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ABSTRACT. A new multiscale finite element method for elliptic problems with highly oscillating co-
efficients are introduced. A hybridization yields a locally flux-conserving numerical scheme for multi-
scale problems. Our approach naturally induces a homogenized equation which facilitates error anal-
ysis. Complete convergence analysis is given and numerical examples are presented to validate our
analysis.

1. INTRODUCTION

In this paper we consider the following elliptic problem:
Lc(ue) ==V -(acVue) = f on(Q, (1.1)
u. = 0 onofd.

Here, and in what follows, we assume a.(x) = a(y) for a 1-periodic, positive definite and symmetric
tensor a and y = %. The domain €2 is a convex polygonal domain.

Many problems in material science, chemistry, fluid dynamics and biology are governed by mul-
tiscale problems with highly oscillatory coefficients [1, 2, 3, 4]. For example, the properties of a
composite material or the heterogeneity of porous media has oscillatory nature. It is well known that
standard finite element methods do not yield good numerical approximations for such problems with
rapidly oscillating coefficients when the mesh size is h > €. To obtain computationally feasible sys-
tem, multiscale approach is essential for (1.1). For example, the multiscale finite element methods
(MsFEM) [3, 6, 7, 8] use oversampling to construct basis functions adapted to oscillation in solu-
tions. Variational multiscale methods (VMS) [3] or the residual-free bubble function methods (RFB)
[9, 10] use enhanced trial/test spaces to resolve fine scale nature of the problem. The heterogeneous
multiscale method (HMM) is a methodology for designing sublinear scaling algorithms by exploiting
scale separation and the other features of the problem [11, 12]. The generalized FEM for homoge-
nization problems is proposed in [13]. The multiscale domain decomposition approach can be found
in [14, 15, 16, 17], where the flux continuity is imposed via a mortar finite element space on a coarse
grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid
scale.

The numerical method proposed in this paper is related to cell boundary element methods (CBE)
[18, 19, 20, 21, 22] and hybridization [23, 24, 25, 26]. The CBE method can be interpreted as a finite
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element version of the finite volume method (FVM). The CBE method is defined on the finite element
mesh and preserves flux in each local cell. Moreover, global flux conservation holds for a class of
CBE methods. The flux preserving property of numerical methods is very desirable for transport
problems. For example in underground flow problems it is shown that the multiscale finite volume
method, which is a flux preserving method, produces well approximating numerical solutions [27].
See also [1, 5, 23] for locally conservative multiscale methods based on the mixed finite element and
discontinuous Galerkin method.

In this paper, we introduce a new multiscale method based on a hybridization of flux-continuity
across cell interfaces. From here on we call it as locally conservative multiscale finite element (LC-
MsFE) method. The LC-MsFE method is a multiscale realization of the cell boundary element meth-
ods. More precisely, the method is composed of the following processes. Suppose K is any triangle
of a triangulation 7y, and Kj, is the skeleton of Ty, (see (3.1)).

: Step 1. Set ue = v + gy, where v and gy are solutions of elliptic equations:

-V - (a.Vv.) =0in K, Ve = A\e On 0K, (1.2)
—V - (acVgy) = fin K, g = 0on 0K (1.3)

with A\, = u€|]ch.
: Step 2. Use jump of normal flux at cell interfaces being zero,

[[aeVve]] = —[[acVgy]] oneachedge e C Ky,

to obtain a global coarse system in unknowns A, only.

The Eq. (1.2) can be solved by using the oversampling technique [7] to capture oscillatory bound-
ary condition ve = A, on 0K as in [18]. In the oversampling method the Eq. (1.2) is solved in
an oversampling domain K, K C K’, for each basis of P;(0K') := Py(K’)|sx with a numerical
solver. Then, restrictions of the solutions to K form a basis for approximation of v, which captures the
oscillatory nature of solutions very well. However, the cost for solving (1.2) can be costly if the scale
ratio, \/|K’|/e, is very large. In this paper, to treat problems of a large scale ratio more efficiently,
we take a variational multiscale approach in solution procedure for the Eq. (1.2). In the variational
multiscale approach we further decompose v, as ve = vg + v1, where vg is a coarse scale solution
and vy is a highly oscillatory part (fine scale resolution) of v, with vanishing average. Indeed, v; will
be determined by vy and then v, is determined by vg. Therefore, Step 2 induces a square system with
vo|x,, as only unknowns. Moreover, the Eq. (1.3) can be replaced in our new approach with a coarse
scale solution: for example,

~V - (aVgy) = fin K, /gods:OoneCGK,

e

where @ = |71| Jy a(y)dy and Y = [0, 1] with its volume |Y'|. This will reduce computational cost
additionally without losing accuracy of the method.

The rest of the paper is organized as follows. In §2 the homogenization theory in a periodic
setting is reviewed. In §3 localization and solution decomposition are introduced. In §4 we introduce
multiscale basis functions for the LC-MsFE method. Simple calculation yields that our method can
be viewed as a finite element method for the homogenized equation. Also we note that the LC-MsFE
method preserves flux locally. Optimal, resonance free convergence analysis is provided for the LC-
MsFE method. In the last section we provide numerical experiments of our method. We consider
two kinds of fine scale resolvers, the spectral and the oversampling approaches. Some computational
issues such as e-interference in error and phase-shift error are covered.
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2. HOMOGENIZATION

In this section we review the well known homogenization theory [2, 28]. Consider a power series
expansions:

ue(x) = uo(l‘,y)+eu1(:v,y)+62u2($,y)+~- (21)
pe(z) = po(z,y) +epi(z,y) + Epala,y) + -

where p. = a.Vue and y = f from here on. From the relations, p. = a.Vu. and —V - p. = f one
obtains

po+epr +€pa-- = ad(Vaug + %Vyug + eVur + Vyur + EVaug + )
f = —(Vm-po—l—évy'po+evx-p1+vy-p1—|—--')
Collecting terms with the same power of € from (2.1), one has
O(e™) : aeVyug =0,
O(): =V, py=0,
O(e") : aeVyuy + acVauo = po,
O(e") : —Vyp1—Ve-po=f
and so on. Then the homogenized solution ug satisfies
Lo(up) = =V - (agVug) = f in €2, 2.2)

ug =0 on 0%,
where )
= — I dy.

aop ‘Y‘ /Ya( + VyX) Y
Here, x = (x1, Xx2) is a periodic solution of

=Vy - (a(y)Vyx) = Vy - a(y) (2.3)
with [, xdy = 0. Moreover, we have

ur(z,y) = x(y) Vuo(z).

From here and on, differential operators are applied column-wise so that Vx := (Vx1, Vxz2) for
X = (x1,x2)and V - a := (V - a1, V - ay) for matrix a with column vectors a; and as.

Since ug(z)+eui(x,y) # u(z) on 9L, due to the periodicity of u1, one can introduce a correction
6 which satisfies

—V-aV=0 in €2,
0=—u on 0f2.

Summarizing the above results, we have an expansion of . as follows:

ue(w) = uo(x) + eur(x,y) + €eb(z,y) + r(z,y). 2.4
Moreover, the following estimates hold by the Calderon-Zygmund inequality and by results from [28]
and [6]:

luollze < [ fllo.0,
1eVOlloe < Vellluollza + lluollien), (2.5)
<

7], elluoll2,0
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and
[ue —uollo < €lluoll2,0- (2.6)

Here, || - ||z o denotes the usual Sobolev space norm and A < B denotes A < ¢B for some positive
constant ¢, independent of h and e.

3. LOCALIZATION AND SOLUTION DECOMPOSITIONS

We begin with introducing some mathematical notations. The family 7}, is shape-regular triangu-
lation of € into triangles with h = maxge7;, hi, where hi denotes the diameter of K € 7j,. Let
&y, denote the set of edges e of the triangulation 75 and V), the set of the midpoint of each edge.
Therefore, for each p € Vj, there exists an associated edge e, € &,. We set the skeleton of the mesh
T, as

Ky = UKeThaK. 3.1

Now, let us introduce function spaces. The space L, (D) is the usual L, space with the norm
|- llz,(p) for 1 < p < oo. The space W (D) is the standard Sobolev space with the norm || - [|s, p
and its subspace W;O(D) denotes the space of functions with vanishing traces. We employ the
abbreviations H*(D) for W3 (D), Hg(D) for W3 o(D) with norms and seminorms || - ||s p and |- |5 p
for || - ||s,2,p and | - |5 2, p, respectively.

In order to derive the multiscale FE method we consider the following localized problem: for each
cell K € Ty,

-V-aVu, = [ inK, (3.2)
[[acVu]] = 0 one=0KnNOoK'.
Here,
[[acVue]] = (aeVue) - v + (acVue) -V

denotes jumps of normal fluxes across intercell boundaries. The continuity of normal fluxes in (3.2)
can be weakened as follows:

/K [[acVuelwds =0 forw € HI(Q). (3.3)
h
Consider a local solution decomposition:
Ue = Ve + g7, 3.4
where v, and g satisfy
-V -aVv. =0 in K, 3.5)
Ve = Ue on 0K
and
-V -aVgr = f in K, 3.6)
gr=20 on 0K,
respectively.

Invoking (3.3), ve and gy satisfy

/ [[acVve]Jwds = —/ [[aeVgsllwds  forw € Hy(RQ).
Kn Kn
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This is the motivation of the hybridized finite element method. In the authors’ previous work [18], the
Eq. (3.5) is solved by a numerical method adopting the oversampling technique in [7]. The motivation
of the oversampling technique is to catch the oscillating property of u. on K.

We take a different approach, a variational multiscale technique. For this, we consider another
solution decomposition for v.. As mentioned before, we find that we do not need an accurate approx-
imation of g and this is another advantage of this method.

Let

Ve = Vo + V1, (3.7
where vy and v satisfy
-V - (@Vvy) =0 in K, (3.8)
Vo = UQ on 0K

-V - (acVv1) =V - ((ac —a)Vvy)  inK, (3.9
V] = Ue — U on 0K,
respectively. Here, a = ﬁ fy a(y)dy, ug is a coarse scale homogenized solution so that ue — ug (&

exVuyg) is dominated by a periodic function with vanishing averages. The solution vy is called a
coarse scale solution and v; is a fine scale resolution. In our numerical method the Eq. (3.8) is
automatically satisfied since we take a P; approximation for vy and the Eq. (3.9) is solved by a
spectral method on the space of e-periodic functions with sufficiently large degrees of freedom.

Remark 3.1. e By (2.4) vy in (3.9) has a representation vi(z,y) = ex(y)Vug(x) +€b(x,y) +
r(x,y) on each OK. The finite element space for approximation of vy will be designed to best
approximate ex(y)Vuy(x) in K, ignoring the other terms.

e 7o solve vy in (3.9) we can apply the oversampling technique in [6, 7] as follows.

-V - (a.V7y) =V - ((ac —a)Vuvy) in K', (3.10)
v=0 on OK',
with the oversampling domain K' of K. Then vy = |k — ¢ with ¢ = ﬁ faK yds.

Instead of solving the Eq. (3.6) we even substitute g; with a coarse scale solution gg satisfying
-V - (aVgy) = fin K, /gods—OonecaK,
e

Indeed, it is easy to see that gg can be obtained analytically on each K in the following form.
L
da
Using the theory of interpolation, we can easily obtain the following estimates for gy whose proof
is omitted here.

Lemma 3.2. It holds

go(x,y) = (22 + y?) + (co + 12 + c2y).

IVgollo,x < Rl fllox,
lgollo.x S B2[1fllo,ic-
Then, instead of (3.4) we consider the approximate formula for u, and its flux as follows:
Vu. ~ Vb, (3.11)
acVue =~ aGvaf +aVgp.
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4. A MULTISCALE FINITE ELEMENT METHOD

In this section we introduce a locally conservative method and its numerical analysis.
Let Vj, C H}(2) be the space of the conforming Py elements for a triangulation 7, which is the
finite element space for vy and let

Qp = {1 : e-periodic, / Ydr =0}
[0,€] x[0,€]

be the function space for approximation of v;. We assume that the dimension of @, is taken as large
as we want so that x in (2.3) will be found almost exactly within Q. In view of (3.7), set

h h h h h
U€:U0+U1, 'U0€Vh, Ul GQ}L

Then, vg € V}, satisfies the Eq. (3.8) automatically. Using that va is a constant vector, the Eq. (3.9)
is reduced to find x € @y, such that

1
(acVx, Vp)y, = E(V e, )y, HEQn 4.1)

for Y = [0, €] x [0,¢€], and
v = ex V.
Note that the Eq. (4.1) is an e-scaled version of (2.3). Then,

h

ol = b+ ex Vol (4.2)

and it satisfies
V- (acVol) = V- (ac(I + eVx)Vug) = 0. (4.3)
Let us introduce the multiscale element space:
Veh = {v¢ : ve = vg + exVvg, v € Vi }.

A construction of homogenization-based finite element basis is also considered in [29, 1].
In view of the flux formula (3.11), we consider an approximate flux representation:

aEVu? = aEVU? +aVgp.

Then our hybrid multiscale finite element method is to find v" € V" (equivalently, find vy € V},)
such that

/ [[ac Vo Jwds = —/ [[@ Vgollwds forw € Vj,. (4.4)
’Ch ICh
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Implementation of (4.4) is done as follows:
: Stepl: Let

N
Z E th

where {¢’} is a basis for V},.
: Step2: Construct multiscale basis qu ® 4+ exV ¢’ as in (4.2). Then
N
vl =) gl eVl
j=1

: Step3: Solve for {c; };V,I the linear system,

Zc]/ [[ac Vi) ds = —/ [[@ Vgol]o'ds, i=1:N.

Kn

Therefore, it is a square system and ellipticity and convergence analysis follow.
By using the Eq. (4.3) and the integration by parts, the left hand side of (4.4) satisfies

/ [[ac Vo Jwds = Z ((acVV") v wor, weV,
Kn KeTh
= (a. Vo, Vuw),

= (ac(I 4 eVX)VUl, V),
= (apVuh, Vw).
Using [ gods =0one C 9K and V - (a@Vw) = 0 on K for w € Vj, we have
(@Vgo, Vw)k = —(g0, V - (@Vw)) g + (g0, (@Vw) - v)sr = 0.
Therefore, the right hand side of (4.4) satisfies

/IC [aVgollwds = (V- (aVgo),w)a+ (@aVgy, Vw)p, weV,

= _(77 w)Q

The LC-MsFE method (4.4) can be rewritten in the following variational form: Find vg € V" such
that

(aoVvy, Vw), = (fiw)a, w € Vi, (4.5)

which corresponds to a finite element method for a homogenized Eq. (2.2). The following error
estimate is a standard, well-known result in the theory of finite elements.

Theorem 4.1. Suppose ug € H?(Q) be the solution of the homogenized Eq. (2.2) and vg be the
solution of (4.5). Then,

IV (uo = v§)llon S
luo —vloe S R2[Iflh0-
Proof. It is easy to see that
(a0 Vv, Vw), = (agVug, Vw), + (f — f,w)a.
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Simple calculation yields that

(a0V (v — ), V), = (a0V (uo = ), Vw) = (fw = W)a, ¢ € Vi
Then, the energy norm estimate follows immediately by choosing ) suitably and by an elliptic regu-
larity estimate ||uol|2,0 < || fllo.0
Next, for the Ly estimate, employ a duality argument. Let e, = up — v(})‘ and consider w such that
-V - (agVw) = ej, on 2 and w = 0 on Of). Then,
(en,en)o = (aoVen, Vw)g
= (aoVen, V(w —1¥))a + (aoVen, V), €V}
= (aoVen, V(w —=9))a + (f = f.w)a
= (aoVen, V(w =)o+ (f = f,w - W)
By choosing an optimal v, we have
lenll§a < (Wl Venlloq + R2(1fll1.0) w20

With an elliptic regularity estimate ||w||2,0 S ||en|lo,o We obtain

lenllos S (R Venllog + h?|If]

The desired Ly estimate follows from the help of the energy norm estimate. U

1,0)-

Let us introduce a multiscale interpolation: for u. = ug + exVug + €6 + r (see (2.4)), define
Inue = uo,; +exVuor € Veh,
where ug ; € V), is the standard P interpolation of ug in V},.

Theorem 4.2. For u. = ug + ex - Vug + €0 + r with ug € H?(Q) N WL (), the multiscale
interpolation Iy, has the following error estimates.

(h? + €)||uoll2,0, j=0,

(h+ ve)([luo

l|ue — IhueHj N

2.0 + |luoll1,000), =1
Proof. Note that
ue — Inue = (ug —ug 1) + exV(ug — ug 1) + €0 + 7.
Hence, using the standard error estimate of (up — o, r) and the estimate (2.6),
lue = Inuclloo < lluo — uorllo.e + €llV(uo — uo,r)llo,0 + [0 + 7o
S (B +eh+o)lluollzn
Note that
V(ue — Ipue) = V(ug — uo,r) + €(Vx)V(uo — uo 1) + exAug + €VO + Vr.
The estimates (2.5) yield
IV(ue — Ihue)lloe < (h+e+Ve)(|luo

2,0 + [luoll1,00,0)-
J

Theorem 4.3. Let v, = véb + evag € Veh be the solution of (4.4) and u be the exact solution of
(1.1) with ug € H*(Q) N WL (). Then,

(h? +e)llf

0,9 j = 07

e — ve Jsh N

(b + Vel fllo + lluollt,c0,0), J=1.
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Figure 1: The solutions of the Eq. (3.10) without the oversampling (left) and with the oversampling
(right).

Proof. Simple calculation yields that
ve — Iyue = (vh — o)+ exV (vl — o p),
V(ve — Inue) Vvl —uor) +e(Vx) - V(v —uor).
Using the estimates in Theorem 4.1,
lve = Inuelloe < (A% + )| fllo;
[ve = Inuelloo < Pl fllo.q-

The triangle inequality with estimates in Theorem 4.2 yields the desired estimate. U

5. NUMERICAL EXPERIMENTS

In this section we concentrate on numerical experiments for the LC-MsFE method. We consider
two different ways of the fine scale resolution construction: the spectral approach by solving the Eq.

Table 1: The Ly and H' convergence: e-interference.

e =1/3200 e=1/64
N Lo o H o Lo « H «
8 || 4.759¢-3 1.563e-1 4.761e-3 1.563e-1

16 || 1.158e-3 | 2.04 | 7.644e-2 | 1.03 || 1.271e-3 | 1.91 | 7.644e-2 | 1.03
32 || 2.858e-4 | 2.02 | 3.778e-2 | 1.02 || 5.788e-4 | 1.13 | 3.778e-2 | 1.02
64 || 7.155e-5 | 2.00 | 1.878e-2 | 1.01 || 5.122e-4 | 0.18 | 2.062e-2 | 0.87

Table 2: The L, and H' convergence: the h-¢ resonance with h = e.

N Lo o HT o
8 || 5.928e-3 1.707e-1
16 || 2.289¢-3 | 1.37 | 8.370e-2 | 1.03
32 | 1.049¢-3 | 1.13 | 4.144e-2 | 1.01
64 || 5.122e-4 | 1.03 | 2.062e-2 | 1.01
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(4.1) in a periodic function space (Tables 1-3) and the oversampling approach by solving (3.10) in a
finite element space (Table 4), see Fig. 1.
Example: We consider the following (quasi-two-dimensional) model problem [30]:

—V-(aVu) = f inQ=(01)3
Uelr, = 0 onTp:={z; =0}U{z; =1},
v-(aVue)ry, = 0 onl'y:=0Q\Tp,

where )
=—"—, y=@y) Y =001
W) = 5oy, ¥~ W) [0,1]
and f(x) = 1. The exact solution is known analytically as follows:
€ . 2T € 2rx € . 2mx
Ue(z1, ) = —27 — — 1 sin( 1)——2((308( 1)—1)—1—3514——s1n( 1).
27 € 47 47 €

The computational domain 2 := (0, 1)? is divided into a uniform mesh so that the vertices are
given as i = ih and 23, = jh, h = 1/N for 0 < i, j < N and the triangular mesh is then generated
by bisecting each rectangle by a diagonal line. The computational meshes are composed of 2/N?-
triangles with N = 8, 16, 32, 64. The local resolution y in (4.1) is solved in the space of e-periodic
functions of degrees up to two for numerical results in Tables 1-3.

Through numerical tests the following important issues on our numerical scheme are addressed,;

: 1. the effect of e-interference and e-h resonance,
: 2. the effect of phase shift when the size of a triangle is not an integer multiple of e.

In Tables 1, 2 and 4, the Lo and H'! errors represent

oo and H':=|Vu, — VUgHo,ha

Ly := ||lue — v?

and « denotes convergence orders.
The cost of computation is mostly involved in solving the coarse system and it does not depend on
the size of e.

Table 3: The Lo and H' convergence of the effective solution: phase-shift interference.

€ =1/1019 e=1/121
N Lo « Ht « Lo « HT a
8 || 4.755¢-3 5.413e-2 5.681e-3 5.467e-2

16 || 1.159¢-3 | 2.04 | 2.708e-2 | 1.00 || 1.363e-3 | 2.06 | 2.917e-2 | 0.91
32 || 2.873e-4 | 2.01 | 1.357e-2 | 1.00 || 4.304e-4 | 1.66 | 1.782e-2 | 0.71
64 || 7.821e-5 | 1.88 | 6.840e-3 | 0.99 || 2.858e-4 | 0.59 | 1.358e-2 | 0.39

Table 4: The Lo and H' convergence of the oversampling local solver

e=1/128 e =1/256
N Lo « H! o Lo « HT «Q
8 || 1.232 e-2 1.030 e-1 4.76 6¢e-2 2.044 e-1

16 | 3.491e-3 | 1.82|4.801e-2|1.10 | 1.037e-2 | 2.20 | 6.354e-2 | 1.69
321 1.182e-3 | 1.56 | 2.359e-2 | 1.03 || 2.985e-3 | 1.80 | 2.564 -2 | 1.31
64 || 6.236e-4 | 092 | 4.207e-3 | 249 || 1.055e-3 | 1.50 | 1.203 e-2 | 1.09
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Tables 1 & 2 address the effect of e-interference. According to numerical analysis we expect the
following convergence:

lue = vélloe = O(h® +¢),  Jlue — v¢

l1.n = O(h + V). G.D

Therefore, there can be interference of ¢ when the mesh size h gets close to /€. As expected, Table
1 shows that there is no interference of € when 0 < e << h and there begins to appear e-interference
when € =~ h. The € interference must be distinguished from the so called e-h resonance in [7, 8].
The e-h resonance means that approximate solutions may not converge when the ratio, €/h is kept
constant. Table 2 shows that our method is independent from the e-h resonance. We may expect the
rates of convergence:

Jue — v o0 = O(h), |lue — v}, = O(Vh)

for ¢ = h from (5.1). The Lo-error shows the expected rate of convergence, however the H L_error
performs better than the above expectation.

Table 3 shows the effect of phase shift in numerical solutions. If A is not an integer multiple of
€, there can be different shift for each triangle in the periodic part (local fine resolution) of solutions
according to the location of a triangle K in the domain 2. Our numerical scheme ignores these shifts
to avoid algorithmic complication. Therefore, the fine scale error (u. — v?) must contain a lot of shift
errors. However, the effect of phase shift can be ignored if one looks at coarse scale errors. In Table
3 coarse scale errors are measured in the coarse Ly and H!-norms, that is,

Ly = ||Pa(uc —v!)lo.e and H' = |[Vuc — Vvl||o,

where Py (u.) € X}, represents the usual piecewise P; interpolation and u, represents the cell average
of u for each K. It shows a regular convergence behavior in a coarse scale when €/h is small. As e/h
approaches 1, convergence deteriorates. Compared with Table 2, the irregular convergence behavior
seems to be mainly due to the e-interference.

When the conductivity coefficient a. is non-periodic the oversampling technique introduce by Hou
and Wu [7] is inevitable. Therefore, we introduce the LC-MsFE combined the oversampling method
and provide related numerical results in Table 4. In this case the Eq. (3.10) is solved for v by
a numerical method and we use the non-conforming cell boundary element method [19] since the
accurate flux information is important.

In conclusion, computational cost is mainly involved in solving the coarse scale problem with
the spectral local solver. With the oversampling approach the local basis construction can be very
expensive when ¢ is very small and the most of the computing time can be taken for this process.
Therefore, the oversampling approach may not be feasible for an extremely small €, however, it can
be applied to the problems with a more general type of conductivity. Our method has a power of
resolving fine scale resolutions when the mesh size is an integer multiple of e. When the mesh size
is not an integer multiple of €, a postprocessing with proper phase shift will reproduce fine scale
resolution on cells wanted. We close this section with a remark that one can apply the adaptive
variational multiscale method [31] which makes use of multiscale-type a posteriori error estimators
to adapt the coarse and fine scale meshsizes as well as the fine-problem patch-sizes.
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