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Abstract: With large eddy simulations (LES) and/or cloud-resolving models (CRMs), it is now possible to si-
multaneously simulate shallowanddeep convection.However, using traditionalmethods, the computational
expense is typically very large, due to the small grid spacingsneeded to resolve shallowclouds.Here, themain
purpose is to present a method that is computationally less expensive by a factor of roughly 10 to 50. Unlike
traditional grid stretching of only the vertical z grid spacing, the present method involves expansion of the
grid spacing in all coordinate directions (x,y,z) and time t. A �ne grid spacing of O(10)-O(100) m can be used
near the surface to resolve boundary layer turbulence, and the grid spacing expands to beO(1000)mat higher
altitudes, which reduces computational cost while still resolving deep convection. Example simulations are
conducted with a simpli�ed LES/CRM in 2D to verify the theoretical cost savings.
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1 Introduction
Clouds and convection occur across a range of scales, and the grid spacing needed in numerical simulations
can be di�erent for di�erent cloud phenomena. For instance, a grid spacing of roughly 1 km is needed to
simulate deep convection [5, 6], whereas a grid spacing of roughly 10 to 100 m is needed to simulate shallow
clouds [25, 27].

To simulate both shallow and deep convection together, the computational expense is very large. Not
only is a small grid spacing needed to resolve shallow clouds, but a large domain is also needed to encompass
the scales of deep convective clouds. It is only somewhat recently that computational power has increased
to a point where shallow and deep convection could be simulated together in large eddy simulations (LES)
[8, 13, 18].

Here we present a setup that could bring a signi�cant computational savings. The basic idea is illustrated
in Fig. 1, and it involves the use of a �ne grid spacing of roughly 10 to 100 m only in the lowest portions of
the atmosphere where such high resolution is needed to resolve shallow clouds. At higher altitudes, the grid
expands to a coarser grid spacing of roughly 1 km, thereby bringing a large computational savings, while still
allowing deep convective clouds to be resolved. In contrast to the common approach of stretching of a grid in
only the vertical z direction, the present method involves an expansion of the grid spacing in all coordinate
directions x, y, z and time t, which brings additional computational savings.

The setup of the expanding grid could be useful in any setting where shallow clouds and deep convec-
tion are simulated together. For instance, while superparameterization techniques for climate models were
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Figure 1: Schematic diagram of (a) the expanding grid and (b) the �ne uniform grid. The expanding grid shown is a schematic
diagram and has 5 grid sections, and each section has a height of 4 grid cells (except for the lowest grid section, which has 8
grid cells). In the numerical experiments, the expanding grid uses 6 grid sections, and each section has a height of 10 grid cells
(except for the lowest grid section, which has 20 grid cells); and the �nest and coarsest grid sections have grid spacings of 50
and 1600 meters, respectively.
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originally targeted at resolving deep convection without resolving shallow clouds [4, 21], new con�gurations
are currently being explored to resolve shallow clouds as well [3, 11, 19, 24]. Also, while it is perhaps too com-
putationally expensive at the present time, in the future it is feasible to consider the possibility of resolving
shallow clouds in weather prediction and global CRMs [22, 23, 32]. At the present time, for LES of shallow and
deep convection over limited areas [8, 13, 18], grid nesting is often used to combine horizontal regions of dif-
ferent horizontal grid spacing; the expanding grid could possibly allow for additional computational savings
that could be reinvested elsewhere, such as in cloud microphysics and subgrid-scale processes [7, 26, 30], or
in larger domain sizes to include additional mesoscale or synoptic-scale variability, or in larger ensembles of
simulations.

This paper is organized as follows. In section 2, we describe the expanding grid and the setup of the nu-
merical simulations. In sections 3, 4, and 5, we compare numerical simulations of the expanding grid versus
uniform grids with �ne or coarse grid spacings. A setupwith 2D simulations is used to allow comparisonwith
�ne-grid-spacing simulations at reasonably achievable computational cost. The numerical simulations also
provide a veri�cation of the theoretical estimates of computational cost savings, which are described in detail
in the appendix.

2 Numerical Setup
The expanding grid is set up in the following way. The domain is decomposed into M grid sections, which
we denote as Gi, for 1 ≤ i ≤ M. See Fig. 1 for a schematic illustration of the setup (but note that the actual
grid setup di�ers from Fig. 1 in some details, due to space limitations for a single page of the journal; these
di�erences are described in the caption of Fig. 1). Each grid section has uniformgrid spacing of hi in all spatial
directions (so ∆xi = ∆yi = ∆zi = hi), with time step of ∆ti. The grids are re�ned in the sense that hi = hi−1/2,
and ∆ti = ∆ti−1/2. For the speci�c tests of the present paper, we use 6 grid sections, where grid section G1
extends from an altitude of 16 kilometers to 32 kilometers with a grid spacing of 1600meters and a time step
of 8 seconds. The thickness of grid Gi is then half the thickness of Gi−1 for i > 1, so that G6 uses h6 = 50 m
and covers the lowermost 1 kilometer in the vertical direction. Other con�gurations are also possible by, e.g.,
changing the number of grid sectionsM, allowing di�erent numbers of vertical grid cells per grid section, etc.
We choose the present setup because it can be described easily in terms of powers of 2 and because it meets
the basic requirements on grid spacings for simulating both shallow and deep convection (see section 1). For
additional tests, we have also used setups with 5 and 7 grid sections, so that the cost of inserting or removing
a �ne grid adjacent to the bottom of the domain can be determined.

To implement an expanding grid setup, two options are as follows. First, one could use existing adaptive
mesh re�nement (AMR) software in a static con�guration that remains the same at each time step, which
would essentially amount to a nested grid setup [2, 29, 31]. One advantage of this is its �exibility, as AMR
techniques can generally re�ne any region of the domain and can even use dynamic/adaptive mesh re�ne-
ment criteria. A potential disadvantage would be the di�culty in incorporating AMR software into existing
codes, so this approach may be best implemented in new codes that are designed from the start with AMR
capabilities in mind, such as those used in [14–16, 28], and [10], where the focus has traditionally been on
horizontal rather than vertical re�nement. In AMR, each grid cell is often represented as the node of a tree,
the depth of which is equal to the number of levels of re�nement at a given point in space. So to incorporate
AMR into an existing code, one would need to change the array data structures into these tree-based ones.
Besides this additional di�culty, one would still expect an AMR code with the expanding grid de�ned in a
statically re�ned con�guration would o�er the same speedup as the second approach.

As a second approach, which is taken in the present paper, modi�cations could be made to an existing
code. In making the modi�cations, the basic idea is to leverage the fact that an existing code can solve the
dynamics over an individual grid section, which is arranged as a regular array. What is needed in addition,
then, is a wrapper code that calls the existing code to update each grid section, as needed. This calling pro-
cedure is then implemented as in AMR and grid nesting methods to move forward all grid sections one full
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time step [1, 20]. For example, since grid section G1 uses ∆t1 = 8 s and grid section G2 uses ∆t2 = 4 s, grid
section G2 must advance two ∆t2 time steps for every one ∆t1 time step.

The data structures for an expanding grid require some special treatment, but can be accomplished in a
simple way using native Fortran capabilities. In particular, the numerically expanding grid is not arranged in
space as a regularly spaced array. Nevertheless, each of the individual grid sections is a regularly spaced array.
Therefore, the many regularly spaced arrays can be collected together and stored using a Fortran derived
data type, and individual grid sections can be accessed e�ciently using pointers. Note that this setup could
possibly be extended so that grid sections could be inserted or removed based on dynamic criteria by using
Fortran’s dynamicmemory allocation, although the simpler static con�guration is used for the present initial
study.

As the standard case, the domain size is 32 kilometers in the vertical and 16 kilometers in the horizontal
direction. To provide some additional tests, we also consider cases where the horizontal length of the domain
is increased to be 24 km or 32 km. The simulations presented here are all 2D in order to allow for comparison
with simulations with the �ne uniform grid at a reasonable computational cost. Theoretical cost estimates
will be presented below for both the 2D and 3D cases, in order to provide both a comparison with the 2D
numerical simulations here and an estimate for expectations for 3D simulations. As comparison cases, in
addition to the expanding grid, we also consider a uniform �ne grid with a grid spacing of 50 meters and a
time step of 0.25 seconds, and a uniform coarse grid with a grid spacing of 1600 meters and a time step of 8
seconds.

To test a model’s ability to simulate both shallow and deep convection, numerical experiments are set
up to simulate the transition from shallow to deep convection, similar to, e.g., [12]. We solve the equations
for moist, non-precipitating atmospheric dynamics with phase changes of water between vapor and cloud
water, with some details described in the appendix. To remain as simple as possible for these tests, a Boussi-
nesq rather than anelastic setup is used [17]. The simple setup allows us to use a simple code, and the code
is available on Zenodo with the DOI 10.5281/zenodo.3857736 to provide an illustration of how to modify an
existing code in order to allow the capability of the expanding grid. To initialize the simulations, small am-
plitude random temperature perturbations are inserted near the surface. Prescribed large scale moistening
and cooling are applied as forcing terms to the prognostic equations for the thermodynamic variables [5, 9],
and a sponge layer is added to all variables in the upper part of the domain.

3 Shallow and deep convection together: What is cost of �ne vs.
expanding grid?

Fig. 2 shows a comparison of numerical simulations for the expanding grid and the uniform �ne grid. Speci�-
cally, the horizontally-averaged liquid water mixing ratio is plotted, as a function of height z and time t. Both
the expanding grid and �ne grid show a gradual deepening in a transition from shallow convection to deep
convection. This suggests that the expanding grid can simulate the same types of convective features as the
�ne grid.

While it is clear from Fig. 1 that the expanding grid is less expensive than the uniform �ne grid, it is useful
to have quantitative estimates of the cost savings. As theoretical estimates of cost savings, we �nd

Nf
Nex

≈
Tf
Tex

≈ 2M−1, (1)

where Nf and Nex are the total number of grid points in the �ne grid and expanding grid, respectively, and
Tf and Tex are the total time to carry out the simulations for the �ne grid and expanding grid, respectively.
Details of the estimates are shown in the appendix. The approximate estimate of 2M−1 holds for both the 2D
and 3D cases. Note that the cost savings depends only on M, which is the number of grid sections (i.e., the
number of times the grid is re�ned, plus one), and does not depend on the number of vertical grid cells per
grid section. For the standard setup here with M = 6, the theoretical estimate of cost savings is then a factor
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of 32 (or, based on a more re�ned estimate in the appendix, a factor of 27). What we �nd numerically is that
it is 43 times faster than the �ne grid, which suggests that the cost savings is even greater in practice than
in the crude theoretical estimates. To provide some additional tests, we also compared the sensitivity of the
time savings to di�erent domains by performing additional simulations on domains with horizontal extents
of 24 and 32 kilometers; we observe that the expanding grid is 41 and 56 times faster than the �ne grid,
respectively.

Based on the considerations above, we estimate that the expanding grid is 10 to 50 times faster than
traditional �ne grids. The lower estimate represents an expanding grid with M = 6 grid sections, as in the
standard case considered here, with a grid spacing that expands from h6 = 50m to h1 = 1600m.While such
a setup was seen here to o�er a speedup of roughly 45 times, that comparison was relative to a uniform grid,
so we decrease the estimate by a factor of 4 to o�er a comparison with a vertically stretched grid. The upper
estimate of 50 times, on the other hand, represents an expanding gridwithM = 8 sections, which could be set
upwith a grid spacing that expands from h8 = 12.5m to h1 = 1600m.While the increase fromM = 6 toM = 8
should come with an increased speedup from roughly 45 times to roughly 180 times, we again decrease the
estimate (now to 50 times) to remain conservative and to o�er a comparison to a stretched grid rather than a
uniformgrid. The choice of the number of grid sectionsmay be somewhat empirical, and problemdependent.
For instance, a domain with a large vertical extent, and therefore a wide range of scales, would bene�t from
a large number of grid sections, perhaps as many as 8. However, for domains with relatively small vertical
extents, 5 or 6 grid sectionsmaybe su�cient. In any case, the expanding grid o�ers a substantial cost savings.

4 Re�ning a deep-convection grid to resolve shallow convection:
How much added expense?

Another question of interest is, How much extra expense is needed to re�ne a deep-convection grid in order
to resolve shallow convection? Theoretically, we expect the expanding grid to come with additional expense,
beyond the coarse grid expense, by a factor of about 700.What we observe in numerical simulations is some-
what close to this: the expanding grid requires more computation time than the coarse grid by a factor of
O(1000) for the three di�erent domain sizes. However, this factor of 700–1000 is small in a relative sense; if
one instead re�nes the uniform coarse grid to the uniform �ne grid, the additional expense is theoretically a
factor of roughly 33,000.

The value of the expanding grid is in its additional realism, comparedwith the coarse grid, and in achiev-
ing that realism for the least added expense possible. In particular, in the uniform coarse grid, cloud forma-
tion does not occur until about 10 hours, and there is less of a gradual transition from shallow clouds to deep.
See Figs. 2 and 3. Instead, there is a rapid build-up of liquid water starting at approximately 5 kilometers in
altitude, associated with a maximum vertical velocity of 50 m/s. The cloud top then increases up until 12
hours, when it reaches its greatest height of 15 km. Beyond this time, the solution remains nearly constant
in that the maximum vertical velocity is nearly zero and the clouds cover a constant 35% of the domain, with
the maximum horizontally averaged liquid water staying at about 8.5 g/kg. The coarse grid is evidently very
di�erent than the expanding and �ne grids, as the coarse grid does not resolve shallow clouds.

5 Which grid gives the most realistic simulation, given available
resources?

In this section, we assume that there is a given amount of resources, and we ask for the grid that gives the
most realistic simulations. To that end, we compare the expanding grid to the “equivalent uniform grid," or
just the “equivalent grid” for short, which is de�ned as the uniform grid with the same number of grid cells as
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Figure 2: Comparison of simulations using four di�erent grids. The horizontally averaged liquid water (g/kg) is shown for all
four grids. Note that the coarse grid simulation lasts for approximately 17 hours, since it has a late initiation of clouds; the
other cases are shown for 10 hours. The “equivalent grid" is de�ned in section 5.
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Figure 3: Same as Fig. 2, except for the maximum vertical velocity (m/s). Note that the coarse grid simulation lasts for approxi-
mately 17 hours, since it has a late initiation of clouds; the other cases are shown for 10 hours.

the expanding grid. This results in a uniform grid spacing of 232 meters. As the resolution is approximately
four times as coarse as the �ne grid, a time step of 1 second is used. Through this comparison,we test whether
the grid arrangement of the expanding grid o�ers more realism in comparison to a uniformly arranged grid.

The horizontally averaged liquid water for the equivalent grid is shown in �gure 2. Broadly speaking,
the equivalent grid lacks the gradual transition from shallow to deep convection that was seen in the �ne
grid and expanding grid. Instead, in the equivalent grid, the formation of deep convection occurs somewhat
abruptly. Cloud formation �rst occurs at a height of approximately 1 km at 2.5 hours, and the transition to
deep convection occurs shortly after, with the cloud top at a height of about 9 km. Compared to the coarse
grid, the equivalent grid features the same abrupt transition to deep convection, with an extremely strong
updraft.

6 Conclusions
An expanding grid setup has been presented as a way of allowing e�cient simulation of both shallow and
deep convection. In particular, the expanding grid was estimated to be 10 to 50 times faster than traditional
�ne grids.

Both theoretical and numerical estimates were presented for the cost savings, and details were described
in section 3 and the appendix. In comparing the expanding grid and a �ne uniform grid, a rough theoretical
estimate of the cost savings is a factor of 2M−1, whereM is the number of grid sections in the expanding grid
(i.e., the number of levels of re�nement, plus 1). In the standard con�guration tested here with M = 6 grid
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sections, the cost savings is then roughly estimated to be a factor of 32. The rough theoretical estimates of
cost savings are the same for either 2D or 3D and for either number of grid points or total computation time.
In practice, numerical examples showed an even greater speedup of a factor of 40 to 50.

Implementation of the expanding grid could be done in a number of ways. For instance, one could use
AMR in either a static or dynamic/adaptive con�guration. Here, as another option, we described how one can
modify an existing code without needing full AMR capabilities. The expanding grid can be implemented in
a straightforward way using a Fortran derived data type to store the expanding grid as a collection of regular
arrays.

Some �rst comparisons were shown between the expanding grid and a uniform �ne grid. Due to the large
cost of the uniform �ne grid, a simpli�ed LES/CRM in 2D was explored as a feasible setup. The comparisons
show similar gradual deepening from shallow convection to deep convection in both the expanding grid and
the uniform �ne grid, and the maximum vertical velocity in the two cases shows similar magnitudes and
variability. It would be interesting in the future to make further detailed comparisons and in 3D to better
understand the similarities and di�erences in variability on the expanding grid versus a uniform �ne grid.
It would also be interesting to consider other con�gurations of the expanding grid, by trying, e.g., di�erent
re�nement altitudes or di�erent numbers of vertical grid cells for each grid section.

A Appendix
In this section, we derive theoretical estimates for the computational speedup o�ered by the expanding grid.
The derivation is split into two parts: �rst the number of grid cells is calculated, and second the computation
time is calculated by also estimating the number of time steps.

First we derive an expression for the total number of grid cells in the expanding grid. It will be a function
of the total number of grid sections,M, and the number of grid cells on the coarsest section in the vertical and
horizontal direction, which we denote Nzex, and Nxex. The 2D case will be considered �rst for simplicity, and
the 3D case is presented later below. Here, we assume that in the expanding grid, the vertical extent of each
grid section is half that of the previous grid section, except the height of the lowest grid section is the same
as that of the previous grid section. Grid section i then has 2i−1NxexNzex grid cells for i < M, and grid section
M has 2MNxexNzex cells. Summing over the total number of grid sections yields the expression

Nex = NxexNzex(2M + 2M−1 − 1), (2)

where Nex is the total number of grid cells of the expanding grid.
The number of grid cells in the uniform coarse grid, Nc, and uniform �ne grid, Nf , can be determined in

terms of Nxex. If we denote the width of the domain by Lx, and the height by Lz, and assume that ∆x = ∆z,
then the area of a single coarse grid cell is (Lx/Nxex)2, and the area of a single �ne grid cell is [Lx/(2M−1Nxex)]2.
Dividing the total area of the domain by the area of a single grid cell yields

Nc =
Lz(Nxex)2
Lx

, (3)

Nf =
Lz(2M−1Nxex)2

Lx
. (4)

Now we determine estimates for the amount of time each grid will take for a single time step. We assume
that the coarse grid has a time step of ∆t, and the �ne grid has a time step of ∆t/2M−1. For a regularly spaced
grid, we compute time estimates according to the formula

Time = T1 × (number of grid cells) × (number of time steps per coarse time step), (5)

where T1 is a dimensional constant with units of time. (In amore sophisticated calculation, we could replace
T1 with the function T(i), where i is the grid section number, and T(i) is the time complexity for grid section
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i. So theoretically, we could have di�erent results if there is signi�cant variation in T(i) for di�erent grid
sections.) With equation 5, we �nd that

Tc = T1Nc , (6)

Tf = 2M−1T1Nf , (7)

where Nc and Nf are given by equations (3), and (4), respectively.
For the expanding grid, we apply equation (5) to each grid section individually and then sum over the

number of grid sections. Note that grid section i takes 2i−1 time steps per coarse time step. With this in mind,
we have

Tex = 2M−1(2M−1NxexNzex)T1 +
M∑
i=1

2i−1(2i−1NxexNzex)T1. (8)

This simpli�es to the expression
Tex =

NxexNzex
12

(
7 · 4M − 4

)
T1. (9)

In comparisons of computational cost, it is ratios that are needed. Based on the formulas above, one can
determine the ratios

Nf
Nex

= 22M−1

3 · 2M−1 − 1 ≈ 1
32

M (10)

and
Tf
Tex

= 3 · 23M
7 · 4M − 4 ≈ 3

72
M . (11)

In arriving at these ratio formulas, one must use the fact that ∆x = ∆z within each grid section and that
(1/2)(Lz/Nzex) = Lx/Nxex. (It is (1/2)Lz that arises, not Lz, since the height of the coarsest grid section is
one-half the height of the entire domain.) Two noteworthy items are the following. First, notice that the cost
speedup is roughly the same (≈ 2M−1) for both the ratio of the number of grid cells, Nf /Nex, and the ratio of
the computation times, Tf /Tex. Second, notice that these ratios depend only on the number of grid sections,
M, and not on the number of vertical grid cells per grid section.

The choice ∆x = ∆z was made for simplicity, but our results are actually the same for anisotropic grids
with the same assumptions. We illustrate this with an example by calculating the number of grid cells on
expanding and �ne grids. The grid spacings for each grid section on a two-dimensional expanding grid can
bewritten as Lx/2M−1Nxex and Lz/2M−1Nzex, and the total number of grid cells is still given by equation (2). The
total number of grid points on the �ne grid is then 22M−2NxexNzex. Comparing this with equation (2) indicates
that cost savings in the anisotropic case only depends on the number of grid sections.

We can easily generalize to three dimensions. In this case, grid section i has 4i−1NxexNyexNzex grid boxes
for i < M, and grid section M has 4M− 1

2 NxexNyexNzex, where Nyex is the number of grid boxes in the y direction
on the coarsest grid section. One can show that

N3d
ex =

1
3N

x
exNyexNzex(4M + 3 · 4M−1 − 1), (12)

N3d
c = LyLz(N

x
ex)3

(Lx)2
, (13)

N3d
f = LyLz(2

M−1Nxex)3
(Lx)2

. (14)

The time estimates are similar, and we arrive at the equations

T3dex =
1
7N

x
exNyexNzex

(
8M + 7 · 8M−1 − 1

)
T1, (15)

T3dc = T1N3d
c , (16)
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T3df = 2M−1T1N3d
f . (17)

Based on the formulas above, one can determine the 3D ratios

N3d
f

N3d
ex

= 3 · 23M−2

7 · 4M−1 − 1 ≈ 3
72

M (18)

and
T3df
T3dex

= 7 · 24M−3

15 · 8M−1 − 1 ≈ 7
152

M . (19)

The derivation is similar to the 2D case. Notice that the cost speedups are roughly the same (≈ 2M−1) and
roughly the same as in the 2D case. In fact, the 2D ratio Tf /Tex is exactly the same as the 3D ratio N3d

f /N3d
ex ,

which is reasonable because they both represent three-dimensional grids: (x, z, t) in the former case and
(x, y, z) in the latter.

We end by noting that, thus far, we have compared the expanding grid to uniform grids. While some
LES and CRM setups do use uniform grid spacings [18, 25], it is also common to use a vertically stretched
grid, where the horizontal grid spacings remain �xed but the vertical grid spacing is stretched (e.g., it may
be 50 m near the surface and stretched to be 500 m near the tropopause). So we remark brie�y about the
savings we could expect relative to a vertically stretched grid. We compare to the vertical structure of the
grid in [13], where 256 vertical levels are used, and the smallest vertical grid spacing is 50 meters. Assuming
that the stretched grid has a uniform horizontal resolution of 50 meters, we �nd that the three dimensional
expanding grid is 12 times faster, which is a reduction in the speedup by a factor of roughly 3 relative to the
estimate of 2M−1 = 32 that arises when comparing against a uniform grid.

B Appendix
In this section, we describe our model in more detail, and provide a discussion of some aspects of its imple-
mentation. We solve the moist, non-precipitating Boussinesq equations, which are

Du
Dt = −∇ϕ + bẑ (20a)

Dθe
Dt + dθ̃edz w = 0 (20b)

Dqt
Dt + dq̃tdz w = 0 (20c)

∇ · u = 0, (20d)

where p′ is the pressure, ρ0 is a constant background density,ϕ = p′/ρ0,u(x, t) is the velocity vector, θe is the
equivalent potential temperature anomaly, and qt is the anomalous total water mixing ratio. The buoyancy,
b, is de�ned as

b = g
(
θ
θ0

+ Rvdqv − ql
)
, (21)

where θ0 = 300 K is a constant background potential temperature, g = 9.8 m s−2 is the acceleration due to
gravity and Rvd =

(
Rv/Rd

)
− 1 = 0.61, where Rd is the gas constant for dry air and Rv is the gas constant for

water vapor.
Simple parameterizations were chosen for the initial tests shown here. For example, subgrid-scale tur-

bulence was parameterized using eddy viscosity and eddy di�usion in the vertical and hyperviscosity and
hyperdi�usion in the horizontal. Note that the parameterizations should be adapted to the grid spacing. For
example, if a di�erent subgrid-scale turbulence parameterization were used, such as a Smagorinsky or tur-
bulent kinetic energy closure, the mixing length scale depends on the grid spacing, so one would need make
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sure the appropriate length scales are used for each grid section. One set of physical processes thatwas not in-
cluded is rainfall, ice, and associated cloud microphysics; instead, only phase changes between water vapor
and cloud liquid water were included. Another physical process that was not included was radiative transfer.
We point out, however, that a variety of approaches could potentially be used, depending on howmuch detail
is desired for the radiation model. For instance, one could use all available grid information with a radiative
transfer code that can be used with mesh re�nement. As a less expensive alternative, one could average over
the �ne grid data anduse a conventional radiative transfermodel on coarsened columns. Our reason for using
such a simpli�ed setup was to demonstrate that basic features of multiscale convection could be reproduced
in a more computationally e�cient manner. It will be interesting in the future to investigate the e�ects of
additional physical complexity.

For the numerical methods, we used a third order upwind discretization of the advection terms, and
the pressure gradient and incompessibility constraint are treated using a projection method. The Poisson
equation for the pressure was solved using an iterative method (conjugate gradient method), although one
could also use Fourier transforms in the horizontal direction to yield a one-dimensional di�erential equation
in the vertical direction, as is often done.

For passing information between di�erent grid sections, the array for each variable has extra rows and
columns to store ghost cells values to be used at physical boundaries and boundaries between grid sections.
This is needed, for instance, for the advection terms. At grid section boundaries, the coarse grid variables
are interpolated to provide these ghost cell values for the adjacent �ne grid. For the Poisson equation for
the pressure, rather than solving the Poisson equation over each grid section individually, we solve it over
the desired grid section and all lower-altitude grid sections (albeit using a uniform grid spacing across all of
those grid sections) in order to avoid the need for a pressure boundary condition at the grid section’s lower
boundary.

To store the data output, NetCDF or similar formats can be used, even for the expanding grid, since the
expanding grid can be treated as a collection of regular arrays, and regular arrays can be stored e�ciently and
easily. In the data �le, each variable is labelled with the grid section to which it corresponds. For example, in
the expanding grid used in the numerical simulation in the paper, we have six horizontal velocity variables,
each corresponding to a di�erent grid section. These variables are denoted by “ui, ” where i is the grid section
number.
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