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A NEW PLANAR BEZIER-LIKE SPIRAL DEFINED BY

EXPONENTIAL FUNCTIONS AND TRANSITION CURVES

ASLI AYAR AND BAYRAM ŞAHIN

Abstract. In this paper, we first obtain a new spiral curve by using the
curve introduced by Zhu-Han [14] under certain restrictions. Then by
using this spiral curve, we construct five transition curves which are from
a circle to a line, from a circle to a circle with the C−shaped curves,
from a circle to a circle with the S−shaped curves, from a line to a line
and from a circle to a circle, one circle inside the other.

1. Introduction

Curves and surfaces are used in computer-aided design (CAD) and manufac-
turing (CAM). Therefore finding or interpolating new curves and surfaces is an
important research area of CAD and CAM. The most known and commonly used
in CAD/CAM curves are Bezier curves and B-spline curves [4]. These curves are
related to their control points and have a control polygon. For the modifications
of the curve form, designers can use this control polygon. Since Bezier curves are
polynomial such property creates some difficulties for a designer. For instance,
if the designer wants to change the curve in a small area, this affects the entire
curve. This is an unwanted situation. Therefore, many authors seek new curves
with the shape parameters. By using shape parameters the designer can control
the curve without changing control points.

Although Bezier curves have been used for design, these curves are not useful
for certain cases. For instance, they are not appropriate for representing closed
curves. Considering curves with shape parameters, researchers have started to
modify representation of curves [1], [2], [3], [6], [10] and [12]. Thus, rational
curves, trigonometric curves and Bezier like curves with exponential functions
are obtained.

The Bezier like curves with exponential functions, introduced by Zhu and Han
in [14]. Basis functions of these curves were obtained by adding two exponential
functions to Bernstein basis functions. These two exponential functions have two
shape parameters, λ and µ. These shape parameters are called tension parame-
ters. Then by incorporating control points with these basis functions, the curve is
defined and is called λµ−Bezier like curve with two shape parameters. λµ−Bezier
like curve with two shape parameters are closer control polygon than other Bezier
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like curves. Since these curves are defined with appropriate parameters, it is pos-
sible for the designer to make the desired adjustments. More information about
these curves can be found in [14].

Also, spirals, which are commonly used in CAD and CAM, are very important
for technological design. Because their curvature varies monotonically with their
arc length. They don’t have cusps, loops or inflection points by definition. Conse-
quently, the spirals are used in many applications such as satellite orbit, railway,
highway or robotic design. In [11], the authors found a spiral Bezier curve and
then they constructed many transition curves by using this spiral. Later they
extended their result for general case [12], [13], see also [1], [5], [7] and [8].

In this paper, we obtain certain conditions for a λµ−Bezier like curve with
two shape parameters to be a spiral. After obtaining spiral conditions for this
curve, we construct transitions curves by using this spiral, i.e, from a line to a
circle transition, from a circle to a circle transition with the C-shaped curves,
from a circle to a circle transition with the S-shaped curves, from a line to a
line transition. Since these curves are defined with appropriate parameters, the
conditions for such curves to be spiral and the construction of transition curves
by using these curves can be possible by choosing the appropriate parameters
without changing the control points.

2. Background, notations and conventions

For any vector U, its parametric form is U = (Ux, Uy). The norm of vector U

is formulated as ||U|| =
√
U2
x + U2

y . Positive angles are measured anti-clockwise.

The dot product of two vectors, U and V is U.V = UxVx + UyVy and the cross
product of these two vectors is defined as U×V = ||U||.||V||. sin θ where the

angle θ is a positive angle. The derivative of function f is denoted by f
′
.

The signed curvature of a Bezier like curve f (t) is defined by [9]

κ (t) =
||f ′ (t)× f ′′ (t)||
||f ′ (t) ||3

. (2.1)

The radius of curvature r is given by r = 1
κ . If t is the unit tangent vector to

f (t) at t, then the orientation of the unit normal vector n to f (t) at t, is such
that the angle is anti-clockwise from t to n is π/2.

We now define λµ−Bezier like basis functions with two shape parameters and
discuss some of their properties.

Definition 2.1. [14] For t ∈ [0, 1], λµ−Bezier like basis functions with two shape
parameters λ, µ ∈ [0,∞) are defined as:

A0 (t;λ) = (1− t)3 e−λt,

A1 (t;λ) = (1− t)2 [1 + 2t− (1− t) e−λt
]
,

A2 (t;µ) = t2
[
3− 2t− te−µ(1−t)] ,

A3 (t;µ) = t3e−µ(1−t),

(2.2)

A0 (t;λ) +A1 (t;λ) +A2 (t;µ) +A3 (t;µ) = 1. (2.3)
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For λ, µ = 0, the λµ−Bezier like basis functions are linear cubic Bernstein
basis functions.

A0 (t; 0) = (1− t)3 e−0t = (1− t)3 ,

A1 (t; 0) = (1− t)2 [1 + 2t− (1− t) e−0t
]

= (1− t)2 [3t] ,

A2 (t; 0) = t2
[
3− 2t− te−0(1−t)] = t2 [3− 2t− t] = t23 [1− t] ,

A3 (t; 0) = t3e−0(1−t) = t3.

(2.4)

We now construct the λµ−Bezier like curve with two shape parameters as
follows:

Definition 2.2. [14] Given the control points Pi (i = 0, 1, 2, 3) in E2, we define
the λµ−Bezier like curve with two shape parameters as:

f (t;λ, µ) =
3∑
i=0

Ai (t;λ, µ) Pi

= A0 (t;λ) P0 +A1 (t;λ) P1 +A2 (t;µ) P2 +A3 (t;µ) P3

t ∈ [0, 1] , λ, µ ∈ [0,∞) .

(2.5)

The curve defined by (2.5) satisfies some geometric properties which can be ob-
tained easily from the properties of the basis functions.

A0 (0;λ) = 1, A0 (1;λ) = 0,
A1 (0;λ) = 0, A1 (1;λ) = 0,
A2 (0;µ) = 0, A2 (1;µ) = 0,
A3 (0;µ) = 0, A3 (1;µ) = 1.

(2.6)

Hermite curves are defined by two points and two tangent vectors. Here,

f (0;λ, µ) = P0,
f (1;λ, µ) = P3.

(2.7)

It is easy to see that the curve provides Hermite conditions. On the other hand,
by direct computations we have

A0
′ (t;λ) = e−λt (1− t)2 [−3− (1− t)λ] ,

A1
′ (t;λ) = e−λt (1− t)

[
3 + λ+ t2λ− t

(
3 + 6eλt + 2λ

)]
,

A2
′ (t;µ) = e−µt

[
6eµ (1− t)− eµtt (3 + µt)

]
,

A3
′ (t;µ) = e−µ(1−t)t2 (3 + µt) ,

(2.8)

A0
′′ (t;λ) = e−λt (1− t)

[
6 + 6 (1− t)λ+ (1− t)2 λ2

]
,

A1
′′ (t;λ) = e−λt

[
6eλt (−1 + 2t)− (1− t)

(
6 + 6 (1− t)λ+ (1− t)2 λ2

)]
,

A2
′′ (t;µ) = e−µ

[
eµ (6− 12t)− eµtt

(
6 + 6µt+ µ2t2

)]
,

A3
′′ (t;µ) = e−µ(1−t)t

(
6 + 6µt+ µ2t2

)
,

(2.9)

A0
′′′ (t;λ) = e−λt

[
−6− 18 (1− t)λ− 9 (1− t)2 λ2 − (1− t)3 λ3

]
,

A1
′′′ (t;λ) = e−λt

[
6 + 12eλt + 18 (1− t)λ+ 9 (1− t)2 λ2 + (1− t)3 λ3

]
,

A2
′′′ (t;µ) = e−µ

[
−12eµ − eµtt

(
6 + 18µt+ 9µ2t2 + t3µ3

)]
,

A3
′′′ (t;µ) = e−µ(1−t) (6 + 18µt+ 9µ2t2 + t3µ3

)
.

(2.10)
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Hence, we have

f ′ (0;λ, µ) = (λ+ 3) (P1 −P0) ,
f ′ (1;λ, µ) = (µ+ 3) (P3 −P2) ,
f ′′ (0;λ, µ) =

(
λ2 + 6λ+ 6

)
(P0 −P1) + 6 (P2 −P1) ,

f ′′ (1;λ, µ) =
(
µ2 + 6µ+ 6

)
(P3 −P2) + 6 (P1 −P2) .

(2.11)

Therefore, the tangent vector at the starting point is parallel to (P1 −P0) and
the tangent vector at the endpoint is parallel to (P3 −P2). Then, we say that
curve provides other Hermite conditions and this curve is defined by two points
and two tangent vectors.

3. λµ−Bezier like spiral with two shape parameters

In this section, we are going to find a new spiral under certain conditions for
λµ−Bezier like curve given in Definition 2.1.

Theorem 3.1. Let beginning and ending unit tangent vectors be t0 and t1 of λµ−
Bezier like curve with two shape parameters respectively. The beginning point of
curve is P0 and it is given. The ending curvature value is c > 0. We define the
λµ−Bezier like curve with two shape parameters as

f (t;λ, µ) = A0 (t;λ) P0 +A1 (t;λ) P1 +A2 (t;µ) P2 +A3 (t;µ) P3

t ∈ [0, 1] , λ ∈ (1,∞) , µ ∈ (3,∞)

with
P1 = P0 + at0,
P2 = P1 + at0 = P0 + 2at0,
P3 = P2 + bt1 = P0 + 2at0 + bt1

(3.1)

for a, b > 0. Suppose θ is the positive angle from t0 to t1. The λµ−Bezier like
curve is a spiral segment when

a =
e−2λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)2
sec θ tan θ

54c (3 + µ)2 (3.2)

and

b =
e−λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan θ

3c (3 + µ)2 . (3.3)

This λµ−Bezier like curve has

κ (0) = 0, (3.4)

κ (1) = c , κ
′
(1) = 0 (3.5)

and κ
′
(t) 6= 0 for 0 ≤ t < 1. Note that, for λ = µ = 0, we obtain following

conditions which Walton and Meek obtained in [11],

a =
25 sec θ tan θ

54c
(3.6)

and

b =
5 tan θ

9c
. (3.7)



82 ASLI AYAR AND BAYRAM ŞAHIN

Proof. Let n0 be the normal vector at P0. Substitute of P1,P2,P3 from (3.1)
into (2.5) to obtain

f (t) = P0 + a (A1 (t;λ) + 2A2 (t;µ) + 2A3 (t;µ)) t0 +A3 (t;µ) bt1. (3.8)

Then take the derivative to produce

f ′ (t) =
(
A1
′ (t;λ) + 2A2

′ (t;µ) + 2A3
′ (t;µ)

)
at0 +A3

′ (t;µ) bt1, (3.9)

f ′′ (t) =
(
A1
′′ (t;λ) + 2A2

′′ (t;µ) + 2A3
′′ (t;µ)

)
at +A3

′′ (t;µ) bt1. (3.10)

Since t1 = cos θt0+sin θn0. Substituting expressionsA1
′ (t;λ), A2

′ (t;λ), A3
′ (t;µ),

A1
′′ (t;λ), A2

′′ (t;µ), A3
′′ (t;µ) given in (2.8) and (2.9) into (3.9) and (3.10), we

get

f (t) = P0 + {a (A1 (t;λ) + 2A2 (t;µ) + 2A3 (t;µ)) + b cos θA3 (t;µ)} t0

+A3 (t;µ) b sin θn0,

f ′(t) = {a(A1
′(t;λ) + 2A2

′(t;µ) + 2A3
′(t;µ)) + b cos θA3

′(t;µ)} t0

+A3
′(t;µ)b sin θn0

= x′(t)t0 + y′(t)n0,
(3.11)

and

f ′′ (t) = {a(A1
′′(t;λ) + 2A2

′′(t;µ) + 2A3
′′(t;µ)) + b cos θA3

′′(t;µ)} t0

+A3
′′ (t;µ) b sin θn0

= x′′ (t) t0 + y′′ (t) n0,
(3.12)

where

x′ (t) = a (A1
′ (t;λ) + 2A2

′ (t;µ) + 2A3
′ (t;µ)) + b cos θA3

′ (t;µ) ,

y′ (t) = A3
′ (t;µ) b sin θ,

x′′ (t) = a (A1
′′ (t;λ) + 2A2

′′ (t;µ) + 2A3
′′ (t;µ)) + b cos θA3

′′ (t;µ) ,

y′′ (t) = A3
′′ (t;µ) b sin θ,

x′′′ (t) = a (A1
′′′ (t;λ) + 2A2

′′′ (t;µ) + 2A3
′′′ (t;µ)) + b cos θA3

′′′ (t;µ) ,

y′′′ (t) = A3
′′′ (t;µ) b sin θ.

(3.13)

The curvature and its derivative are given by

κ (t) =
{x′ (t) y′′ (t)− x′′ (t) y′ (t)}{

(x′ (t))
2

+ (y′ (t))
2
}3/2

(3.14)

and

κ′ (t) =
(f ′ (t)× f ′′′ (t)) (f ′ (t) f ′ (t))− 3 (f ′ (t)× f ′′ (t)) (f ′ (t) f ′′ (t))

||f ′ (t) ||5
, (3.15)

κ′ (t) =
A (t)

||f ′ (t) ||5
(3.16)
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respectively, where

A (t) = (f ′ (t)× f ′′′ (t)) (f ′ (t) f ′ (t))− 3 (f ′ (t)× f ′′ (t)) (f ′ (t) f ′′ (t))

= (x′ (t) y′′′ (t)− x′′′ (t) y′ (t))
(

(x′ (t))2 + (y′ (t))2
)

−3 (x′ (t) y′′ (t)− x′′ (t) y′ (t)) (x′ (t)x′′ (t) + y′ (t) y′′ (t)) .

(3.17)

From (3.16), we can say that A (t) affects its sign. On the other hand, if κ′ (t)
has a root at a point, κ′ (t) = 0 at that point. From (3.16), if κ′ (t) = 0 then A (t)
must be equal to zero. For this reason, we research the conditions for A (t) 6= 0
in [0, 1]. Set

A (t) = a (t) b (t)− 3c (t) d (t)

where

a (t) = (f ′ (t)× f ′′′ (t)) = x′ (t) y′′′ (t)− x′′′ (t) y′ (t) ,
b (t) = (f ′ (t) f ′ (t)) = (x′ (t))2 + (y′ (t))2 ,
c (t) = (f ′ (t)× f ′′ (t)) = x′ (t) y′′ (t)− x′′ (t) y′ (t) ,
d (t) = (f ′ (t) f ′′ (t)) = x′ (t)x′′ (t) + y′ (t) y′′ (t) .

Therefore we have

a (t) = x′ (t) y′′′ (t)− x′′′ (t) y′ (t) = a1 (t)− a2 (t) ,

b (t) = (x′ (t))2 + (y′ (t))2 = b1 (t) + b2 (t) ,
c (t) = x′ (t) y′′ (t)− x′′ (t) y′ (t) = c1 (t)− c2 (t) ,
d (t) = x′ (t)x′′ (t) + y′ (t) y′′ (t) = d1 (t) + d2 (t)

where

a1 (t) = x′ (t) y′′′ (t) , a2 (t) = x′′′ (t) y′ (t) ,

b1 (t) = (x′ (t))2 , b2 (t) = (y′ (t))2 ,
c1 (t) = x′ (t) y′′ (t) , c2 (t) = x′′ (t) y′ (t) ,
d1 (t) = x′ (t)x′′ (t) , d2 (t) = y′ (t) y′′ (t) .

Then by direct computations we obtain

a1 (t) =
e−3λ−(1−t)µ(6+µt(3+tµ)(6+tµ))(3+µ+eλ(12+µ(16+3µ)))

2
sin θ tan θ

162c2(3+µ)4[
(18eλ−(1−t)µt2 (3 + tµ) sin θ) + e−tλ (1− t) sec θ tan θ(
3 + λ− t

(
3− 6etλ − (t− 2)λ

)) (
3 + µ+ eλ (12 + µ (16 + 3µ))

) ]
,

a2 (t) =
e−(3+t)λ−(1−t)µt2(3+tµ)(3+µ+eλ(12+µ(16+3µ)))

2
tan3 θ

162c2(3+µ)4[
6− 12eλ.t + (1− t)λ (6 + (1− t)λ)

(3 + (1− t)λ)
(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
+ 18eλ(1+t)−(1−t)µ

(6 + µt (3 + tµ) (6 + tµ) (6 + tµ) cos2 θ)

]
,
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b1 (t) = e−8λ

2916c2(3+µ)4

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)2[
− 18eλ−(1−t)µt2 (3 + tµ) sin θ − e−tλ (1− t)(

3 + λ− t
(
3− 6etλ − (t− 2)λ

))
(3 + µ+ eλ (12 + µ (16 + 3µ) sec θ tan θ))

]2

,

b2 (t) = e−2λ−2(1−t)µt4

9c2(3+µ)4
(3 + tµ)2 (3 + µ+ eλ (12 + µ (16 + 3µ))

)2
sin2 θ tan2 θ,

c1 (t) = e−3λ−(1−t)µt
162c2(3+µ)4

(6 + µt (6 + tµ))
(
3 + µ+ eλ (12 + µ (16 + 3µ))

)2
sin θ

tan θ

[
18eλ−(1−t)µt2 (3 + tµ) sin θ − e−tλ (1− t)(

3 + λ− t
(
3− 6etλ − (t− 2)λ

))(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
sec θ tan θ

]
,

c2 (t) =
e−3λ−(1−t)µt2(3+tµ)(3+µ+eλ(12+µ(16+3µ)))

2
tan3 θ

162c2(3+µ)4[
18eλ−(1−t)µt (6 + µt (6 + tµ)) sin θ + e−tλ

(6etλ (1− 2t)− (1− t) (6 + (1− t)λ (6 + λ− tλ)))(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
sec θ tan θ

]
,

d1 (t) =
e−4λ(3+µ+eλ(12+µ(16+3µ)))

2
sin θ tan θ

2916c2(3+µ)4[
18eλ−(1−t)µt2 (3 + µt) sin θ + e−tλ (1− t)(
3 + λ− t

(
3− 6etλ − (t− 2)λ

))
(3 + µ+ eλ (12 + µ (16 + 3µ))) sec θ tan θ(
18eλ−(1−t)µt (6 + µt (6 + tµ)) sin θ + e−tλ(
6etλ (1− 2t)− (1− t) 3 (6 + (1− t)λ (6 + λ− tλ))

) )(
3 + µ+ eλ (12 + µ (16 + 3µ) sec θ tan θ)

) ]
and

d2 (t) = e−2λ−2(1−t)µt3

9c2(3+µ)4
(3 + tµ) (6 + µt (6 + tµ))[(

3 + µ+ eλ (12 + µ (16 + 3µ))
)]2

sin2 θ tan2 θ.
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Figure 1. Graphs of derivative of curvature functions

If t = 0, from (3.13), it follows

x′ (0) = a (3 + λ) , y′ (0) = 0,

x′′ (0) = a
(
−6− 6λ− λ2

)
, y′′ (0) = 0,

x′′′ (0) = a
(
6 + 18λ+ 9λ2 + λ3

)
+ 6e−µb cos θ, y′′′ (0) = 6e−µb cos θ.

Using these equations in (3.17), we get

A (0) = (x′ (0) y′′′ (0)− x′′′ (0) y′ (0))
(

(x′ (0))2 + (y′ (0))2
)

−3 (x′ (0) y′′ (0)− x′′ (0) y′ (0)) (x′ (0)x′′ (t) + y′ (0) y′′ (0))

= (a (3 + λ) 6e−µb cos θ) (a (3 + λ))2

= 6a3e−µb cos θ (3 + λ)3 .

From (3.16), the beginning curvature value is

κ′ (0) =
A (0)

||f ′ (0) ||5
> 0.

(3.4) and (3.5) follows substitution of t = 0 and t = 1 into (3.14) and (3.15):

κ (0) = 0, κ (1) = c, κ′ (1) = 0.

It also follows from (3.15), A (0) > 0, and limt→∞A (t) > 0, hence value of κ′ (t)

decreases on 0 ≤ t < 1, and when t = 1, κ
′
(1) = 0. So that κ′ (t) does not change

sign on 0 ≤ t < 1. From Figure (1) (a),(b),(c) and (d), for arbitrary value of c,
θ and 0 < t < 1, if λ ∈ (1,∞) , µ ∈ (3,∞) then κ′ (t) does not change sign on
0 ≤ t < 1.

From Figure (2) (a),(b),(c),(d),(e) and (f) if λ ∈ (−∞, 1] , µ ∈ (−∞, 3] then
one can see that κ′ (t) changes sign on 0 ≤ t < 1.

�
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Figure 2. Graphs of derivative of curvature function

Remark 1. The effect of the shape parameters on the λµ−Bezier like spiral.
Obviously, λ and µ shape parameters affect the curve on the control P1 − P0

and P3 −P2, respectively. From [2.2], if λ decrease, than A0 (t;λ) indecrease for
any t ∈ [0, 1]. Thus, we can say that the spiral moves in the opposite direction
of P1 − P0. If λ indecrease, than A0 (t;λ) decrease for any t ∈ [0, 1]. Thus, we
can say that the spiral moves in the same direction of P1 −P0. Similarly, µ has
the same effects on the P3 −P2. Figure 3 shows the effect of µ shape parameter
on the λµ−Bezier like spiral.

We can see that λ and µ shape parameters satisfy local control on the control
polygon of the spiral.

λ = 6.08 and µ = 3

λ = 6.08 and µ = 6.14

Figure 3. The effect of µ shape parameter on the λµ−Bezier like spiral.

Remark 2. Comparison between λµ−Bezier like spiral and Bezier spiral. From
Fig.[4], we can say the λµ−Bezier like spiral is closer to the control polygon than
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Bezier spiral in [11]. Also, we can see the other advantages of λµ−Bezier like
curves in [10].

Figure 4. The yellow curve is a Bezier Spiral, The blue curve is
a λµ−Bezier like Spiral

We now construct transition curves by using the spiral which we find in The-
orem 3.1.

Theorem 3.2. Let P be a point and t be a unit vector of P. Let d be a line
passing through P and parallel to t. For a circle M with radius r > 0 centered at
O, suppose t× (O−P) > 0 and L = O−P. Let perpendicular distance from O
to d be h.

If r < h, then there is a unique λµ−Bezier like spiral with two shape parameters
as defined in Theorem (3.1), and shown in Fig. (5), that joins d to M such that
the points of contact are G2. The angle from t to t1 of this λµ−Bezier like spiral
satisfies

re−λ
(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
sin θ tan θ

3 (3 + µ)2 − h

r
+ cos θ = 0. (3.18)

Proof. The unit normal vector at f (0;λ, µ) and P is given by

n =
L− (Lt) t

‖L− (Lt) t‖
. (3.19)

Since f (0;λ, µ) lies on d, and f (1;λ, µ) lies on M it follows that

f (0;λ, µ) = P + σt (3.20)

and
f (1;λ, µ) = P + (Lt + r sin θ) t + (h− r cos θ) n (3.21)

Figure 5. From a line to a circle transition
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From Theorem 3.1 it follows that

f (0;λ, µ) = P0,

f (1;λ, µ) = P3 = P0 + 2at + bt1,

a =
e−2λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)2
sec θ tan θ

54c (3 + µ)2 ,

b =
e−λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan θ

3c (3 + µ)2 .

Substitution of these into (3.20) and (3.21), elimination of P, and subsequent
rearrangement produce

f (0;λ, µ) = P + σt = P0, P = P0 − σt,

f (1;λ, µ) = P + (Lt + r sin θ) t + (h− r cos θ) n = P0 + 2at + bt1,

P = P0 − σt = P0 + 2at + bt1 − (Lt + r sin θ) t− (h− r cos θ) n

and
σt + bt1 − (Lt + r sin θ − 2a) t− (h− r cos θ) n = 0. (3.22)

(3.18) follows upon taking the dot product of the above with n and dividing by
r. Hence we derive

b sin θ − (h− r cos θ) = 0.

From (3.3) and using c = 1/r, we obtain

re−λ
(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan θ

3 (3 + µ)2 sin θ − (h− r cos θ) = 0.

Set

q (θ) = 1
r

(
re−λ(3+µ+eλ(12+µ(16+3µ))) tan θ

3(3+µ)2
sin θ − (h− r cos θ)

)
=

e−λ(3+µ+eλ(12+µ(16+3µ))) sin θ tan θ

3(3+µ)2
− h

r + cos θ

(3.23)

Now, for θ = 0 we have

q (0) = 1− h

r

From the requirement r < h ⇒ 1 < h
r , it follows

q (0) = 1− h

r
< 0

For θ = π/2 we obtain
q (π/2) =∞ > 0 (3.24)

and for derivative of q (θ) we get

q′ (θ) = sin θ
3(3+µ)2

{
(3+µ+eλ(12+µ(16+3µ)))

e−λ

(
1+cos2 θ

cos2 θ

)
− 3 (3 + µ)2

}
q′ (θ) > 0.
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Figure 6. From a circle to a circle transition curve with forming
a C-shaped

Therefore we have

q (0) < 0, q (θ) > 0, q′ (θ) > 0

from which it follows that (3.18) has a unique solution for 0 < θ < π/2. The
formula for σ is

σ = (Lt + r sin θ − 2a)− b cos θ

where a and b are given in (3.2) and (3.3). �

Theorem 3.3. Let M0 and M1 be two circles centered at O0,O1 with radii r0 < 0,
r1 > 0 and

||r1| − |r0|| = |r1 + r0| < ‖O1 −O0‖ .

Here, r0 < 0 is used to indicate direction. Therefore one circle does not enclose
the other. Thus the two circles can be joined by a pair of λµ−Bezier like spirals
forming a C-shaped curve such that all points of contact are G2 as shown in
Fig.(6).

Proof. Let f0 (t;λ, µ) and f1 (t;λ, µ) be two λµ−Bezier like spirals that M0 meets
at f0 (t;λ, µ) and M1 meets at f1 (t;λ, µ). Two λµ−Bezier like spirals have ten
degrees of freedom. We suppose that two λµ−Bezier like spirals meet at their
beginning points P0 (where they both have zero curvature) with G2. Suppose
−t and t be the beginning unit tangent vectors of f0 (t;λ, µ) and f1 (t;λ, µ) re-
spectively. Thus three degrees of freedom disappear and remains seven degrees
of freedom. Since f0 (t;λ, µ) and f1 (t;λ, µ) are each free to move on the circum-
ference of a circle, their each G2 points of contact require three constraints on
f0 (t;λ, µ) and f1 (t;λ, µ). There is still one remaining degree of freedom. Let t0

and t1 be the ending unit tangent vectors of f0 (t;λ, µ) and f1 (t;λ, µ), respec-
tively. According to Theorem (3.1), the angles from −t to t0 and from t to t1

are θ0 and θ1 respectively and −π/2 < θ0 < 0 and 0 < θ1 < π/2. The remaining
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degree of freedom is used to set θ = −θ0 = θ1; 0 < θ < π/2. It follows now from
Theorem (3.1) that

f0 (1;λ, µ) = P0 + 2a0t− b0t0

and

f1 (1;λ, µ) = P0 + 2a1t + b1t1

where

a0 =
r0e
−2λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)2
sec θ tan θ

54 (3 + µ)2 ,

b0 =
r0e
−λ (3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan θ

3 (3 + µ)2 ,

a1 =
r1e
−2λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)2
sec θ tan θ

54 (3 + µ)2 ,

b1 =
r1e
−λ (3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan θ

3 (3 + µ)2 .

Hence we get

f1 (1)− f0 (1) =
(r1−r0)(3+µ+eλ(12+µ(16+3µ)))

2
tan θ

27e2λ(3+µ)2 cos θ
t

+
(3+µ+eλ(12+µ(16+3µ))) tan θ

3eλ(3+µ)2
(r1t1 + r0t0) .

(3.25)

We suppose that the orientation of t is t (O1 −O0) > 0, thus we can select one
of two possible solutions. If we desired, the other solution may be selected by
choosing the orientation of t such that t (O1 −O0) < 0. It now follows that

{(f1 (1;λ, µ)−O1)− (f0 (1;λ, µ)−O0)}n = − (r1 + r0) cos θ (3.26)

and
{(f1 (1;λ, µ)−O1)− (f0 (1;λ, µ)−O0)} t = (r1 − r0) sin θ (3.27)

where
t1t = −t0t = cos θ,
t1n = t0n = sin θ

(3.28)

It follows from (3.25) and (3.28) that

{f1 (1)− f0 (1)}n =
e−λ(3+µ+eλ(12+µ(16+3µ))) tan θ sin θ

3(3+µ)2
(r1 + r0) (3.29)

and

{f1 (1)− f0 (1)} t =
(r1−r0)(3+µ+eλ(12+µ(16+3µ)))

eλ3(3+µ)2 cot θ

(
3+µ+eλ(12+µ(16+3µ))

9eλ cos θ
+ cos θ

)
(3.30)

which, upon substitution into (3.26) and (3.27) and subsequent rearrangement,
we obtain

{(O1 −O0)}n = (r1 + r0) g1 (θ) , (3.31)

{(O1 −O0)} t = (r1 − r0) g2 (θ) . (3.32)

Hence we derive

{(O1 −O0)}n = {(f1 (1)− f0 (1))}n + (r1 + r0) cos θ = (r1 + r0) g1 (θ) .
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Therefore we get

(r1 + r0) g1 (θ) =
e−λ(3+µ+eλ(12+µ(16+3µ))) tan θ sin θ

3(3+µ)2
(r1 + r0) + (r1 + r0) cos θ ,

g1 (θ) =
e−λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan θ sin θ

3 (3 + µ)2 + cos θ.

In a similar way, we have

{(O1 −O0)} t = {(f1 (1)− f0 (1))} t− (r1 − r0) sin θ = (r1 − r0) g2 (θ) .

Therefore, we get

(r1 − r0) g2 (θ) =
(r1−r0)(3+µ+eλ(12+µ(16+3µ)))

3 cot θ(3+µ)2eλ

(
3+µ+eλ(12+µ(16+3µ))

9eλ cos θ
+ cos θ

)
− (r1 − r0) sin θ,

or

g2 (θ) =

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan θ

3 (3 + µ)2 eλ(
3 + µ+ eλ (12 + µ (16 + 3µ))

9eλ cos θ
+ cos θ

)
− sin θ.

From (3.31) and (3.32), the pair of λµ−Bezier like spirals is obtained by solution
of

(r1 + r0)2 {g1 (θ)}2 + (r1 − r0)2 {g2 (θ)}2 = ‖O1 −O0‖2 . (3.33)

Set

q (θ) = (r1 + r0)2 {g1 (θ)}2 + (r1 − r0)2 {g2 (θ)}2 − ‖O1 −O0‖2 ,

then it follows that

g1 (0) =
e−λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan 0 sin 0

3 (3 + µ)2 + cos 0 = 1,

g2 (0) =

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan 0

3 (3 + µ)2 eλ((
3 + µ+ eλ (12 + µ (16 + 3µ))

)
9eλ cos 0

+ cos 0

)
− sin 0 = 0,

q (0) = (r1 + r0)2 − ‖O1 −O0‖2 .

From the requirement in theorem

|r1 − r0| < ‖O1 −O1‖ ⇒ |r1 − r0|2 < ‖O1 −O1‖2 ⇒ q(0) < 0

q (θ → π/2) → ∞ > 0

and

q′ (θ) = 2 (r1 + r0)2 g1 (θ) g′1 (θ) + 2 (r1 − r0)2 g2 (θ) g2′ (θ) ,
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g1 (θ) =
(3+µ+eλ(12+µ(16+3µ))) tan θ sin θ

3eλ(3+µ)2
+ cos θ = w1 (λ, µ) tan θ sin θ + cos θ,

g′1 (θ) = w1 (λ, µ) (tan θ sin θ)′ + (cos θ)′ = w1 (λ, µ) (sin θ + sec θ tan θ)− sin θ

θ → π/2, sin θ → 1, sec θ →∞, tan θ →∞, g′1 (θ)→∞

g2 (θ) =
(3+µ+eλ(12+µ(16+3µ))) tan θ

eλ3(3+µ)2

(
(3+µ+eλ(12+µ(16+3µ)))

eλ9 cos θ
+ cos θ

)
− sin θ,

g2 (θ) = w2 (λ, µ) tan θ sec θ + w1 (λ, µ) sin θ − sin θ,

g′2 (θ) = w2 (λ, µ) (tan θ sec θ)′ + (w1 (λ, µ)− 1)(sin θ)′

= w2 (λ, µ)
(
sec θ(tan2 θ + sec2 θ)

)
+ (w1 (λ, µ)− 1) cos θ

θ → π/2 sec θ →∞, tan θ →∞, cos θ → 0, g′2 (θ)→∞.

Thus, we get

q′ (θ) > 0,

q (0) < 0, q (θ) > 0, q′ (θ) > 0.

Hence (3.33) has a unique solution for 0 < θ < π/2 and |r1 + r0| < ‖O1 −O0‖ .
The λµ−Bezier like spirals are obtained by solving (3.33) for θ, determining
t,n, t0 and t1 from (3.31), (3.32) and (3.28), and then applying Theorem (3.1).

�

The following theorem can be obtained in a similar way.

Theorem 3.4. Let two circles be M0,M1 centered at O0,O1 with radii r0, r1 > 0.
(This selects one of two possible solutions; for the other solution, r0, r1 < 0). If
|r1 + r0| < ‖O1 −O0‖ then the two circles can be joined by a pair of λµ−Bezier
like spirals forming an S-shaped curve such that all points of contact are G2 as
shown in Fig. (7).

The following theorem gives the result for the transition from one line to an-
other.

Theorem 3.5. Let three points be F0,F1 and F. Suppose that

t0 =
F− F0

‖F− F0‖
, t1 =

F− F1

‖F− F1‖
and let α < π be the angle at F formed by F0,F and F1. For any value c > 0,
the pair of λµ−Bezier like spirals

f0 (t;λ, µ) = A0 (t;λ) P0 +A1 (t;λ) P1 +A2 (t;µ) P2 +A3 (t;µ) P3 (3.34)

and

f1 (t;λ, µ) = A0 (t;λ) B0 +A1 (t;λ) B1 +A2 (t;µ) B2 +A3 (t;µ) B3 (3.35)
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Figure 7. From a circle to a circle transition with an S-shaped curve.

with
A0 (t;λ) = (1− t)3 e−λt,

A1 (t;λ) = (1− t)2 [1 + 2t− (1− t) e−λt
]
,

A2 (t;µ) = t2
[
3− 2t− te−µ(1−t)] ,

A3 (t;µ) = t3e−µ(1−t),

(3.36)

P1 = P0 + at0,
P2 = P1 + at0 = P0 + 2at0,
P3 = P2 + bt = P0 + 2at0 + bt,

(3.37)

B1 = B0 + at1,
B2 = B1 + at1 = B0 + 2at1,
B3 = B2 − bt = B0 + 2at1 − bt,

(3.38)

where

θ =
1

2
(π − α) ,

t =
t1 − t0

‖t1 − t0‖
,

P0 = F− σt0,

B0 = F− σt1,

and

σ =
2a cos θ + b

cos θ
= 2a+

b

cos θ
,

σ =

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)2
tan θ

e2λ27c (3 + µ)2 cos θ
+

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
tan θ

eλ3c (3 + µ)2 cos θ
,
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Figure 8. From a line to a line transition

σ = tan θ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

) (
e−λ

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
+ 9
)

eλ27c (3 + µ)2 cos θ
(3.39)

joins the two directed lines F0 and F1, and meeting at P3 = B3, such that all
points of contact are G2 as shown in Fig. (8); the absolute value of the curvature
of the two spirals at their joint is c.

Proof. Two λµ−Bezier like spirals have ten degrees of freedom. Let t be the unit
tangent vector at t = 1. Let c be the curvature of f0 (t;λ, µ) at t = 1. To ensure
a G2 match where f0 (t;λ, µ) and f1 (t;λ, µ) meet, from the condition

f0 (1;λ, µ) = f1 (1;λ, µ) (3.40)

the unit tangent vector should be −t and the curvature of f1 (t;λ, µ) should be−c
at t = 1. There are thus six remaining degrees of freedom. Since f0 (t;λ, µ) and
f1 (t;λ, µ) are each free to move along a line, i.e.,

P0 = F− σ0t0, (3.41)

B0 = F− σ1t1 (3.42)

and since both f0 (t;λ, µ) and f1 (t;λ, µ) have zero curvature at their beginning
points because of the G2 requirements at these points of contact each impose two
constraints on f0 (t;λ, µ) and f1 (t;λ, µ). There are still two remaining degrees
of freedom. The beginning unit tangent vectors of f0 (t;λ, µ) and f1 (t;λ, µ) are
t0 and t1 respectively. According to Theorem (3.1), the angles from t0 to t and
from t1 to −t are θ0 and θ1 respectively where 0 < θ0 < π/2 and −π/2 < θ1 < 0.
One of the remaining degrees of freedom is used to set θ = θ0 = −θ1, hence
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Figure 9. Circle to circle transition with a single spiral.

θ = 1
2 (π − α) and,

t =
t1 − t0

‖t1 − t0‖
.

Thus we simplify subsequent algebraic expressions and balance the angle of the
tangent of the two λµ−Bezier like spirals. The last remaining degree of freedom
c is for the curve designer to use as a shape parameter by choosing a value for it.
If follows now from (3.40) in conjunction with (3.34) to (3.38), (3.41) and (3.42)
that

P0 = F− σ0t0

B0 = F− σ1t1

P0 −B0 = σ1t1 − σ0t0 (3.43)

f0 (1;λ, µ) = f1 (1;λ, µ)⇒ P0 −B0 = 2a (t1 − t0)− 2bt, (3.44)

Since (3.43) is equal to (3.44), taking the dot product of this equation and n and
using t0n = t1n = − sin θ , we obtain

σ0 = σ1 = σ

Similarly, taking the dot product of this equation and t and using t0t = −t1t =
cos θ, we obtain

σ =
2a cos θ + b

cos θ
= 2a+

b

cos θ
�
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For the fifth case (from a circle to a circle, one circle inside the other), a
transition curve with six degrees of freedom is required for G2 contact with the
circles. The beginning point of the λµ−Bezier like spiral, P0, cannot be used
as a point of contact because the curvature there is 0. An additional degree of
freedom is the parameter value of the unknown point of contact of the larger
circle with the arc of the λµ−Bezier like spiral. The radii are the same sign and
are supposed to be positive. An analogous analysis can be done for negative
radii. Consider two circles M0,M1 centered at O0,O1 with radii r0, r1 > 0 and
such that M1 is completely contained inside M0. It is desirable to join the two
circles by a single λµ−Bezier like spiral such that both points of contact are G2

as shown in Fig.(9). Let the λµ−Bezier like spiral as defined in Theorem (3.1)
meets M0 at t = t1 and M1 at t = 1 respectively. Let the angle from t to the
unit tangent at t = t1 be φ. It follows from (3.14)

κ (t1) =
{x′ (t1) y′′ (t1)− x′′ (t1) y′ (t1)}{

(x′ (t1))
2

+ (y′ (t1))
2
}3/2

=
r1

r0
. (3.45)

Observe that if θ is known then (3.45), it can be solved uniquely for t1 in (0, 1)
by Theorem (3.1), the derivative with respect to t1 of the left-hand side does not

change sign on (0, 1); for t1 = 0, the left-hand side is zero
(
< r1

r0

)
, and for t1 = 1,

the left-hand side equals unity
(
> r1

r0

)
. By taking the dot product of f ′ (t;λ, µ)

at t = t1 with the unit normal vector, n and unit tangent vector, t, of f (t;λ, µ)
at t = 0, it follows from (3.9)

f ′ (t1) t =
r1(3+µ+eλ(12+µ(16+3µ)))

2
tan θe−t1λ(1−t1)2(3+(1−t1)λ)

e2λ54(3+µ)2 cos θ

+
r1(3+µ+eλ(12+µ(16+3µ))) tan θt21(3+µt1) cos θ

eλ3(3+µ)2eµ(1−t1)
,

(3.46)

f ′ (t1) n = t21
r1

(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
(3 + µt1)

3eλ+µ(1−t1) (3 + µ)2 sin θ tan θ. (3.47)

f ′ (t1) = cosφt + sinφn
f ′ (t1) t = cosφtt + sinφnt = cosφ
f ′ (t1) n = cosφtn + sinφnn = sinφ

f ′ (t1) t = cosφ = a.e−t1λ (1− t1)2 (3 + (1− t1)λ) + b cos θe−µ(1−t1)t21 (3 + µt1)

f ′ (t1) n = sinφ = t21
r1(3+µ+eλ(12+µ(16+3µ)))(3+µt1)

3eλ+µ(1−t1)(3+µ)2
sin θ tan θ

From (3.9), we have

f ′(t1)n
f ′(t1)t = sinφ

cosφ = tanφ

and

tanφ =
18t21 (3 + µt1) eµ(t1−t)eλ(t1+1) sin θ cos θ

Q (λ, µ, θ)
(3.48)

where

Q (λ, µ, θ) =
(
3 + µ+ eλ (12 + µ (16 + 3µ))

)
eµ(1−t1) (1− t1)2 (3 + (1− t1)λ)

+18e(1+t1)λ cos2 θt21 (3 + µt1)
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It follows from Theorem (3.1) that

f (1) = P0 + 2at + bt1

and, writing f (t1) in monomial form, that

f (t1) = P0 + a (A1 (t1;λ) + 2A2 (t1;µ) + 2A3 (t1;µ)) t +A3 (t1;µ) bt1 .

From (2.2), we obtain

f (t1) = P0 + a
(
1− e−λt1

)
t + a

(
3e−λt1

)
t1t + 3a

(
1− e−λt1

)
t21t

+
(
a
(
e−λt1 − 2

)
t + e−µ(1−t1)bt1

)
t31

= P0 + a
{(

1− e−λt1
)

+
(
3e−λt1

)
t1 + 3

(
1− e−λt1

)
t21 +

(
e−λt1 − 2

)
t31
}

t

+
(
be−µ(1−t1)

)
t31t1.

(3.49)
Subtraction of f (t1) from f (1) with subsequent rearrangement yields

f (1)− f (t1) = at{
2−

(
1− e−λt1

)
+
(
3e−λt1

)
t1 + 3

(
1− e−λt1

)
t21 +

(
e−λt1 − 2

)
t31
}

+b
{

1− e−µ(1−t1)t31
}

t1

(3.50)
It also follows that

{(f (1)−O1)− (f (t1)−O0)}n = − (r1 cos θ − r0 cosφ) (3.51)

and

{(f (1)−O1)− (f (t1)−O0)} t = (r1 sin θ − r0 sinφ) (3.52)

Taking the dot product of (3.50) with t and n with subsequent substitution into
(3.51) and (3.52) and rearrangement produce

{(O1 −O0)}n = b
{

1− e−µ(1−t1)t31
}

sin θ + r1 cos θ − r0 cosφ (3.53)

and

{(O1 −O0)} t = a
(
2−

(
1− e−λt1

)
+
(
3e−λt1

)
t1 + 3

(
1− e−λt1

)
t21

+
(
e−λt1 − 2

)
t31
)

+ b
{

1− e−µ(1−t1)t31
}

cos θ − r1 sin θ + r0 sinφ
(3.54)

Hence we get

g1 (θ) = {(O1 −O0)}n = b
{

1− e−µ(1−t1)t31
}

sin θ + r1 cos θ − r0 cosφ
(3.55)

g2 (θ) = {(O1 −O0)} t
= a

(
2−

(
1− e−λt1

)
+
(
3e−λt1

)
t1 + 3

(
1− e−λt1

)
t21 +

(
e−λt1 − 2

)
t31
)

+
{

1− e−µ(1−t1)t31
}

cos θ − r1 sin θ + r0 sinφ
(3.56)

because of that the λµ−Bezier like spiral, if it exists, is obtained by solution of

q (θ) = {g1 (θ)}2 + {g2 (θ)}2 − ‖O1 −O0‖2 = 0. (3.57)

(3.45), (3.48) and (3.57) are three concurrent nonlinear equations in t1, φ and θ.
If a solution exists, it can be found numerically by (3.57) as a nonlinear equation
in a single unknown, because for any given θ, t1 can be found from (3.45), φ can
be found from (3.48), so q (θ) can be assessed.
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