilation
175	with chronic repetitive vomiting, chronic bloating, and exhaustion, which can cause fatal
176	aspiration pneumonia [42]. Autopsy examination revealed a narrowing lumen of the distal
177	duodenum due to an ulcer scar or abnormal flexure, suggesting an association with duodenal
178	ulceration, duodenal-colonic adhesion, or cholangitis; however, the onset of the disease is not
179	clear and similar cases has been found in other colonies [38]. We have established diagnosis
180	methods for duodenal dilation using a combination of radiography and ultrasonography [38], and
181	we will continue to investigate the etiology of the disease and treatment options. Neoplasms
182	observed in marmosets at the CIEA included intestinal lymphomas and small intestinal
183	adenocarcinomas, which are the commonly observed GI tumors in captive colonies [37, 38, 41],

184 as well as rare lung adenocarcinomas [42]. In addition, clinical procedures to maintain the health 185 of the colony have been refined. For example, marmosets have a high risk of fatal blood loss 186 because of the low whole blood volume; an adult marmoset of average weight (350 g) has an 187 estimated circulating blood volume of 24.5 ml and only 4.9 ml (20% circulating blood volume) 188 of acute blood loss can cause hemorrhagic shock [43]. We have established a protocol for whole 189 blood transfusion, including cross-matching, for marmosets and have demonstrated its efficacy 190 and safety in severe anemia and persistent hemorrhage cases [44].

191

192 2.2 Anesthesia and analgesia protocols in marmosets

Administration of anesthesia before surgical procedures is crucial to relieve animal pain and distress and performing stable experiments. Anesthetic and analgesic protocols should be optimized for specific animal species and experimental purposes. Diverse anesthetic and analgesic regimes for marmosets have been reviewed recently [45, 46]; in this section, we describe our procedures and some cautionary notes based on our experience at CIEA.

Table 2 lists the anesthetic protocols, including premedication, emergency drugs, and postoperative analgesic doses for marmosets currently in use at CIEA. The small body of marmosets and their narrow airways pose challenges to the administration of anesthesia. Particular attention should be given to avoid vomiting, because of considerable risk of death from aspiration. Fasting the animals before anesthesia (at least 3 h) should be routinely performed and administration of antiemetics (e.g., maropitant) is recommended. To maintain stable respiration,

204	the use of anticholinergics (e.g., atropine) for the reduction of salivary and bronchial secretions,
205	keeping the tongue pulled out for preventing glossoptosis, and careful observation of breathing
206	during anesthesia are recommended. Fluid administration before and during anesthesia is
207	recommended for supporting the cardiovascular function and correction of fluid losses; for
208	example, 6-15 ml/kg of 2.5% dextrose and 0.45% sodium chloride solution is subcutaneously
209	administered before anesthesia at CIEA. Thermal support during and post anesthesia with a
210	heating device and an intensive care unit chamber is essential because the larger surface area to
211	volume ratio makes marmosets susceptible to hypothermia. In addition, a report indicated that the
212	administration of anesthetic agents might lead to hypoxemia [47]. Except for minor treatments,
213	inhalation anesthesia supplemented with oxygen and monitoring of saturation of percutaneous
214	oxygen (SpO ₂) is recommended. At CIEA, a SpO ₂ sensor probe for human neonates (e.g. TL-
215	260T multi-site Y probe, Nihon Kohden, Tokyo, Japan) is attached or clipped to the hand, foot,
216	calf, or tail, and a monitoring equipment for human (e.g. OLV-4201, Nihon Kohden) and small
217	animal medicine (e.g. BSM-3592, Nihon Kohden) are used. Other sensors of SpO ₂ designed for
218	pediatric use or rodents are available for marmosets [46]. During a major surgery or long
219	anesthesia, in addition to respiration, SpO ₂ , and pulse, rectal temperature and electrocardiogram
220	are monitored. If anesthetic emergency, such as bradycardia (<120 bpm) or respiratory arrest, is
221	observed, the inhaled anesthetic concentration is lowered, and emergency drugs are administered
222	depending on the situation; Table 2 lists the emergency medications administered at CIEA. The
223	short oral cavity and visible larynx of marmosets make intratracheal intubation relatively easy,

a stable ventilation. At CIEA, feeding tubes (6–8 Fr) for human neonates (Atom Medical, Tokyo,
Japan) as endotracheal tubes are intubated at a 4–5 cm distance from the incisors, and volume
control ventilation is performed at 4–7 ml tidal volume for 30–40 times/min using a ventilator
(SN-480, Shinano Manufacturing, Tokyo, Japan).

and inhalation anesthesia with a ventilator should be performed in long-term surgeries to maintain

229 Induction with injectable agents allows smooth transition to anesthesia and provides adequate 230 analgesia and stable maintenance of anesthetic level when combined with inhalation anesthetics. 231 In the past, ketamine had been mainly used for induction at CIEA. Ketamine is a useful injectable 232 anesthetic agent because of its rapid induction, analgesic effect as a N-methyl-D-aspartate 233 receptor antagonist, and wide safety margin [46]. Combinations of ketamine and α_2 -adrenergic 234 receptor agonists, such as xylazine, medetomidine, and dexmedetomidine, induce sedation or 235 general anesthesia in marmosets [7, 45, 46]. On the other hand, ketamine has been regulated as a 236 narcotic agent with strict license-based restrictions in Japan since 2007. In our experience, 237 administration of ketamine (30 mg/kg) caused adverse side effects, such as hypersalivation, 238 vomiting, and respiratory arrest, during isoflurane inhalation anesthesia. Furthermore, a 239 combination of medetomidine, an α_2 -adrenergic receptor agonist, midazolam, a benzodiazepine, 240 and butorphanol, an opioid (MMB), which has been widely used in mice and other laboratory 241 animals [48, 49], is selected as an alternative induction agent (Table 1). Conveniently, 242 butorphanol is known to have antiemetic effect [50, 51]. The preferred combination of MMB is 243 medetomidine 0.04 mg/kg, midazolam 0.4 mg/kg, and butorphanol 0.4 mg/kg delivered via

244	intramuscular injection (IM); this combination was optimized for marmosets by arranging a dose
245	reported in ring-tailed lemurs [52] and patas monkeys [53]. The administration of atipamezole
246	0.2 mg/kg IM at the end of surgery reverses the effect of medetomidine and facilitates smooth
247	recovery from anesthesia. In our experience, MMB before isoflurane inhalation has been used in
248	more than 1,000 operation cases a year in the last 10 years with limited adverse effects, notably,
249	hypersalivation, vomiting, and apnea. Alfaxalone, which has been available in Japan since 2014,
250	and its combinations are also valid options for injectable anesthesia in marmosets [54, 55].
251	Postoperative analgesia must be provided for both humane and scientific purposes. Analgesic
252	regimens for marmosets reviewed in the literatures help appropriate pain management; however,
253	there is insufficient information on the evaluation of efficacy or pharmacokinetics of analgesic
254	agents in marmosets [46]. At CIEA, the analgesic protocol using non-steroidal anti-inflammatory
255	drugs (NSAIDs) is ketoprofen 1.2-2 mg/kg IM or meloxicam 0.1-0.2 mg/kg IM/per os
256	administered once daily for three more days post-surgery (Table 2). In cases where potent
257	analgesia is required, for example after a major surgery, opioids, butorphanol (0.02-0.2 mg/kg
258	IM), or buprenorphine (0.005–0.02 mg/kg IM/SC) are administered in addition to NSAIDs as a
259	multimodal approach.

260

261 2.3 Microbiological surveys in marmosets

262 Microbiological control is an essential process to maintain the health of the colony, reduce263 biosafety risks, and obtain reliable scientific results. Although specific pathogen-free colonies

264 have been established in barrier environments [56, 57], marmosets are commonly raised in 265 conventional environments. Marmosets are susceptive to various human pathogens; for example, 266 fatal outbreaks of measles [58] and herpes simplex viruses [59] have been reported. Emphasis 267 should be placed on preventive medical practices against human pathogens, including mandatory 268 health certificates for staff and visitors, showing measles antibody levels and tuberculosis-free 269 status, and restricting admission of individuals suspected of having infectious diseases. Zoonotic 270 risks from marmosets to humans are low in established laboratory animal colonies, as marmosets 271 are not natural hosts of herpes B virus, which is a serious zoonotic pathogen transmitted from 272 macaques to humans [41]. Nevertheless, major zoonotic pathogens that have serious risks among 273 humans and marmosets should be monitored because pathogens can be transmitted by indirect or 274 direct contact with infected humans, NHPs, or other animals. At CIEA, Salmonella spp., Shigella 275 spp., Yersinia spp., and intestinal parasites have been examined in guarantine and periodical 276 examinations. No positive cases of these bacteria and pathogenic parasites, including Entamoeba 277 histolytica, have been found since the establishment of colony. 278 However, a major source for concern is GI tract diseases, a usual finding in captive marmosets.

279 Opportunistic microbial infections are suspected causes of intestinal lesions; marmoset facilities 280 worldwide have conducted investigations to understand disease causation, and several pathogens 281 related to diseases have been reported [40, 60-62]. However, there is limited information, and 282 microbes harbored by animals depend on their origins and housing environments. A survey at the 283 CIEA marmoset colony aimed to identify pathogens associated with intestinal diseases and 284

improve veterinary care practices; the rest of this section highlights our main results.

285 Table 3 lists the commonly isolated protozoan, bacterial, and viral pathogens from the 286 marmosets at CIEA. Trichomonad protozoa are prevalent intestinal parasites in the colony, and their association with bowel diseases has been evaluated [63]. Trichomonas is a flagellate 287 288 protozoan parasite that infects the digestive tract and reproductive organs of various mammals, 289 including members of the Callitrichidae family [40]. Identification of protozoan species and 290 reports on pathogenicity in marmoset colonies are largely limited. In our survey [63], 291 morphological characterization and 18S rRNA gene analysis of marmoset fecal samples identified 292 Pentatrichomonas hominis, a non-pathogenic opportunist in the large intestine of various 293 mammalian hosts, including NHPs [40, 64]. In this study, the positive rates of trichomonad 294 trophozoites in normal and diarrheal feces were similar, indicating that P. hominis was not the 295 primary cause of diarrhea or colitis. On the other hand, there tended to be large numbers of the 296 protozoa found in diarrhea feces. Some diarrheal cases with large numbers of this protozoa have 297 been treated successfully with metronidazole, an antitrichomonal and antibacterial agent, 298 suggesting a possibility that P. hominis is likely associated with diarrhea, and treatment with 299 metronidazole in diarrhea cases with elevated trichomonad levels can be effective. In subsequent 300 analysis of the nucleotide sequences, including the internal transcribed spacer regions, we 301 revealed low genetic divergence of P. hominis within our colony and other reported mammal 302 hosts, suggesting that *P. hominis* can be transmitted among marmosets and other mammals.

303 Enteropathogenic *Escherichia coli* (EPEC) is a common bacterial pathogen in the GI tract of

304	marmosets (Table 3). EPEC positive for the attaching and effacing virulence gene, eae, is a
305	recognized cause of typhlocolitis in marmosets [65-67]. Hayashimoto et al. [66] revealed the
306	prevalence of EPEC in bloody diarrhea cases at the CIEA colony, and experimental infection of
307	an EPEC strain (R811) isolated from a marmoset in our facility caused hematochezia with
308	attachment of gram-negative bacilli to epithelial apical membranes and desquamated epithelial
309	cells in the cecum. The recommended treatment of hemorrhagic typhlocolitis at CIEA is with
310	appropriate antibiotic choices (e.g., enrofloxacin). It should be noted that asymptomatic carriers
311	of EPEC have also been found [66], and management of EPEC in the colony requires further
312	assessment.
313	Clostridioides (Clositridium) difficile has also been implicated in GI diseases in the CIEA
314	marmoset colony. C. difficile is a gram-positive spore-forming anaerobic bacillus found naturally
315	in the GI tracts of various mammals as well as in soils and the environment [68]. Elevated
316	concentrations of these bacteria produce toxins that cause diarrhea and colitis in the host organism
317	because of an imbalance in intestinal microbiota, and fatal pseudomembranous enterocolitis cases
318	associated with C. difficile infection have been reported in common marmosets and related species
319	[69, 70]. At CIEA we have used an immunochromatography kit (C. DIFF QUIK CHEK [®] , Alere,
320	Orland, FL) to detect C. difficile toxins. The clinical presentations of C. difficile enteritis include
321	diarrhea with mucus, acute weight loss, anorexia, and no feces. When signs are observed in the
322	colony, diagnostic screening is performed, and positive cases are treated with appropriate
323	antibiotics, commonly vancomycin or metronidazole. Fecal transplantation can also be a

324 designated treatment strategy for *C. difficile* infection in marmosets [71].

Among rarely occurring diseases, sepsis and pneumonia cases caused by *Klebsiella pneumoniae* were prevalent in the early years of the breeding colony, in the 1970s and early 1980s; vaccination with formaldehyde-killed bacteria was conducted to manage infection [72]. In addition, a sepsis case (non-traumatic gas gangrene) caused by *Clostridium perfringens* Type A has been reported in the colony [73]; sepsis is rare as *C. perfringens* is generally considered commensal.

331 Although current knowledge on viruses endemic to marmosets is limited, Callitrichine herpes 332 virus 3 (CalHV-3) is a recognized agent that may induce intestinal lymphoproliferative disease 333 or lymphoma [74, 75]. CalHV-3 is a lymphocryptovirus of the Gammaherpesvirinae subfamily 334 and closely related to the human Epstein-Barr virus [75]. Seroprevalence of CalHV-3 was 37% 335 and 47% in two captive colonies and 50% in individuals recently captured from the wild, indicating that marmosets are natural hosts for CalHV-3 [76]. We surveyed the prevalence of 336 337 CalHV-3 in the CIEA colony using polymerase chain reactions to amplify DNA samples from 338 peripheral blood and enlarged lymph nodes of marmosets, with primers targeting major internal 339 repeats designed by Fogg et al. [76]. The three samples from the enlarged lymph nodes and 63% 340 (15/25) of the blood samples tested positive. This result suggests that the virus is endemic to our 341 marmoset colony and may be responsible for the lymphoproliferative disease. 342

343 Concluding remarks

344 The common marmoset is currently emerging as the NHP species of choice for biomedical 345 research. There is an increasing demand worldwide for marmosets in neuroscience projects to 346 elucidate the organization of brain circuits and as models for neurological disorders; genome 347 editing technologies applicable in translational studies are particularly advantageous [77-79]. The 348 recent successful use of marmosets in biomedical studies is an extension of basic research projects 349 for breeding, care, and experimental use since the 1970s. The development of experimental 350 disease and preclinical marmoset models reviewed in this report, has expanded research 351 applications using this species. A parallel advancement of experimental procedures, such as MRI, 352 anesthesia, and veterinary care and management, including microbiological control of the colony 353 ensued. To sustain research using the marmoset paradigm, we will continue refining experimental 354 methods and improving veterinary care as well as practicing the principles of 3Rs (replacement, reduction, and refinement) for animal experimentation. 355

356

357 Acknowledgments

We thank Dr. Nobuhito Hayashimoto, Dr. Masahiko Yasuda, Dr. Takayuki Mineshige, Dr. Yoko
Kurotaki, Mr. Norio Okahara, Ms. Tomoko Ishibuchi, Ms. Emi Sasaki, Ms. Chihoko Yamada,

- 360 Dr. Hanako Morita, Dr. Kenji Kawai, Dr. Yuji Komaki, Dr. Kiyoshi Ando, Dr. Toshio Ito and all
- 361 members of CIEA involved in marmoset research. We also thank Dr. Yukihito Ishizaka, Dr. Jun
- 362 Lu, and Dr. Masayuki Shimoda (National Center for Global Health and Medicine, Tokyo, Japan.)
- 363 for their collaboration in the TAA-induced hepatic fibrosis model. This work was partially

364	supported by the Brain Mapping by Integrated Neurotechnologies for Disease Studies
365	(Brain/MINDS), "Platform for marmoset research support (JP19dm0207068)" from the Japan
366	Agency for Medical Research and Development (AMED) and the Program for Basic and Clinical
367	Research on Hepatitis, "Differentiation of Mesenchymal Stem Cells to Hepatic Cells by Artificial
368	Transcriptional Factors (JP18fk0210103)" from AMED.
369	

371 References 372 1. Fox JG, Marini RP, Wachtman LM, Tardif SD, Mansfield K. The common marmoset in 373 captivity and biomedical research. London: Academic Press, an imprint of Elsevier; 2019. 374 2. t Hart BA, Abbott DH, Nakamura K, Fuchs E. The marmoset monkey: a multi-purpose 375 preclinical and translational model of human biology and disease. Drug Discov. Today. 376 2012; 17: 1160-1165. 377 3. Sasaki E. Prospects for genetically modified non-human primate models, including the 378 common marmoset. Neurosci Res. 2015; 93: 110-115. 379 4. Sasaki E. Development of genetically modified nonhuman primates toward models for 380 translational research. Transl Regul Sci. 2019; 1: 15-23. 381 National Academies of Sciences E, Medicine, Division on E, Life S, Institute for 5. 382 Laboratory Animal R, Roundtable on S, et al. Care, Use, and Welfare of Marmosets as 383 Animal Models for Gene Editing-Based Biomedical Research: Proceedings of a 384 Workshop. Washington (DC): National Academies Press (US); 2019. 385 Nomura T, Tanioka Y. Characteristics and experimental use of the common marmoset. 6. 386 Tokyo, Japan: Soft Science; 1989. 387 7. Tanioka Y, Taniguchi K, Fujino K. Care, reproduction, experimental techniques and 388 anatomy of the common marmoset. Tokyo: Adthree; 1996. 389 Sasaki E, Inoe T, Kurotaki Y, Miki R. Laboratory Manual for marmoset studies -From 8. 390 handling to the frontline of research- Tokyo: Adthree; 2018. 391 9. Park JE, Sasaki E. Assisted Reproductive Techniques and Genetic Manipulation in the 392 Common Marmoset. ILAR J. 2021. 393 10. Kurotaki Y, Sasaki E. Practical Reproductive Techniques for the Common Marmoset. J 394 Mamm Ova Res. 2017: 3-12, 10. 395 11. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, et al. Generation 396 of transgenic non-human primates with germline transmission. Nature. 2009; 459: 523-397 527. 398 12. Sato K, Oiwa R, Kumita W, Henry R, Sakuma T, Ito R, et al. Generation of a Nonhuman 399 Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome 400 Editing. Cell Stem Cell. 2016; 19: 127-138. 401 Sato K, Sasaguri H, Kumita W, Inoue T, Kurotaki Y, Nagata K, et al. A non-human 13. 402 primate model of familial Alzheimer's disease. bioRxiv. 2020: 2020.2008.2024.264259. 403 14. Kumita W, Sato K, Suzuki Y, Kurotaki Y, Harada T, Zhou Y, et al. Efficient generation 404 of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Sci Rep. 2019; 405 9: 12719.

406 15. Mansfield K. Marmoset models commonly used in biomedical research. Comp Med.
407 2003; 53: 383-392.

408 16. Iwatsuki-Horimoto K, Nakajima N, Kiso M, Takahashi K, Ito M, Inoue T, et al. The

409		Marmoset as an Animal Model of Influenza: Infection With A(H1N1)pdm09 and Highly
410		Pathogenic A(H5N1) Viruses via the Conventional or Tracheal Spray Route. Front
411		Microbiol. 2018; 9: 844.
412	17.	Hirose L, Hiramoto T, Tian Y, Kohara H, Kobayashi S, Nagai E, et al. A pilot study to
413		establish human T-cell leukemia virus type 1 (HTLV-1) carrier model using common
414		marmoset (Callithrix jacchus). J Med Primatol. 2020; 49: 86-94.
415	18.	Noro T, Namekata K, Kimura A, Azuchi Y, Hashimoto N, Moriya-Ito K, et al. Normal
416		tension glaucoma-like degeneration of the visual system in aged marmosets. Sci Rep.
417		2019; 9: 14852.
418	19.	Philippens IHCHM. Marmosets in Neurologic Disease Research: Parkinson's Disease.
419		In: Fox JG, Marini RP, Wachtman LM, Tardif SD, Mansfield K, editors. The common
420		marmoset in captivity and biomedical research. London: Academic Press, an imprint of
421		Elsevier; 2019. pp. 415-435.
422	20.	Jenner P. The MPTP-treated primate as a model of motor complications in PD. Primate
423		model of motor complications. Neurology. 2003; 61: S4-S11.
424	21.	Ando K, Nishime C, Inoue R, Nishinaka E, Kawai K, Urano K, et al. Differential effects
425		of dopaminergic drugs on spontaneous motor activity in the common marmoset following
426		pretreatment with a bilateral brain infusion of 6-hydroxydopamine. Behav Pharmacol.
427		2017; 28: 670-680.
428	22.	Ando K, Obayashi S, Nagai Y, Oh-Nishi A, Minamimoto T, Higuchi M, et al. PET
429		analysis of dopaminergic neurodegeneration in relation to immobility in the MPTP-
430		treated common marmoset, a model for Parkinson's disease. PLoS One. 2012; 7: e46371.
431	23.	Ando K, Maeda J, Inaji M, Okauchi T, Obayashi S, Higuchi M, et al. Neurobehavioral
432		protection by single dose l-deprenyl against MPTP-induced parkinsonism in common
433		marmosets. Psychopharmacology. 2008; 195: 509-516.
434	24.	Ando K, Inoue T, Hikishima K, Komaki Y, Kawai K, Inoue R, et al. Measurement of
435		baseline locomotion and other behavioral traits in a common marmoset model of
436		Parkinson's disease established by a single administration regimen of 1-methyl-4-phenyl-
437		1,2,3,6-tetrahydropyridine: providing reference data for efficacious preclinical
438		evaluations. Behav Pharmacol. 2020; 31: 45-60.
439	25.	Hikishima K, Ando K, Komaki Y, Kawai K, Yano R, Inoue T, et al. Voxel-based
440		morphometry of the marmoset brain: In vivo detection of volume loss in the substantia
441		nigra of the MPTP-treated Parkinson's disease model. Neuroscience. 2015; 300: 585-592.
442	26.	Hikishima K, Ando K, Yano R, Kawai K, Komaki Y, Inoue T, et al. Parkinson Disease:
443		Diffusion MR Imaging to Detect Nigrostriatal Pathway Loss in a Marmoset Model
444		Treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Radiology. 2015; 275: 430-
445		437.
446	27.	Ando K, Inoue T, Itoh T. L-DOPA-induced behavioral sensitization of motor activity in
447		the MPTP-treated common marmoset as a Parkinson's disease model. Pharmacol
448		Biochem Behav. 2014; 127: 62-69.

- 449 28. Iwanami A, Yamane J, Katoh H, Nakamura M, Momoshima S, Ishii H, et al.
 450 Establishment of graded spinal cord injury model in a nonhuman primate: the common 451 marmoset. J Neurosci Res. 2005; 80: 172-181.
- 452 29. Kitamura K, Fujiyoshi K, Yamane J, Toyota F, Hikishima K, Nomura T, et al. Human
 453 hepatocyte growth factor promotes functional recovery in primates after spinal cord
 454 injury. PLoS One. 2011; 6: e27706.
- 455 30. Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, et al. Pre-evaluated
 456 safe human iPSC-derived neural stem cells promote functional recovery after spinal cord
 457 injury in common marmoset without tumorigenicity. PLoS One. 2012; 7: e52787.
- Igarashi J, Fukuda N, Inoue T, Nakai S, Saito K, Fujiwara K, et al. Preclinical Study of
 Novel Gene Silencer Pyrrole-Imidazole Polyamide Targeting Human TGF-beta1
 Promoter for Hypertrophic Scars in a Common Marmoset Primate Model. PLoS One.
 2015; 10: e0125295.
- 462 32. Yuan W, Fukuda S, Inoue T, Okochi H, Sasaki E, Shimoda M. Establishment of a diabetes mellitus type 1 model in the common marmoset. Sci Rep. 2019; 9: 14546.
- 464 33. Inoue T, Ishizaka Y, Sasaki E, Lu J, Mineshige T, Yanase M, et al. Thioacetamide465 induced hepatic fibrosis in the common marmoset. Exp Anim. 2018; 67: 321-327.
- 466 34. Weinmann HJ, Schuhmann-Giampieri G, Schmitt-Willich H, Vogler H, Frenzel T, Gries
 467 H. A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI.
 468 Magn Reson Med. 1991; 22: 233-237; discussion 242.
- 35. Saito S, Moriyama Y, Kobayashi S, Ogihara R, Koto D, Kitamura A, et al. Assessment
 of liver function in thioacetamide-induced rat acute liver injury using an empirical
 mathematical model and dynamic contrast-enhanced MRI with Gd-EOB-DTPA. J Magn
 Reson Imaging. 2012; 36: 1483-1489.
- 473 36. Verloh N, Utpatel K, Haimerl M, Zeman F, Fellner C, Fichtner-Feigl S, et al. Liver
 474 fibrosis and Gd-EOB-DTPA-enhanced MRI: A histopathologic correlation. Sci Rep.
 475 2015; 5: 15408.
- 476 37. Kramer JA. Chapter 13 Diseases of the Gastrointestinal System. In: Marini R,
 477 Wachtman L, Tardif S, Mansfield K, Fox J, editors. The Common Marmoset in Captivity
 478 and Biomedical Research: Academic Press; 2019. pp. 213-230.
- 479 38. Fitz C, Goodroe A, Wierenga L, Mejia A, Simmons H. Clinical Management of
 480 Gastrointestinal Disease in the Common Marmoset (Callithrix jacchus). ILAR Journal.
 481 2021; 61: 199-217.
- 482 39. Rensing S, Oerke AK. Husbandry and Management of New World Species: Marmosets
 483 and Tamarins. In: Wolfe-Coote S, editor. The Laboratory Primate Amsterdam: Elsevier;
 484 2005. pp. 145-162.
- 485 40. Potkay S. Diseases of the Callitrichidae: a review. J Med Primatol. 1992; 21: 189-236.
- 486 41. Ludlage E, Mansfield K. Clinical care and diseases of the common marmoset (Callithrix
 487 jacchus). Comp Med. 2003; 53: 369-382.
- 488 42. Mineshige T, Inoue T, Yasuda M, Yurimoto T, Kawai K, Sasaki E. Novel gastrointestinal

489		disease in common marmosets characterised by duodenal dilation: a clinical and
490		pathological study. Sci Rep. 2020; 10: 3793.
491	43.	Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, et al. A good
492		practice guide to the administration of substances and removal of blood, including routes
493		and volumes. J Appl Toxicol. 2001; 21: 15-23.
494	44.	Yurimoto T, Mineshige T, Shinohara H, Inoue T, Sasaki E. Whole blood transfusion in
495		common marmosets: a clinical evaluation. Exp Anim. 2021; advpub.
496	45.	Marini RP, Haupt J. Anesthesia and select surgical procedures. In: Fox JG, Marini RP,
497		Wachtman LM, Tardif SD, Mansfield K, editors. The common marmoset in captivity and
498		biomedical research. London: Academic Press, an imprint of Elsevier; 2019.
499	46.	Goodroe A, Fitz C, Bakker J. Current Topics in Marmoset Anesthesia and Analgesia.
500		ILAR J. 2021.
501	47.	Konoike N, Miwa M, Ishigami A, Nakamura K. Hypoxemia after single-shot anesthesia
502		in common marmosets. J Med Primatol. 2017; 46: 70-74.
503	48.	Kirihara Y, Takechi M, Kurosaki K, Kobayashi Y, Kurosawa T. Anesthetic effects of a
504		mixture of medetomidine, midazolam and butorphanol in two strains of mice. Exp Anim.
505		2013; 62: 173-180.
506	49.	Kirihara Y, Takechi M, Kurosaki K, Kobayashi Y, Saito Y, Takeuchi T. Effects of an
507		anesthetic mixture of medetomidine, midazolam, and butorphanol in rats-strain
508		difference and antagonism by atipamezole. Exp Anim. 2016; 65: 27-36.
509	50.	Papastefanou AK, Galatos AD, Pappa E, Lymperis AG, Kostoulas P. The effect of
510		butorphanol on the incidence of dexmedetomidine-induced emesis in cats. Vet Anaesth
511		Analg. 2015; 42: 608-613.
512	51.	Schurig JE, Florczyk AP, Rose WC, Bradner WT. Antiemetic activity of butorphanol
513		against cisplatin-induced emesis in ferrets and dogs. Cancer Treat Rep. 1982; 66: 1831-
514		1835.
515	52.	Williams CV, Glenn KM, Levine JF, Horne WA. Comparison of the efficacy and
516		cardiorespiratory effects of medetomidine-based anesthetic protocols in ring-tailed
517		lemurs (Lemur catta). J Zoo Wildl Med. 2003; 34: 163-170.
518	53.	Kalema-Zikusoka G, Horne WA, Levine J, Loomis MR. Comparison of the
519		cardiorespiratory effects of medetomidine-butorphanol-ketamine and medetomidine-
520		butorphanol-midazolam in patas monkeys (Erythrocebus patas). J Zoo Wildl Med. 2003;
521		34: 47-52.
522	54.	Miyabe-Nishiwaki T, Miwa M, Konoike N, Kaneko A, Ishigami A, Natsume T, et al.
523		Evaluation of anaesthetic and cardiorespiratory effects after intramuscular administration
524		of alfaxalone alone, alfaxalone-ketamine and alfaxalone-butorphanol-medetomidine in
525		common marmosets (Callithrix jacchus). J Med Primatol. 2020; 49: 291-299.
526	55.	Bakker J, Uilenreef JJ, Pelt ER, Brok HP, Remarque EJ, Langermans JA. Comparison of
527		three different sedative-anaesthetic protocols (ketamine, ketamine-medetomidine and
528		alphaxalone) in common marmosets (Callithrix jacchus). BMC Vet Res. 2013; 9: 113.

- 56. Ross CN, Austad S, Brasky K, Brown CJ, Forney LJ, Gelfond JA, et al. The development
 of a specific pathogen free (SPF) barrier colony of marmosets (Callithrix jacchus) for
 aging research. Aging (Albany NY). 2017; 9: 2544-2558.
- 532 57. Hobbs KR, Clough G, Bleby J. The establishment of specified-pathogen-free marmosets,
 533 Callithrix jacchus. Lab Anim. 1977; 11: 29-34.
- 58. Levy BM, Mirkovic RR. An epizootic of measles in a marmoset colony. Lab Anim Sci.
 535 1971; 21: 33-39.
- 536 59. Matz-Rensing K, Jentsch KD, Rensing S, Langenhuyzen S, Verschoor E, Niphuis H, et
 537 al. Fatal Herpes simplex infection in a group of common marmosets (Callithrix jacchus).
 538 Vet Pathol. 2003; 40: 405-411.
- 539 60. Baker DG. Chapter 17 Parasitic Diseases. In: Marini R, Wachtman L, Tardif S,
 540 Mansfield K, Fox J, editors. The Common Marmoset in Captivity and Biomedical
 541 Research: Academic Press; 2019. pp. 289-303.
- 542 61. Mansfield KG, Fox JG. Chapter 16 Bacterial Diseases. In: Marini R, Wachtman L,
 543 Tardif S, Mansfield K, Fox J, editors. The Common Marmoset in Captivity and
 544 Biomedical Research: Academic Press; 2019. pp. 265-287.
- 545 62. Mätz-Rensing K, Bleyer M. Chapter 15 Viral Diseases of Common Marmosets. In:
 546 Marini R, Wachtman L, Tardif S, Mansfield K, Fox J, editors. The Common Marmoset
 547 in Captivity and Biomedical Research: Academic Press; 2019. pp. 251-264.
- 548 63. Inoue T, Hayashimoto N, Yasuda M, Sasaki E, Itoh T. Pentatrichomonas hominis in
 549 laboratory-bred common marmosets. Exp Anim. 2015; 64: 363-368.
- 550 64. Toft J. The pathoparasitology of the alimentary tract and pancreas of nonhuman primates:
 551 A review. Veterinary Pathology Online. 1982; 19: 44-92.
- 552 65. Carvalho VM, Gyles CL, Ziebell K, Ribeiro MA, Catao-Dias JL, Sinhorini IL, et al.
 553 Characterization of Monkey Enteropathogenic Escherichia coli (EPEC) and Human
 554 Typical and Atypical EPEC Serotype Isolates from Neotropical Nonhuman Primates.
 555 Journal of clinical microbiology. 2003; 41: 1225-1234.
- 556 66. Hayashimoto N, Inoue T, Morita H, Yasuda M, Ueno M, Kawai K, et al. Survey and
 557 Experimental Infection of Enteropathogenic Escherichia coli in Common Marmosets
 558 (Callithrix jacchus). PLoS One. 2016; 11: e0160116.
- 559 67. Thomson JA, Scheffler JJ. Hemorrhagic typhlocolitis associated with attaching and
 560 effacing Escherichia coli in common marmosets. Lab Anim Sci. 1996; 46: 275-279.
- 68. Rodriguez C, Taminiau B, Van Broeck J, Delmee M, Daube G. Clostridium difficile in
 Food and Animals: A Comprehensive Review. Adv Exp Med Biol. 2016; 932: 65-92.
- 69. Rolland RM, Chalifoux LV, Snook SS, Ausman LM, Johnson LD. Five spontaneous
 deaths associated with Clostridium difficile in a colony of cotton-top tamarins (Saguinus
 oedipus). Lab Anim Sci. 1997; 47: 472-476.
- 566 70. Armstrong AR, Wünschmann A, Rigatti LH, Klein EC. Clostridium difficile
 567 Enterocolitis in a Captive Geoffroy's Spider Monkey (Ateles geoffroyi) and Common
 568 Marmosets (Callithrix jacchus). Vet Pathol. 2019; 56: 959-963.

- 569 71. Yamazaki Y, Kawarai S, Morita H, Kikusui T, Iriki A. Faecal transplantation for the
 570 treatment of Clostridium difficile infection in a marmoset. BMC Vet Res. 2017; 13: 150.
- 571 72. Ito T. Klebsiella pneumoniae infection (1). In: Pathology TSoPDa, editor. Color atras of
 572 diseases in non-human primates (in Japanese). Tsukuba: Isebu; 2011. pp. 30-31.
- 573 73. Yasuda M, Inoue T, Ueno M, Morita H, Hayashimoto N, Kawai K, et al. A case of
 574 nontraumatic gas gangrene in a common marmoset (Callithrix jacchus). J Vet Med Sci.
 575 2016; 77: 1673-1676.
- 576 74. Ramer JC, Garber RL, Steele KE, Boyson JF, O'Rourke C, Thomson JA. Fatal
 577 lymphoproliferative disease associated with a novel gammaherpesvirus in a captive
 578 population of common marmosets. Comp Med. 2000; 50: 59-68.
- 579 75. Cho Y-G, Ramer J, Rivailler P, Quink C, Garber RL, Beier DR, et al. An Epstein–Barr580 related herpesvirus from marmoset lymphomas. PNAS. 2001; 98: 1224-1229.
- 581 76. Fogg MH, Carville A, Cameron J, Quink C, Wang F. Reduced prevalence of Epstein582 Barr virus-related lymphocryptovirus infection in sera from a new world primate. Journal
 583 of Virology. 2005; 79: 10069-10072.
- 584 77. Okano H, Sasaki E, Yamamori T, Iriki A, Shimogori T, Yamaguchi Y, et al.
 585 Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience. Neuron.
 586 2016; 92: 582-590.
- 587 78. Callaway EM, Dong H-W, Ecker JR, Hawrylycz MJ, Huang ZJ, Lein ES, et al. A
 588 multimodal cell census and atlas of the mammalian primary motor cortex. Nature. 2021;
 589 598: 86-102.
- 590 79. Servick K. Why are US neuroscientists clamoring for marmosets. Science. 2018; 362:
 591 383-384.
- 592

593 Figure legends

594

595 Fig. 1. Hepatic fibrosis induced by TAA in marmosets.

596 a. Nodular liver surface of a marmoset subcutaneously injected with TAA at a dose of 30 mg/kg 597 twice a week for 15 months. Scale bar (black): 2 mm. b. Liver biopsy specimen with Masson 598 trichrome stain of a TAA-treated marmoset identical to a. Fibrous lesions containing blue-stained 599 collagen were largely located around hepatic lobules. Scale bar (black): 500 µm. c. Relative 600 enhancement (RE) of signal intensity by dynamic contrast-enhanced MRI using Gd-EOB-DTPA, 601 a hepatocyte-targeted contrast agent, before and 15 months post continuous TAA treatment. RE 602 in liver and gallbladder at time points after Gd-EOB-DTPA injection was significantly decreased 603 post TAA treatment in marmosets (n = 3). Statistical analysis was conducted by Bonferroni's multiple comparisons test following two-way ANOVA. *P < 0.05, **P < 0.01. 604

TIme after Gd-EOB-DPTA administration (min)

Fig. 1. Hepatic fibrosis induced by TAA in marmosets.

a. Nodular liver surface of a marmoset subcutaneously injected with TAA at a dose of 30 mg/kg twice a week for 15 months. Scale bar (black): 2 mm. b. Liver biopsy specimen with Masson trichrome stain of a TAA-treated marmoset identical to a. Fibrous lesions containing blue-stained collagen were largely located around hepatic lobules. Scale bar (black): 500 μ m. c. Relative enhancement (RE) of signal intensity by dynamic contrast-enhanced MRI using Gd-EOB-DTPA, a hepatocyte-targeted contrast agent, before and 15 months post continuous TAA treatment. RE in liver and gallbladder at time points after Gd-EOB-DTPA injection was significantly decreased post TAA treatment in marmosets (n = 3). Statistical analysis was conducted by Bonferroni's multiple comparisons test following two-way ANOVA. *P <0.05, **P <0.01.

Parkinson's disease1-methyl-4-phenyl- 1,2,3,6- tertahydropyridine (MPTP) administrationBehavioral pharmacology, preclinical study in drug development, MR imaging25-31Central nervous systemSpinal cord injuryContusive injury or hemisectionPathophysiology, stem cell therapy, preclinical study in drug development, MR imaging32-34Multiple sclerosis (Experimental autoimmune encephalomyclitis, EAE)Recombinant human myelin- oligodendrocyte glycoprotein extracellular domain (rhMOG) immunizationPathophysiology stem cell therapy preclinical study in MR imaging32-34Infectious diseaseHuman T-cell Leukemia Virus Typel (HTLV-1)Infection and immune supressionStem cell therapy eclusion-Infectious diseaseHuman T-cell Leukemia virus Typel (HTLV-1)Infection and immune supressionPathophysiology eclusion21Infectious diseaseHuman T-cell Leukemia ring of left and strep coronary arteryStem cell therapy eclusion-OthersHypertrophic scar Diabetes mellitus (Type 1)Skin incisionPathophysiology stem cell therapy eclusion36Liver fibrosisThioacetamide administrationStem cell therapy stem cell therapy administration37	Category	Disease model	Methods	Research purposes	References
Central nervous systemSpinal cord injuryContusive injury or hemisectionPathophysiology, stem cell therapy, preclinical study in drug development, MR imaging32-34Multiple sclerosis (Experimental autoimmune encephalomyelitis, EAE)Recombinant human myelin- oligodendrocyte glycoprotein extracellular domain (rhMOG) immunizationPathophysiology Pathophysiology-Infectious diseaseMutiple sclerosis (Experimental autoimmune encephalomyelitis, EAE)Middle cerebral artery occlusionStem cell therapy Pathophysiology-Infectious diseaseHuman T-cell Leukemia Influenza AInfection and immune supressionStem cell therapy Pathophysiology20Infectious diseaseMyocardial infarction Influenza ALigation of left anterior descending coronary arteryStem cell therapy Preclinical study of nucleic acid-targeted-OthersDiabetes mellitus (Type I)Partial pancreatectomy and streptozotocin (STZ) administrationStem cell therapy Stem cell therapy ad streptozotocin (STZ) administrationStem cell therapy ad streptozotocin (STZ) administration36		Parkinson's disease	1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine (MPTP) administraion 6-hydroxydopamine injection in the brain	Behavioral pharmacology, preclinical study in drug development, MR imaging	25-31
Multiple sclerosis (Experimental autoimmune encephalomyelitis, EAE)Recombinant human myelin- oligodendrocyte glycoprotein extracellular domain (rhMOG) immunizationPathophysiology Cerebral ischemiaMiddle cerebral artery occlusionStem cell therapy-Infectious diseaseHuman T-cell Leukemia Virus Typel (HTLV-1)Infection and immune supressionPathophysiology21Infectious diseaseMyocardial infarctionInfection of left anterior descending coronary arteryStem cell therapy-Myocardial infarctionSkin incisionStem cell therapy and streptozotocin (STZ) administration35Diabetes mellitus (Type I)Partial pancreatectomy and streptozotocin (STZ) administrationStem cell therapy and streptozotocin (STZ) administration36	Central nervous system	Spinal cord injury	Contusive injury or hemisection	Pathophysiology, stem cell therapy, preclinical study in drug development, MR imaging	32-34
Cerebral ischemiaMiddle cerebral artery occlusionStem cell therapy -Infectious diseaseHuman T-cell Leukemia Virus Type1 (HTLV-1)Infection and immune supressionPathophysiology21Influenza AInfectionPathophysiology20Myocardial infarctionLigation of left anterior descending coronary arteryStem cell therapy OthersDiabetes mellitus (Type I)Partial pancreatectomy and streptozotocin (STZ) administrationStem cell therapy 3635Liver fibrosisThioacetamide administrationStem cell therapy 2036		Multiple sclerosis (Experimental autoimmune encephalomyelitis, EAE)	Recombinant human myelin- oligodendrocyte glycoprotein extracellular domain (rhMOG) immunization	Pathophysiology	-
Infectious diseaseHuman T-cell Leukemia Virus Typel (HTLV-1)Infection and immune supressionPathophysiology21Influenza AInfectionPathophysiology20Influenza AInfectionPathophysiology20Myocardial infarctionLigation of left anterior descending coronary arteryStem cell therapy-Hypertrophic scarSkin incisionPreclinical study of nucleic acid-targeted drug35OthersDiabetes mellitus (Type I)Partial pancreatectomy and streptozotocin (STZ) administrationStem cell therapy36Liver fibrosisThioacetamide administrationStem cell therapy37GlaucomaSpontaneous (aged)Pathophysiology22		Cerebral ischemia	Middle cerebral artery occlusion	Stem cell therapy	-
Influenza AInfectionPathophysiology20Influenza AInfectionPathophysiology20Myocardial infarctionLigation of left anterior descending coronary arteryStem cell therapy-Hypertrophic scarSkin incisionPreclinical study of nucleic acid-targeted drug35OthersDiabetes mellitus (Type I)Partial pancreatectomy and streptozotocin (STZ) administrationStem cell therapy36Liver fibrosisThioacetamide administrationStem cell therapy37GlaucomaSpontaneous (aged)Pathophysiology22	Infectious	Human T-cell Leukemia Virus Type1 (HTLV-1)	Infection and immune supression	Pathophysiology	21
Myocardial infarctionLigation of left anterior descending coronary arteryStem cell therapy-Hypertrophic scarSkin incisionPreclinical study of nucleic acid-targeted 	uisease	Influenza A	Infection	Pathophysiology	20
OthersHypertrophic scarSkin incisionPreclinical study of nucleic acid-targeted35Diabetes mellitus (Type I)Partial pancreatectomy and streptozotocin (STZ) administraionStem cell therapy36Liver fibrosisThioacetamide administrationStem cell therapy37GlaucomaSpontaneous (aged)Pathophysiology22		Myocardial infarction	Ligation of left anterior descending coronary artery	Stem cell therapy	-
OthersDiabetes mellitus (Type I)Partial pancreatectomy and streptozotocin (STZ) administraionStem cell therapy36Liver fibrosisThioacetamide administrationStem cell therapy37GlaucomaSpontaneous (aged)Pathophysiology22		Hypertrophic scar	Skin incision	Preclinical study of nucleic acid-targeted drug	35
Liver fibrosisThioacetamide administrationStem cell therapy37GlaucomaSpontaneous (aged)Pathophysiology22	Others	Diabetes mellitus (Type I)	Partial pancreatectomy and streptozotocin (STZ) administraion	Stem cell therapy	36
Glaucoma Spontaneous (aged) Pathophysiology 22		Liver fibrosis	Thioacetamide administration	Stem cell therapy	37
		Glaucoma	Spontaneous (aged)	Pathophysiology	22

Table 1. Examples of experimental (non-GM) disease models using marmosets involved at Central Institute for Experimental Animals

-: unpublished.

Table 2. Anesthesia and analgesia protocols for marmosets at Central Institute for Experimental Animals

micsticsia protoco	013		
Procedure	Inductive anesthetics, analges	esic, premedication ^{a)} Maintain anesthesia	
Brief treatment	Isoflurane	4%–5% (induction, mask of	or box), 1%-3% (maintain, mask)
	Ketamine	15–50 mg/kg, IM	
	Ketamine + xylazine	15–50 mg/kg + 1.2–4 mg/k	xg IM
	Alphaxalone	8–12 mg/kg, IM	
Minor surgery	MMB mixture		
	Medetomidine ^{b)}	0.04 mg/kg, IM	
	Midazolam	0.4 mg/kg, IM	
	Butorphanol	0.4 mg/kg, IM	Isoflurane
Cesarean section	Isoflurane	4%–5% (mask or box)	1%–3% (mask)
	Lidocaine	1.5 mg/kg, SC (local)	
	Butorphanol (after delivery)	0.03 mg/kg, SC	
	Ketoprofen	1.2 mg/kg, IM	
Major surgery	Ketamine	30 mg/kg, IM	
	Midazolam	0.2 mg/kg, IM	
	Butorphanol	0.03 mg/kg, IM	Isoflurane
	Ketoprofen	1.2 mg/kg, IM	1%–3% (tracheal intubation and
	Atropine ^{c)}	0.05 mg/kg, IM	artificial ventilation)
MRI imaging	Alphaxalone	12 mg/kg, IM	-
	Atropine ^{c)}	0.05 mg/kg, IM	
_			
Emergency drugs			-
Indication	Drug	Dose	-
Bradycardia	Atropine	0.05–0.1 mg/kg IM/VI	
Arrhythmia	Lidocaine	0.3 mg/kg IV	
Cardiac arrest	Epinephrine	0.01–0.1 mg/kg IM/VI	
Respiratory arrest	Dimorpholamine	0.5–1.0 mg/kg IM	
Post operateive an	algesic		
Analgesic		Dose	-
NSAIDs	Ketoprofen	1.2-2.0 mg/kg, IM	-
	Meloxicam	0.1–0.2 mg/kg, IM/PO	_
Opioids	Butorphanol	0.02–0.2 mg/kg, IM	-
	Buprenorphine	0.005-0.02 mg/kg, IM/SC	_

Anesthesia protocols

^{a)} Pre-anesthetic fasting for at least 3 hours or maropitant 0.1 ml/kg, IM for preventing vomiting in urgent cases. Dextrose 2.5% and 0.45% sodium chloride solution 6–15 ml/kg, SC for hydration.

^{b)} Reversal by atipamezole 0.2 mg/kg, IM post-surgery.

^{c)} Anticholinergic for the redcution of salivary and bronchial secretion.

Table 3. Microorganisms harbored in common marmosets surveyed at the Central Institute for Experimental Animals

Microorganisms		Relation with disease	
Protozoa	Pentatrichomonas hominis	Commensal or diarrhea	
Bacteria	Enteropathogenic <i>Escherichia coli</i> (EPEC)	Bloody diarrhea	
	Clostridioides difficile	Diarrhea, pseudomembranous colitis (severe)	
	Clostridium perfringens	Sepsis (rare)	
	Klebsiealla pneumoniae	Sepsis, pneumonia (in old-time)	
Virus	Callitrichine herpesvirus 3	Lymphoproliferative disease	