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ABSTRACT. Total variation minimization is standard in mathematical imaging and there have
been numerous researches over the last decades. In order to process large-scale images in
real-time, it is essential to design parallel algorithms that utilize distributed memory comput-
ers efficiently. The aim of this paper is to illustrate recent advances of domain decomposition
methods for total variation minimization as parallel algorithms. Domain decomposition meth-
ods are suitable for parallel computation since they solve a large-scale problem by dividing it
into smaller problems and treating them in parallel, and they already have been widely used
in structural mechanics. Differently from problems arising in structural mechanics, energy
functionals of total variation minimization problems are in general nonlinear, nonsmooth, and
nonseparable. Hence, designing efficient domain decomposition methods for total variation
minimization is a quite challenging issue. We describe various existing approaches on domain
decomposition methods for total variation minimization in a unified view. We address how the
direction of research on the subject has changed over the past few years, and suggest several
interesting topics for further research.

1. INTRODUCTION

Along with the development of high-performance computing, there has been arisen a natural
question for how to design numerical methods which make efficient use of distributed memory
computers. Domain decomposition method (DDM) is a clever answer to that question, espe-
cially for numerical methods for solving large-scale algebraic systems arisen in discretization
of boundary value problems. In DDM, we solve a boundary value problem by decomposing
its domain into smaller subdomains to produce smaller problems on subdomains. Since such
smaller problems in subdomains can be treated in parallel, DDM is suitable for making efficient
use of distributed memory computers. In addition, DDMs can be regarded as preconditioned
methods [1, Ch. 1]. Due to such advantages, they have been successfully developed over past
decades. For more detailed explanation for DDMs, we refer readers to monographs [1, 2].
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There are two major approaches to design DDMs: Schwarz methods and iterative substruc-
turing methods. In Schwarz methods, we decompose the solution space into a sum of its sub-
spaces, where each subspace consists of functions whose supports are contained in the subdo-
main. Then, the next iterate is obtained by adding local corrections obtained from the residual
of the previous iterate. Such correction procedure is done by either parallel (additive Schwarz)
or successive (multiplicative Schwarz) manner. Well-known block relaxation schemes such as
the block Jacobi method and the block Gauss—Seidel method belong to this class. There is a
vast literature on the Schwarz methods; see [1, 3] and references therein.

On the other hand, in iterative substructuring methods, we solve a system which is com-
posed of local problems and a global interface problem. The global interface problem comes
from the interface condition such as the continuity of a solution on the subdomain interfaces.
The interface condition is enforced by either primal or dual sense. In primal methods, the in-
terface degrees of freedom (dofs) are shared by adjacent subdomains; for example, see [4, 5].
Alternatively, the interface condition is enforced by the method of Lagrange multipliers in dual
methods [6, 7, 8]. Due to fast speed and scalability, iterative substructuring methods have been
widely used for numerical solutions of linear elliptic PDEs.

The purpose of this paper is to review the recent notable advances in DDMs for total varia-
tion minimization. The general total variation minimization problem is given by

uteIBl‘i/I%Q) {F(u) +TV(u)}, (1.1)

where 2 C R? is a bounded rectangular domain, F: BV (Q) — R is a convex functional,
TV (u) is the total variation of u, which is defined as

TV (u) = sup{/gudivpdx :p € (CHN)?, Ip(x)| <1, z € Q},

and BV () is the space of L' functions with finite total variation. Note that T'V (u) agrees
with fQ |Vu| dz for sufficiently smooth u. After a pioneering work of Rudin et al. [9], total
variation minimization has been used as a standard regularizer in mathematical imaging. One
of the most fundamental example of (1.1) is the Rudin—Osher-Fatemi (ROF) model [9] for
image denoising:

. « 2
uer]IBl\l/I%Q) { 5 /Q(u f)*dx —i—TV(u)}. (1.2)
Here, f € L?(12) is an observed noisy image and « is a positive weight parameter. The fidelity
term § [, (u— f )2 dx in (1.2) measures a distance between the given data f and a solution .
On the other hand, the regularizer 7'V (u) enforces some regularity of the solution. Thanks
to the anisotropic diffusion property of the total variation term, the model (1.2) effectively re-
moves Gaussian noise while preserving edges and discontinuities of the image [10]. There
have been numerous approaches to solve (1.2): projected dual gradient method [11], alternat-
ing minimization algorithm [12], FISTA [13], split Bregman algorithm [14], and primal-dual
algorithms [15, 16].
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Even though DDMs for linear elliptic PDEs have been successfully developed over the past
decades, there have been relatively modest achievements in total variation minimization prob-
lems due to their own difficulties. The total variation term in (1.1) is nonseparable, i.e., it
cannot be expressed as the sum of local energy functionals in subdomains. Consequently, ex-
isting convergence results on DDMs for nonlinear problems such as [17, 18, 19] cannot be
applied to (1.1), or even to the easier case (1.2). Even more, the solution space BV (£2) allows
discontinuities of a solution on the subdomain interfaces, so that it is difficult to impose ap-
propriate boundary conditions to local problems in subdomains. This makes design of iterative
substructuring methods hard.

Overcoming such difficulties, there have been several fruitful research on DDMs for total
variation minimization. Schwarz methods for (1.2) were first considered in [20, 21]. Then they
were generalized to (1.1) with L2-L' mixed fidelity in [22]. Due to the nature of total variation
minimization, it is difficult to impose the interface boundary condition to local problems of
Schwarz methods. In [23, 24, 25], various methodologies for the efficient boundary process of
local problems were proposed. While the convergence to a global minimizer is not guaranteed
for Schwarz methods for primal total variation minimization [26], it was shown in [27, 28]
that Schwarz methods for dual total variation minimization converge sublinearly to a global
minimizer; we will state the precise definitions of primal and dual problems in Section 4.
Incorporating with FISTA [13] acceleration, an accelerated block method for the dual ROF
model was proposed in [29]. Iterative substructuring methods for the dual ROF model were
considered in [30], based on finite element discretizations using the pixel grid. Then the primal-
dual iterative substructuring method in [30] was generalized to general dual total variation
minimization in [31].

This paper is intended to give readers a unified view on the above-mentioned works. In or-
der to accomplish our goal, we present a concise summary on those works with comments. In
Section 2, we review how the total variation minimization works in the field of mathematical
imaging; we especially focus on the ROF model. Several early works on Schwarz methods for
primal total variation minimization are summarized in Section 3. Fenchel-Rockafellar duality,
one of the most important notions for designing DDMs for dual total variation minimization,
is introduced in Section 4 with related Schwarz methods. Iterative substructuring methods
for total variation minimization are presented in Section 5 with their basic finite element dis-
cretizations. Numerical comparison of DDMs for the ROF model is presented in Section 6. We
conclude the paper in Section 7. In addition, we summarize several important algorithms for
convex optimization in Appendix A.

We will not cover some interesting works which are not directly related to the above outline.
There are several ‘non-standard” DDMs for (1.1) in the sense that they do not generalize the
classical methods developed for linear elliptic problems [1]. A DDM based on the method
of Lagrange multipliers was proposed in [32] to solve the convex Chan—Vese model [33], a
convex relaxation of the Chan—Vese model [34] for image segmentation. Even though it looks
similar to the existing FETI method [7] at a first glance, it was proven in [35] that it corresponds
to a particular overlapping domain decomposition in the continuous setting on the contrary to
the claim that the FETI method corresponds to a nonoverlapping domain decomposition [32].



164 C.-O. LEE AND J. PARK

In addition, it was generalized to general total variation minimization (1.1) in [35]. In [36],
DDMs using dual conversion for the 7'V - L' model [37] were proposed. Dual conversion is a
special instance of Fenchel-Rockafellar duality that yields a saddle point problem with parallel
structure which is equivalent to the original problem. We will not discuss in details on those
methods in this paper.

We note that throughout this paper, the meaning of notations vary from section to section.

2. TOTAL VARIATION MINIMIZATION IN MATHEMATICAL IMAGING

A digital image consists of a number of rows and columns of pixels. Each of them has
an integer in [0, 255], which is called the intensity. We denote black and white colors by 0
and 255, respectively. Usually we scale the intensity to the range [0, 1] for the convenience
of calculation. Then a grayscale digital image u of resolution M x N can be considered as a
function

w {12, My x {1,2,...,N} = [0,1].

In this perspective, it is convenient to treat a digital image as an L°° function satisfying 0 <
u < 1 a.e. on a bounded rectangular domain £ C R2.

Let X and Y be suitable Banach spaces for digital images. We consider the image restoration
problem: for a given deteriorated image f € Y, a solution © € X is a clean image without
corruption obtained from f. We model the image restoration problem as the following linear
inverse problem:

[ =Au+n, 2.1)

where A: X — Y is a linear operator (for instance, convolution by a blur kernel) and 7 is
an unknown noise. Clearly, the problem (2.1) is ill-posed and we are only able to obtain an
approximated solution of (2.1). An effective way to overcome the ill-posedness of (2.1) is to
add a regularization term; we solve an optimization problem of the form

min {F(Au; f) + R(u)}, (2.2)
ueX

where F'(Au; f) is a fidelity term that measures a distance between f and .Aw in a certain sense.
The term R(u) is a regularizer that resolves the ill-posedness of the problem (2.1) by imposing
some desirable properties to the solution.

2.1. The Rudin—-Osher-Fatemi model. As an example, we consider additive Gaussian noise
removal. The “Peppers” image displayed in Fig. 2.1 is corrupted by additive Gaussian noise
with variance 0 = 0.1. We want to obtain a clean image which looks similar to the original
image. The noise added to f makes the image “rough”, so that the gradient of f becomes
high. Thus, it is natural to consider the following energy functional with the Tikhonov regular-

izer [38]:
min a/(u—f)2dx+1/ \Vu|? dz (2.3)
uweH (Q) | 2 Jo 2 Ja ’ '
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(a) Original image  (b) With Gaussian noise (¢) Model (2.3), « = 0.1 (d) Model (1.2), « = 10
(PSNR: 19.11) (PSNR: 22.38) (PSNR: 24.55)

FIGURE 2.1. Results of image denoising by the Tikhonov regularization (2.3)
and the ROF model (1.2).

where o > 0 is a weight parameter. However, (2.3) does not work well for image denoising.
The Euler-Lagrange equation for (2.3) reads as

—lAu—i-u:f in Q,
a

ou
o 0 on 0,

where n is the unit outer normal to 9€). Due to the Laplacian term, a solution of (2.4) is
highly diffusive. Consequently, edges or texture of the image disappear due to oversmoothing.
Figure 2.1(c) shows the result of (2.3) applied to Fig. 2.1(b) with a = 0.1. Therefore, we
should use other regularizers which decrease Vu but not penalize the discontinuity of u too
much; see [39, Sect. 3.2] for a study on regularizers related to Vu.

A suitable choice for the regularizer is the total variation, which results in the total variation-
regularized problem (1.2). Note that the space BV (2) is a Banach space equipped with the
norm ||ul| gy (o) = [[ul|L1(q)+TV (v) and BV (Q2) C L?(Q) [40]. Since TV (u) = [, |Vu|dz
for smooth wu, the total variation regularization penalizes large Vu. In order to investigate
the effect of the total variation, we consider the following formal Euler-Lagrange equation

(2.4)

for (1.2):
—ldiv (&>+u:f in 2,
o |Vul (2.5)
g—z =0 onJf.

One can observe that (2.5) has an anisotropic diffusion property so that it preserves edges
and discontinuities in images. More precisely, by a suitable change of variables, the governing
equation of (2.5) is transformed into

1u .
T in €2,

“ava TUS



166 C.-O. LEE AND J. PARK

where the subscript 7' denotes tangential differentiation to level lines of u [39]. It means that
diffusion occurs along the tangential direction of level lines so that edges of the image are pre-
served. On the other hand, (2.5) can be viewed as the stationary equation for a mean curvature
flow; see [41] for details. Figure 2.1(d) shows the result of (1.2) with a = 10. Differently
from Fig. 2.1(c), it does not smooth edges of the image while it successfully removes Gaussian
noise.

Remark 2.1. In Fig. 2.1, we use the peak-signal-to-noise ratio (PSNR) as a measurement of
the quality of denoising, which is defined by

MAX? - |Q

fu— Uorig”%
where MAX is the maximum possible pixel value of the image (MAX = 1 in our case), Uorig

is the original clean image, and u is a denoised image. In general, a higher PSNR indicates that
the image restoration is of higher quality.

In order to solve (1.2) numerically, we need to discretize it. A natural discretization of (1.2)
can be done by the first-order finite difference approximation. Since the image domain €2 of
the resolution M x N is given by

Q={1,2,...,M} x {1,2,...,N},

we regard each pixel in an image as a discrete point. We define the function space V' as the set
of all functions from €2 into R and W as the set of all functions from € into R? equipped with
the usual Euclidean inner products

(u,v)y, = Z UijVij, u,v €V,
(i1)e

Paw= >, hd;+054;), p=0"p)a= (") ewW
(i1)€

respectively. The discrete gradient operator V: V' — W is defined by using forward finite
differences with the homogeneous Neumann boundary condition:

Uip1 —ug; if a=1,...,M -1,
(VU)}j:{ T i

2‘_ ui,jﬂ—uij if jZl,...,N—l,
(v“)w—{ 0 if j=N.

It is natural to define the discrete total variation as the 1-norm of Vu for u € V:
IVull = > [(Vu)islp,
(1,5)€Q
where
1
[(V)islp = [[(Vu)i|” + |[(Vu)i 7]
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for p = 1, 2. The case p = 1 is called the anisotropic total variation and the case p = 2 is called
the isotropic total variation. While some properties in the continuous setting such as the coarea
formula are inherited to only the anisotropic case, the isotropic case has less dependency on
the grid in terms of image restoration [42]. In this paper, we deal with the case p = 2 unless
otherwise stated.
In conclusion, the following discrete ROF model is constructed:
o

min { B5° () := S llu— fI3 + | Vul | 2.6)
One important question is which algorithm should be used to solve the discretized prob-
lem (2.6). Several notable solvers for convex optimization, that can be adopted to solve (2.6)
are summarized in Appendix A. For example, Algorithm A.4 with O(1/n?) energy conver-
gence rate can be utilized to solve (2.6).

2.2. General total variation minimization. Now we consider more general cases; we re-
visit (2.2) with R(u) = T'V (u) in the discrete setting:

min {F(Au; f) +[[Vull1}, 2.7)

where A: V' — V is a linear operator depending on the type of the problem and f € V is a
given corrupted image. A number of problems in mathematical imaging can be represented in
the form of (2.7).

Recall that the ROF model (2.6) solves the image denoising problem. In order to deal with
other problems of the form (2.1), it is natural to consider the following generalization of (2.6):

. g B 2
min { /| 4u — £I3 + IVull1 } 28)

We simply set A = I for the denoising problem, so that (2.8) reduces to (2.6). For the inpaint-
ing problem, A is a block-diagonal matrix whose diagonal entries are 0 for the pixels in the
inpainting region, and 1 elsewhere. For the deconvolution problem, A is defined by the matrix
convolution Au = k4 * u with a convolution kernel k4. That is, each pixel value of Au is a
linear combination of nearby pixel values of u. For instance, if k4 is the 3 x 3 Gaussian blur
kernel

ka:TG

— N =
DN =~ DN
—_ N =

then each entry of Awu is given by
(Au)ij
= E(uifl,jfl+2Ui71,j+uifl,j+l+2Ui,jfl+4Uij+2ui,j+1+Ui+1,j71+2Ui+1,j+ui+l,j+l)a
with the convention ug; = upr41,5 = o = ujn+1 = 0for1 <7< Mand1 < j < N.
To implement a numerical algorithm for (2.8) efficiently, it is important to get a sharp bound

for the operator norm of A. For the inpainting problem, it is trivial that || A|| = 1. The following
proposition gives a bound for the deblurring problem [36, Proposition 4].
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(¢) a = 1000
(PSNR: 28.22)

(a) Original image (b) 80% missing data

FIGURE 2.2. Results of image inpainting by the 7'V -L? model (2.8).

(a) Noisy image (b) ROF, o = 10 (c)TV-L', a =1
(PSNR: 12.29) (PSNR: 17.44) (PSNR: 29.65)

FIGURE 2.3. Results of image denoising by the ROF model (2.6) and the
TV-L' model (2.9).

Proposition 2.2. Let A: V. — V be the linear operator defined by the matrix convolution
Au = kg *u with a deblurring kernel k 4. Then, the operator norm of A has a bound || A|| < 1.

Figure 2.2 shows the numerical result of image inpainting using the model (2.8). In the
experiment, 80% of the image pixels are missing in the input f. As shown in Fig. 2.2(c), (2.8)
gives a quite good restoration result; the missing part in Fig. 2.2(b) is recovered naturally while
the edges of the original image are preserved.

A well-known drawback of the ROF model is loss of contrast [10, 43]. Using L' fidelity
instead of L? fidelity can be a remedy to this problem [37, 44]:

min {aju = flls + [[Vull1}- (2.9)

It is more difficult to deal with the 7V-L! model (2.9) than the ROF model (2.6) by two
reasons. First, the energy functional in (2.9) is convex but not strictly convex, so that solutions
are not unique in general. In addition, both the fidelity term and total variation term lack
smoothness. For more mathematical properties of the TV -L' model, readers may refer [37].
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In the case of image restoration, (2.9) has remarkable characteristics. Unlike (2.6), the
fidelity term in (2.9) is expressed in the L' norm, so that it penalizes less outliers than the L?
norm. Thus, it performs better than the ROF model for removing noise with many outliers [44],
for instance, salt-and-pepper noise. In Fig. 2.3(a), the input image is corrupted by 20% salt-
and-pepper noise. Figures 2.3(b)-2.3(c) show the results of image denoising by (2.6) and (2.9),
respectively. It is clear that the 7'V - L' model performs better than the ROF model in this case.
Moreover, it was proven in [37] that the T’ V-L' model is contrast invariant.

Similarly to (2.8), one can generalize (2.9) to solve various imaging problems other than
image denoising as follows:

min {a||Au — f|l1 + [[Vull1}. (2.10)
ueV
Various numerical results for problems of the form (2.10) can be found in, e.g., [42].

3. SCHWARZ METHODS FOR THE PRIMAL PROBLEM

A natural attempt to design DDMs for total variation minimization is to apply existing
Schwarz methods directly. In this section, we provide a survey on how the concept of Schwarz
methods developed for problems in structural mechanics has been applied to the total variation
minimization (2.7). The first target is (2.6), which is a typical case of (2.7). We call (2.6)
the primal ROF model; a reason will be explained in Section 4. In [20, 21], overlapping and
nonoverlapping Schwarz methods for (2.6) were proposed, respectively. Here, we present a
unified framework for them.

For simplicity, we consider the two-subdomain case. Let €2; and {25 be subsets of {2 defined
by

Ql :{1,...,M} X {1,...,]\71},
QQZ{l,...,M} X {NQ,...,N}.
The above decomposition is overlapping if N1 > No—1 and is nonoverlapping if Ny = No—1.
The subdomain interface I'}, is defined by
I'p={1,...,M} x {Ny —1}.
For k = 1, 2, the local function space V}, is defined as
Vi ={u eV :supp(u) C Q}.
The restriction operator Rj: V' — V}, is naturally defined. Note that the adjoint }: Vi, — V
becomes the natural prolongation operator. Then it is straightforward that
V =RiVi + R5Vs.
We construct a discrete partition of unity { D1, D2} which satisfies
RIDlRl + R;DQRQ =1.
The operator Dy, is diagonal in its matrix representation so that its computational cost is almost

negligible. We write N
Ry = Dy Ry.
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Note that Dy, is the identity operator on Vj, if and only if the domain decomposition is
nonoverlapping. Multiplicative and additive Schwarz methods for (2.6) are presented in Algo-
rithms 3.1 and 3.2, respectively.

Algorithm 3.1 Multiplicative Schwarz method for the primal ROF model (2.6)

Letu® € V.
forn=20,1,2,...
ugnﬂ) = arg min EED(RIM + Ry Ryu™)
u1€V1
ugn'H) = arg min ESD(RIugnH) + R5us)
u2€Va
w(D) — RTu§n+1) + R§u§n+1)
end

Algorithm 3.2 Additive Schwarz method for the primal ROF model (2.6)
Choose 7 € (0,1/2]. Let u® € V.

forn=20,1,2,...
uénﬂ) = argmin ESD(RZuk + R;,kRg,ku(”)), k=1,2
uk €V
w( ) — (1-— T)u(”) + T(Rfugnﬂ) + RZUénJrl))
end

One can show the energy decreasing property of Algorithms 3.1 and 3.2 without any diffi-
culty; see, e.g., [25].

Theorem 3.1. Let {u(”)} be the sequence generated by either Algorithm 3.1 or 3.2. Then we
have

EEP () < EFP(u™), n=0,1,2,....

3.1. Boundary processing for local problems. Differently from the case of linear elliptic
problems, it is not quite straightforward to deal with the boundary condition on the subdomain
interfaces of local problems. To be more precise, we observe that local problems of Algo-
rithms 3.1 and 3.2 in €2; have the following general form:

. «
min { s = Bafl3y, + Vi +gillw | (.1

u1€Vy

for some g1 € Wy, where

Wi ={p e W :supp(p) C 1}
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and the local gradient operator V1: Vi — Wj in ()5 is given by

wip1j—ugy it i=1,...,M —1,
(Viw)j; = { R TR Y
2 _ ui,j+1—uij if jzl,...,Nl—l,
(Vlu)w o { —Uij if j:Nl

Note that V; has the Dirichlet boundary condition on the interface 92, \ 02, while V has
the Neumann boundary condition on the whole boundary of 2. Due to such a difference, it is
difficult to adopt existing solvers for the ROF model directly to (3.1). Moreover, one should
clarify how to deal with g; in (3.1).
On the other hand, local problems in {25 have the general form
o
min {Zlluz — Rofl3v; + | Vauz + g2 v, |

for some gy € W, where
Wy = {p € W :supp(p) C Qo UT,}
and the local gradient operator Vo: Vo — W5 in {25 is given by

1 _ ui+1,j—uij if ’i=1,...,M—1,
(Vou)y; = { 0 if i=M,
Usj 541 if j = N2 -1
(Vgu)fj == Usj 41 — Uiy if j = NQ, ey N — 1,
0 if j=N.

One can readily observe that local problems in 25 bear similar difficulties as ones in §21.

Various methodologies to efficiently impose the interface boundary condition to local prob-
lems had been proposed: oblique thresholding [20, 21], graph cuts [23], Bregmanized operator
splitting [24], augmented Lagrangian method [22], and primal-dual stitching [25]. We will not
present these methods in detail in this paper because it was unfortunately shown in [26, Exam-
ple 6.1] that Algorithms 3.1 and 3.2 may not converge to the global minimizer of (2.6). In the
following, we present a counterexample for convergence.

Example 3.2 (counterexample). In (2.6), let f = 1 in Q and u(¥) = 0. It is clear that the
solution of (2.6) is given by u* = 1. However, one can show that u™ = 0 for all n > 0 if
a > 0 is sufficiently small. Therefore, the sequence {u(”)} does not converge to v* as n tends
to infinity.

4. SCHWARZ METHODS FOR THE DUAL PROBLEM

As we observed in Section 3, the primal ROF model is not adequate for applying the Schwarz
methods. Such inadequacy is due to the nonseparability of the total variation; it cannot be
expressed as the sum of the local energy functionals in the subdomains. Since Schwarz methods
work for separable nonsmooth terms (see [18, Eq. (7)]), it would be good if we were able to
obtain an equivalent formulation to (2.6), whose nonsmooth term is separable. Fortunately, the
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notion of Fenchel-Rockafellar duality gives us such an equivalent formulation, so called the
dual ROF model. Recently, there have been a few notable works on the Schwarz methods for
the dual ROF model [27, 28, 29]. In this section, we review those works in a unified view.

4.1. Fenchel-Rockafellar duality. For the sake of completeness, we present key features of
the Fenchel-Rockafellar duality; see also [42, 45]. Let X and Y be Euclidean spaces. For a
convex functional F': X — R, the effective domain dom F' of F' is defined by
domF ={x € X : F(z) < oo}.
For a convex subset C' of X, the relative interior of C, denoted by ri C, is defined as the interior
of C' when (' is regarded as a subset of its affine hull, i.e.,
riC={zxeC:3>0, B(x)Nalf C C C},
where B¢(x) is the open ball of radius e centered at  and aff C' is the affine hull of C. The
Legendre—Fenchel conjugate F*: X — R of F: X — R is defined by
F*(z) = sup {(z,z) — F(z)}, =z€X.
zeX
We consider the minimization problem

min {F(Kz)+ G(x)}, “4.1)

zeX
where K: X — Y is a linear operator and F: Y — R, G: X — R are proper, convex, lower

semicontinuous functionals. We assume that a solution z* € X of (4.1) exists. Under appro-
priate conditions, one can have several equivalent problems to (4.1) with different structures.

Proposition 4.1. In (4.1), assume that there exists xo € X such that Krg € ridom F' and
xg € ridom G. Then it satisfies that

min {F(K) + G(2)} = minsup { (K, ) +Gz) - F*(y)}

yey
= max inf {(Kz,y) + G(z) — F*(y)} (4.22)
=max{—F*(y) - G(—K"y)}. (4.2b)
yey

In addition, (4.2b) admits a solution y* € Y, and (x*,y*) is a solution of the saddle point
problem (4.2a).

Proof. See [45, Corollary 31.2.1]. U

We call the problem (4.1) the primal formulation. The saddle point problem (4.2a) is called
the primal-dual formulation of (4.1), and the maximization problem in (4.2b) is called the dual
Sformulation of (4.1). It is obvious that (4.2b) is the same as the minimization problem

min {F*(4) + G(—K"y)}

We will solve either (4.2a) or (4.2b) instead of (4.1) because in many cases, either the primal-
dual or dual formulation is easier to solve than the primal formulation.
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Remark 4.2. Under suitable conditions on F' and G, Proposition 4.1 holds even if either X or
Y is infinite-dimensional; one may refer [46].

Now, we apply the Fenchel-Rockafellar duality to the general total variation minimization
problem (1.1). By the definition of 7'V (), (1.1) is rewritten as

min sup {—(u,divp) + F(u)},
uEBV(Q) pe(ch(9))?,
IpI<1

where |p| denotes the pointwise absolute value of p, i.e., |p(z)| = v/(p!(2))% + (p%(x))? for
p = (p',p?) and = € Q. Formally, we have a dual counterpart of the above formulation
min  F*(div p), 4.3)

pPEH(div;QQ)
Ip|<1ae.

where H(div; Q) is a Hilbert space defined by
H(div;Q) = {pe (L*Q))*:divpe L* ()},
Hy(div;Q) = {pe€ H(div;Q) :p-n=00n09N}.

Note that, in (4.3), we use the appropriate Hilbert space Ho(div; (2) instead of (CZ(£2))? which
is not complete. Rigorous statements on the relation between (1.1) and (4.3) can be found
in [47, 48].

In particular, the dual ROF model is written as

: 1 . 2
peHIgl(ldIilv;Q) /Q(le p+af)*de. (4.4)
[p[<lae.

The dual problem (4.4) is a constrained optimization problem with the pointwise constraint
Ip| < 1 ae. As Schwarz methods work well for variational inequalities with pointwise con-
straints [49, 50], we may expect that (4.4) is more suitable for Schwarz methods than the primal
problem.

Similarly to (2.6), one can discretize (4.4) by the first-order finite difference approximation.
The discrete divergence operator div: W — V is defined as the minus adjoint of V, i.e.,

Pij if =1,
(divp)y = qpj;—pig,; if i=2,...,M-1,
—pi1; if i=M
p?j if j=1,
+9p —pi i j=2,...,N-1,
—pi; if j=N.

Let C' be the subset of W given by
C:{pEW: ](p)2]| <1, (l,j) EQ}



174 C.-O. LEE AND J. PARK

Clearly, C'is closed and convex. A discrete dual ROF model is given by

1
in < E5P(p) := 2| di 2L 4.5
win { EEP(9) = 3 | aivp + o @)
Since Eg D(p) is not strictly convex, a solution of (4.5) is not unique in general. Using Propo-
sition 4.1, it is straightforward to verify the equivalence between the primal problem (2.6) with
the isotropic total variation and the dual one (4.5). From a solution p* € W of (4.5), one can
recover a solution u* € V of (2.6) by

1
u' = f+ —divp®.
o
The problem (4.5) can be efficiently solved by, e.g., Algorithm A.2.

4.2. Schwarz methods for the dual ROF model. Now, we present Schwarz methods for the
dual ROF model and their convergence results [27, 28, 29]. We partition the image domain {2
into N = M, x Nj rectangular subdomains {Qs}é\il. Let > 0 be the overlapping width
parameter, which is O in the nonoverlapping case. All subdomains can be classified into N,
colors by the usual coloring technique [1, Sect. 2.5.1]. We denote the union of all subdomains

with color k£, 1 < k < N, by Si. We define the local function space Wk in Si by
Wy, ={p € W :supp(p) C Sk}.

Similarly to Section 3, we set the operators Ry: W — Wk, Dy Wk — Wk, and Rk: W — V[N/k,
so that

N, Nc
W =Y RiWi, Rp=DyRi, Y RiRj=
k=1 k=1

In order to deal with the pointwise constraint C' in each subdomain, we adopt an idea of con-
straint decomposition [27, 50]; with the discrete partition of unity {Dk}ff;l, one can construct

a pointwise constraint C'y, C W}, on Sy such that

Ne
C =) RiC.
k=1
Indeed, one can show that a choice C), = ﬁkC’ satisfies the above equation [27, Proposi-

tion 2.1]. In particular, if the decomposition {Sk}]k\f;1 is nonoverlapping, then we have

Nc Nc
C=> RiCi =P
k=1 k=1

In this setting, multiplicative and additive Schwarz methods for (4.5) are presented in Algo-
rithms 4.1 and 4.2. In the case of nonoverlapping domain decomposition, Algorithms 4.1
and 4.2 reduce to the nonlinear block Gauss—Seidel and Jacobi methods, respectively.
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Algorithm 4.1 Multiplicative Schwarz method for the dual ROF model (4.5)
Letp® e C.
forn=20,1,2,...
fork=1,2,..., N,

pl(an) € argmin ESP | Ripy + Z R;‘»pgnﬂ) + Z R;Ejp(”)
P ECkK j<k >k
end

N,
p(t =" Rrpy" Y

k=1
end

Algorithm 4.2 Additive Schwarz method for the dual ROF model (4.5)
Choose 7 € (0,1/N,]. Let p(¥ € C.

forn=20,1,2,...
pglﬂ) € argmin E5P | Ripy + ZR;EJP(”) , I<k<Ne
PreCk j#k

N
k=1

end

Note that local problems of Algorithms 4.1 and 4.2 may admit nonunique minimizers. In
implementation, we just choose any one among them and it does not vary the convergence
behavior of algorithms.

Differently from the primal ROF model, convergence of Schwarz methods to a minimizer
is always guaranteed for the dual ROF model. Global convergence results for Algorithms 4.1
and 4.2 are summarized in Theorem 4.3.

Theorem 4.3. Let {p(”)} be the sequence generated by either Algorithm 4.1 or 4.2. Then
{p™} C C and we have

EYP(p™) - EfP(p") < -, n>1,

c
n
where ¢ is a positive constant depending on T (for Algorithm 4.2 only), p\9), Q, and its domain
decomposition {Q}Y,.

Proof. Proofs for both Algorithms 4.1 and 4.2 in the overlapping case can be found in [27].
Meanwhile, in the nonoverlapping case, one can observe that Algorithm 4.1 is the proximal
alternating minimization method [51] applied to the dual ROF model (4.5). Therefore, its
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O(1/n) energy convergence is guaranteed; see, e.g., [52, 53]. Algorithm 4.2 in the nonover-
lapping case was shown to converge at O(1/n) rate in [29]. O

We have additional remarks on the relaxed block Jacobi method, a special case of Algo-
rithm 4.2 when the domain decomposition is nonoverlapping. In [29], it was observed that the
relaxed block Jacobi method has a similar but not the exactly same structure as the forward-
backward splitting algorithm (see Algorithm A.1; one may compare [29, Lemma 3.2] with [13,
Lemma 2.3]. Motivated by this fact, the authors modified the relaxed block Jacobi method to
have the same structure as forward-backward splitting. Then FISTA acceleration (see Algo-
rithm A.2) was successfully applied and an accelerated method was obtained. We summarize
the accelerated method called the Fast prerelaxed block Jacobi method in Algorithm 4.3.

Algorithm 4.3 Fast prerelaxed block Jacobi method for the dual ROF model (4.5)
Choose 7 € (0,1/N,]. Let p(» = q(© € Cand ty = 1.

forn:0,1,27...
1 1 > R
p]g”“) € arg min EED R; {pk — < - 1) qu(n)] + ZR;qu(n)
prECK T T

j#k
1< k<N,

No
p(n+) = 3 Rzpl(cnﬂ)

k=1
1++/1+412
2

tn+1 =
thn—1, ¢, n
n+1
end

Local problems of Algorithm 4.3 have a slightly different form from ones of Algorithm 4.2;
the term py, in Algorithm 4.2 is replaced by the relaxed term 7~ 'p, — (771 — 1)qu(”) in Algo-
rithm 4.3. Note that their computational costs are the same. On the other hand, Algorithm 4.3
does not have the relaxation step in computation of p*t1) from p,(vnﬂ) on the contrary to
Algorithm 4.2. In this sense, we say that Algorithm 4.3 is prerelaxed. In Algorithm 4.3, com-
putational costs for ¢, 11 and q"*1) are negligible compared to that of p("*+1).

One can prove that a map q™ — p(™t1) in Algorithm 4.3 is in fact a proximal descent
step with respect to a certain pseudometric; see [29, Lemma 3.10]. Consequently, we obtain
O(1/n?) energy convergence of Algorithm 4.3 as a simple corollary of Theorem A.2.

Theorem 4.4. Let {p(™} be the sequence generated by Algorithm 4.3. Then {p"™} C C and

we have
c

BP0") ~ BP0 < e n2

where ¢ is a positive constant depending on T, p\9), Q, and its domain decomposition {Qs }/S\il
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Proof. See [29, Theorem 3.14]. O

We note that a similar acceleration technique for the block Gauss—Seidel method (Algo-
rithm 4.1 with a nonoverlapping domain decomposition) with N, = 2 was presented in [52,
53], but we omit details.

Remark 4.5. In Algorithm 4.2, it was shown in [27] that 7 = 1/N, is optimal in both theo-
retical and practical senses. One can verify without major difficulty that the same applies to
Algorithm 4.3.

4.3. Schwarz methods for the primal problem based on dual decompositions. As shown
in Section 3, Schwarz methods for the primal ROF model have troubles in the convergence to
the minimizer. Lee and Nam [26] proposed nonoverlapping Schwarz methods for the primal
ROF model based on the dual formulation which are guaranteed to converge to the minimizer.
Recently, Langer and Gaspoz [54] generalized the work [26] to overlapping domain decom-
position. Here, we present the Schwarz methods for the primal ROF model based on dual
decompositions proposed in [26, 54]. For simplicity, we only consider the nonoverlapping
case with two subdomains.
The discrete primal ROF model (2.6) is revisited:

: FD( . ¢y . Xy 2
min { B5° (us f) := Sllu— f13 + [ Vull |

Let {21, Q2} be a nonoverlapping domain decomposition of €2, i.e.,
Ql :{1,,M} X {1,...,N1},
Qs :{1,,M} X {N1+1,...,N},
for some V;. Let I'y be the subdomain interface

Fd:{l,...,M}X{N1+1}.

Note that I'y is different from I', given in Section 3. The local primal spaces 171, 172 and local
dual spaces W7y, W5 are defined by

Vi ={u €V :supp(u) C Q UTq4},
Vo = {u eV :supp(u) C N},
Wy = {p e W :supp(p) C O},
Wy = {p € W :supp(p) C Qa}.

The restriction operator onto f/k, k = 1,2, is denoted by Ry: V — XN/k While the dual
decomposition W = W & Wy is nonoverlapping, one line of pixels is overlapped in the
primal decomposition V' = R}V; + R5V, [26, Remark 3.1].
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One can observe that divpg € Vk for all p, € Wj. Consequently, the local gradient
operator Vk Vk — Wy, can be defined as the minus adjoint of div: Wj, — Vk, 1e.,

o Gior i — iy 0f i=1,... M—1,
(Via)j; = { T e i—

s o G-y if j=1,... N,
(Via)j; = { 0 if j=N; +1,
- Gy — Gy if d=1,... M—1,
(Vai)j; = { R

5 ovo _ fGigp— gy if j=Ni+1,.. N -1,
(VQU)” = { 0 i j:N.

In this case, Vj has the same form as the global gradient operator V: V' — W with the
homogeneous Neumann boundary condition. Note that it is different from the local gradient
operator V, in Section 3.

Now, we present the relaxed block Jacobi method proposed in [26] based on the decomposi-
tion V = R} V1 +R5 Vo in Algorithm 4.4. For the sake of simplicity, we omit the corresponding
block Gauss—Seldel method; see [26] for the method. Global convergence theorems for Algo-
rithm 4.4 can be found in [26, 54].

Algorithm 4.4 Relaxed block Jacobi method for the primal ROF model (2.6) based on dual
decomposition

Choose 7 € (0,1/2]. Let 1750) € V; and 1750) e Va.

forn=20,1,2,...
VY = Ri(—Ry 08+ ), k=1,2
~ ol
gty = arg min {EHW £y 155 + IV ke |1, Wk} k=12

Uk €V
ot = (1 =)+ r(—artY + fk’”‘*1 ), k=1,2
u(n+1) _ _Riﬁgn"_l) . R2 ~§n+l) + f
end

One of the advantages of Algorithm 4.4 is that it can be easily generalized to the general
TV-L? model

. g _ 2
min { /| 4u — £+ IVull1 } (4.6)

Here A: V' — V is a linear operator which satisfies ||A| < 1. This assumption is not too
restrictive for imaging problems; see Proposition 2.2. In addition, we assume that ker A does
not contain constant functions, so that the energy functional of (4.6) is coercive.

The main idea is to combine Algorithm 4.4 and a forward-backward splitting algorithm (see
Algorithm A.1) for (4.6) with inexact proximity operators. Since the fidelity term § || Au — f|3
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in (4.6) is smooth and has the Lipschitz continuous gradient A*( Au— f), the following forward-
backward splitting iteration for (4.6) is available:
u™ ) = arg min ESD(u; f— A" (Au™ — ).
ueV
The above minimization problem can be solved by Algorithm 4.4, but in order to reduce the
computation time, the minimization problem is solved approximately; see Algorithm 4.5.

Algorithm 4.5 Relaxed block Jacobi method for the 7V'-L? model (4.6) based on dual decom-
position

Choose 7 € (0,1/2]. Let w® eV, 1750) € 14, and f)éo) c V.
forn=20,1,2,...

f(n—l-l) _ u(n) _ A*(Au(n) _ f)

M0 =5 k=1,2

It = Ry(—R_ o) + f00), k=12

_(n,j+1 Lo F(n,j+1 vaRy

a7 = arg min {Ghim =7 g+ Vsl f o k=12

U Vg

oIt = (1= 7)™ o (—a Y ¢ FTY) k=12
end until Eden(—RM"’jH) - R%én’]ﬂ) + fOD; FH)) < By (U(n); f(nH))
D gt

u ) = k) _ prg(ntl) _ pglnt)
end

Since inner denoising problems are solved inexactly, Theorem A.1 cannot be directly applied
to Algorithm 4.5. That is, the convergence of the algorithm is nontrivial. Rigorous convergence
analysis for Algorithm 4.5 can be found in [26].

5. ITERATIVE SUBSTRUCTURING METHODS FOR THE DUAL PROBLEM

In this section, we cover iterative substructuring methods, another pillar of DDMs, for to-
tal variation minimization. While iterative substructuring methods are popular in DDMs for
problems arising in structural mechanics (see e.g., [4, 6, 8]), relatively little achievement has
been made on mathematical imaging problems. Due to the grid structure of images, it seems
natural to employ finite difference discretizations which use image pixels as discrete points;
see Section 2. Such discretizations do not have interface dofs, so that designing iterative sub-
structuring methods is not straightforward. However, iterative substructuring methods have an
advantage as DDMs for dual total variation minimization compared to overlapping Schwarz
methods; since the constraint |p| < 1 in (4.3) is fully separable into subdomains, treating the
constraint |p| < 1 in iterative substructuring methods is as easy as doing in full-dimension
problems.
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Earlier in this section, we present finite element discretizations of dual total variation min-
imization (4.3) proposed in [30, 31]. Based on these discretizations, we describe primal and
primal-dual iterative substructuring methods for the dual ROF model (4.4). Each method has its
own merits; the primal method is easily accelerated by FISTA acceleration (see Algorithm A.2),
and the primal-dual method can be generalized to more general total variation minimization
problems of the form (4.3).

We mention that there are other approaches for total variation minimization using finite
elements [55, 56]. However, we will not give details on them in this paper.

5.1. Finite element discretizations. In finite element discretizations of (4.3) proposed in [30,
31], each pixel in the image domain 2 is regarded as a square finite element with side length 1.
Let 7 be the collection of all elements in €2 and let £ be the collection of all interior element
edges. We define the space X by

X={ue L%(Q) : ulr is constant, T € T}.

Dofs for X are values on the elements; for u € X, T € T, and zr € T, we write
(u)r = u(zr). We also define the space Y as the lowest order Raviart-Thomas finite ele-
ment space [57] on 2 with the pure essential boundary condition, i.e.,

Y ={p € Hy(div;Q) : p|r € RTo(T), T €T},
where R7o(T) is the collection of vector functions q: 7' — R? of the form

a1 + 51961]

q(@1,72) = [aQ + boxo

for ai, as, b1, by € R. Dofs for Y are values of the normal components over the interior element
edges. We denote the dof of p € Y associated to an edge ¢ € £ by (p)e. It is straightforward
to observe that divY C X.

We equip spaces X and Y by the Euclidean inner products of dofs, i.e.,

(wo)y = Y (Wrl)r, wveX,

TeT

(p.a)y = Y (P)e(@e; PacY,
ec&

and their induced norms ||-|| x and ||-||y-. One can verify that (-, -) y agrees with the L?({2)-inner
product and (-, -}y is spectrally equivalent to the (L?(2))?-inner product [30, Remark 2.2]. In
the sequel, we may drop subscripts X and Y if there is no ambiguity.

In order to treat the constraint |p| < 1 in (4.3), we define the convex subset C' of Y as

C={peY:|(p)l <1l ecé}.
Then the finite element discretization of (4.3) with Y C Hy(div; Q2) is given by

gleiél {E*E(p) := F*(divp)}. (5.1)
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Application of Proposition 4.1 yields that a solution of the primal problem
i F TV
mip {aP(u) + TV (w)}

can be recovered from a solution of the dual problem (5.1) by the following equation:

0 € —divp + adF(u).
In a special case of the ROF model, i.e., when (5.1) becomes
1
in{ EFE = = di 2
win { EX°(p) = gl divp -+ af|}.

the equation (5.3) reduces to the following:

1
u=f+ —divp.
a
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(5.2)

(5.3)

5.4

It was shown in [31, Proposition 3.4] that a finite element solution of (5.2) is indeed a finite

difference solution (2.6) with the anisotropic total variation.

5.2. Primal iterative substructuring methods. We present the primal iterative substructur-
ing method for the dual ROF model (5.4) proposed in [30]. Primal iterative substructuring
methods are based on nonoverlapping domain decomposition. The interior dofs of the sub-
domains are eliminated so that only the interface dofs remain. Then the resulting equivalent

problem with respect to the interface dofs is solved by a suitable iterative solver.

The image domain €2 is decomposed into N disjoint rectangular subdomains. Assume that
each subdomain is a union of elements in 7. In the sequel, let the indices s and ¢ (s < t) run
from 1 to . We denote the subdomain interface between two adjacent subdomains 2 and €,

by I's;. We also define the union of all subdomain interfaces by I', i.e., I' = (J,_, I'st.

Let 7 be the collection of all elements of 7 in 25. The local function space Y is given by

Ys = {ps € Ho(div; Q) : ps|r € RTo(T), T € Ts}.

In addition, we set Y7 by

N
Yi =Y.
s=1

The interface function space Yr is given by Yr = Y/Y7. That is, for p € Y, there exists a

unique decomposition

N
P =pr®pr= (@m) & pr

s=1

for some p € Y, and pr € Yr. In order to deal with inequality constraints in (4.3), let C; be

the subset of Y such that
Cs={ps €Ys: |(ps)e|l <1, e €&},
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where &; is the collection of interior element edges of {2,;. Similarly, we set

N
CF:{pFEYF:’(pF)e|§1,GEE\UES}.

s=1
For fixed pr € Cr, we define H;pr € C7 by a solution of the minimization problem
min EFF @ .
el d (pI Pr)
Note that H rpr is the direct sum of {p s}é\il, where ps € Y is a solution of the minimization
problem
1 .
min — / (div(ps + prla.) + 04f)2 dx.
psecs 2 Qs
Since each ps can be solved independently in each subdomain, evaluating H ;pr is suitable for

parallel computation. Elimination of py in (5.4) by using H produces the following:

i E = EYE . .
iy {Er(pr) 1 (Hrpr @ pr)} (5.5

It is interesting to note that the functional Er in (5.5) is well-defined even though the value of
‘Hipr is nonunique in general; see [30] for details. The following proposition summarizes a
relation between (5.4) and (5.5).

Proposition 5.1. If p* € Y is a solution of (5.4), then p}- = p*|y; is a solution of (5.5).
Conversely, if pi- € YT is a solution of (5.5), then p* = H;pr © pr. is a solution of (5.4).

Proof. See [30, Proposition 3.1]. ]

Thanks to Proposition 5.1, it suffices to solve (5.5) in order to obtain a solution of (5.4).
A surprising fact on (5.5) is that, nevertheless the nonlinearity and nonuniqueness of Hj, the
functional Er is differentiable with the Lipschitz continuous derivative [30, Corollary 3.4].
Therefore, one may adopt Algorithm A.2 to solve (5.5) and it automatically yields an O(1/n?)
energy convergent iterative substructuring method for the dual ROF model. We present the
resulting algorithm in Algorithm 5.1.

Algorithm 5.1 Primal iterative substructuring method for the dual ROF model (5.4)

)

Choose 7 € (0,1/4]. Let q(FO) = p(FO) € Crand ¢y = 1.
forn=0,1,2,...

p" Y = proje,. <q(rn) — 7 div” (diV(HI at”’ @ qi”) + af )

1+ /1 +422
2

n n tn_l n n
aft = ptY 4 S (p Y — p)

end

tn+1 =
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We have the following convergence theorem of Algorithm 5.1 as a direct consequence of
Theorem A.2.

Theorem 5.2. Let {pl(ﬂn)} be the sequence generated by Algorithm 5.1, and let pj. € Y1 be a
solution of (5.5). Then we have
Er(p™) - Er(pt) < —— n>1
F(pl" ) F(pF) = (’I’L+ 1)27 n-1
(0)

where c is a positive constant depending on 7, py.’, €, and its domain decomposition {Q }/S\Ll

As a historical remark, we mention that Algorithm 5.1 is the first DDM that yields the
O(1/n?) convergence rate for total variation minimization. Later, the idea of FISTA accel-
eration was successfully implanted to block Jacobi methods in order to obtain an O(1/n?)
convergent block method, Algorithm 4.3.

5.3. Primal-dual iterative substructuring methods. Unlike the primal iterative substructur-
ing method, the continuity of a solution on the subdomain can be imposed by the method of
Lagrange multipliers; see [6, 7]. This results a saddle point problem of p and Lagrange multi-
plier \.

First, we consider the primal-dual iterative substructuring method for the dual ROF model (5.4)
proposed in [30]. We begin with the same nonoverlapping domain decomposition setting
{0 }é\; as the primal method. Let n denotes the unit outer normal to 9€2. In the primal-dual

method, we use a different local function space 178 defined by

Yy = {Ps € H(div; Q) : ps - ng = 00n 92, \ T, ps|r € RTo(T), T € Ts}.
Differently from the local space Y; in Section 5.2, the essential boundary condition is not
imposed on I" C 9€); to the functions in Y In other words, Y has dofs on 9Q, NT. Let & be

the collection of element edges inside {2, and on 005 N I'. The inequality-constrained subset
C of Y is defined by

Co={Bs € Vo i [(B)el <1, e € &}
We write
v-@. -
s=1

By definition, functions in Y have discontinuities on the subdomain interfaces I in general.

If we define the jump operator B: Y — R/r! by
Bf)’Fst:f)s'ns"i'f)t'nta s <t,

where ps; = P|q., it is clear that p € Y is continuous along I if and only if p € ker B.
Therefore, the continuity on the subdomain interfaces can be imposed by the constraint Bp = 0
using the method of Lagrange multipliers. Then we have the following saddle point problem:

min max {L(f),)\) = EEE(ﬁ)+(Bf),A>}, (5.6)
peC eRl¢r!
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where

Z / leps"‘af dz, p= @ps EY

An equivalence relation between (5.4) and (5.6) can be found in [30, Proposition 4.2]. We
observe that (5.6) is suitable for the primal-dual algorithm (see Algorithm A.3). Application
of Algorithm A.3 to (5.6) yields the proposed primal-dual iterative substructuring method; see
Algorithm 5.2.

Algorithm 5.2 Primal-dual iterative substructuring method for the dual ROF model (5.4)

Choose 7,0 > 0 with 7o < 1/2. Let p@ = p(-1) € ¥ and A ¢ RIEr],
forn=0,1,2,...

APFD — X 4 5 B(2p™) — p(n—1)

p D) = p() _ 7 p*A\(?+1)

- .| =Fg, - .. .
p" 1) € argmin {EEE(p) + ?||p - p("+1)|2}
peC T

end

As a direct consequence of Theorem A.3, we get the following O(1/n) ergodic convergence
theorem for Algorithm 5.2.

Theorem 5.3. Let {(p(™), \(")} be the sequence generated by Algorithm 5.2. Then, it con-
verges to a saddle point of (5.6) and satisfies that

1 _(k 1 n k 1 /1, . ~(0) 12 0)(12
t(338) 2 (pa ) <5 (o0 S

forany p € Y and \ € RIErl,

M:

Even though the convergence rate of Algorithm 5.2 is slower than that of Algorithm 5.1, it
has several advantages. First, we observe that local problems of Algorithm 5.2 has the general
form

. Lo o 1, o2
win { gldivp. + afl*+ 16, - bl 5)
pseCs
for ps € 575 Thanks to the strongly convex term % |Ps — Ps||? in (5.7), one can adopt linearly
convergent algorithms such as Algorithm A.5 for (5.7) while existing standard solvers (see
Algorithms A.2 and A.4) are only O(1/n?) convergent. Improvement of performance due to
this fact can be found in [30, Sect. 5].

Next, we note that Algorithm 5.2 does not utilize the differentiability of the dual ROF func-
tional at all. It means that Algorithm 5.2 can be generalized to general total variation mini-
mization (5.1) without major modification [31]. We assume that the functional F™* in (5.1) is
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separable, i.e, there exists convex functionals F: div 175 — R such that
N ~
F*(divp) =Y Fi(divpla,), PEY.
s=1

Many problems arising from mathematical imaging satisfy the above assumption; see [31]. We
write

N
E'®(p) =) Fi(divpla.), PEY.
s=1
Then for 7 > O and p € Y, a solution of the minimization problem
. - .. .
min {EFE(p) +o-lp— p\2}
can be assembled from solutions of local problems
: - .. .
min {Fﬁ(dlvps) + 5-IBs = blo, !2} :
pseCs T
In summary, we state a generalization of Algorithm 5.2 for general total variation minimiza-

tion (5.1) in Algorithm 5.3. Algorithm 5.3 shares the same convergence theorem as Algo-
rithm 5.2 [31, Theorem 4.3].

Algorithm 5.3 Primal-dual iterative substructuring method for general total variation mini-
mization (5.1)

Choose 7,0 > 0 with 7o < 1/2. Let p(©) = p(=1 ¢ Y and A(©) € RI€r],
forn=20,1,2,...

APFD — X 4 5 B(2p™) — p(n1)

p(rtD) = p(m) _ 7 p*\(t1D)

for s =1,..., N\ in parallel
~(n . .~ .. .
pg ) e arg min {FS (Ps) + EHPS - p(n+1)|§25”2}

ps€Cs
end
N
p+l) — @f)gn—i-l)
s=1
end

6. NUMERICAL COMPARISON

Until now, we have discussed on various approaches on designing DDMs for total variation
minimization: Schwarz methods for the dual problem, Schwarz methods for the primal problem
based on dual decompositions, primal iterative substructuring methods for the dual problem,
and primal-dual iterative substructuring methods for the dual problem. In order to verify that
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all of those approaches produce DDMs that are efficient parallel solvers, we provide numerical
comparison of Algorithms 4.3, 4.4, 5.1, and 5.2 on distributed memory computers. Note that
Algorithms 4.3, 4.4, 5.1, and 5.2 belong to dual Schwarz methods, primal Schwarz methods
with dual decompositions, primal iterative substructuring methods, and primal-dual iterative
substructuring methods, respectively. The characteristics of these algorithms are summarized
in Table 6.1.

We performed our computations on a computer cluster composed of seven nodes; each node
possesses two Intel Xeon SP-6148 CPUs (2.4GHz, 20 cores) and 192GB RAM. The operating
system for the cluster is CentOS 7.4 64bit. All algorithms were programmed in ANSI C with
OpenMPI, and then compiled by Intel C Compiler.

Two test images “Peppers 512 x 5127, “Cameraman 2048 x 2048” were used in our ex-
periments. Figure 6.1 shows original clean images and noisy images corrupted by additive
Gaussian noise with mean 0 and variance 0.05. The weight parameter « in (1.2) was chosen as
10 heuristically.

At each iteration of DDMs, we have to solve local problems in subdomains. In our experi-
ments, we used the same number of cores as subdomains, and each subdomain is assigned to a
core one by one. Consequently, all local problems were solved simultaneously by the optimally
accelerated primal-dual algorithms, i.e., Algorithm A.4 was adopted as the local solver for Al-
gorithms 4.3, 4.4, and 5.1, while Algorithm A.5 was used for local problems of Algorithm 5.2.
The stop condition for local problems is

(n) (n—1) H

lus’ — us

221077 or n =100,
[

TABLE 6.1. Characteristics of Algorithms 4.3, 4.4, 5.1, and 5.2.

Algorithm 4.3 Algorithm 4.4  Algorithm 5.1 Algorithm 5.2
Problem dual primal dual dual
Discretization | finite difference finite difference finite element finite element
Convergence rate O(1/n?) not shown O(1/n?) O(1/n)
Local solver sublinear sublinear sublinear linear

R V¥

(a) Peppers 512 x 512 (b) Noisy image (c) Cameraman 2048 x  (d) Noisy image
(PSNR: 19.11) 2048 (PSNR: 19.17)

FIGURE 6.1. Test images for numerical experiments.
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where u§”> is the nth iterate for the local primal variable in the subdomain Q,, 1 < s < N. In
order to reduce the time elapsed in solving local problems, the local solutions from the previous
iteration were chosen as initial guesses for the local problems at each iteration.

TABLE 6.2. Performance of Algorithms 4.3 and 4.4 with respect to various
numbers of subdomains.

Algorithm 4.3 Algorithm 4.4
Testimage | A FoovR ger WACIOCK Toonp ey Wall-clock
time (sec) time (sec)
1 2455 - 6.91 2455 - 6.91
%2 | 2455 39 494 2455 45 5.08
Peppers 4x4 | 2455 48 1.41 2455 58 1.72
512512 | g8 | 2455 62 0.68 2455 67 0.71
16 x 16 | 24.55 69 0.46 2455 80 0.47
1 2538 - 25483 | 2538 - 254.83
9x2 | 2538 34 16062 | 2538 30  123.49
Cameraman | 4 x4 | 2538 41 46.97 2538 42 44.97
2048 x 2048 | g8 | 2538 50 14.47 2538 53 14.77
16 x 16 | 25.38 58 6.40 2538 64 6.07

()N =1 (b) Algorithm 4.3, (c) Algorithm 4.4,
(PSNR: 24.55) (PSNR: 24.55) (PSNR: 24.55)

(DN =1 (e) Algorithm 4.3, (f) Algorithm 4.4,

(PSNR: 25.38) (PSNR: 25.38) (PSNR: 25.38)
FIGURE 6.2. Results of Algorithms 4.3 and 4.4 with N' = 16 x 16 for each
finite difference model (4.5) and (2.6).
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TABLE 6.3. Performance of Algorithms 5.1 and 5.2 with respect to various
numbers of subdomains.

Algorithm 5.1 Algorithm 5.2
Testimage | N FooNR gter  aClock [ pop ey Wallclock
time (sec) time (sec)
1 2441 - 431 2441 - 431
%2 | 2441 46 3.14 2441 105 3.01
Peppers 4x4 | 2441 57 0.91 2441 113 0.73
512512 | g8 | 2441 69 0.40 2441 123 0.32
16 x 16 | 24.41 82 0.28 2441 139 0.26
1 2535 - 18257 | 2535 - 182.57
%2 | 2535 34 73.48 2535 103 107.80
Cameraman | 4 x4 | 2535 46 34.69 2535 107 34.56
2048 x 2048 | g g | 2535 58 1140 | 2535 113 9.83
16 x 16 | 25.35 71 2.18 2535 119 1.42

()N =1
(PSNR: 24.41)

(DN =1
(PSNR: 25.35)

(b) Algorithm 5.1,

(PSNR: 24.41)

(e) Algorithm 5.1
(PSNR: 25.35)

(c) Algorithm 5.2,
(PSNR: 24.41)

F

(f) Algorithm 5.2
(PSNR: 25.35)

FIGURE 6.3. Results of Algorithms 5.1 and 5.2 with A/ = 16 x 16 for the
finite element model (5.4).
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Table 6.2 and Fig. 6.2 show the numerical results of Algorithms 4.3 and 4.4 for the finite
difference ROF model (4.5) and (2.6), respectively, with respect to various numbers of subdo-
mains, while Table 6.3 and Fig. 6.3 are for the results of the finite element ROF model (5.4).
We used the following stop condition for all algorithms:

Hu(") _ u(n—1)||2

-5
QIR <1077, (6.1)

where
mm:f+édw¢m (6.2)

for Algorithms 4.3 and 5.2 and
1 n n
u™ = f+ o diV(H[p(F ) P p(p ))

for Algorithm 5.1. The case N' = 1 denotes Algorithm A.4 for the full-dimension problems.
Since Algorithms 4.3 and 4.4 are based on the finite difference discretizations (4.5) and (2.6),
respectively, while Algorithms 5.1 and 5.2 are based on the finite element discretization (5.4),
they produce different results.

As shown in Figures 6.2 and 6.3, the results of the full-dimension problems and DDMs are
not visually distinguishable. The resulting images of DDMs show no trace of the subdomain
interfaces. In addition, in Tables 6.2 and 6.3, since PSNRs are constant regardless of the number
of subdomains, we can say that the results of DDMs agree with those of the full-dimension
problems.

In Table 6.2, the wall-clock time of Algorithm 4.3 is comparable to that of Algorithm 4.4
despite the less number of iterations. Since Algorithm 4.3 produces a seqence of dual variables
{p(")}, one have to recover its primal counterpart by (6.2) in each iteration in order to check
whether the stop condition (6.1) is satisfied. On the other hand, Algorithm 4.4 produces a
primal sequence {u(”)} so that no additional computation is required to check (6.1). Therefore,
even though the computational cost for each iteration of Algorithm 4.3 is slightly lower than
Algorithm 4.4, both algorithms show the similar performance.

In Table 6.3, we observe that the number of iterations of Algorithm 5.1 is less than Algo-
rithm 5.2. This verifies the superior convergence property of Algorithm 5.1 shown in Theo-
rem 5.2. However, the wall-clock time of Algorithm 5.2 is smaller than Algorithm 5.1. This is
because Algorithm 5.2 utilized the linearly convergence local solver Algorithm A.5S.

For all algorithms, we observe that the number of iterations increases as the number of
subdomain increases. Indeed, it was proven in [29, Corollary 3.8] that the convergence rate of
Algorithm 4.3 deteriorates as the total length of the subdomain interfaces increases. Similar
discussions can be made for other DDMs.

Finally, for all DDMs presented in this section, we can see that the wall-clock time is de-
creasing as the number of subdomains A increases. This verifies the worth of DDMs as parallel
solvers for total variation minimization.
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7. CONCLUDING REMARKS

In this paper, we presented a brief review of DDM'’s various approaches to total variation
minimization developed over the past decade. The earliest attempts were direct applications
of Schwarz methods to the primal total variation minimization (1.1). However, we noted that
they were shown to have a counterexample to their global convergence. Almost all of recent
works on DDM dealt with the dual total variation minimization (4.3) instead of the primal
one. We introduced three approaches to design DDMs for (4.3): Schwarz methods for the dual
problem, Schwarz methods for the primal problem based on dual decompositions, and iterative
substructuring methods. We also provided numerical results that verify the efficiency of those
DDMs as parallel solvers on distributed memory computers.

There is a great deal of future research topics related to DDMs for the total variation mini-
mization. Even though two-level method design is one of the most important topics in DDMs (see,
e.g., [1, Chapter 3]), to the best of our knowledge, there have been no successful two-level
methods for total variation minimization and even for the ROF model. In order to get the scal-
ability of DDMs, designing two-level methods is necessary and should be considered in future
works.

Acceleration of DDMs for total variation minimization is also an interesting topic. We
presented several accelerated nonoverlapping DDMs for the ROF model in this paper; see
Algorithms 4.3 and 5.1. However, those acceleration schemes are not directly applicable to
the overlapping domain decomposition. Future tasks will need to design acceleration schemes
suitable for overlapping DDMs.

Other interesting topics may arise in the generalization of DDMs to nonsmooth optimization
problems. For example, supervised machine learning with a neural network is modelled as a
nonsmooth optimization problem of the following form [58]:

min {J(6;x.y) + R(0)} (7.1)

where J(6;x,y) is a loss function depending on the structure of the neural network, 6 is a
vector of parameters, (x,y) is a supervised training dataset, and R(f) is a regularizer for
parameters. Due to the huge size of the datasets, machine learning problems are large in gen-
eral. Consequently, construction of fast and efficient parallel algorithms for problems of the
form (7.1) is one of the active research topics in the field of machine learning. Since (7.1) has
a similar structure to (2.2), we expect that the ideas and theories developed for DDMs on total
variation minimization will be useful in designing DDMs for (7.1). Indeed, block coordinate
descent algorithms [59] which are broadly used in machine learning can be regarded as partic-
ular forms of DDMs (see [3]), so that there are extensive possibilities of improvement using
the theories of DDMs.

APPENDIX A. CONVEX OPTIMIZATION ALGORITHMS

This appendix covers representative algorithms for solving convex optimization problems.
Throughout this chapter, X and Y denote Euclidean spaces equipped with the inner product
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(+,+) and its induced norm || - ||. The two most popular algorithms are forward-backward split-
ting algorithms [13, 60] and primal-dual algorithms [15]. For other state-of-the-art algorithms
to solve convex optimization, one may refer a monograph [42] and references therein.

For a proper, convex, lower semicontinuous functional F: X — R, the proximal operator
proxp: X — X is defined as

1

proxp(Z) = arg min {F(a:) + ||z — EHZ} , zeX.
zeX 2

It is easy to check that the proximal operation generalizes the implicit gradient descent with

the unit step size [42].

A.1. Forward-backward splitting algorithms. We consider the following general convex
optimization problem:
min {E(z) := F(z) + G(x)}, (A.1)
zeX
where F: X — R and G: X — R are proper, convex, and lower semicontinuous. We assume
that F' has the Lipschitz continuous gradient VF' with a Lipschitz constant M > 0, i.e., it
satisfies

IVF(x) = VE(y)l < Mz —yll, 2yeX,

while G is possibly nonsmooth. In addition, we assume that a solution * € X of (A.1) exists.
The forward-backward splitting scheme for (A.1) is a combination of an explicit gradient de-
scent for the smooth part F'(x) and an (formal) implicit gradient descent for the nonsmooth part
G(z). The forward-backward splitting algorithm with fixed step size is given in Algorithm A.1.

Algorithm A.1 Forward-backward splitting algorithm
Choose 7 > 0 with 7 < 1/M. Let 2(?) € X.

forn=0,1,2,...
2" = prox, o (z™ — rVF(2™))
end

If G = 0, then Algorithm A.1 reduces to the gradient descent method with fixed step. Thus,
it can be regarded as a generalization of the gradient descent method to nonsmooth convex
optimization. The following sublinear convergence of Algorithm A.1 can be proven.

Theorem A.1. Let {m(”)} be the sequence generated by Algorithm A.1. Then for anyn > 1, it
satisfies

1
(m)y _ ¥ < 0) . *2
E(x") - E(z") < 27’n”x x|

Proof. See [13, Theorem 3.1]. ]



192 C.-O. LEE AND J. PARK

Algorithm A.1 can be accelerated by an appropriate over-relaxation technique called the
Nesterov’s momentum [61]. The accelerated method is called FISTA (Fast Iterative Shrinkage-
Thresholding Algorithm) and was first proposed in [13]; see Algorithm A.2. Note that Algo-
rithm A.2 requires only a single gradient evaluation at each iteration, so that its computational
cost per iteration is almost equal to Algorithm A.1.

Algorithm A.2 FISTA

Choose 7 > 0 with 7 < 1/M. Let y© = 2(0) € X and ty = 1.
forn=0,1,2,...
27 = pros, (™ — TVE ()
14 /1+422
2
Y1) o) T L
tn—l—l

tnt1 =
(2D — g

end

The following theorem states the O(1/n?) convergence rate of Algorithm A.2.

Theorem A.2. Let {:13(")} be the sequence generated by Algorithm A.2. Then for any n > 1, it
satisfies

2
(n)y _ P G S | P (1) R Y
E(x") - E(z*) < o 1)2||33 x|

Proof. See [13, Theorem 4.4]. O

We note that if F(x) is strongly convex, it can be shown that the forward-backward splitting
algorithm is linearly convergent [42]. However, we omit details here.

A.2. Primal-dual algorithms. Primal-dual algorithms are intended to solve problems of the
following form:

gél)r(l {F(Kz)+G(2)}, (A.2)

where K: X — Y is a continuous linear operator and F: Y — R, G: X — R are proper,
convex, lower semicontinuous functionals. By Proposition 4.1, we may solve the following
primal-dual formulation of (A.2) to obtain a solution of (A.2):
i L = (K — F* . A3
min max{L(z,y) := (Kz,y) + G(2) ()} (A.3)
The primal-dual scheme for (A.3) is a combination of partial forward-backward steps for x and
y with suitable step sizes. That is, primal-dual algorithms consist of the following building
blocks:

>

prox,q (z — 7K*y),
prox, e (5 + oK),

Nl
|
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where 2,2, 2 € X, 9,9,y € Y, and 7,0 > 0. Thus, primal-dual algorithms are useful when
the proximal operators for both F' and GG can be computed efficiently. In addition, suitable over-
relaxation steps should be accompanied in the algorithm to ensure convergence [62, Sect. 3].
In summary, the primal-dual algorithm to solve (A.3) is presented in Algorithm A.3 [15].

Algorithm A.3 Primal-dual algorithm

Choose 7,0 > 0 with 7o < 1/||K||%. Let (¥ = 2(-1 € X and 4y € Y.
forn=20,1,2,...

y) = pros, g (5 + 0K (20 — 20 ))

2D = prox_q(z™ — 7K*y D)
end

In [63], it was shown that Algorithm A.3 is in fact equivalent to a preconditioned proximal
point algorithm [64] applied to a monotone inclusion problem. The following ergodic conver-
gence rate of Algorithm A.3 was proven in [65, Theorem 1].

Theorem A.3. Let {z(™} and {y\")} be the sequences generated by Algorithm A.3. Then for
any (z,y) € X x Y andn > 1, it satisfies

1<~ 1<~ 1/1 1
Ll (i) I L O <« 2 (21e — 2002 £ 2y — 42
<”,§_1x y) (fc,n;_ly < Tllfv | +O||y y ||

Similarly to FISTA, Algorithm A.3 can be accelerated under additional assumptions. First,
we assume that either G or F'* is strongly convex. By symmetry, it suffices to deal with the
case when G is pug-strongly convex for some pg > 0. Algorithm A.4 shows an accelerated
primal-dual algorithm adapted in this case [65]. There are several alternative choices on the
selection of step sizes; see, e.g., [15, Algorithm 2].

Algorithm A.4 O(1/n?)-convergent accelerated primal-dual algorithm

Choose 79, 09 > 0 with g < 1/||K||? and 6y = 0. Let (%) = (-1 ¢ X and y(©) € Y.
forn=0,1,2,...

y ™) = prox, g (™ + o K[(1 4 0,)2™ — 0,z V)

(D) = pl"OXTG(CL‘(n) - TK*y("‘H))

0n+1 = 1/ \ 1+ HGTns Tn+1 = 9n+17—n’ On4+1 = Un/0n+1
end

The convergence result for Algorithm A.4 is given in the following.

Theorem A.4. Let {x™)} and {y"™)} be the sequences generated by Algorithm A.4. Also, we
define

On—

tn =

n
1
, Tha=) t, n>L
o0 i—1
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Then for any (xz,y) € X x Y andn > 1, it satisfies

1 < , 1 1
. (D) Dl — 2 O2 L 1 o (0))12
L<Tn ;_ltzx y) < E tiy" >_2T (Tllfv g +U||y y | >

Proof. See [65, Theorem 4]. In this case, we have 1/7;, = O(1/n?) [15]. O

Next, we consider the case when both GG and F™* are strongly convex; say G is pg-strongly
convex and F™* is pp«-strongly convex. Note that F™* is pp«-strongly convex if and only if
F' is continuously differentiable and V F' is Lipschitz continuous with a Lipschitz constant
1/pp+. We present a particular choice of step sizes which was given in [42]. For the sake of

convenience, let
* 4| K||?
_ panr () =02 )
2| K| HG L F

It is clear that 0 < v < 1. Algorithm A.5 shows a linearly convergent primal-dual algorithm
for this case.

Algorithm A.5 Linearly convergent accelerated primal-dual algorithm

Choose 7 = ;—d—5.,0 = ——5,and § = 1 — . Let 2 =z e X and y©@ e Y.
forn=20,1,2,...

y ") = prox, e (™ + o K[(1 4 0)2™ — 2"~1])

2" = prox_q(z™ — 7K*y D)
end

The following ergodic convergence result for Algorithm A.5 is available.

Theorem A.5. Let {x(™)} and {y"™)} be the sequences generated by Algorithm A.5. Also, we
define

n
ty=0""" T, = Zti, n>1
i=1

Then for any (z,y) € X x Y and n > 1, it satisfies

1 — , 1 1
L= 0 L Tl — 2002 £ 21y — 4O12)
(Tn ;thx ,y> (w E tiy" >_2T (T\Iw | +0Hy y

Proof. See [65, Theorem 5]. In this case, we have 1/, = O(0"). O
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