
This work is licensed under the Creative Commons Attribution License

Applying graph grammars for the generation of

process models and their logs

Valeriia Kataeva

School of Software Engineering

Software Management Department

NRU – Higher School of Economics

Moscow, Russian Federation

lerileri25@gmail.com

Dr. Anna A. Kalenkova

School of Software Engineering

Software Management Department

NRU – Higher School of Economics

Moscow, Russian Federation

akalenkova@hse.ru

Abstract - This work is dedicated to one of the most urgent

problems in the field of process mining. Process mining is a

technique that offers plenty of methods for the discovery and

analysis of business processes based on event logs. However,

there is a lack of real process models and event logs, which can be

used to verify the methods developed to achieve process mining

goals. Hence, there is a need in an instrument that would

generate process models and logs, thus allowing verification of

the process mining discovery algorithms. This aim can be

reached by the creation of a model and log generator.

In this paper a possible solution for the creation of such a

generator will be proposed. Namely, it is the generation of

process models and event logs using the rules of graph grammars

on the example of structured workflow nets. The approach

proposed is based on the creation of grammar rules to generate a

model and an event log, which fits this model. The evaluation of

the process discovery algorithms will be available due to the

presence of initial models and event logs generated on the basis of

these models. The tools used to perform this work are publicly

available.

This paper is the research-in-progress, which is conducted in

frame of master’s thesis in the field of software engineering.

Keyword: process mining, discovery algorithms, conformance

checking, graph rewriting rules, graph grammar, event logs.

I. INTRODUCTION

Process mining [1] is a process management technique that
allows the analysis of business processes based on event logs.
The basic idea is to extract knowledge from event logs
recorded by an information system. Process mining aims at
improving this by providing techniques and tools for
discovering process, control, data, organizational, and social
structures from event logs. Moreover, process mining is an
approach to compare the analyzed events with preferred or
predefined models or rules. The key point here is that the
model has to be evaluated according to the criteria of how well
it matches to the real-life process. This evaluation requires as
many as it is possible event logs.

Event logs can be used to conduct three types of process
mining:

• Discovery. A discovery algorithm takes an event log
and produces a model. This can be demonstrated on the
example of α-algorithm [1]. The algorithm takes an event log
and produces a Petri net explaining the behavior recorded in
the log.

• Conformance checking. In this method, an existing
process model is compared with an event log (or with a model)
of the same process. The conformance checking is used to
check whether information recorded in the log (or in the
model) corresponds to the model discovered.

• Enhancement. The idea here is to extend or improve
existing process model using additional information about the
process recorded in the event log.

The area of our research is presented in Figure 1. First, we
will generate an initial model, as far as there is a lack of real
examples from the business. After, we will extract logs from
the model. The logs, further, will be used for applying
discovery algorithms and hence a creation of a new model.
Finally, the initial and a new model will serve as an input data
for conformance checking.

Figure 1. The graphical representation of research area.

mailto:lerileri25@gmail.com
mailto:akalenkova@hse.ru

We will start the research with the problem definition. The
problem is that only a small amount of logs are available. This
is caused by the fact that many industries are uncomplying to
make their private data public. And this appears to be a serious
obstacle for the reconstruction and developing more effective
process discovery algorithms.

In this paper, we will present a possible solution to the
problem stated above. The solution is based on the GROOVE –
a graph transformation tool set, which allows for creating and
applying graph grammars [7].

In this work we will use workflow nets (WF-nets). WF-nets

are the subclass of Petri nets. A Petri net is a triple (P,T,F) :

- P is a finite set of places,

- T is a finite set of transitions, such that P T ,

- F (P T) (T P) is a set of arcs (flow relation).

A place p is called an input place of a transition t iff there

exists a directed arc from p to t . Place p is called an output

place of transition t iff there exists a directed arc from t to p .

t is used to denote the set of input places for a transition t .

The notations t , p and p have similar meanings, e.g.

p is the set of transitions sharing p as an input place.

At any time a place contains zero or more tokens, drawn as
black dots. The state, often referred to as marking, is the
distribution of tokens over places, i.e. M P N . The

number of tokens may change during the execution of the net.
Transitions are the active components in a Petri net: they
change the state of the net according to the following firing
rule:

(1) A transition t is said to be enabled iff each input place

p of t contains at least one token.

(2) An enabled transition may fire. If transition t fires, then

t consumes one token from each input place p of t and

produces one token for each output place p of t [3].

A Petri net PN (P,T,F) is a WF-net (Workflow net) iff:

(i) PN has two special places: i and o . Place i is a

source place, such that i . Place o is a sink place, such

that o .

(ii) If the transition *t is added to PN , which connects

place o with i (i.e. { }t o and {i}t), then the resulting

Petri net is strongly connected.

The second requirement (ii) (the Petri net extended with
*t should be strongly connected), states that for each transition

t (place p) there should be directed path from place i to o via

t (p). This requirement has been added to avoid dangling

nodes, i.e. tasks and conditions which do not contribute to the
processing of cases [2].

Business processes in the particular sphere or a company
can be formalized via WF-nets, which define their semantics.

The WF-net specifies a set of tasks required to process the
business cases. Also, it defines the order in which these tasks
have to be executed. However, as it was already mentioned,
there is an urgent lack of the models and event logs that can be
analyzed according to the reluctance of the companies.

To piece out the lack of such model graph grammar rules
can be applied. Graph rewriting technique is one that allows
creating a new graph out of an original graph algorithmically.
The definition of grammar is based on well-known process
patterns, particularly in this case, patterns for WF-nets [8]. The
general idea is to use the basic patterns for the generation of the
process via grammar. Note that an approach for generating
models using grammars was already presented in [6]. The main
advantage of the approach presented in this paper is that we use
an external tool to generate models, which allows working with
arbitrary graph grammars. Thus, we are not bounded to the
concrete processes models. Moreover, we propose an approach
for a log generation based on graph grammars as well.

II. GRAPH GRAMMAR

Graph grammars are used for graphs generation. The
grammar is specified by a start graph and a set of production
rules. The aim of production rules is to replace one part of a
graph by another (these parts of graphs are highlighted in blue
and green respectively in the figures below) [5]. Moreover, as
it will be seen from the examples below, each production rule
is applicable under the specified conditions, which take into
account the types of nodes. These conditions could be also
formalized and each node can modify its attribute value
according to the rules [4]. Here we would like to show an
example of the generation of a structured WF-net [3], which
could be defined as a hierarchy of subprocesses, based on a
graph grammar. First, an initial or start graph was set and a
transition counter was initialized. This is demonstrated in
Figure 2.

Figure 2. Start graph for applying graph grammar.

According to this image, there are two nodes of type place
that denote the beginning and the end of the model. The node
of type SUB(the SUB block) is defined as the subgraph that has
to be modified according to the grammar rules. Below the
graph in Figure 2 there is a node of type Identifier that is used
for a transition identifier generation. Initially, we’ve put zero
number.

Further, the rules applying for the graph generation were
created. They contain four rules. They are:

• Transition

• Sequence

• AND-joint

• XOR-joint

R1. The rule removes the SUB block and sets the transition.
Meanwhile, the number for the transition is incremented. The
identifier for the transition is put into the newly created
container which is connected with the particular, newly created
transition (Figure 3).

Figure 3. Rule#1 for generation WF-net.

R2. This rule replaces the SUB block according to the
following rule that is demonstrated in Fig.2. The rule creates
the sequence of nodes with the types SUB, place, SUB. Further,
other rules can be applied to the SUB block .

Figure 4. Rule#2 for generation WF-net.

R3. The rule is used for the replacement of SUB block with
AND-joint combination (Figure 5).

Figure 5. Rule#3 for generation WF-net.

 R4. The last rule is used for the creation of OR-joint

(Figure 6).
In this chapter, we have demonstrated the key principles of

applying graph grammar for model creation. Note that more
rules for the expansion of nodes with type SUB can be added,
such as loop, inclusive join and others.

However, our main aim is not only about to create a model.
Model is just a raw material. Further we have to extract the

execution log from this model in order to apply a discovery
algorithm.

The idea of a log generation is presented in the next
chapter.

Figure 6. Rule#4 for generation WF-net.

III. LOG GENERATION

 As it was already mentioned event logs allow analyzing,
detecting problems and finding the solutions for process
optimization.

 Let A be the set of activities, which could be recorded in

the event log, then the set of pairs (or records) A T , such

that there are no two pairs with the same timestamp, where
T is a set of timestamps, denotes a trace. An event log

*()L A is a multiset of such traces.

 So, every trace in a real-life event log is considered a set
of event identifiers and corresponding timestamps.

After creating a model, containing no nodes, which could
be expanded, as it was demonstrated above, we use this model
as a start graph for the log generation. The start graph is
pictured in Figure 7.

 Figure 7. Start graph for the Petri net.

 By moving a token through the model each trace is to be
built. Turning to the same example of a WF-net, we will put a
token on the start position in an attempt to keep track on what
transition is executed, when we move.

In order to capture the log a time node is created, it serves
as a counter, so that after the execution of every transition the
value of its attribute is incremented.

For this realization the following rules were created:

• Time initialization

• Putting token on start position

• Firing rule

Time initialization. This rule as a default is executed first.
It sets the value of the counter as 1 (Figure 8).

Figire 8. Time initialization rule.

Putting token on start position. The next rule puts an initial
token on the start position. This is needed because the start
graph does not contain it (Figure 9).

Figure 9. Initialization of token on start position.

Firing rule. This rule moves tokens according to their
positions and quantity, meanwhile creating nodes with the time

and identifier of the executed transition (Figure 10).

Figure 10. Firing rule for Petri Net.

After applying of firing rules and creating the final,
already-executed model we can obtain the set of elements with
the time and identifier of every transition fired. Namely this set
can further be used as a trace.

The log created due to applying the rules has to be
converted into the proper format. The proper format depends
on the software that is planned to be used for the log analysis.
According to this, the next chapter will describe the destination

software and give additional information on the realization of
the general idea.

IV. APPLYING THE APPROACH IN FRAMES OF PROCESS

MINING

In this section, we will put the main technical principles
that were used for the creation of the graph grammars and the
description of software. Then, we will present an idea of how
these grammars can be applied for the possible solution for
extracting logs [6] from the models generated and how this
approach can be applied for the integration with another
framework that supports a wide variety of process mining
techniques in a form of plug-ins.

First we will start with the technology and software that
were used for graph grammar creation. For this purpose we
have chosen the tool called Groove Simulator [7].

The GROOVE tool is an instrument that is aimed on the
use of simple graphs for modelling different structures of
object-oriented systems and graph transformations as a basis
for model transformation and operational semantics. The
GROOVE tool contains:

• an editor for creating graph production rules;

• a simulator for visualization of the graph transformations;

• a generator for automatic search of state spaces and a
model checker.

The GROOVE tool set was used to create WF-net
generation rules, which were demonstrated above. Using the
generator it became possible to produce a numerous quantity of
models for the further log extraction. The WF-nets were
obtained using different exploration strategies that are
predefined in GROOVE and rules priorities as well. However,
in the majority of cases the Random strategy was used. This
strategy allows applying all the rules with an equal probability
of 50 %. Other strategies were tested as well in an experimental
mode.

A grammar for a log generation from a given WF-net was
created. The generation of a log was constructed in such a way
that after the execution of every firing rule a new node,
containing time and event identifier was created.

All the generated WF-nets and corresponding event logs
were saved in one of the XML-formats for the further
integration with ProM tool [1].

ProM is an open source Java- framework that offers a
variety of process mining techniques, which are represented by
the plug-ins. Currently, ProM supports import of Petri nets and
event logs in specially developed XML-formats.

It is planned to implement the integration with ProM on the
basis of XML-documents conversion. One possible and more
probable solution for the integration is the utilization of
Extensible Stylesheet Language Transformations (XSLT) -
language XML-documents transformations. Based on this the
plug-in for ProM that will allow importing of models and logs
will be created and namely now the work is in progress.

V. CONCLUSION

The basic idea of this paper was to investigate and present
the possible usage of graph grammars in solving the problem of
shortage of models and logs for verifying process mining
methods.

In frames of this study graph grammars for structured WF-
nets and log generation were developed. We have started the
research with only these types of models; however, it is
important to notice that these grammars can be adapted to other
more difficult and advanced process models such as causal
nets, process trees and BPMN models.

Now it is possible to generate a variety of models and logs
for applying discovery and further conformance checking
algorithms. The generation of models can be organized via
built-in extraction algorithms of GROOVE Simulator.

For the further research we are planning to develop an
algorithm for conversion and a convertor itself, that will allow
integrate the GROOVE models with ProM tool. The
integration will be investigated due to the development of
model and log import plug-in for ProM.

This paper is considered to be a part of more complex
research that will be conducted further and be expressed in the
master thesis. This research will be dedicated to the
development of model and process generator based on the
appliances of graph grammars. Now it is planned to create a
program application that will allow creating various process
models and rules for logs generation. However, it needs an
additional research and work to be conducted.

ACKNOLEDGMENT

This study was carried out within the National Research

University Higher School of Economics’ Academic Fund.

REFERENCES

[1] W. M. P. van der Aalst. Process Mining. Discovery, Conformance and
enhancement of Business Processes. Department Mathematics &
Computer Science Eindhoven University of Technology. Eindhoven, the
Netherlands, 2011.

[2] W.M.P. van der Aalst. Verification of Workflow Nets, Eindhoven
University of Technology, Eindhoven, The Netherlands, 21 pages.

[3] Irina A. Lomazova, Ivan, V. Romanov. Analyzing Web Service
Resource Compatibility, Moscow, Russia, 12 pages.

[4] Frank Hermann, Harmen Kastenberg, Tony ModicaK. Proceedings of
the Second International Workshop on Graph and Model Transformation
(GraMoT 2006): Towards Translating Graph Transformation
Approaches by Model Transformations, 14 pages.

[5] Prof. Dr. Leila Ribeiro, Prof. Dr. Antonio Carlos da Rocha Costa.
Rational Approach of Graph Grammars.Porto Alegre, July 2010, 137
pages.

[6] Andrea Burattin and Alessandro Sperduti. PLG: a Framework for the
Generation of usiness Process Models and their Execution Logs,
Department of Pure and Applied Mathematics University of Padua,
Italy, 6 pages.

[7] Arend Rensink, Iovka Boneva, Harmen Kastenberg and Tom Staijen.
User Manual for the GROOVE Tool Set, Department of Computer
Science, University of Twente, The Netherland, November 2012, 23
pages.

[8] Nick Russell1, Arthur H. M. ter Hofstedel, Wil M.P. van der Aalst,
Nataliya Mulyar. Work-flow control patterns, Brisbane Australia,
Eindhoven, The Netherlands, 134 pages.

