Computing the Pessimism of Inclusion Functions

Gilles Chabert and Luc Jaulin

ENSIETA, 2 rue Francois Verny 29806 Brest Cedex 9

gilles.chabert@ensieta.fr luc.jaulin@ensieta.fr

Abstract. “Computing the pessimism” means bounding the overesti-
mation produced by an inclusion function. There are two important dis-
tinctions with classical error analysis. First, we do not consider the image
by an inclusion function but the distance between this image and the ex-
act image (in the set-theoretical sense). Second, the bound is computed
over a infinite set of intervals.

To our knowledge, this issue is not covered in the literature and may have
a potential of applications. We first motivate and define the concept of
pessimism. An algorithm is then provided for computing the pessimism,
in the univariate case. This algorithm is general-purpose and works with
any inclusion function. Next, we prove that the algorithm converges to
the optimal bound under mild assumptions. Finally, we derive a second
algorithm for automatically controlling the pessimism, i.e., determining
where an inclusion function is accurate.

1 Introduction

In this paper, we consider a continuous function f : R — R (the definition
domain of f is assumed to be R for simplicity). The radius, the middle, the
magnitude and the mignitude of an interval [x] are denoted by rad [z], mid [z],
[[z]] and <[z]> respectively.

One fundamental tool that interval analysis provides is the notion of inclusion
function (see, e.g., [10,5]). An inclusion function F is a mapping from IR (the
set of intervals) to IR such that

Vlz] € IR f([z]) € Flx],

where f([z]) denotes the set-theoretical image of [z] by f.

An inclusion function allows to perform a safe evaluation of a function on a whole
set of values and this addresses the question of reliability: thanks to inclusion
functions, interval methods are robust to round-off errors, imprecision on input
data, numerical truncatures, etc. Besides, the question of accuracy, i.e., whether
the result is accurate or not, is also a crucial matter for numerical methods.
Clearly, if the overestimation produced by the underlying inclusion function is
really too large, the method will suffer from a lack of accuracy.

Administrateur
Sticky Note
@ARTICLE{ChabertJaulin07RC,
 author = {G. Chabert and L. Jaulin},
 year = 2007,
 title = {Computing the pessimism of inclusion functions},
 journal = {Reliable computing},
 volume = 13,
 number = {6},
 pages = {489-504}
}

The accuracy issue has led people to design smart inclusion functions using,
e.g., multi-precision arithmetic [11], Taylor models [7] or Bernstein expansions
for polynomials [4]. See also [10] for a survey on inclusion functions.

The purpose of this paper is to evaluate the accuracy of any given (inclusion
isotone) inclusion function. This purpose can first be formulated as follows:

Problem 1. Given an inclusion function F and an interval [x], find a bound for

overestim|z] :=rad F[z] —rad f([z]).

If we consider that a sophisticated inclusion function necessarily involves more
computations, this problem becomes relevant since it is useful to know whether
it is worth the effort or not.

1.1 A first approach

A first property of inclusion functions connected to accuracy is called Lipschitz-
continuity [9]. In particular, this property implies that the radius of F[z] goes
to zero with the radius of [z], i.e., that the overestimation can be arbitrarily
reduced by conveniently splitting the domains.

Definition 1 (Lipschitz-continuity of an inclusion function). An inclu-
sion function F is said to be Lipschitz-continuous if for all interval [z](®) € IR,
there exists a constant Ap([z(9)] such that

izl [y] € [2]© q(Fle], Fly)) < Ae([2O])a([2], [y])
where q is the Hausdorff distance:

q([z], [y]) = [mid [z] — mid [y]| + | rad [z] — rad [y]].

The easiest way to bound the overestimation for a given interval [z] is to write:
overestim([z]) < rad Fl[z].

This approximation makes sense if we assume that [z] is a perturbed value
mid [z] by a small uncertainty rad [z] and that f is locally almost flat. In this
way, the output error (rad f([z])) can be neglected so that the overestimation
can be identified to the radius of Fz]. Under these conditions, the following
proposition (see [9] Cor. 2.1.2) allows then to bound the overestimation:

Proposition 1. If F' is Lipschitz-continuous then

V[z] e IR rad Flz] < Ap([z]) rad [z].

However, this estimation is not adapted for set computations, i.e., for situations
where [z] does not describe a single perturbed value but a full range of possibili-
ties. Indeed, in the latter case, there may be an important gap between the range
of the overestimation and the range of F' itself. Furthermore, this estimation is
relevant when intervals have an extremely small width (this is why we usually
remember a linear rate of improvement from Proposition 1).

1.2 A new approach

No theoretical tool seems available for precisely computing the overestimation
of an arbitrary inclusion function. This is not a big surprise since this quantity
usually strongly depends on both the expression of the function' and the actual
arguments.

We may therefore turn to numerical means. Unfortunately, from the numerical
standpoint, Problem 1 has little sense in general, since an accurate computation
of overestim[z] is likely to require more computations than an evaluation with
the “best” inclusion function at our disposal.

Computing the overestimation can nevertheless be made meaningful with a
slightly different point of view. Consider the two following facts:

— Due to the combinatorial effect of any branch & bound algorithm (see e.g., [6,
12,5, 2]) functions are often repeatedly evaluated with overlapping domains.
Therefore, spending some time for analyzing offline the behaviour of a given
inclusion function F' may pay.

— We are more interested by checking that the inclusion function satisfies some
precision requirements globally than by determining the overestimation for
a specific interval.

Based on these observations, the problem of computing the overestimation of an
inclusion function can be reformulated as follows:

Problem 2. Given an inclusion function F and an interval [x](*), is the overes-
timation of F less than a user-defined threshold ¢ for any [x] C [2](© ?

Note that the answer is not as simple as computing overestim[z] and checking
overestim|z] < e. The reason is that the overestimation is not inclusion isotonic,
ie.,

[y] C [z] &= overestimly] < overestim|x].

This can be shown on a simple counterexample:

! The expression of the function comes into play providing that this expression is
somehow involved in the definition of the inclusion function. As an example, consider
the mean value form (see [9] p.51). If an enclosure of the derivative is computed with
automatic differentiation then the overestimation depends on the expression of f.

Ezample 1. Let f : x — sin(mx/2) + = and consider the natural extension F' of
f

On the one hand, we have F[—1,5] = sin([—7/2,57/2]) + [-1,5] = [-2,6],
which exactly matches f([—1,5]) since f(—1) = —2 and f(5) = 6. Hence,
overestim[—1,5] = 0.

On the other hand, F[1,2] = sin([r/2,7]) + [1,2] = [0, 3] whereas f([1,2]) ~
[2.0,2.2].

Solving Problem 2 requires the ability to calculate the overestimation for a whole
set of possible input intervals. For convenience, this maximal overestimation will
be called the pessimism of F in the sequel. Hence, the question amounts to : given
an inclusion function F' and an interval [z], is there an algorithm for computing

pessim[z] := max overestim[y]? (1)
[yIC[=]

We propose in the two next sections such an algorithm. For the sake of clarity, it
is split into two subalgorithms pessim™ and pessim™ that computes an upper
and lower bound of the pessimism respectively; each of them being treated in a
separate section. The convergence property of both subalgorithms will be stated.

We will introduce in Section 5 a more high-level algorithm for controlling the
pessimism.

2 Pessimism upper bound

Starting now, we consider a fixed inclusion function F' that satisfies inclusion
isotonicity, i.e., [x] C [y] = F[z] C Fly]. We present in this section the
pessim™ algorithm that upwardly bounds (1), i.e., the maximal overestimation
produced by F on a given interval [z].

First of all, the pessim™ algorithm creates a uniform subdivision of [z] by a
sequence of (n + 1) points

1—1

xy=0(z]) ,..., =21+ rad [z] ..., Xnpy1 = ub([z]),
where b([z]) and ub([x]) stands for the lower and upper bound of [x] respectively.
The number n is (besides [z]) a parameter of the pessim™ algorithm. We will
call a k-block an interval [x;, z;1x] of the subdivision.

In addition, the pessim™ algorithm computes an inner approximation of the
image of f on every k-block (1 < k < n). We will denote by range™ ([x;, Zit+x])
such approximation. In a word:

range” ([zi, Tivk]) € f([i, Titr])-

Note that the postscript font is used (range™, pessim™) to emphasize that the
quantity is computed, contrary to overestim which is purely theoretical.

The key idea of the algorithm relies on the following simple observation. Any
interval [y] included in [z] satisfies at least one of the three conditions:

L [y] C [z1, 2]
2. [y] C 72, Tp41]
3. [w2,2,] C [y]

Assume by induction that we know how to bound overestim[y] for any [y] that
enter in the two first cases, then, only the third case is left to be treated.

Let us now focus on the third case. We have [z2,2,] C [y] C [1, Tnt1]-

On the one hand,

range ™ ([x2,zn]) C f([x2,za]) C f([y])-
On the other hand, by inclusion isotonicity,
Fly) € Flay, nta).

Note that both inclusions are precise if the subdivision is fine, i.e., if n is large.
It follows from the two previous inclusions that

overestimly] = rad F[y] —rad f([y])
<rad F[z1,z,+1] — rad range™ ([z2, z,])-

Therefore, if we know how to estimate the pessimism for (n—1)-blocks, we know
how to estimate the pessimism for n—blocks, i.e., [z]. This recursive property
implies a combinatory but, fortunately, this particular type of combinatory can
be tackled by dynamic programming (see [3,1]) in polynomial time. More pre-
cisely, the worst-case time complexity is in fact O(n?), and the space complexity
is O(n). We just have to start with 1-blocks and 2-blocks, and then proceed to
blocks of greater size by applying the idea given above.

Let us now detail the algorithm. We define two n-sized arrays denoted by P~
(for P essimism upper estimation), and R~ (for Range inner estimation). P is
an array of reals while R~ is an array of intervals.

After the k" turn in the outer loop of pessim™([z],n):

— P7[i] contains pessim™([z;, i 1k], k),
— R [i] contains range ™ ([T, Titk—1])-

Notice that the block size is shifted by 1 in the invariant related to R~. This
explains why 1-blocks does not require an initialization in the algorithm.

function pessim™ (interval [z], integer n)

for i from 1 ton — 1 // Initialization of 2-blocks
| R7[i] « f(mid [z;, zi41]) // will be improved in §2.2
| Pt[i] « rad Flz;, zi12) // will be improved in §2.2

for k from 3 to n

| forifromlton—k+1 // Initialization of k-blocks

| | R[i]— R [{JUR[i+1]

|| P <—max(P+[i], P*li+1], rad Fla;, zipx] — rad R*[i+1])

return Pt[1]
endfunc

2.1 Properties of the pessimism upper bound

Proposition 2. Let F be a Lipschitz-continuous inclusion function that satisfies
inclusion isotonicity (i.e., [x] C [y] = Fla] C F[y]).

The pessimism estimation tends to the actual mazimal overestimation when the
subdivision size tends to infinity, i.e.,

pessim®([z],n) —— [Hlla[X] overestim|y].

Proof. We already know that for any n,

pessim®([z],n) > max overestiml[y].
[y]Clz]

We need to prove that Ve > 0, there exists ng such that for any n > ng,

pessim™([z],n) — max overestim[y] < ¢,
[yIC[=]

or, in other words, that
Jly] C [z] pessim™([z],n) — overestim[y] < e. (2)
Let us fix € > 0.

First of all, since a continuous function on a closed interval is also uniformly
continuous, there exists ng such that

Vn zno, Vo, y € [z, |z —y[< 2/nrad[z] = [f(2) - f(y)] <e/2. (3)
Furthermore, we can chose ng sufficiently large so that
no = 2Xs([x]) /e (4)

is also satisfied. We take now n > ng, and prove (2) by induction. Base case:
Vi € [1,n — 1], Proposition 1 implies

Flai, wipe] < As([2])2/n <e

so that for every 2-block [z;,x;42] in [z] we have (by inclusion isotonicity)

3ly] C [ws, wite] pessim®([zy, 7i42],2) — overestimly] < .

Assume by induction that every k-block in [z] satisfy (2), i.e.,
Aly] C [xi,wirr] pessim™([z;, xitk], k) — overestimly] < e. (5)

We shall prove that the inequality also holds for (k+1). Consider a (k4 1)-block
[, Zitk+1] C [z]. Let us first prove that 3[y] C [2;, Ti+k+1] such that

(rad Flz;,xiyk11] — rad rangef([ajHl,ka])) — overestim[y] < e. (6)

To this end, consider an arbitrary interval [y] satisfying

[@it1, Tigr] € Y] C [#5, Tigrgr]-
On the one hand, by Definition 1,

q(Fli, zippa], Flrivy, wipr]) < Ap([2]) o[z, pippral, [, zige])
= rad Flz;, Titp+1] — rad Flzit1, Tivr) < Ap([z])x

(rad [i, Tiyk41] — rad [Tit1, Tigr])
= rad Flz;, zyp1] — rad Flzipr, zipr] < Ap([z])/n
so that, with (4),

rad F[Ii, Ii+k+1] —rad F[:Z?lqu, iZ?iJrk] < 6/2 (7)

which implies
rad Flx;, ¢iykt1] —rad Fly] < e/2. (8)

On the other hand, let us denote by y™ the point where f is maximized in
[y] C [zs, Titrt1]- The distance between y* and the closest point to y™ among
the midpoints of all 1-blocks included in [z;41,2;4%] iS necessarily less than
2/nrad [z]. The same holds for the point y~ where f is minimized. Then, thanks
to (3), we have

f(y™) — ub(range™ ([Tit1, Tivk])) < /2 (ub stands for “upper bound”)
and

Ib(range™ ([Tit1,2ivk))) — fy™) <e/2 (1b stands for “lower bound”),

which means that

rad f([y]) — rad range™ ([ziy1, zitr]) <e/2. (9)

Now

rad Flz;, ;4x+1] — rad range™ ([Tit1, Tivk])) — (rad Fly] —rad f([y])

rad Flz;, i4x+1] — rad Fly]) + (rad f([y]) — rad range™ ([xit1, Titk])

rad Flz;, ;1x+1] — rad range ™ ([zi41, Titrk])) — overestim[y]
[
¢ (by combining (8) and (9)),

<
so that (6) is proven. Finally, by definition,

pessim™([x;, ziypr1], K+ 1) :=
pessim™t([x;, ik, k)
max ¢ pessim™([z; 11, Titka1], k)
rad Flz;, 2;1x+1] — rad range ™ ([Tit1, Titk])

By applying (5) and (6), there exist [y]™"), [y]® and [y]® in [z;, 24 k1] such
that

pessim® ([z;, Ti41], k) — overestim[y]M) < e

pessim® (i1, Tiyhi1), k) — overestim[y]?) < e

(rad Flz;, xiyr41] — rad range_([:bi+1,:1ci+k])> — overestim[y]®) < ¢
Hence, there exists [y] C [z, i4+x+1] such that
pessim™ ([z;, Tiykt1], kb + 1) — overestim[y] < e.

Therefore, the inequality (2) is true for (k4 1)-blocks, which completes the proof.
O

2.2 Some improvements

Initializations in the first loop of pessim™ can be made more efficient, without
however changing the slow (linear) rate of convergence in general.

First, R[¢] was set to the image of the midpoint of [x;,z;11], as an inner ap-
proximation of f on this 1-block. Clearly, this approximation is made better
(i.e., larger) by introducing more sample points in the corresponding interval.
However, the overall accuracy remains linearly dependent of the subdivision size
(see the proof of Proposition 2).

Although having an influence on the accuracy, the sampling size is therefore not
a decisive parameter. On the contrary, the second improvement we propose can
speed up the convergence in some situations. Remember that P*[i] is set to
Flx;, 212, as an outer approximation of the pessimism on the i*" 2-block.

Assume now that I is defined as the natural extension of some differentiable
expression of f. The overestimation on an interval can also be upwardly ap-
proximated using the two next formulae. Since both formulae are likely to be

precise with small intervals (i.e., 2-blocks) their use may strongly improve the
initialization of PT.

First, by Proposition 1,
rad Flz] < Ap([z]) rad [z].

In the case of the natural inclusion function, the constant Ap([z]) can be auto-
matically computed (see [9] Th. 2.1.1). Second, by the mean value theorem,

rad f([z]) ><F'[z]> [a],

where <F’[x]> denotes the mignitude of an interval evaluation of the derivative.
Hence,
rad Flz] < Ap([z])/ <F'[z]> rad f([z]). (10)

and since rad f([z]) < rad F[x],

Ar([2])

rad F[z] —rad f([z]) < olz]rad Flz] with ofz]:= (<F’[x]>

~1). (11)

It follows that the pessimism on [z] is lower than o[z]rad F[z] and P*[i] should
rather be initialized as follows:

P1i] « max(o[z],1) x (rad F[z]). (12)

In some cases, this simple trick makes the algorithm behavior more satisfactory.
Consider the function f(x) = z and the natural inclusion function Flz] = [z],
which is minimal. If the pessimism on each 2-block [x;,z;;2] is identified to
rad F[z;,2;12], the returned value is 2/n. The linear rate of convergence prevents
from getting an accurate bound. With the help of (12), the best bound (i.e., 0)
is immediately obtained since Ap([z]) =<F'[z]>= 1.

3 Pessimism lower bound

An algorithm for downwardly approximating the pessimism is built with a very
similar induction-based reasoning. Consider a subdivision of [x] with the same
notations as before. In the case of (n + 1)-blocks, if [x9,z,] C [y] C [21, Znt1)

then
overestim[y] = rad Fly] —rad f([y])

> rad F[z2,z,] —rad range™ ([z1, Tn11])
where range™ stands for an outer approximation of the range of f.

In the following algorithm, P~[é] is a lower bound of the pessimism of F' on the
ith k-block [z, xi11], while R*[i] contains an outer approximation of the range
of f on the same block.

The base case (2-blocks) is handled as follows.

— R™[i] is initialized with an union of 1-blocks image by F. It could also be
initialized with the image of the i** 2-block by any (sharp) inclusion function.

— P [i] is set to the overestimation on one particular interval, which is the
it" 2-block itself. Again, this bound could be improved by considering a
multiplicity of subintervals instead.

function pessim~ (interval [z], integer n)
for i from 1 ton —1
| RT[i] « Flai, zig1] U Fliv1, Tigo)
| P[i] < max(O, rad Flz;, 42] — rad R*[i])

for k from 3 to n

| forifromlton—k+1

| | RT[i] — RY[{]URT[i+1]

|| P[] <—max(P_[i], Pli+ 1], rad Flzis1, zisp1] — rad R*[z’])

return P~ [1]
endfunc

3.1 Properties of the pessimism lower bound

Proposition 3. Under the assumptions of Proposition 2, we have

pessim™ ([z],n) —— max overestim[y].
n—oo [y|Cle]

Proof. The proof being close to Proposition 2’s, only a sketch will be given. As
before, we prove that Ve > 0, there exists ng such that Yn > ng and Vk < n
(k>2),

Vi <n—k+1 3ly| C [z, zi1x] overestim|y] —pessim™ ([x;, zi11], k) < . (13)

Let us fix € > 0 and consider again n > ng where ng satisfies (3) and (4) except
that /2 is replaced by €/3.

Base case (k = 2). Since Vi <n —1,
0 < pessim™([z;, Tit2],2) < overestim([z;, x;12]) < rad F([z;,xi+2]) <e/3

then (13) is verified with [y] := [z, Ti12].

Induction step (k + 1). We consider again an arbitrary interval [y] satisfying
(i1, @irn] € [Y] C [0, Tirra]-
On the one hand, (7) also implies

rad Fly| —rad Flziy1, Titk] < €/3. (14)

10

On the other hand, the distance between the points y+ and z+ where f is max-
imized over [y] and [z;, x;yr+1] respectively is necessarily less than 2/nrad [z].
The same distance property holds for the points y = and £~ minimizing f. Hence,

rad f([zi; zipry1]) —rad f([y]) <e/3. (15)

Furthermore,

i+k
range ™ ([x1, Xiti41]) C U Flxy, x544).

i

]
Since Vj, 1 < j < i+ k, overestim([z;,xj41]) < rad Flz;,z;41] < €/3 then

rad range™ ([z;, zipky1]) — rad f([zi, Tivrr1]) < /3. (16)
Now,

overestim|y] — (rad Flziy1, 2i4k] — rad range™([z;, xi+k+1]))
— (vad Fly) —rad f([y))) — (vad Floies, zisa] = rad f([oi i)+
rad f([x, zi4x+1]) — rad range+([xi,xi+k+1]))
= (rad F[y] — rad F[$i+1,$i+k]>
+(rad range™ ([zi, zins]) —rad f([ws2i0s1]))
+(rad f([@s,@isaia]) — rad £([y)))
< e (by combining (14), (15) and (16))

The end of the proof is left to the reader. O

4 Relative pessimism

One could find more relevant to compute the relative pessimism, i.e.,

max rad F rad . 17
[v]Cla] xad J([y]))#0 [y]/ rad f([y]) (17)

Our approach can be adapted for such a purpose. We shall give a brief overview
of this variant. The induction step resorts naturally to the following inequalities:
if [.Ig,xn] - [y] - ['rlaanrl] then
rad Flxa,z,] < rad Fly] < rad Flz1, Zp41]
rad TangeJr(fv [Ila anrl]) ~ rad f([y]) ~ rad Ta’ngei(fv [IQ, In]) .

Let us focus on the base case. For an upper approximation of the relative pes-
simism, the base case can be tackled thanks to (10). For the lower approximation,
we need to introduce a new formula. Notice that, with Proposition 1 in view,

11

the Lipschitz constant Ar([x]) can be defined recursively by applying classical
formulae like:

rad ([z] £ [y]) < rad [z] + rad [y],
rad ([z] x [y]) < |[y]|rad [z] 4 [[z][rad [y],
rad ¢([z]) < [¢'([z])| rad [«],

It happens that inequality signs can be reversed by substituting mignitudes to
magnitudes:

rad ([z] + [y]) > rad [z] 4 rad [y],

rad ([z] x [y]) =<[y]> rad [z]+ <[z]> rad [y],

rad ¢([z]) ><¢'([x])> rad [z],

Hence, one can also compute for any interval [z] a constant pg([x]) that verifies
rad F([z]) = pr([z]) rad [],

so that the base case can be handled with

pr(yl) _ rad Flyl - Ar([yl)
[F']l ~ rad f(fy]) © <>

5 Pessimism control

Now, as we know how to estimate the pessimism, the natural next step is to
control the pessimism of an inclusion function over a (possibly large) initial
interval [z]. More precisely, the goal is to split [z] into sub-intervals where the
pessimism is guaranteed to meet some requirements.

Such a question needs however some precaution, simply because computing the
pessimism does not cancel the pessimism. Consider for instance the function
f(z) = z — 2 and the natural inclusion function F[z] = [z] — [z]. If one requires
the pessimism to be lower than 107° in [z] = [0,1], the best algorithm ever
would anyway yield 2 x 105 intervals since in this case the overestimation of F[z]
is always 2 x rad [z].

What follows must therefore be applied in situations where the requirements are
“compatible” with the inclusion function.

Furthermore, the algorithm should detect blocks (i.e., sub-intervals) for which
the pessimism is small enough, instead of returning a single value corresponding
to the pessimism for the overall interval. This would avoid redundant computa-
tions in a test and bisect strategy.

The goal is to adapt the pessim™ algorithm in such a way that a sequence of
“accurate” blocks is returned instead of the overall pessimism: each block in
this sequence is either “accurate” or a 1-block [x;,z;1+1] that has to be further
analyzed. We must generate a sequence of minimal size and keep the quadratic

12

complexity at the same time. To this end, we introduce an extra array B (for
Block) of integers. In return, BJi] shall contain the size k of the largest “accurate”
block starting from x; (and 0 if none).

The algorithm pessim™ can then be reimplemented as follows:

function pessimblk™ (interval [z], integer n, real ¢)
for ¢ from 1 to n
| ifrad Flz;,2;41] <& then B[i]<— 1 else B[i] —0

for i from 1 ton —1

| if (B[] = 1)

|| R[] f(mid [z, 2i44])

| | Pli] < rad Flz;, 212

| | if (P[i] <e) then B[]« 2

for k from 3 to n
| forifromlton—k+1
| | if (Bf{]=DB[i+1]=k—-1)
||| Rl — R UR[i+1]
| | | if (rad Flzs, ipx] —rad R™[i +1]) <e then B[] < k
return B
endfunc

The pessim-ctrl algorithm can finally be given. This algorithm generates a
sequence of consecutive intervals that forms a partition? of the input domain
[z]. On each interval of this partition, the inclusion function F' is proven to be
accurate (according to our absolute criterion €). After a call to pessimblk™,
the array B is read forward and pessim-ctrl is only called recursively with
1-blocks where F' is not accurate. Hence, no computation is redundant since 1-
blocks are precisely those which are not subdivided by the pessimblk™ function.

procedure pessim-ctrl(interval [x], integer n, real ¢)
B « pessimblk™([z],n,¢)
11
while (i < n)
| if (B[¢] =0) then
| | pessim-ctrl([z;,xit1],n,€)
| | i—di+1
| else
| | partition.add([z;, zi1 p[;)])
| | i+ i+ Bl
endproc

2 For simplicity, we store here the partition in a simple list named partition. However,
a tree structure might sometimes be more adapted for practical uses.

13

6 First experiments

Let us first illustrate numerically the behavior of pessim® and pessim™ (both
are merged into a unique algorithm). We have considered f(z) = sin(z) +
and Flz] = sin[z] + [2] with [x] = [0,10]. Results obtained are summed up
in the following table. We can check that the precision goes linearly with the
subdivision size n while the computation time goes quadratically (notice that
n grows exponentially). The program has been run on a standard laptop. The
upper and lower approximation seem to converge towards 2.0 which is the actual
pessimism of F on [z]: the interval with the maximal overestimation 2.0 being
[7/2,37/2].

* |time (in sec)

pessim~ | pessim
0. 6. ~0
0.700764 |4.2787 ~0

n
2
4
8]0.799236 |3.20395 |~0
6
2
4

16{1.27016 |2.58151 |0.004
32|1.6413 2.31233 |0.004
64(1.83253 |2.15608 |0.020001

128]1.91915 [2.07795 |0.060004

256(1.96015 |2.039 0.216013

512(1.98035 |2.01951 |0.884055
1024|1.9902 2.00976 |3.47222
2048|1.99511 |2.00488 (14.0449
4096(1.99756 (2.00244 |56.2235
8192]1.99878 (2.00122 |223.418

Table 1. Lower and upper approximation of the pessimism.

Let us deal now with a more sophisticated example. Assume
f(z) = cos(z) sin(x) + cos(x) exp(—x) + sin(x) exp(—2x).

One may wonder which term should be factored out when using interval arith-
metic, i.e., which of the following inclusion functions is sharper in general:

(sinfx] + exp(—[x])) + sin[z] x exp(—[z]),
(cos[z] + exp(—[z])) + cos[z] x exp(—[z])),
Fs[z] = exp(—[z]) x (cos[z] + sin([z])) + cos[z] x sin[x].

We assume that intervals [z] in argument always satisfy [z] C [0, 10].

Of course, computing the pessimism of each inclusion function on [0, 10] is not
really relevant. To make a fair comparison between these inclusion functions, we
have run the pessim-ctrl algorithm with different (exponentially decreasing)
values for ¢. If the partition size (i.e., the number of splits necessary to achieve the

14

desired precision) with an inclusion function is always smaller than the partition
size with another one, then the first function can be considered (experimentally)
as sharper. Of course, this comparison must be interpreted “in average” since
for one peculiar interval, we cannot predict which of them entails the biggest
overestimation.

Results are depicted in Figure 1.

450

400

350

250

Partition size

o1 52 53 2‘—4 55 56 o7
pessimism upper bound

Fig. 1. Number of necessary splits to achieve a desired precision. Each curve
is associated to an inclusion function. A curve maps (with interpolated values) the
partition size obtained with the pessim-ctrl algorithm to the input parameter (of
maximal pessimism) e. The input interval [z] is set to [0,10]. The inclusion function
F1 seems to be more sharp with any value of £; the ratio between Fi’s values and the
others’ even decreases with ¢ (down to 78% with ¢ = 277).

7 Conclusion

This paper is a first exploration of a new concept related to inclusion func-
tions, called pessimism computation. We have given algorithms (pessim™ and
pessim™) for bounding the overestimation over a infinite set of possible input
intervals. These algorithms are valid for any type of (inclusion isotone) inclusion
functions. If, in addition, the inclusion function is Lipschitz-continuous (which
is most of the time true), the algorithms converge to the optimal result (see
Proposition 2 and 3). However, the convergence rate is only linear.

15

We have also provided a variant for computing the relative pessimism. Some
work is left to be done in this direction. As an example, the algorithm could be
modified to deal with singularities and the convergence issue could be investi-
gated.

In a second part, we have adapted the pessim™ algorithm in order to control the
pessimism of the inclusion function, i.e., to automatically decompose a domain
into sub-intervals where the pessimism is small enough. The efficiency of the
analysis is significantly improved by checking at any stage whether the function
is accurate or not (block management), avoiding any redundant computation.

We have also shown that the pessim-ctrl algorithm could be used as a way to
compare -in average- the accuracy of different inclusion functions.

All the results we have presented in this paper can easily be adapted to vector-
valued functions. However, extending our work to the multi-variable case seems
not straightforward. Such extension would probably resort to multidimensional
dynamic programming, which is known to have an exponential complexity. This
issue might be addressed in future works.

References

1. R. Bellman. Dynamic Programming. Princeton University Press, 1957.

2. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP (intervals) revisited. In
International Symposium on Logic programming, pages 124-138. MIT Press, 1994.

3. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, 1990.

4. J. Garloff, C. Jansson, and A.P. Smith. Lower bound functions for polynomials.
J. Comput. Appl. Math., 157(1):207-225, 2003.

5. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer,
2001.

6. R.B. Kearfott. Rigorous Global Search: Continuous Problems. Springer, 1996.

7. K. Makino and M. Berz. Taylor Models and Other Validated Functional Inclusion
Methods. International Journal of Pure and Applied Mathematics, 4(4):379-456,
2003.

8. R. Moore. Interval Analysis. Prentice-Hall, 1966.

9. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, 1990.

10. H. Ratschek and J. Rokne. Computer Methods for the Range of Functions. Halsted
Press, 1984.

11. N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arithmetic
and the MPFI library. Reliable Computing, 11(4):275-290, 2005.

12. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language
for Global Optimization. MIT Press, Cambridge, 1997.

16

