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Industry 4.0 is defined as a paradigm that integrates the latest technological inventions in 

Artificial Intelligence (AI), Communication, and Information technologies, among other 

domains. This integration is made to increase the levels of automation, efficiency, and 

productivity of production, in manufacturing and industrial processes. In particular, the actors 

of the production processes (Things, Data, People and Services) should autonomously be able 

to act and make decisions, to implement self-* properties, such as self-configuration, self-

management, and self-healing. In that sense, the Industry 4.0 revolution introduces many new 

challenges and issues that need to be solved. Some of those challenges are related to the 

integration of the heterogeneous actors that carry out the manufacturing process's task. 

Moreover, it is crucial to determine how to permit the actors to self-manage the production 

processes. In this paper, we present a framework for the integration of autonomous processes 

based on the needs for coordination, cooperation, and collaboration. Notably, we define three 

autonomic cycles that allow the actors of manufacturing processes (Data, People, Things, and 

Services) to interoperate. These autonomic cycles can create a coordinated plan for self-

configuration, self-optimization, and self-healing during the manufacturing process. In this 

way, the actors could be appropriately coordinated, oriented to autonomously manufacture 

Smart Products, detect failures, and recover from errors or failures, among other things. 

KEYWORDS:  

Industry 4.0; Autonomic Computing; Everything Mining; Internet of Everything; Autonomous 

Coordination. 

 Introduction 

In recent years, Industry 4.0 is taking more and more relevance, and many new kinds of 

research are taking place around it (Sanchez et al., 2020). Lee et al. (2014) affirm that the 

"transformation from today's industry into more intelligent smart factories requires further 

advancement in  
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advancement in science by tackling several fundamental issues". In that sense, Artificial 

Intelligence (AI) will play a crucial role in Industry 4.0, because it permits the adoption of a 

variety of techniques that can be used to create smart societies (Lu, 2019). Besides, Lu argues 

that future AI researches will produce a high impact on human society due that they are 

oriented to promote smart solutions and bring independence to machines in areas like 

healthcare services, education, logistics, financial systems, customer services, etc. 

However, Xu et al. (2018) confirm that there are still many issues and challenges that must be 

solved to make Industry 4.0 a reality. Some of these issues are related to the integration 

between two or more factories (Horizontal integration) (Khan et al., 2017; Suri et al., 2017). 

Bringing together the internal actors of a single factory (People, Things, Data, and Services) is 

another crucial issue. It implies the necessity of dealing with issues related to the heterogeneity 

of the data and actors, the complexity of the planning, among others (Vertical integration) 

(Hofmann & Rüsch, 2017; Lee et al., 2017; Li et al., 2017b; Liao et al., 2017; Lu, 2017a; 

Preuveneers & Ilie-Zudor, 2017; Suri et al., 2017; Truszkowski et al., 2010b). Particularly, Lu 

(2017b) argues that the integration of different technologies and actors present a problem at 

different levels of operability. One vital point to consider is the necessity of new approaches to 

ensure the interoperability and active self-organization of actors within Industry 4.0. 

Specifically, coordination, cooperation, and collaboration processes (3C) are of high 

significance to allow humans and robots to accomplish a large number of intelligent tasks (Lu, 

2019). Those processes are vital to deal with issues, such as integration and interoperability of 

actors in production processes. Moreover, the 3C processes will allow actors to negotiate and 

to achieve goals that cannot be accomplished by a unique actor. The previous statement leads 

us to consider that 3C processes are the central mechanisms for integration and interoperability 

in Industry 4.0. Essentially, these mechanisms will allow enhancing autonomy in 

manufacturing processes. For instance, they can help to solve issues related to the 

heterogeneity of the actors, distributed decision making, negotiation of production goals, 

among others.  

In general, Peruzzini & Stjepandić (2018), affirm that manufacturing processes in the context 

of Industry 4.0 require proactive and analytics capabilities in order to transform manufacturing 

into an intelligent and self-managed environment. It means that autonomy is a desired feature 

in the context of Industry 4.0. Particularly, Santos et al. (2017) affirm that Industry 4.0 must 

have the autonomy to schedule maintenance, predict failures, and adapt themselves to new 

requirements and unplanned changes in the production processes. Also, Li et al. (2017a) 

consider that Industry 4.0 requires high agility, rapid changes in the customized production 

style, and fast reconfiguration of the manufacturing system. Consequently, autonomy requires 

that the system or process can detect needs, make decisions, and deploy solutions with minimal 

human interaction (Collier, 2002; Truszkowski et al., 2010b). Moreover, (Morris, 1982; Sterritt 

& Hinchey, 2005; Truszkowski et al., 2010a) suggest that autonomy means self-

governance/self-direction because it is a specialized form of self-management (that means, 

self-heal, self-protect, self-configure, self-optimize, self-* of the process). 

At this point, IBM presented in 2001 the Autonomic Computing paradigm (IBM, 2004; 

Lalanda et al., 2013; Parashar & Hariri, 2005; Sterritt & Hinchey, 2005; Vizcarrondo et al., 



2012), oriented to endow autonomic properties to systems based on an intelligent control loop, 

known as MAPE (Collier, 2002; Vizcarrondo et al., 2017). This loop collects, aggregates, and 

filters data of the managed resource (Monitor phase), provides mechanisms to study complex 

situations and analyze future situations (Analysis phase), defines the set of operations that must 

be executed to achieve the system's goals (Planning phase), and provides mechanisms to carry 

out the plan (Execution phase). The MAPE loop requires a good understanding of the system 

to make the best decisions, in order to accomplish the goals for which the autonomic cycle was 

designed. This system uses knowledge bases and implements data analysis tasks for its 

operation. In that sense, Peruzzini & Stjepandić (2018) argue that the data analytic helps to 

improve the agility of the decision-making processes, bringing information about the 

manufacturing processes. Accordingly, as described in Aguilar et al. (2016, 2017b) and 

Koubaa (2017), an autonomic cycle of data analysis tasks (ACoDAT), is a type of intelligent 

control loop for supervision that allows reaching strategic objectives around a problem (it is a 

MAPE loop). An ACoDAT integrates a set of data analysis tasks that act autonomously and 

collectively, in order to achieve the strategic objectives pursued by it. Each task interacts with 

the others and has a specific role in the cycle (Aguilar et al., 2016, 2017b; Koubaa, 2017): 

Observing the supervised process, analyzing and interpreting what happens in it, and making 

decisions that allow reaching the objective for which the MAPE cycle was designed. In 

general, Aguilar et al. (2016, 2017b) and Koubaa (2017)  think that the data analysis tasks 

must be based on everything mining techniques, such as data mining, semantic mining, 

ontological mining, process mining, service mining, sentiment analysis, social networks 

mining, among others. 

Based on the previous context, we made a review of the literature, and we found that it exists a 

variety of researches that are intending to solve the challenges of Industry 4.0, using mostly 

coordination or cooperation processes. Moreover, some of those researches have incorporated 

data mining techniques intending to improve the manufacturing processes. However, the 

proposed solutions consider mostly the "device" actor of the manufacturing processes, but in 

fact, there are three more actors that are generally omitted: people, services, and data. In that 

sense, these researches are missing some vital information that could be gathered from those 

actors for a better understanding of the whole manufacturing process. In addition, although 

there exist some standardized reference architectures for Industry 4.0, like RAMI 4.0 (Platform 

Industry 4.0, 2018), and IIRA (Lin et al., 2015), they are still in immature state respect to the 

interoperability and standardization of the actors involved in manufacturing processes (Yli-

Ojanperä et al., 2019). 

Furthermore, according to Xu et al. (2018), developing incremental approaches for the 

integration of the growing technologies around Industry 4.0 is of high importance to ensure the 

integration of actors in manufacturing processes. However, no previous works details how to 

incrementally integrate actors and technologies. 

According to the problem presented previously, this paper shows how to combine the 

Everything Mining, the Autonomic Computing and the Internet of Everything (Chen et al., 

2017b; Martino et al., 2018; Shaikh et al., 2017; Yang et al., 2017) paradigms to solve the 

integrability and interoperability issues in a manufacturing process, based on a method that 

incrementally uses the 3C processes. Principally, this research tries to increase the autonomy 



of a manufacturing process by enabling autonomous coordination processes based on three 

autonomic cycles. These three autonomic cycles allow autonomic coordination processes by 

enabling self-planning, self-optimization, and self-healing in the manufacturing processes. 

Notably, this paper is based on previous researches (Sanchez et al., 2020), in which, they have 

detected challenges and future directions in Industry 4.0 from a system integration perspective. 

Consequently, our contributions are: 

• An architecture for an autonomous integration of actors in Industry 4.0, using 

technologies/paradigms like the Autonomic Computing, the Internet of Everything, and 

the Everything Mining. 

• The autonomic capabilities could be incrementally added to the system. In that sense, 

the self-coordination, self-cooperation, and self-collaboration process can be enabled 

incrementally (one by one). However, in this paper, we deal only with the coordination 

level. 

• We present three autonomic cycles that manage the self-coordination process, intending 

to allow the integration and interoperability of actors in Industry 4.0. It means that data, 

people, things, and services can autonomously work together (using coordination 

processes) to achieve the production goals. 

• This paper shows how the proposed framework could be easily coupled to other 

standardized reference architecture, like RAMI 4.0 (Platform Industry 4.0, 2018). 

• Finally, this paper presents and discusses the applicability of the proposed framework in 

a traditional industry, so that it is possible to transform it into a smart factory.  

This paper is organized as follows: Section 2 presents the related works. Section 3 shows the 

proposed framework for autonomous integration and interoperability of actors in the industry 

4.0 context. Moreover, in Section 3, the concept of autonomic cycles of data analysis tasks is 

introduced. Then, section 4 describes the specification of three autonomic cycles for 

autonomous coordination in Industry 4.0. Additionally, Section 5 presents a case study that 

shows how the autonomic cycles are instantiated in a factory. Finally, Section 6 shows a 

comparison with previous works, finishing with conclusions in Section 7. 

 Related works 

This section presents a brief state of the art of the autonomic coordination and mining tasks in 

production processes. 

 Industry 4.0 and Coordination problem 

For the coordination problem in Industry 4.0, Haupert et al. (2017) propose the aggregation of 

semantic information to the data collected in a Smart Factory production line, to allow the 

creation of a service orchestration planning within a manufacturing process. Also, Syberfeldt et 

al. (2017) say that a Smart Factory enables an extremely flexible production, and self-

adaptable production processes, with machines and products that act both intelligently and 

autonomously. In that sense, the actors involved in the production line are provided with 

services that allow interoperability among them. In this case, the functionality of the 

manufacturing process is represented as a composition of different services. The authors affirm 



that the process can be easily improved by using a dynamic approach, which consists of adding 

semantic information to the services provided by the devices. Likewise, the object (being 

manufactured) must provide a semantic description of how to produce itself. In this way, the 

orchestrator can use the semantic information attached to services, to create a dynamic 

orchestration of services, by adequately selecting the devices that will produce the object more 

efficiently. On the other hand, Haupert et al. (2017) test their proposal using the following 

metrics: a) how to endow a centralized orchestration process to an automated CPS production 

line; b) how a CPS can be self-maintained; c) how a service orchestration process can ensure 

that objects are produced efficiently. 

Also, Leal et al. (2019) develop an ontology for interoperability assessment. The goal of this 

paper is to show which elements must be considered concerning the interoperability 

assessment. The developed ontology is divided into two sub-ontologies: the assessment core 

and the systemic core. The assessment core permits the evaluation of the system's design. The 

systemic core describes concepts that enabled the design of different kinds of assessments. In 

the systematic core, the system is defined using characteristics of quality, which also can be 

related to the system's requirements. In counterpart, the assessment core contains concepts like 

the problem, the evaluation criteria, assessment scope, and assessment processes. Those 

concepts allow defining the reasons for what the assessment is made, as well as the quality 

attributes to consider, type of assessments, etc. The system interoperability is evaluated by 

defining the quality characteristics and the evaluation criteria, which must be rated to get a 

result that identifies the problems. 

Lucas et al. (2018)  use different communication technologies in a hierarchical architecture for 

communication and data management. The global operability of the system is guaranteed 

thanks to a central orchestrator. This orchestrator defines the data and communications 

protocols used by each sub-network, according to their requirements of latency and reliability. 

This work proposes the grouping of the devices into subnets or cells, which implement various 

technologies throughout the entire industrial plant. Each cell can use different communication 

technologies according to their needs. In this context, the orchestrator is responsible for the 

coordination of the resources assigned to different cells. The results of Lucas et al. (2018) 

show that the decentralized method can guarantee the delay necessities of the applications, and 

significantly outperforms a centralized approach. 

A conceptual framework that allows achieving integrability, coordination, and orchestration 

capabilities in a CPS was introduced by Rojas et al. (2017). The framework is composed of 

five layers. The Control layer is an intermediate layer between the physical system and cyber 

units, which allows proper integration of them. The Operational layer includes analytical tasks 

for monitoring, optimizing, and diagnosing the system, in order to empower the 

interoperability of the hardware in the control layer (The Operational layer is still under 

development). The Information layer is in charge of collecting data from all layers and 

provides high-level data analysis techniques oriented to feed the knowledge bases. The 

Application layer is where APIs and User Interfaces are implemented. Finally, the Business 

layer refers to components of the upper layers of the automation pyramid (Hollender, 2010), 

like the Enterprise Resources Planning (ERP) and the decision making systems. In the 

framework proposed by Rojas et al. (2017), no autonomic coordination and orchestration 



mechanisms have been defined. 

Cavalieri et al. (2019) propose a solution that uses the Open Connectivity Foundation (OCF) 

communication standard to allow an OPC-UA server that uses a publish/subscribe pattern to 

transfer all the information stored in it towards an OCF device over IoT. The OCF device 

translates the message and publishes it to other OCF devices in its ecosystem. The proposed 

architecture is straightforward, but functional. However, the translation OCF to OPC-UA was 

not treated in that research work. 

 Industry 4.0 and Mining Tasks 

Xu & Duan (2019) developed a survey related to the connection between CPS and big data in 

Industry 4.0. This study reveals that most researches are putting their efforts on the use of big 

data in the conception of CPS, but fewer researches focus on using the data analytic techniques 

to make CPS more efficient and effective. Furthermore, Xu and Duan affirm that most 

researches do not cope with the collaboration and cooperation of CPSs inter companies. Xu & 

Duan (2019) conclude by saying that using different data analytics applications will generate a 

high impact on the management of the whole Industry. 

Qin et al. (2016) propose some mining tasks in the context of Industry 4.0. They have 

implemented a multi-layered framework of manufacturing for Industry 4.0. In the Integration 

layer, the Internet of Things (IoT) (Chen et al., 2017a; Mezghani et al., 2017a, 2017b) and CPS 

are used as technologies for the combination of the elements involved in the manufacturing 

process. On this level, sensors and machines are in charge of collecting the data produced in 

the supply chain, as well as receive customer feedback. Moreover, this level applies different 

data analytic technologies to discover useful information from data that can help to improve 

the manufacturing process. Furthermore, technologies like Advanced Data Mining and Big 

Data Analysis are applied to the Intelligence layer to create a knowledge base that serves as a 

support for the planning and decision-making processes. Notably, the Intelligence layer 

enables the manufacturing system to be self-aware, self-optimized, self-configured, and in 

general, self-*. The Automation layer is composed of physical components like machine and 

factories' processes. On this layer, technologies like a PLC (Programmable logic controller), a 

numeric controller, and statistical probability analysis, are used to optimize the production 

process. 

Seeger et al. (2018) develop a solution that allows dealing with the scalability and performance 

issues generated in a system that has been dynamically configured by using IoT. For this 

purpose, a set of recipes is created. According to Seeger et al. (2018), a recipe is just a set of 

semantic descriptions of the configurations of the devices created in IoT. Moreover, a recipe 

describes the data flow between devices through ingredients that interact and exchange 

information. Likewise, these recipes allow the specification of restrictions that will impact the 

autonomous selection of the offer that best suits the instantiation of the recipe. Seeger et al. 

have verified that the scalability of the system is guaranteed due that the recipes are executed 

as a dynamic and distributed choreography, rather than as a centralized orchestration (Seeger et 

al., 2018). In this context, the choreographies are dynamically created according to the system 

requirements. The reliability of the system is guaranteed by a mechanism of failure detection 

and automatic recovery. In this case, when a device fails, then it is removed, and a recipe is run 



to find a replacement. 

Finally, Wang et al. (2016) focus on describing how MAS can be used in smart factories in 

order to allow autonomic coordination and cooperation processes. A negotiation mechanism 

leads agents to cooperate, allowing them to determine a route of agents to transport and 

elaborate the product. This negotiation mechanism is based on the contract net protocol, where 

the product acts as a manager. The MAS is supported by a Big data mechanism, which is used 

to solve the agent deadlocks and decision making. 

  Proposed Integration Framework 

This section presents the proposed architecture for autonomous integration and interoperability 

of actors in Industry 4.0. This is one of the main contributions of our work. 

 Autonomic Integration Framework for the Industry 4.0 (AIFI) 

In this research, we propose an autonomic integration framework for Industry 4.0 (see Fig. 1). 

 
Figure 1: Autonomic Integration framework for the Industry 4.0 (AIFI 4.0) 

This framework uses the Autonomic Computing Paradigm (Lalanda et al., 2013; Parashar & 

Hariri, 2005; Vizcarrondo et al., 2012), as an essential element that guarantees the autonomy 

and adaptability of the production process. Autonomic properties, like self-configuration, self-

healing, self-optimizing, self-protecting, self-coordination (any self-* property), are developed 

in order to endows autonomy in manufacturing processes. Consequently, the Managed 

Resource is the Business Process, which means, it is the element that will be controlled to 

increase its autonomy. The Business Process is offered as a Service (BPaaS), which means that 

the Internet of Services (IoS) (Shila et al., 2017) is another essential paradigm integrated into 



this framework. 

Moreover, the communication among the actors involved in the Production Process is possible 

thanks to IoS, especially, by the incorporation of the Internet of Everything (IoE), which 

considers the integration of all the manufacturing process actors known as Things, Data, 

People, and Services. Typically, in other frameworks, like CPPS (Qiu et al., 2017; Zanero, 

2017), only Thing and Data are explicitly considered as part of the production processes. 

However, People and Services are quite crucial because they not only can address essential 

tasks (like decision-making, data-processing, and others), but they also produce valuable 

information about the production process that must be incorporated into the knowledge bases 

used to make decisions. For instance, mining of the Business Process is essential to get 

production goals, help to detect failures or bottlenecks, among others. It means that mining the 

Business Process can help in the development of self-supervising capabilities. 

Consequently, IoE acts as the integration media for actors (Things, Data, People, Services), the 

Business Process itself, and the autonomic cycles in the Reflective Layer. Besides, it helps to 

solve issues related to the heterogeneity of actors and platforms. Furthermore, the Business 

Process is monitored continuously by the Reflective Layer in order to collect useful 

information for the creation of the knowledge bases needed by the autonomic cycles. 

Expressly, the autonomic coordination, cooperation, and collaboration processes are 

incorporated as self-* properties of the Business Process. In this sense, the knowledge bases 

needed by the autonomic cycles are created and updated by the Everything Mining component. 

This element is fundamental to allow our framework to learn from the Business Process and to 

encourage self-configuring, self-management, and self-healing of the manufacturing process.  

From this perspective, it is necessary to introduce the concept of "Everything Mining" as the 

mining of any actor, such as the process mining, big data mining, service mining, things 

mining, and people mining (sentiment analysis, opinion mining, etc.), with the primary goal of 

getting a better understanding of the system and learn from it. So, Everything-mining includes 

not only data mining technology, but also process and service mining (mining from events 

rather than only data), or whatever other kinds of mining technology. 

In essence, "Everything Mining" serves all the knowledge needed by self-configuration, the 

self-healing, self-optimization, self-protection, self-* capabilities, to endow autonomy to the 

system, making it more proactive, reflective and robust. For instance, the self-configuration 

would allow the system to reconfigure itself according to its needs and objectives. On the other 

hand, self-optimization would help to improve the resources and raw material utilization. Also, 

the self-healing would allow detecting and repairing failures — for instance, the detection of 

delays in whatever stage of a production process. In the same sense, the self-protection 

characteristic would help to ensure system safety, for example, improving the security and 

privacy of the data. From this example, it is easy to notice how the autonomy of the production 

process increases each time that a new self-* property is incorporated into the system. The 

fundamental feature of this framework is that it empowers autonomic integrability and 

interoperability of actors in manufacturing processes. This characteristic is possible thanks to 

the inclusion of self-coordination, self-cooperation, and self-collaboration (self-*) properties to 

the system. 



Moreover, the proposed framework is based on the idea of adding autonomic cycles of 

Everything Mining. That means that the self-* properties are added incrementally. For 

instance, we can start adding the self-coordination property. Next, we can add the self-

supervising property, to finish with the self-reconfiguration property. It is simpler than adding 

all the self-* properties at the same time.  

Thus, the "Everything Mining" tasks can generate knowledge of the processes in the Industry 

4.0, in particular, for the automation of the coordination, collaboration and cooperation 

processes (3C Processes) in the Reflective Layer (see Fig, 1). In this sense, extracting 

information from different actors helps to improve the autonomy of the manufacturing process, 

using the data generated by them. In that sense, everything mining allows getting useful 

information from the actors of the manufacturing process, such as data, things, people, and 

services. Moreover, that information is used to create the knowledge bases that are used by the 

autonomic cycles to make decisions. This knowledge is essential to promote autonomic 

coordination, cooperation, and collaboration in manufacturing processes. In particular, this 

paper proposes three autonomic cycles with the primary goal of enabling autonomic 

coordination in production processes. Section 3.3 presents these autonomic cycles. 

 Integration with RAMI 4.0. 

Sanchez et al. (2020) proposed an approach for solving the integration & interoperability 

issues in Industry 4.0, using the levels of connection, communication, coordination, 

cooperation, and collaboration (5C). This approach was called the 5C integration stack levels. 

The idea is to start solving the challenges at the connection level, next to the communication 

level, to finish in the levels of coordination, cooperation, and collaboration, depending on the 

system's needs. In the present paper, we continue that work, by proposing a framework for 

autonomous integration and interoperability of actors in Industry 4.0, which allows 

incrementally adding autonomous 5C processes as autonomic cycles. This framework was 

described in the previous section. Moreover, in this section, we will show how this architecture 

can be coupled to other reference architectures for Industry 4.0, as RAMI 4.0 (Platform 

Industry 4.0, 2018). This is one of the main contributions of this work. 

 

Figure 2: Compatibility AIFI 4.0 and RAMI 4.0 

Fig. 2 describes how AIFI 4.0 and RAMI 4.0 can be integrated. First, the physical layer of 

AIFI and the Asset layer of RAMI are the same. It means that all the physical elements in a 



production process (actors) are deployed at this layer. Second, the Integration Layer of AIFI is 

managed by the Internet of Everything. In consequence, all the physical actors are 

characterized as cyber components (digital twins), which are in charge of interact and make 

decisions. Besides, the Integration layer of AIFI corresponds to the Integration and 

Communication layers of RAMI, and allow the actors to connect and communicate 

transparently. Third, the components that made part of the Information, Functional, and 

Business layers of RAMI have access to all the knowledge bases built using the everything 

mining paradigm. These knowledge bases ensure a proper understanding of the production 

environment and allow the cyber component to make decisions for themselves. For instance, 

the manufacturing process actors can use the processes for self-coordination, self-cooperation, 

and self-collaboration created in the AIFI's reflective layer, to self-organize the manufacturing 

process to achieve the production goals. 

 Autonomic Cycles of Data Analysis Tasks 

The main objective of the data analytic autonomic cycle is to gather useful knowledge from 

actors, to facilitate the decision-making processes  (Aguilar et al., 2017a, 2017b). In general, 

an autonomic cycle generates descriptive, diagnostics, and predictive models, among others, in 

order to endow autonomic capabilities to the system. 

On the other hand, an "Autonomic Cycle of Data Analytics Tasks" is a concept defined in 

(Aguilar et al., 2017a, 2017b), which consists of a set of Data Analysis tasks that work 

together, in order to achieve an objective in the process that they supervise. Those tasks 

interact with each other and have different roles in the cycle. The roles could be: Observing the 

process, analyzing and interpreting what happens in it, and making decisions, which allow 

reaching the objectives for which the cycle was designed. 

The integration of Data Analytics tasks in a closed-loop allows solving complex problems. In 

this sense, it is essential to integrate the Data Analytics tasks coherently, to generate useful and 

strategic knowledge for the achievement of the objectives. The detailed description of the roles 

of each task is (Aguilar et al., 2017a, 2017b): 

• Monitoring: Tasks in charge of observing the supervised system. They must capture 

data and information about the system's behavior. Besides, they are responsible for the 

preparation of the data for the next steps: preprocessing, selection of the relevant 

features, etc. See Aguilar et al. (2017a, 2017b) for more details. 

• Analysis: These tasks interpret, understand, and diagnose what is happening in the 

monitored system, using the data. Besides, these kinds of tasks allow building 

knowledge models from the dynamics observed in the system, oriented to know what is 

happening in it. 

• Decision making: These tasks define and implement the necessary actions based on the 

previous analyses, in order to improve, correct failures, among other things, in the 

supervised system. These tasks impact the dynamics of the system to improve it. The 

effects of the decision-making tasks are again evaluated in the monitoring and analysis 

steps, restarting a new iteration of the cycle. 

The concept of "Autonomic Cycles of Data Analysis Tasks" has been used in different 



domains. For instance, it has been used in the context of Smart Classroom (Aguilar et al., 

2017b; Sanchez et al., 2020), among others. 

 Autonomic Coordination in Industry 4.0  

This section discusses the design of the AcoDAT in order to enable autonomic coordination in 

manufacturing processes. The connection and communication processes (2C) are not treated in 

this paper, due that other previous researches already dealt with them, as was shown in the 

survey conducted by Sanchez et al. (2020). In this paper, we focus on dealing with processes 

linked to the highest three levels of the 5C stacks. Specifically, we start with the coordination 

process, leaving cooperation and collaboration outside of the scope of this paper. 

 Specification of the Autonomic Cycles for the coordination in the 

Industry 4.0 

The Autonomic Cycle for Coordination in Industry 4.0 (ACCI40) proposed in this paper 

defines a set of data analysis tasks. The main goal of this cycle is to allow self-planning, self-

supervising, and self-configuring the manufacturing process. In this context, the actors 

involved in the process can make decisions using the knowledge bases to improve the 

efficiency and productivity of the factory, detect failures, and repair the system, among other 

things. Consequently, a Smart Product is aware of guiding its production (that means, the 

Smart Product is smart enough to coordinate the actors to its manufacture). 

In general, a self-coordination process in Industry 4.0 requires a set of autonomic cycles of 

data analysis tasks, in order to create (self-configuring), supervise (self-supervising), and 

reconfigure (self-repairing) the production process. The autonomic cycles must use Everything 

Mining tasks to get useful information that helps in solving the coordination needs that arise in 

the production processes. In such sense, data and semantic mining tasks can be used to 

determine the objectives of the coordination process. In the same way, people and things 

mining tasks are useful to determine the elements that must be coordinated, as well as their 

availabilities, status, and roles. Furthermore, process and service mining tasks can help to 

determine failures in the production process, and contribute to self-healing, and self-optimizing 

of the production process. In conclusion, the concept of Everything Mining allows developing 

methods, tools, and strategies for the autonomic coordination in the production processes, 

within the context of Industry 4.0. 

Notably, in this article, we propose a set of autonomic cycles for self-coordinate a production 

process (these autonomic cycles were named ACCI40). Specifically, the goal of each 

Autonomic Cycle is the following: 

• ACCI40-1 (Build the coordination plan): This cycle is responsible for obtaining useful 

information for the creation of a coordination plan adjusted to the objectives and needs 

of the manufacturing process. The coordination plan considers the availability of 

entities, their characteristics, roles, among others, in such a way that all the actors can 

be perfectly synchronized. The outcome of this autonomic cycle is the prescriptive 

model of the coordination plan. A prescriptive model is a structured set of operations 

that describe how to achieve the objectives as efficiently as possible (Heldal et al., 



2016). Moreover, prescriptive models are usually represented in a format that is 

readable by a machine or smart object. 

• ACCI40-2 (Supervise the process): In this case, the data analytical tasks are oriented to 

supervise the manufacturing process, to detect failures, and ensuring that the 

coordination plan is being properly executed, among other things. Mainly, this 

autonomic cycle must analyze and predict actions, roles, along with others, more 

suitable for the coordinated process. The input of this cycle is the prescriptive model of 

the coordination plan, and its outcome is the system's diagnostic model. 

• ACCI40-3 (Self-configuration of the coordination plan): this autonomic cycle is 

responsible for the reconfiguration of the coordination plan when an abnormal situation 

is detected by the self-supervision cycle. In that sense, the coordination plan can be 

reconfigured in order to solve the issues. The final solution contemplates the current 

execution context (for example, if a device is out of service, then it must not be 

considered in the new plan, and its role will be reassigned to another device). Notably, 

this cycle generates a prescriptive model for the reconfiguration of the current 

coordinated process. The input of this cycle is the system's diagnostic model and the 

prescriptive model of the original coordination plan, and its outcome is a new 

prescriptive model for coordination, adjusted to the new needs and context. 

The data sources for the previous autonomic cycles are the organization's databases (Inventory 

Systems, Organization Social Networks, ERP systems, and the rest), the business process 

models, among others. In the next sections, each autonomic cycle will be described. 

 Specification of the ACCI40-1: Build the coordination plan 

The goal of this autonomic cycle is to build the coordination plan of the production process, 

based on the production goals and the current context. Mainly, this cycle is composed of six 

tasks (see Fig. 3): 

1) Determine the objectives of the coordination process. 

2) Determine the production tasks and the roles required. 

3) Determine the actors that must/can participate in the process.  

4) Determine the activities for each actor based on its roles and competences. 

5) Determine the requirements (technological or not). 

6) Design the coordination plan. 



 

Figure 3: Structure of the ACCI40-1 

The first five tasks involve observations and data analysis operations based on the actors' data. 

In that sense, these tasks are in charge of extracting and analyzing the useful information about 

the production process. Additionally, it must detect the elements needed to build a specific 

product, as well as the actors that must be involved in its production, the roles, and tasks to be 

carried out by each actor, among others. The structure of this ACCI40-1 is shown in Fig. 3. 

Table 1: Description of the Tasks of the ACCI40 1 

Task Name 
Some of the Everything Mining 

Techniques 
Data Sources 

Determine the objectives of the coordination 

process 
Process Mining, Data Mining BPEL, Organization BD 

Determine the production task and the roles 

required 
Process Mining BPEL 

Determine the actors that must/can participate in 

the process 

Thing Mining, People Mining, 

Service Mining, Data Mining 

UPnP Services, BPEL 

Social network, SOA platform, 

Organization BD 

Determine the activities for each actor, based on its 

roles and competences 

Thing Mining, People Mining, 

Service Mining 

UPnP Services, Bpel, Social 

network, SOA platform 

Determine the requirements (technological or not) Data Mining, Service Mining Organization BD, SOA platform 

Design the coordination plan Data Mining Previous Results 

 

Table 1 shows the data sources used in this autonomic cycle for each task. Besides, the tasks 

for this autonomic cycle are described as follows: 

4.4.1 Steps 1-2: Observation and Analysis. 

Task 1. Determine the objectives of the coordination process: this task determines the specific 

production objectives of the production process. For instance, it can determine new product 

requirements, detects if the products fit its requirements, and recognize if the production 

--- Determinate actors able to participate in the process 
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objectives have been met, among other things. For this purpose, the process, data, and 

semantic mining techniques can be used on data sources, such as organizational social 

networks and databases, business process models, etc.  

Task 2. Determine the production tasks and the roles required: this task determines what 

production tasks should be carried out to manufacture the product, as well as the roles to be 

played by the actors of the process. In the same sense, this task must discover new and more 

effective ways to build products. Besides, this task will improve the mode of how the 

production tasks are assigned to each actor. For this purpose, process mining techniques may 

be used on business process models (BPEL, Petri nets, etc.) and event logs of the production 

processes, as data sources. 

Task 3: Determine the actors that must/can participate in the process: this task looks for 

available actors to develop the production tasks. Additionally, this task can use predictive 

models to determine when the actors are available to synchronize and link to the production 

chain. In this case, it is necessary to use various mining techniques, such as thing mining, 

people mining, service mining, and data mining, on different data sources, such as the business 

process models, social networks, organizational databases, among others. For instance, it can 

use service mining over the SOA platform to infer the services available in the production 

environment. 

Task 4: Determine the activities for each actor based on its roles and competencies: Task 4 

assigns the production tasks to the manufacturing process' actors, in concordance with their 

availabilities, roles, competencies, etc. Similarly, several mining techniques are required, such 

as things, people, and services mining. Also, learning techniques can be useful to learn from 

the production processes about how actors work more efficiently. 

Task 5: Determine the requirements (technological or not): The goal of this task is to analyze 

the technical aspects required by the production process to manufacture a product. For 

instance, it can predict whether the amount of raw material in the inventory is enough to 

produce the products in the current production order. This task performs data mining or service 

mining tasks in organizational databases and business process models, among other mining 

techniques. 

4.4.2 Step 3: Decision Making. 

Task 6. Design the coordination plan: This task builds a prescriptive coordination model using 

the information obtained in the previous steps, in order to associate activities, actors, tasks, 

roles, the production process sequence, and requirements. That means that this plan describes 

how to assign the tasks to each actor based on the information collected from tasks 1 to 5, like 

roles, availability, and other characteristics and requirements of the production process. 

 Specification of the ACCI40-2: Supervise the process 

The goal of this autonomic cycle, called ACCI40-2, is to supervise the execution of the 



previous coordination plan, in order to ensure that it is executing correctly. This autonomic 

cycle consists of 3 tasks: 

• Determine how each actor is executing its tasks. 

• Determine the general performance of the plan. 

• Determine which actors guarantee the production process. 

  

Figure 4: Structure of the ACCI40 2 

Now, we are going to describe the tasks of this cycle. Table 2 shows the tasks, data sources, 

and mining techniques for this cycle. The first task monitors how the process' actors are 

working. The second task is a data analytical task that determines the general performance and 

status of the coordination plan. Finally, the third task is a decision-making task that makes a 

diagnosis of the system using information from tasks 1 and 2. The structure of ACCI40-2 is 

shown in Fig. 4.  

4.4.3 Step 1: Observation.  

Task 1. Determine how each actor is executing its tasks: The goal of this task is to monitor the 

production process, oriented to detecting how each actor is working (detect failures, delays, 

needs, task complexity, computational resources, etc.). This goal can be accomplished by 

applying things, people, processes, and service mining techniques, among other techniques. 

Table 2: Description of the Tasks of the ACCI40-2 

Task Name 
Some of the Everything Mining 

Techniques 
Data Sources 

Determine how each actor is actors 

executing its tasks 

Thing Mining, People Mining, 

Service Mining 
BPEL, Organization BD 

Determine the general performance of the 

plan 
Process Mining BPEL 

Determine which actors guarantee the 

production process 

Data Mining, Thing Mining, People 

Mining, Service Mining 

UPnP Services, Bpel, Social network, 

SOA platform, Organization BD 
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Task 2. Determine the general performance of the plan: This task is responsible for analyzing 

the general performance of the plan, based on the information provided by task 1, as well as by 

applying real-time process mining on the current production process. 

4.4.5 Step 3: Decision Making 

Task 3. Determine which actors guarantee the production process: The main goal of this task 

is to discover, based on the information received from the previous tasks, the most reliable 

actors that guarantee to achieve the production goals successfully, with the lowest amount of 

failures or delays. Reliability, in this case, implies that the information received from these 

actors is valid and trusted, as well as the fact that the actors finish their tasks in the estimated 

time, among other things. Once this task has been completed, it generates a diagnostic model 

of the manufacturing process. 

 Specification of the ACCI40-3: Self-configuration of the plan 

The goal of ACCI40-3 is to use the information provided by the previous autonomic cycles, in 

order to detect issues and re-design the coordination plan according to the current needs. 

Notably, this cycle is composed of six tasks (see Fig. 5): 

• Determine the state of the coordination process. 

• Determine the production tasks and roles required. 

• Determine the availability of actors. 

• Determine the activities for each actor based on its roles and competences. 

• Determine the requirements (technological or not). 

• Re-design the coordination plan. 

Mainly, most of the tasks performed by this autonomic cycle are the same tasks performed by 

ACCI40-1. In this cycle, specifically, tasks 1 and 6 are different. Task 1 defines the current 

state of the coordination process, while task 6 designs the new coordination plan based on the 

current information provide by tasks 1-5. Table 3 shows the information about these tasks, as 

well as the data sources used by each autonomic cycle to extract knowledge. Tasks 1 and 6 are 

described below:  



 

Figure 5: Structure of the ACCI40-3 

4.4.6 Step 1: Observation and Analysis 

Task 1. Determine the state of the coordination process: The main goal of this task is to 

observe the environment, in order to get information about the current state of the process 

(detect failures, delays, needs, task complexity, computational resources, among other aspects). 

The information collected by ACCI40-2 is essential for this task. Principally, the process 

mining techniques on the BPEL and event logs of the production process must be executed in 

order to achieve the goals of this task. 

4.4.7 Step 2: Decision Making 

Task 6. Re-design the coordination plan: This task performs similar activities as task 6 of 

ACCI40-1. However, it differs because this task is executed in real-time. Additionally, in 

ACCI40-1, the outcome is a prescriptive model for coordination, which allows starting the 

production process appropriately. In this case, the outcome is a new prescriptive model for 

coordination adjusted to the changes in the environment. 

Table 3: Description of the Tasks of the ACCI40 3 

Task Name Some Everything Mining Techniques Data Sources 

Determine the state of the coordination 

process 
Process Mining BPEL 

Re-design the coordination plan Data Mining, Service Mining 
Organization BD, SOA 

platform 
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 Case Study 

 Experimental Context 

To illustrate the functionality of the autonomic cycles described in the previous section, we are 

going instantiate them into a generic and traditional production process (the factory is not 

smart), using the next scenario: 

Suppose a company disposes of one assembly line with several devices (see Fig. 6). Likewise, 

the consumers place orders to request customized products, with the specific delivery time as a 

requirement. The company must prudently accept the elaboration of the products, in order to 

not incur in delaying the production process. Additionally, Smart Products coordinate their 

production. In this sense, to allow the Smart Product to act autonomously, the company 

requires several integration mechanisms in the levels of coordination, cooperation, and 

collaboration: 

 
Figure 6:  Industry 4.0 scenario with the 3C processes. 

1) Smart products self-coordinate their production. Accordingly, coordination mechanisms 

driven by the Smart Product are essential, in such a way that in each phase of the production 

process, new elements are added to the product, according to the specific requirements of it, 

which generally differ from one Smart Product to another.  

2) In the same way, the Smart Objects (things) must use cooperative mechanisms, in order to 

interact with other actors, to allow carrying out the production process in an efficient 

manner. Each Thing actor has specific objectives; for example, the objective of the 

assembly belt is to transport the product from a starting place to a destination one, knowing 

that multiple origins and destinations can exist. The objective of a robotic arm may be to 

add a layer to the final product, and so on. In this way, the cooperation between all the 

actors will allow them to create the final product properly.  

3) The objective of the whole production process is to manufacture Smart Products efficiently, 

minimizing production time, costs, and making an efficient use of human and physical 

resources. The elements of the production process must consider this common goal, and 

collaborate among them to achieve it, without neglecting their particular objectives; that is, 

they must deal with multiple objectives.  



4) On the other hand, the smart factory can cooperate with other organizations, in order to 

make automatic requests of raw materials and avoid stopping the production process. 

Finally, the Smart Product can cooperate with the shipping organization, so that the 

products reach the final consumer in time. 

In this Industry 4.0 scenario, the 3C processes are fundamental to achieve the manufacturing 

process goals. In this research, we consider only the coordination process, the collaboration 

and cooperation processes will be treated in future researches. 

In the same sense, we are going to instantiate the general scenario describe above (see Fig. 6) 

into a particular case study. This case study corresponds to a production process for the 

production of sandwich bread, where the client can customize the wrapper (logo, name, and 

other details), the quantity, the type of bread (white bread, grain bread, with raisins, with 

sesame, among others), among other things. The production process involves devices like the 

smart conveyor belt that route the bread to the least busy device, smart slicers that slice the 

bread, wrapping machine to pack the bread using the correct wrapper, the smart kneader 

machines, the smart printers, etc. Mostly, the production process is launched as a service using 

BPEL. Also, the organization has event logs and databases related to the production process, 

inventory of raw materials, among others. 

In this scenario, the coordination problem consists in how to produce the sandwich bread and 

customize orders for each customer (like logo, quantity, etc.), without increasing the 

production cost. Additionally, parameters like quality and resource consumption must be 

considered. Moreover, the selling price must be the same for big and small customers' orders. 

This requirement can be achieved by grouping small orders among them, or by grouping small 

order with big orders. However, the coordinator must be aware of separating them for 

distribution.  

Formally, in this case-study, the Smart Product is the sandwich bread, and it is the coordinator 

of the production process. In that sense, the coordination process is based on autonomic cycles, 

according to the next steps:  

1) The smart sandwich bread instantiates the ACCI40-1 to build the coordination plan. This 

plan contains information about the devices selected for the manufacturing process, the 

tasks assigned to each device, the sequence order that must be followed by the smart 

sandwich bread, the time for each device to accomplish its tasks, etc. With this information, 

the smart sandwich bread can guide its production.  

2) Once the production process is started, the smart sandwich bread launches the second 

autonomic cycle (ACCI40-2), to start the self-supervising of the process and detect 

problems during the manufacturing of the sandwich bread.  

3) If some issues are detected by the ACCI40-2 (i.e., a malfunction of some device, one 

untrusted actor was detected, etc.), the ACCI40-3 is started to self-heal the manufacturing 

process and continue with the production.  

The autonomic cycles create the knowledge bases needed for decision making, by using the 

Everything Mining techniques that allows gathering information from transactional databases 

(containing information about orders, customer, inventory, recipes with information about how 

to prepare each type of bread, etc.), as well as the event logs generated by previous executions 



of the manufacturing process, among others data sources. 

According to the AIFI 4.0 architecture, all devices in the production line are deployed at the 

physical layer. Moreover, for this case study, we use ROS Industrial to characterize each actor 

of the bread factory as cyber units  (Koubaa, 2017), and ROSLink (Koubaa et al., 2017) as a 

message queue that enables IoE as a communication platform  (see Figure 7). This 

configuration covers the two first levels of the 5C stacks. ROSLink allows the devices of the 

bread production line to connect and communicate through the Internet. The ROSLink Bridge 

is in charge of translating all messages from ROS Specific format to JSON format and vice 

versa. Moreover, The ROSLink Cloud Proxy allows the incorporation of other actors that are 

far from the production line. For instance, the manager can connect from his office and change 

the production goals. The baker can connect and change some production conditions, etc.  

 

Figure 7: RosLink connection and communication approach. 

In the next subsections, the instantiation of the autonomic cycles is detailed. Those cycles are 

deployed in the reflective layer of the AIFI architecture. 

 Instantiation of the ACCI40-1: Build the coordination plan 

At the beginning of the production process (before starting the manufacturing process), the 

Smart Product must configure the production environment, according to the current context. 

Moreover, it must consider the customizations requested by the customers as well as the 

availability of devices, among other things. The next steps describe how the ACCI40-1 is 

instantiated in this case study. 

1) The Smart Product (smart sandwich bread) launches the first task of the autonomic cycle, in 

order to discover its production goals. It gets information about the production process 

(using process mining techniques) and the purchase orders (using the organization's 

databases). For instance, this step may discover that the objectives are to produce 1000 units 

of white bread, where 200 must be wrapped with logo A, 500 must be wrapped with logo B, 



and 300 with logo C. Another customer requires 400 units of grain bread, where 200 must 

be wrapped with logo B, and 200 with logo D. 

2) The second task uses the information collected in the previous step in conjunction with the 

event logs, and the business process model in BPEL, in order to determine the activities that 

must be involved in the production process, as well as the roles and production tasks that 

must be carried out by each actor. For instance, this process must return specific 

information like mix 15min, bake 45 min, stamp logo A, package, slice, transport, among 

others. 

3) The Smart Product must determine the availability of the actors. For instance, in our case 

study, it can discover that the smart conveyor belt must transport the products through the 

diverse phases of the process and that the smart slicer machines must slice the bread, but 

only two of three are available. Also, it determines if it is necessary to request authorization 

for one specific actor, among other things. 

4) The previous information is used to define the criteria to assign activities correctly to each 

actor. Mainly, the information gathered in the previous tasks is used in order to associate 

roles and tasks with the actors that might be involved in the production process. Everything-

mining techniques must be used as support to set the assignment. One example of the result 

of this task is: (smart conveyor belt, transport), (smart slicer 1, slice), (smart slicer 2, slice) 

(smart printer 1, print logo A), (smart printer 3, print logo B), (smart printer 3, print logo C), 

(manager, authorize shopping of raw material), etc. 

5) Next, the Smart Product determines the requirements for its production. For instance, this 

task defines the communication language and protocols between the devices and other 

actors. One example of the results is: (smart printer, XML-SOAP), (smart slicer, JSON-

REST), etc. 

6) All the knowledge base collected in the previous steps is combined to define the 

coordination plan, which includes information about the task assignment, actors, sequence 

of tasks, among other things. For instance, the prescriptive model that represents the 

coordination is shown in Table 4. With that information, the Smart Product can start the 

production process. Also, as the devices are smart, they can make some decisions, and 

communicate with the people (Actor) when they need decisions that only the manager can 

make, among other things. 

The final result is shown in Table 4. It is a prescriptive model that indicates the tasks to be 

executed in order to achieve the production goals defined in task 1. Additionally, it contains 

information about the time required to finish each task, tasks' dependencies, as well as the 

actors assigned to execute each task. For instance, the task number 3 (cut 1000 units of white 

bread) requires 30 min to be accomplished, should start after task 1 (see Table 4), and might be 

executed by the Smart Cutter actor. The schedule plan can be generated using a Manufacturing 

Scheduling System (MSS) approach, as described by Rossie et al. (2019). The architecture of 

the automatic schedule generator is shown in Fig. 8. 

 

Table 4: Coordination Plan generated by ACCI40-1 

Nº Task Time (min) Dependencies Actor 

1 Mix & Knead (1000 white bread) 45   Smart Kneader 

2 Transport (Though Cutter) 30 1 Smart Conveyor Belt 

3 Cut Bread (1000 white bread) 30 1 Smart Cutter 

4 Transport (To Oven) 30 1 Smart Conveyor Belt 

5 Bake (1000 white bread) 60 4 Smart Oven 

6 Transport (thought slicer) 30 5 Smart Conveyor Belt 



7 Slice (1000 white bread) 30 5 Smart Slicer 1; Smart Slicer 2 

8 Transport (thought wrapping) 45 5 Smart Conveyor Belt 

9 Wrap (1000 white bread) 45 5 Smart Wrapping 

10 Transport (thought packer) 50 5 Smart Conveyor Belt 

11 Pack (orders) 50 5;15 Smart Packer 

12 Print (200 Logo A) 50  Smart Printer 1 

13 Print (500 Logo B) 125  Smart Printer 2 

14 Print (300 Logo C) 75  Smart Printer 3 

15 Transport (to Packer) 5 12;13;14 Smart Conveyor Belt 

16 Print (200 Logo B) 50 12 Smart Printer 1 

17 Print (200 Logo D) 50 14 Smart Printer 3 

18 Transport (to Packer) 5 16;17 Smart Conveyor Belt 

19 Mix & Knead (400-grain bread) 30 1 Smart Kneader 

20 Transport (Though Cutter) 20 19 Smart Conveyor Belt 

21 Cut Bread (400-grain bread) 20 19 Smart Cutter 

22 Transport (To Oven) 20 19 Smart Conveyor Belt 

23 Bake (400-grain bread) 60 5;22 Smart Oven 

24 Transport (thought slicer) 20 23 Smart Conveyor Belt 

25 Slice (400-grain bread) 20 23 Smart Slicer 1; Smart Slicer 2 

26 Transport (thought wrapping) 30 23 Smart Conveyor Belt 

27 Wrap (400-grain bread) 30 23 Smart Wrapping 

28 Transport (thought packer) 35 23 Smart Conveyor Belt 

29 Pack (orders) 35 18;23 Smart Packer 

 

 

Figure 8: Automatic Schedule generator (Rossit et al., 2019). 

The everything mining layer represents the tasks (1), (2), (3), and (5) of this autonomic cycle. 

This layer collects the information needed by the schedule generator to create the plan (this 

information is described in the steps above). Besides, this layer feeds the knowledge base 

needed for decision making. The automatic schedule generator layer uses the information 

stored in the knowledge bases, and apply the MSS approach, to generate the plan, as described 



in tasks (4) and (6). This plan is sent to the Schedule Validator layer, in which an expert 

checks, adjusts, and approves the plan. The schedule validation process can be automated to 

check the plan, and if it is not approved, then it is forwarded to the Automatic Schedule 

Generator in order to make the corresponding fixes. 

 Instantiation of the ACCI40-2: Supervise the coordination process 

Once the process has started, the Smart Product must control the correct execution of the 

process, detect failures, among other things. In this sense, it executes the autonomic cycle 

ACCI40-2, in order to allow self-supervising. Notably, the steps followed by this autonomic 

cycle are:  

1) The first step is to collect information from the actors of the production process using 

Everything Mining tasks. They reveal useful information to determine how each actor is 

working. Notably, it can determine what actors are delaying the process, what is the cause 

of the delay, among other things. For instance, it can discover that smart printer 3 is 

delaying the process because it took more time to print the logos than other printers. In this 

step, the process mining technique applied to historical event logs is used to create a 

knowledge model that contains information about the historical time used by each machine 

to accomplish their tasks. 

2) In this step, process mining techniques are applied in order to measure the general 

performance of the production process. As in the previous step, the model created using the 

process mining contains information about the global time employed to produce each order. 

This information is compared to the current execution, in order to determine if the 

performance of the current process is delayed respect to the historical production data. 

3) The third step is to detect what actors are executing their tasks correctly. Additionally, it can 

detect if the data sent by the actors are trusted, or if there are communication failures, using 

everything mining techniques. For example, this step can use a predictive model built using 

historical production data, in order to detect if given the current conditions a product will 

pass the control test or not. One example of the output of this task is: (Slice 1, trusted), 

(Slice 2, trusted), (Printer 3, untrusted), etc. 

Table 5: Diagnostic Model generated by ACCI40-2 

 

 

 

 

 

Each time that a new knowledge model is added to the self-supervising autonomic cycle, the 

system gains more autonomy, and more failures can be detected.  

 

Table 5 shows an example of the diagnostic model generated for this case study. It shows that 

Actor Status Trusted 

Smart Kneader Alive true 

Smart Conveyor Belt Alive true 
Smart Cutter Alive true 
Smart Oven Alive true 

Smart Slicer 1 Alive true 
Smart Slicer 2 Alive false 

Smart Wrapping Alive true 
Smart Packer Delayed true 

Smart Printer 1 Alive true 
Smart Printer 2 Alive true 
Smart Printer 3 Failure true 



almost all actors are working without issues, but the smart packer is generating some delays in 

the production process, and Smart Printer 3 presents a failure. That means, the production 

process requires to be reconfigured. 

 Instantiation of the ACCI40-3: Self-configuration of the plan. 

This cycle takes the diagnostic model produced by ACCI40-2 as input, in order to decide about 

starting or not the reconfiguration of the production process. The tasks of this autonomic cycle 

are very similar to those of ACCI40-1, and the output as well. In this case, we are going to 

obtain a new plan similar to the one showed in Table 4, but containing new actors, new timing, 

among other things, depending on the current production process' needs. 

Also, it could generate a new prescriptive model in order to improve the production process. 

This prescriptive model contains useful information to reconfigure the system. This model 

deletes the actors that are causing delays, failures, etc., in the process. Moreover, 

synchronization times are adjusted according to the time that actors currently take to execute 

their tasks.  

Thus, smart factories can gain autonomy in their coordination processes, as well as solve 

integration and heterogeneity issues, by including the cycles of data analysis tasks described in 

this section. 

 Comparison with previous works 

In this section, we show how the integration of actors arises in our proposal, through the 

coordination process defined by the autonomic cycles. Furthermore, some premises are 

proposed to study the integration issue. Next, we make a comparison with previous works in 

order to show the advantages of using our proposal. 

 General premises for the integration of actors in the context of the 

Industry 4.0 

We propose the next premises, to determine the capabilities of our autonomic cycle for 

coordination in Industry 4.0: 

• First Premise: Actors belonging to the production process attain their vertical and 

horizontal integrations by coordinating their interactions. 

• Second Premise: Actors of the production process (data, people, things, and services) 

can communicate among them (interoperate), by sending and receiving data during the 

coordination process. This premise only checks the communication of actors. 

• Third Premise: the coordination is managed by the autonomic cycles of data analytical 

tasks. 

• Fourth Premise: All actors involved in the manufacturing process should work together 

(interoperate), each one performing its specific tasks. 

Now, we describe like the premises are reached by our approach: 



• Regarding the first premise, our proposal allows the integration at different levels thanks 

to the Integration and Reflective layers. Vertical integration is reached by the autonomic 

coordination of actors within the same Industry, while that the Horizontal integration is 

reached by the autonomic cooperation and collaboration processes that take place 

between industries (see Fig. 6). In our case study, vertical integration allows 

manufacturing the smart bread, thanks to the coordination plan discovered by ACCI40-

1. In the same way, horizontal integration allows this Industry to cooperate/collaborate 

with other companies in order to deliver orders, get raw materials, etc. It will be 

analyzed in further works. 

• For the second premise, the interaction of actors is guaranteed due to the Internet of 

Everything paradigm. Moreover, the People actor can interact with other actors using 

the HMI devices disposed within the production process. In general, the framework 

allows the exchange of data between actors and their understanding, which guarantees 

that they can communicate (see Fig. 1). 

• Concerning the third premise, the Smart Product invokes ACCI40-1 in order to 

coordinate all the activities that need to be developed by other actors involved in the 

manufacturing process. In the case study, the smart sandwich bread invokes the 

ACCI40-1 to start the coordination process. Next, when the production process begins, 

it launches the ACCI40-2; and when this last autonomic cycle detects a problem in the 

production process, then it invokes the ACCI40-3. 

• Finally, for the fourth premise, the coordination plan defined by the ACCI40-1 assures 

that all actors work together, in order to achieve the production goal. Moreover, the 

ACCI40-2 and ACCI40-3 allow reconfiguring the manufacturing process when a fault 

is detected. They ensure the continuity of the production process. In our case study, the 

smart sandwich bread controls its production, and the autonomic cycles gather all the 

information that is needed to assign tasks to other actors. This premise allows for the 

completion of the manufacturing process successfully. 

 Comparison of results 

In this sub-section, a qualitative comparison with related works is made. In the first place, we 

verify if related works comply with the four premises defined in the previous sub-section (see 

Table 6). 

Table 6: Comparison with previous works based on the premises  

 First Premise Second Premise Third Premise Fourth Premise 

(Haupert et al., 2017) � � � � 

(Lucas-Estañ et al., 2018) � � � � 

(Rojas et al., 2017) � � � � 

(Qin et al., 2016) � � � � 

(Seeger et al., 2018) � � � � 

(Wang et al., 2016) � � � � 

This work � � � � 

As can be noticed from Table 6, almost all the previous works comply with all premises, 

except Haupert et al. (2017), Qin et al. (2016), and Wang et al. (2016). Substantially, Haupert 

et al. (2017) and Wang et al. (2016) do not comply with the first premise because they only 

allow vertical integration. On the other hand, the works Haupert et al. (2017) and Qin et al. 

(2016) do not act following the third premise, because they do not use data analytical tasks. 



Now, we present a qualitative comparison based on some specific characteristics that indicate 

the grade of autonomy reached by the autonomic cycles. The next characteristics are used for 

this comparison: 

1) Integration of the four actors of the production process (data, services, people, and things). 

2) Support Everything Mining. 

3) Support the self-configuration of the production process. 

4) Support the self-optimization of the production process. 

5) Support the self-healing of the production process. 

6) Support processes of self-coordination, self-cooperation, and self-collaboration. 

7) Autonomic properties can be added incrementally. 

Table 7 shows the result of this comparison. As can be seen, most of the related works do not 

satisfy all the characteristics. 

Table 7: Comparison with previous works based on the characteristics that indicate the grade of 

autonomy reached  

 1 2 3 4 5 6 7 

(Haupert et al., 2017) � � � � � � � 

(Lucas-Estañ et al., 2018) � � � � � � � 

(Rojas et al., 2017) � � � � � � � 

(Qin et al., 2016) � � � � � � � 

(Seeger et al., 2018) � � � � � � � 

(Wang et al., 2016) � � � � � � � 

This work � � � � � � � 

Specifically, the works Haupert et al. (2017), Qin et al. (2016), Wang et al. (2016),  Lucas et 

al. (2018), Rojas et al. (2017) and Seeger et al. (2018) do not allow integration of the four 

actors of a production process (1), because most of them use IoT as an integration framework 

what only consider Things and Data. That fact is the first weak point in those works because 

when services, people, data, and things are integrated, the framework can get a better 

comprehension of the production process, and the autonomy of the whole system can be 

increased. Additionally, Haupert et al. (2017), Qin et al. (2016), Wang et al. (2016),  Lucas et 

al. (2018), Rojas et al. (2017) and Seeger et al. (2018) do not support everything mining (2). 

This element is a second weak point of those works because the data component is not the 

unique actor that can bring information to the process. Everything Mining permits getting 

information from social networks (people mining), sentiment analysis (people mining), 

process, and service mining, among other sources, which allows us to have a better 

understanding of the context. For instance, people mining can retrieve information about the 

conditions in which people produce the most; the process mining could get information about 

how a product is produced (tasks that need to be accomplished, actors involved in the 

production process, among others). 

Regarding the self-configuration of the production process (3), only Wang et al. (2016),  Lucas 

et al. (2018), and Rojas et al. (2017) do not comply with it. These works do not allow the 

system to be self-configured, a characteristic that is essential in the Industry 4.0 context 

(Bahrin et al., 2016; Qin et al., 2016; Xu et al., 2014). Additionally, Wang et al. (2016),  Lucas 

et al. (2018) and Rojas et al. (2017) do not support self-optimization of the production process 

(4), in that sense, they are not able to supervise the process to detect tasks that could be 



optimized, and launch the self-configuration autonomic cycle to repair the system. Besides, 

Haupert et al. (2017), Wang et al. (2016),  Lucas et al. (2018) and Rojas et al. (2017) do not 

support self-healing of the production process (5), which means, they are not able to supervise 

the process to detect failures and reconfigure it when an error occurs in the system. Finally, 

none supports self- coordination, self-cooperation, and self-collaboration (6). In particular, 

Haupert et al. (2017) support self-planning, but it is not based on coordination, cooperation, 

and collaboration processes, and do not apply processes and services mining tasks. The 

autonomy of the research works presented in Section 2 is not good enough to let actors of the 

production process manufacturing a product according to the requirements of the Industry 4.0. 

Finally, our proposed framework lets incrementally add self-* capabilities to the system. It 

means that the self-configuration process can be added as the first step. Next, the self-

supervising capability can be incorporated, finishing with the self-reconfiguration process. 

Moreover, the other 3C functions can be added later, like the self-cooperation and self-

collaboration, which will highly increase the autonomy of the system. In this sense, the 

scalability of the framework is guaranteed. This property was not found in previous research 

works. 

 Conclusion 

This paper focuses on providing a solution for the integrability and interoperability challenges 

in production processes regarding the Industry 4.0 context. The proposed framework can deal 

with the heterogeneity of actors and integration issues, thanks to the adoption of IoE as 

integration media, and the use of the "autonomic cycle" concept. While the autonomic cycles 

can create/discover a coordination plan, in order to allow actors to self-organize, and to 

coordinately manufacture a product, the IoE serves as the glue that joins all the actors together; 

that means, that it allows them to connect, communicate and exchange data, in order to execute 

their tasks properly. 

Additionally, the Autonomic computing paradigm brings autonomy to the system, supported 

by the knowledge created by the Everything Mining component, which is in charge of 

applying a variety of mining techniques, like data mining, sentiment analysis, social network 

analysis, service mining, process mining, among others, to determine useful information that 

might improve the system integration and interoperability. In that sense, the autonomic cycles 

represent an essential characteristic of this framework, in the first place, because they allow the 

autonomic configuration of the production process, enabling actors to interoperate and work 

coordinately to produce Smart Products. Additionally, the autonomic cycles apply an 

intelligent loop that supervises the whole system, in order to know whether or not the actors 

are working correctly and to reconfigure the process autonomously when any issue is detected. 

Mainly, the autonomic cycles for coordination presented in this work, use the information 

collected by the Everything Mining tasks, to autonomously create/discover, supervise, and 

optimize/repair the production process. The autonomic cycles allow our proposal to increase 

the autonomy of the manufacturing process, which is an essential feature in the Industry 4.0 

context (Bahrin et al., 2016; Lu, 2017a; Qin et al., 2016; Xu et al., 2014). 

Future work is oriented to implement this framework in a simulated environment that allows 



verifying the functionalities of our solution. In that sense, we plan to use Arcadia methodology 

(Roques, 2016) to design a Capella-based autonomic manufacturing system for Industry 4.0, 

and then, implement a digital twin based on this design, using the ROS Industrial (Koubaa, 

2017; ROS Industrial, 2018) middleware. Additionally, the required dataset will be the event 

logs and BPEL diagrams of the organization. Finally, it will be applied some everything 

mining techniques like service, and process mining tasks, sentiment analysis, using the 

previous datasets. Another important future work is related to the development of the specific 

autonomic cycles to allow autonomic processes for cooperation and collaboration in the 

context of Industry 4.0. 
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