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Abstract: The poromechanics of heterogeneous media is reformulated in a discrete framework using the lattice element method (LEM) that
accounts for the presence of interfaces as well as local microtextural and elastic variations. The exchange of mechanical information between
pore and solid(s) is captured by means of force field potentials for these domains, which eliminate the requirement of scale separability of
continuum-based poromechanics approaches. In congruence with μVT and NPT ensembles of statistical mechanics, discrete expressions for
Biot poroelastic coefficients are derived. Considering harmonic-type interaction potentials for each link, analytical expressions for both
isotropic and transversely isotropic effective elasticity are presented. The theory is validated against continuum-based expressions of Biot
poroelastic coefficients for porous media with isotropic and transversely isotropic elastic solid behavior. DOI: 10.1061/(ASCE)NM.2153-
5477.0000136. © 2017 American Society of Civil Engineers.

Introduction

Poromechanics is dedicated to the modeling and prediction of how
porous materials deform in response to various external loadings.
These loadings range from fluid–solid interactions by a variety of
pressures at the liquid–solid interface to complex physical chem-
istry phenomena at the pore scale that produce a mechanical defor-
mation (including fracture) of the solid. The classical backbone of
poromechanics is based on continuum theories, ever since Maurice
A. Biot defined the kinematics of deformation of the skeleton
within the classical continuum mechanics framework as the refer-
ence for the description of the flow of the liquid phase through the
pore space (Biot 1941), with the state equations for stress, Σ, and
porosity change, ϕ − ϕ0, given in the linear poroelastic case by

Σ ¼ 1

V

∂Epot

∂E ¼ C∶E − bp ð1Þ

ϕ − ϕ0 ¼ − 1

V

∂Epot

∂p ¼ b∶Eþ p
N

ð2Þ

where Epot = potential energy of the solid phase of the solid-pore
composite of volume V subjected to an average strain E ¼ hεiV at

the boundary ∂V and a pressure p at the solid–pore interface; C =
fourth-order elastic stiffness tensor; b = second-order tensor of Biot
pore pressure coefficients; and N = solid Biot modulus. This con-
tinuum framework also provided the backbone for the development
of the close-to-equilibrium thermodynamics framework of irrevers-
ible deformation of porous media pioneered by Coussy (1995) and
its extension to a large range of phase change and adsorption phe-
nomena (Coussy 2010). In the same vein, microporomechanics
theories can be viewed as refined extensions of the continuum
framework to the micro scale, in that they adapt continuum micro-
mechanics theory (Suquet 1987; Zaoui 2002) to the specific nature
of porous materials viewed as solid–pore composite materials
(Dormieux et al. 2002, 2006). Although continuum poromechanics
theory has entered and transformedmany engineering fields ranging
from civil and environmental engineering and geophysics applica-
tions to biomechanics and the food industry (e.g., Hellmich et al.
2013), the intrinsic limitations of the theory relate to the very foun-
dations of the continuum model, including scale separability and its
impact on the relevance of the differential operators defining the
momentum balance and displacement–strain operators. This is a
serious limitation of the theory in its applicability to highly hetero-
geneous materials. For instance, such a continuum theory will fail
for microstructure resolutions achieved bymicrocomputed and nano-
computed tomography (CT) imaging techniques of highly hetero-
geneous materials, in which the characteristic length scale of the
heterogeneity is of a similar scale as the sample size, or for multi-
scale heterogeneous materials for which a single representative
elementary volume (rev) cannot be defined. It is for such systems
that a discrete form of poromechanics theory is proposed, in which
physical interactions replace volume descriptors. This approach is
much akin to molecular representations of material systems with
interaction forces between mass points derived from potentials that
define the out-of-equilibrium state of the system with regard to a
relaxed equilibrium configuration.

Herein, the elements of such a discrete poromechanics approach
are developed using statistical mechanics ensemble definitions
within the context of the lattice element method (LEM) (Topin
et al. 2007; Affes et al. 2012) using the framework of effective
potentials (Laubie et al. 2017b). By way of validation, some
pore–solid morphologies are revisited to determine poroelastic con-
stants within and beyond the classical continuum limits of scale
separability.
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Lattice Element Method Applied to Pore–Solid
Composites

Consider a porous material composed of a solid (volume Vs) and
pore space (volume Vp). Following the lattice element method
(Topin et al. 2007; Affes et al. 2012; Laubie et al. 2017b), the two
domains are discretized into a number of unit cells (or voxels), the
center of which defines a mass point that interacts with a fixed num-
ber of neighboring mass points forming a regular or irregular lattice
structure. The interaction forces and moments between two mass
points i and j derive from an effective potential Uij as a function of

the translational, ~δi ¼ ~xi − ~Xi, and rotational, ~ϑi, degrees of free-

dom, where ~Xi and ~xi denote the position vectors of mass point i in
the reference and the deformed configurations, respectively [see
Laubie et al. (2017b) for a detailed derivation]

~Fj
i ¼ −∂Uij

∂~δi
; ~Fj

i þ ~Fi
j ¼ ~0 ð3Þ

~Mj
i ¼ −∂Uij

∂~ϑi

ð4aÞ

~Mj
i þ ~Mi

j þ ~rij × ~Fi
j ¼ ~0 ð4bÞ

where ~rij ¼ l0ij~e
ij
n = vector connecting node i to node j of rest length

l0ij and oriented by the unit vector ~eijn in a local orthonormal basis
ð~en; ~eb; ~etÞ. For such a discrete system, the stresses are modeled us-

ing the virial expression (Christoffersen et al. 1981) σ ¼ ρch~r ⊗ ~Fi,
where ρc represents the number of interaction bonds per unit volume,

h·i denotes the first moment of ~r ⊗ ~F distribution over interaction
bonds, while neglecting the momentum term. In the LEM for mass
point i, this virial expression can be written as

σi ¼
1

Vi

XNb
i

j¼1

~rij ⊗ ~Fj
i ð5Þ

with Vi denoting the volume of the unit cell and Nb
i representing the

number of node i’s neighboring mass points. The Virial expression
provides a truly discrete description of the system as opposed to
the continuum-based stress definition used in classical finite-
element–based approaches. The stress in volume V composed of
a total of Nt unit cells is simply the volume average of the local
stresses; that is

σ ¼ 1

2V

XNt

i¼1

Viσi ð6Þ

What thus differs between different material domains is the in-
teraction potential from which forces and moments are derived.

Effective Solid Potentials

The effective potential used here for the solid phase(s) considers
both two-body and three-body interactions between two mass
points i and j in the form

Uij ¼ Us
ij þUb

ij ∀ i ∈ Vs ð7Þ

where Us
ij ¼ Us

ij½ð~xj − ~xiÞ · ~en ¼ δnj − δni � stands for any suitable
pairwise potential representative of the solid. For linear poroelastic
systems, this necessarily implies a harmonic expression for this
pairwise potential

Us
ij ¼

1

2
ϵnij

�
δnj − δni

l0ij

�
2

ð8Þ

with ϵnij denoting the axial energy parameter. Similarly, the three-
body and rotational interactions read in the harmonic case (Laubie
et al. 2017b)

Ub
ij ¼

1

2
ϵtij

��
δbj − δbi

l0ij
− ϑt

i

�2

þ
�
δtj − δti
l0ij

þ ϑb
i

�
2

þ
�
δbj − δbi

l0ij
− ϑt

i

�
ðϑt

i − ϑt
jÞ þ

�
δtj − δti
l0ij

þ ϑb
i

�
ðϑb

j − ϑb
i Þ

þ 1

3
½ðϑb

j − ϑb
i Þ2 þ ðϑt

i − ϑt
jÞ2�

�
ð9Þ

where ϵtij = transverse energy parameter. With Eq. (7) at hand, the
forces and moments read

~Fj
i ¼ −∂Uij

∂~δi
¼ ϵnij

l0ij

�
δnj − δni

l0ij

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Fj;n
i

~en þ
ϵtij
l0ij

�
δbj − δbi

l0ij
− 1

2
ðϑt

j þ ϑt
iÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fj;b
i

~eb

þ ϵtij
l0ij

�
δtj − δti
l0ij

þ 1

2
ðϑb

j þ ϑb
i Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fj;t
i

~e

~Mj
i ¼ −∂Uij

∂~ϑi

¼ − ϵtij
2

�
δtj − δti
l0ij

þ 1

3
ðϑb

j þ 2ϑb
i Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mj;b

i

~eb

þ ϵtij
2

�
δbj − δbi

l0ij
− 1

3
ðϑt

j þ 2ϑt
iÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mj;t

i

~ett ð10Þ

The defined harmonic potentials are merely Taylor expansions
of nonharmonic potentials around the equilibrium state of the sys-
tem in the LEM (Laubie et al. 2017b). Thus, the linear poroelastic
formulation herein presented could be extended to nonlinear poroe-
lastic systems when considering nonharmonic potentials without
much loss of generality. Additionally, one can calibrate the energy
parameters to reproduce an effective elastic behavior based on the
lattice and the network chosen. This point will be developed further
in the “Application” section for two different elastic symmetries.

Effective Pore-Pressure Force Field Potential

The simplest case to consider the deformation behavior of the solid
phase due to a pressure in the pore space is the saturated drained
situation, in which the fluid in the pore domain is assumed to com-
municate with an outside reservoir maintained at a constant pres-
sure p, so that in the relaxed state, the same pressure will prevail in
the pore domain. Such a hydrostatic drained stress state, σ ¼ −p1,
necessarily implies that only central-forces are active on each mass

point in the pore domain ~Fj
i ¼ Fj;n

i ~en so that the Virial stress ex-
pression for the entire pore domain of volume Vp and Np voxels
becomes

σ ¼ −p1 ¼ npl
2Vp

hrijFj;n
i ~en ⊗ ~eni ¼

1

2Vp

XNp

i¼1

XNb
i

j¼1

rijF
j;n
i ~eijn ⊗ ~eijn

ð11Þ

© ASCE 04017016-2 J. Nanomech. Micromech.

 J. Nanomech. Micromech., 2017, 7(4): 04017016 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

3.
93

.1
83

.2
21

 o
n 

01
/0

3/
22

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



where npl denotes the number of links in the pore domain. In a
zeroth-order description of the microtexture, Fj;n

i and rij are con-
sidered to be independently distributed and thus not correlated
(Radjai et al. 1998, 2009; Azema and Radjai 2014), which allows
Eq. (11) to be expressed as σ ¼ ðnpl=2VpÞhrFnih~en ⊗ ~eni, which
leads to the equality of traces

3p ¼ npl
2Vp

hrFni ð12Þ

Now, by way of analogy with logarithmic equations of state for
bulk fluids (Poirier and Tarantola 1998), consider a logarithmic
potential UðrijÞ ¼ ω lnðl0ij=rijÞ, and hence Fj;n

i ¼ −∂U=∂rij ¼
ω=rij, where ω ¼ hrFni (of dimension of work) can be viewed
as a fluid characteristic and should be constant. The value of
hrFni can be made independent of rij (which is dependent on
the orientation ~en of the bonds) by simply setting

Fj;n
i ¼ − 6p

rij

Vp

npl
ð13Þ

This relation ensures that the mean pressure is p and the equality
[Eq. (12)] is satisfied. This paves the way for imposing a pressure
inside a domain discretized by a regular lattice

p ¼ − ωnpl
6Vp

ð14Þ

Eq. (13) defines the interaction between pore and solid mass
points in the form of externally supplied work. This perturbation
of the system’s equilibrium is resolved through the theory of mini-
mum potential energy as a new equilibrium position is sought
through energy minimization (Laubie et al. 2017b). Lastly, it is
readily recognized that h~en ⊗ ~eni is the fabric tensorHp, character-
izing the morphology of the pore space. It can be expanded in the
following way:

Hp ¼ 1

npl

XNp

i¼1

XNb
i

j¼1

~en ⊗ ~en ð15Þ

For Eq. (11) to hold, the fabric tensor, Eq. (15), should be diago-
nal, Hp ¼ 1=3trðHpÞ1, with no deviatoric components;
i.e., devðHpÞ ¼ Hp − 1=3trðHpÞ1 ¼ 0, which holds true for any
regular lattice. Furthermore, trðHpÞ ¼ 1 by construction. If the
underlying lattice is not regular and hence not diagonal, then
the values of Fj;n

i would have been dependent not only on the aver-
age pressure to be imposed, but also the orientations of the bonds.

Poroelastic Properties and Ensemble Definitions

The poroelastic properties of materials form much of the backbone
of application of poromechanics theory. This includes the elasticity
tensor C, the tensor of Biot coefficients b, and the solid Biot modu-
lus N. From the composite structure of porous materials, it is
readily understood that these macroscopic properties call for aver-
ages. Such averages are best defined, in statistical mechanics,
within the context of specific statistical ensembles, which—at least
theoretically—include every possible microscopic state of the
system. The advantage of using statistical ensembles for the deter-
mination of the poroelastic properties is that each ensemble is
associated with a characteristic state function or thermodynamic po-
tential that uniquely define—upon minimization—the equilibrium

state of the system in function of a few observable parameters;
much akin to the classical minima theorems of elasticity used in
continuum mechanics, e.g., for the derivation of the state equations
of poroelasticity Eqs. (1) and (2) (Dormieux et al. 2002, 2006). It is
thus shown that making the link between statistical ensembles and
such boundary conditions is quite helpful for the determination of
the poroelastic constants from discrete simulations.

Drained Elasticity Properties in the NVT–Ensemble

The first quantity of interest is the drained elasticity tensor, which
is obtained by letting p ∼ ω ¼ 0. In this drained situation, a regular
displacement boundary condition is prescribed at the boundary
(∂V) of the simulation box

~ξ ¼ E · ~x ∀ ~x ∈ ∂V ð16Þ
where E refers to the macroscopic strain tensor. Such a mechanical
boundary condition is akin to an NVT-ensemble (or canonical en-
semble) at the composite (solid + pore) scale, in that the total num-
ber of particles Nt is constant, the volume (or more generally, the
displacement) of the system (V) is controlled via the boundary con-
dition (16), and the temperature (T) is kept constant. The thermo-
dynamic potential that defines such an ensemble is the Helmholtz
free energy Ψ of the composite system, which realizes a minimum
value at equilibrium (r → r0). Given the mechanical boundary
value problem (E, p ¼ 0), the minimum of the Helmholtz free en-
ergy is strictly equivalent to the minimum of the potential energy of
the solid phase subjected at its boundary to the (displacement)
boundary condition [Eq. (16)] and a zero pressure in the pore space,
and coincides with the free energy of the solid phase(s)

Es
potðEÞ ¼ ΨðNt;V;TÞ

¼ min
~δi;~ϑi

X
linksij∈Vs

0

Uijð~δj − ~δi þ ~rij × ~ϑi; ~ϑj − ~ϑiÞ ð17Þ

The fourth-order stiffness tensor is then obtained by considering
the curvature of the potential energy of the system around the
relaxed state (r → r0)

C ¼ 1

V
∂
∂E

�∂Es
pot

∂E
�				

ω¼0;r→r0

ð18Þ

Biot Pore Pressure Coefficients in the μVT–Ensemble

The determination of the tensor of the Biot pore pressure coeffi-
cients b and the solid’s Biot modulus N requires some further con-
siderations. From the first macroscopic state equation, Eq. (1), it
is realized that the tensor of Biot coefficients is obtained from
the average stresses in an experiment where the strain E is zero,
whereas a constant pressure p prevails in the pore space; exerting
this pressure onto the solid–pore interface. Such conditions are akin
to the Grand canonical ensemble or μVT ensemble at the composite
(solidþ pore) scale, in that (1) the porous system is open at a speci-
fied chemical potential μ, (2) the overall volume is conserved with
E ¼ 0, and (3) the temperature T is kept constant. In this μVT-
ensemble, the characteristic state function that needs to be mini-
mized is the so-called Landau potential (or Grand potential),
Ωðμ;V;TÞ ¼ Ψ − μNf , where Ψ is the Helmholtz free energy,
μ the chemical potential, and Nf the number of particles (here fluid
particles). For the open system, the free energy is the sum of the
free energy of the solid (Ψs) and of the fluid phase (Ψf) [see
Coussy (1995) for a detailed derivation of the thermodynamics
of the porous continuum as an open system], and the latter is

© ASCE 04017016-3 J. Nanomech. Micromech.
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but the difference between the potential energy of the fluid at con-
stant pressure (μNf) and the work by the fluid in the pore space;
i.e.,Ψf ¼ μNf − pðVp − Vp

0 Þ (where Vp and Vp
0 stand for the pore

volumes, respectively, after and before deformation; i.e., Vp ¼ Vϕ;
Vp
0 ¼ Vϕ0, with ϕ the Lagrangian porosity). The Landau potential

for the composite system thus reduces to the classical expression of
the potential energy of the solid phase for the considered boundary
conditions (E ¼ 0, p); that is

Es
potðE¼ 0;pÞ≡Ωðμ;V;TÞ¼min

~δi;~ϑi

½ΨðμVTÞ
s −pVðϕ−ϕ0Þ� ð19Þ

where ΨðμVTÞ
s ¼ P

linksij∈Vs
0
Uijð~δj − ~δi þ ~rij × ~ϑi; ~ϑj − ~ϑiÞ =

Helmholtz free energy of the solid phase.
With the characteristic state function thus defined, the interpar-

ticle forces ~Fj
i in the solid domain are readily determined, permit-

ting the determination of the stress via the virial expression in the
composite μVT ensemble

ΣðμVTÞ ¼ 1

2V

X
i∈V

XNb
i

j¼1

~rij ⊗ ~Fj
i ¼ −

�
1

2V

X
i∈Vs

XNb
i

j¼1

~rij ⊗ ~Fj
i þ ϕ0p1

�
ð20Þ

where the first term on the right-hand side of Eq. (20) is the

contribution of the solid phase with interparticle forces ~Fj
i ¼

∂ΨðμVTÞ
s =∂~rij, whereas the second term represents the contribution

of the pressure prevailing in the (Lagrangian) porosity
ϕ0 ¼ ðVp=VÞ, with pressure p defined by Eq. (14). A straightfor-
ward comparison with the classical equation of state of poroelas-
ticity, Eq. (1), thus leads to the following definition of the second-
order tensor of Biot pore pressure coefficients b:

b ¼ −ΣðμVTÞ

p
¼ 1

p

�
1

2V

X
i∈Vs

XNb
i

j¼1

~rij ⊗ ~Fj
i

�
þ ϕ01 ð21Þ

Hence, all it takes to obtain the tensor of the Biot coefficient is to

determine, in the μVT ensemble, the interparticle forces ~Fj
i in the

solid domain that result from the pore-pressure loading using the
Landau potential expression [Eq. (19)].

Biot Modulus in the NPT–Ensemble

The classical way of determining the Biot modulus is by means of
the so-called unjacketed test, originally proposed by Biot andWillis
(1957). The test consists of placing a sample into a pressure vessel
maintained at the same pressure p as the fluid in the pore space.
Such test conditions are akin to the isothermal–isobaric, NPT–
ensemble of the solid phase (i.e., at the constituent scale, in contrast
to the composite scale), in that: (1) the number of solid particles Ns
are maintained constant, (2) the solid is subjected at its (entire) boun-
dary ∂Vs to a pressurep, while (3) the temperature T is kept constant.
The thermodynamic potential that characterizes the NPT-ensemble
is the Gibbs free energy of the solid phaseGðNs;p;TÞ, which strictly
coincides with the pressure boundary condition to which the solid
is subjected to the solid’s potential energy

Es
pot ≡ GðNs;p;TÞ ¼ min

~δi;~ϑi

ðΨðNPTÞ
s −WpÞ ð22Þ

whereΨðNPTÞ
s = Helmholtz free energy of the solid phase in the con-

sidered ensemble

ΨðNPTÞ
s ¼

X
linksij∈Vs

0

Uijð~δj − ~δi þ ~rij × ~ϑi; ~ϑj − ~ϑiÞ ð23Þ

whereas Wp ¼ −pðVs − Vs
0Þ is the external work realized by the

prescribed pressure p on the solids boundary with Vs − Vs
0 ¼

V0½Ev − ðϕ − ϕ0Þ� the volume change of the solid phase; that is

Wp ¼ −pV0½Ev − ðϕ − ϕ0Þ� ð24Þ

Herein, Ev ¼ ðV − V0Þ=V0 ¼ 1∶E is the relative volume varia-
tion of the simulation box, and ϕ − ϕ0 represents the change of the
(Lagrangian) porosity compared to the reference porosity ϕ0.
Evaluation of Eq. (22) thus requires measurements of the volume
strain (Ev) and the porosity change (ϕ − ϕ0) in the simulations
(as classically done in laboratory tests using the unjacketed test).
Around the equilibrium state, defined by harmonic interactions,
such a determination can be circumvented when evoking
Clapeyron’s formula, which permits a direct determination of
the free energy of the solid in the NPT ensemble from the external

work; i.e., Wp ¼ 2ΨðNPTÞ
s . This in turn provides a direct means to

assess the porosity change from both Eqs. (2) and (24)

ðϕ − ϕ0Þ ¼ b∶Eþ p
N

¼ 1∶Eþ 2ΨðNPTÞ
s

pV0

ð25Þ

Finally, under the considered boundary conditions in the iso-
thermal–isobaric ensemble (relative to the solid), the effective stress
obtained from the virial expression is zero

ΣðNPTÞ þ p1 ¼ 1

2V

X
i∈Vs

XNb
i

j¼1

~rij ⊗ ~Fj
i þ ð1 − ϕ0Þp1 ¼ 0 ð26Þ

where the interaction forces ~Fj
i are obtained by minimizing the po-

tential energy in this isothermal-isobaric ensemble [i.e., Eq. (22)].
Expanding Eq. (25) with strain tensor E ¼ −S∶ð1 − bÞp and S
C−1, the drained compliance tensor of the composite as predicted
by Eq. (1) for ΣðNPTÞ þ p1 ¼ 0, leads to the solid Biot modulus

1

N
¼ 2ΨðNPTÞ

s

p2V0

− ð1 − bÞ∶S∶ð1 − bÞ ð27Þ

It should be emphasized that this determination of the Biot
modulus is strictly valid only when the behavior of the solid phase
is defined by harmonic potentials, for which Clapeyron’s formula
applies. This still holds for nonharmonic potentials around the
equilibrium state r → r0, for which most nonharmonic potential
expressions (e.g., Lennard-Jones) degenerate to harmonic expres-
sions. The Biot modulus is thus confirmed as a measure of the sol-
id’s elasticity around the equilibrium state, much akin to the drained
elasticity tensor, as defined by Eq. (18).

Application

By way of application, the proposed discrete model of poroelastic-
ity is implemented for simple cubic (SC) lattice systems. The LEM
approach here used follows the approach developed by Laubie et al.
(2017b) for solids, where specific details about calibration and
numerical implementation of the method can be found. In short,
for all the cases considered herein, a cubic simulation box of side
length L ¼ a0ðn − 1Þ composed of ðn − 1Þ3 unit cells of size a0 is
used, where n stands for the number of mass points in any given
direction. The mass points form a regular lattice with their interac-
tions encapsulated by a network of links that connects a mass point
to its 26 neighboring mass points. Thus, mechanical information is
propagated through this lattice network in 13 directions. This forms
the so-called D3Q26 lattice structure consisting of 6 box-links of

© ASCE 04017016-4 J. Nanomech. Micromech.
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rest-length l0 ¼ a0, 8 cross-diagonal links of length
ffiffiffi
3

p
a0, and 12

in-plane-diagonal links of length
ffiffiffi
2

p
a0 (Fig. 1).

Solid Potential Parameter Calibration

With a focus on linear poroelasticity, the interactions between mass
points of the solid phase(s) (volume Vs) are defined by harmonic

potentials, requiring the calibration of the energy parameters ϵðn;tÞij

for mass points i belonging to a specific solid phase and link j ¼ 1,
26, with the understanding that links in same directions have the
same energy parameters. These energy parameters define the cur-
vature of the potential energy around the equilibrium state, in the
sense of the expressions in Eqs. (17) and (18) for a pure solid phase
subjected at its boundary to the regular displacement condition in
Eq. (16). It is thus readily understood that the 2 × 13 ¼ 26 energy

parameters ϵðn;tÞij need to be calibrated with respect to the elasticity
of the solid, expressed by stiffness tensor Cs. However, the choice
of lattice or network used imposes some constraints on the range of
elastic behavior that can be captured. This is consistent with the
current understanding of the link between texture (here lattice struc-
ture) and deformation behavior of materials (Greaves et al. 2011).
Specifically, in the isotropic case, it has been shown that the D3Q26
lattice structure in the LEM, with nonnegative normal and tangen-

tial energy parameters ϵðn;tÞij ≥ 0, is able to capture the following
range of solid Poisson’s ratios (Laubie et al. 2017b):

−1 ≤ νs ¼ Cs
13

ðCs
11 þ Cs

13Þ
≤ 1=4 ð28Þ

where the Voigt notations for stiffness constants is used;
i.e., Cs

11 ¼ Cs
1111, C

s
13 ¼ Cs

1133. The upper bound in Eq. (28) is
the limit on Poisson’s ratios for the central-force lattice when
three-body interactions are neglected (ϵtij ¼ 0). For ν > 1=4, one
needs to consider a different combination of lattice or network
(e.g., Norris 2014). Given isotropic symmetry, a maximum of
six nonzero energy parameters can be used to calibrate the isotropic
elastic behavior. For 0 ≤ νs ≤ 1=4, among possible calibrations,
only three nonzero energy parameters are required ðϵn1; ϵt1Þ for
the 6 box-links of rest-length l0 ¼ a0 and ϵn4 for the 12 in-
plane-diagonal links of length

ffiffiffi
2

p
a0 (for numbering of the links,

see Fig. 1). Considering a discretization by n mass points of unit

cell size a0, the following explicit parameterization of these energy
parameters in function of the isotropic plane-strain modulus Ms ¼
Cs
11 − ðCs

13Þ2=Cs
11 ¼ Es=½1 − ðνsÞ2� (with Es = Young’s modulus)

and the Poisson’s ratio νs ∈ ½0; 1=4� is obtained:
ϵn1

Msa30
¼ ðn − 1Þ2

n2
ð1 − 3νsÞð1 − νsÞ

1 − 2νs

ϵn4
Msa30

¼ ðn − 1Þ
n

νsð1 − νsÞ
1 − 2νs

ϵt1
Msa30

¼ ðn − 1Þ2
n2

ð1 − 4νsÞð1 − νsÞ
1 − 2νs

ð29Þ

From this parametrization, it is also recognized that the three
energy parameters are not independent, but related by the Poisson’s
ratio

ϵt1
ϵn1

¼ ð1 − 4νsÞ
ð1 − 3νsÞ ≤ 1;

ϵn4
ϵn1

¼ n
nþ 1

νs

ð1 − 3νsÞ ð30Þ

That is, one energy parameter is required in the isotropic case,
with the other ones being scaled by the Poisson’s ratio of the solid.

Similar restrictions can be derived for transversely isotropic
materials, for which the nonzero components of the stiffness
tensor—in Voigt notation—are Cs

11 ¼ Cs
22, C

s
12, C

s
13 ¼ Cs

23, C
s
33,

Cs
44 ¼ Cs

55, whereas Cs
11 − Cs

12 ¼ 2Cs
66; namely (Laubie et al.

2017b)

Cs
12 ≤ Cs

66ði:e:;Cs
12 ≤ 1

3
Cs
11Þ; Cs

13 ≤ Cs
44 ð31Þ

Considering rotational material symmetry around the ~e3− axis,
there are, a priori, a total of eight energy parameters that can be
used for fitting the elastic properties, which reduce (thanks to
the condition C11 − C12 ¼ 2C66) to six; namely ðϵn1; ϵt1Þ and
ðϵn4 ; ϵt4Þ for links in the plane of symmetry ~e1 × ~e2 [ðϵn1 ; ϵt1Þ for
the four box-links of rest length l0 ¼ a0 oriented in the ~e1- and
~e2-directions, and ðϵn4 ; ϵt4Þ for the four in-plane diagonals of lengthffiffiffi
2

p
a0; see Fig. 1] and ϵn3 and ϵ

n
6 for links in the ~e3 × ~e1 and ~e3 × ~e2

plane (ϵn3 for the two box-links oriented in the ~e3-direction; and ϵn6
for the eight in-plane diagonals of length

ffiffiffi
2

p
a0; Fig. 1), for which

the nonzero elastic constants of the transversely isotropic material
are linearly linked to the energy parameters by

Fig. 1. (a) Degrees of freedom of a link between nodes i and j; (b) D3Q26 unit cell; (c) simulation box

© ASCE 04017016-5 J. Nanomech. Micromech.
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0
BBBBBBBBBB@

Cs
11

Cs
12

Cs
33

Cs
13

Cs
44

Cs
11 − Cs

12 − 2Cs
66 ¼ 0

1
CCCCCCCCCCA

¼ 1

a30

2
66666666666666666666664

n2

ðn − 1Þ2
n

2ðn − 1Þ 0
n

2ðn − 1Þ 0
n

n − 1

0
n

2ðn − 1Þ 0 0 0 − n
2ðn − 1Þ

0 0
n2

ðn − 1Þ2
n

n − 1
0

n
n − 1

0 0 0
n

2ðn − 1Þ 0 − n
2ðn − 1Þ

0 0 0
n

2ðn − 1Þ
n2

2ðn − 1Þ2
n

2ðn − 1Þ
n2

ðn − 1Þ2 − n
n − 1

0
n

2ðn − 1Þ − n2

ðn − 1Þ2
n

n − 1

3
77777777777777777777775

0
BBBBBBBBBB@

ϵn1
ϵn4
ϵn3
ϵn6
ϵt1
ϵt4

1
CCCCCCCCCCA

ð32Þ

Continuum Micromechanics Reference Solutions

A cubic simulation box of size L ¼ a0ðn − 1Þwith a centric spheri-
cal pore of different pore radius R corresponding to different poros-
ities is considered

ϕ0 ¼
np

ðn − 1Þ3 ð33Þ

where ðn − 1Þ3 = total number of mass points discretizing the solid
and the pore volumes; and np = number of mass points defining the
pore space in a simple cubic lattice. The focus of the validation
examples is to compare the poroelastic properties one obtains using
the discrete approach with analytical expressions of microporome-
chanics based on the assumption of scale separability. In this vein,
the pore morphology herein considered is akin to a matrix-pore in-
clusion microtexture often associated with the Mori-Tanaka
effective estimates (Mori and Tanaka 1973; Beneviste 1987) for
which linear homogenization methods provide the following ex-
pressions: for Eq. (1), the drained stiffness tensor (Dormieux
et al. 2002, 2006):

C ¼ ð1 − ϕ0ÞCs∶hAiVs
ð34Þ

Eq. (2), the tensor of Biot pore pressure coefficients with ϕ01 and 1
as its lower and upper bounds, respectively

b ¼ 1∶ðI − Ss∶CÞ ð35Þ
and Eq. (3), the solid Biot modulus

1

N
¼ 1∶Ss∶ðb − ϕ01Þ ð36Þ

where hAiVs
in Eq. (34) is the average strain localization tensor

over the solid phase (Vs). In continuum micromechanics, the strain
localization tensor links the macroscopic strain E imposed as a
boundary condition [Eq. (16)] to the continuous microstrains
ϵð~zÞ ¼ Að~zÞ∶E into the solid phase ∀~z ∈ Vs. In general, the average
strain localization tensor for the rth phase given a matrix stiffness
Cs reads

hAir ¼ ½Iþ P∶ðCr − CsÞ�−1∶hIþ P∶ðCr − CsÞ−1�i−1V ð37Þ
with P, the generalized Hill concentration tensor, defined as (Zaoui
2002)

Pijkl ¼ −
� ∂2

∂xj∂xl
Z
Ω
Gikð~x − ~x 0Þ

�
ðijÞðklÞ

ð38Þ

where ðijÞðklÞ = symmetrization; and Gijð~x − ~x 0Þ = second-order
Green’s tensor for generalized linear elastic anisotropic media.
In the micro and macro isotropic cases; i.e., C ¼ 3KJþ 2GK
and b ¼ b1, the previous relations simplify for a matrix-inclusion
microtexture as follows (Dormieux et al. 2006):

K
ks

¼ 4gsð1 − ϕ0Þ
3ksϕ0 þ 4gs

ð39Þ

G
gs

¼ ð9ks þ 8gsÞð1 − ϕ0Þ
ð6ϕ0 þ 9Þks þ ð12ϕ0 þ 8Þgs ð40Þ

b ¼ 1 − K
ks

ð41Þ

1

N
¼ b − ϕ0

ks
ð42Þ

For the transversely isotropic case, the effective elasticity can be
obtained from Eq. (34), whereas expressions (35) and (36) in this
case; i.e., b ¼ b1ð1 − ~e3 ⊗ ~e3Þ þ b3~e3 ⊗ ~e3, read

b1ð¼ b2Þ ¼ 1 − ðSs11 þ Ss12ÞðC11 þ C12Þ
− Ss13ðC11 þ C12 þ 2C13Þ − Ss33C13 ð43Þ

b3 ¼ 1−2Ss11C13−2Ss12C13−2Ss13ðC13þC33Þ−Ss33C33 ð44Þ

1

N
¼ 2ðb1−ϕ0ÞðSs11þSs12þSs13Þþðb3−ϕ0Þð2Ss13þSs33Þ ð45Þ

For comparison of the elasticity content in the transversely
isotropic case, the indentation moduli expressions for transversely
isotropic materials are used, which nicely condense the different
macro and micro stiffness parameters into two single elasticity
parameters that can be probed in contact experiments, in and nor-
mal to the axis of rotational symmetry (Delafargue and Ulm 2004)

M3ðx3Þ
ms

3

¼ 2

ms
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C33−C2

13

C11

�
1

C44

þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C33

p þC13

�−1
s

ð46aÞ

M1ðx1Þ
ms

1

≃ 1

ms
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11

C33

s
C2
11 − C2

12

C11

M3

vuut ð46bÞ
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where ms
3 and ms

1 = indentation moduli of the solid phase. These
continuum micromechanics solutions are strictly valid only in the
case of scale separability between the size of the heterogeneity
[pore size R=a0 ¼ ½ð3=4πÞnp�1=3] and the size of the representative
volume element [rev size L=a0 ¼ ðn − 1Þ] and hence for
np ≪ ð4π=3Þðn − 1Þ3, a condition to be challenged in the LEM
simulations. The continuum relations are thus an ideal target to
compare with the discrete solutions, using Eq. (18) for the elasticity
and the ensemble definitions of the tensor of Biot coefficients
[Eq. (21)] and of the solid Biot modulus [Eq. (27)], respectively.

Validation Results

Cubic simulation boxes of different lengths L ¼ f50; 70; 90g, with
a0 ¼ 1, were considered with a spherical pore centered inside. The
pore radius R was gradually increased, with a maximum pore

radius-to-box-size ratio R=L ¼ 0.45 corresponding to a porosity
ϕ0 ¼ 4π=3ðR=LÞ3 ¼ 0.38. The case of isotropic solid behavior, de-
fined by a bulk modulus ks ¼ 20 GPa and a Poisson’s ratio of
νs ¼ 0.2, is considered first. The energy parameters ϵðn;tÞij for the
solid were thus calibrated using Eq. (29). The effective stiffness
tensor C was obtained through evaluation of Eq. (18) by consid-
ering in the simulations appropriate displacement boundary condi-
tions as defined in Eq. (16). Fig. 2(a) compares the simulation
results with the effective stiffness coefficients obtained from the
Mori-Tanaka homogenization scheme, Eqs. (39) and (40). Further-
more, the effective moduli, K and Gð¼ C44Þ, are displayed in
Figs. 2(c and d), respectively. Next, poroelastic properties are
considered by first focusing on the μVT ensemble and the discrete
definition of the Biot pore pressure coefficient b. A pressure
p=ks ¼ 0.05 is imposed inside the pore space using Eq. (14) in
the μVT ensemble. Using the theorem of minimum potential

(a)

(c)

(b)

(d) (e)

(f) (g) (h)

Fig. 2. Cij—in Voigt’s notation—variations versus R=L for the isotropic case (a) and for the transversely isotropic case (b); normalized bulk (c) and
shear (d) moduli; normalized indentation moduli (f and g); δiso:ð2eÞ and δtiðhÞ versus R=L for isotropic and transversely isotropic cases respectively;
“MT” refers to the Mori-Tanaka continuum solution, whereas “LEM” represents discrete simulations

© ASCE 04017016-7 J. Nanomech. Micromech.
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energy as stated in Eq. (22), interparticle forces ~Fj
i induced from the

pore-pressure loading are obtained. This paves the way to evaluate
b from Eq. (21). Fig. 3(a) compares the simulation results with the
reference solution [Eq. (41)], using either the previously deter-
mined effective bulk moduli K [labeled “Direct” in Fig. 2(c)] or
the Mori-Tanaka estimate [labeled “MT” in Fig. 2(c)] via
Eq. (39). Lastly, the Biot solid modulus N is obtained by consid-
ering its NPT ensemble definition [Eq. (25)], which in the isotropic
case reads

1

NðNPTÞ ¼
2UðNPTÞ

p2V0

− 3ðb − 1Þ2
C11 þ 2C12

ð47Þ

The evaluation is achieved here by prescribing in the simula-
tions a pressure p=ks ¼ 0.05 both inside the pore space using
Eq. (14) and on the boundaries of the simulation box. Thus, all
it takes to obtain N from Eq. (47) is the computation of the free
energy of the solid UðNPTÞ once the structure finds its new equilib-
rium through Eq. (22), and the previously determined Biot
coefficient. Fig. 3(b) displays the comparison between the
NPT-simulation results, using b from discrete theory in the
μVT ensemble labeled as “LEM ðNPTÞ�” and b determined
directly from simulated effective elasticity in the LEM, labeled

as “LEM ðNPTÞ��” against its continuum reference solution,
Eq. (42), labeled in Fig. 3(b) as “Direct.”

The same cubic simulation boxes were considered for validating
the transversely isotropic poroelastic properties obtained from
simulation vis-á-vis their continuum counterparts. To this end, the

energy parameters ϵðn;tÞij were calibrated using Eq. (32) to reproduce
the following solid elastic properties: Cs

11 ¼ 55, Cs
12 ¼ 10,

Cs
13 ¼ 14 GPa, Cs

33 ¼ 28, and Cs
44 ¼ 17 GPa, and thus the solid

indentation moduli [according to Eq. (4b)] ms
3 ¼ 31.8 and

ms
1 ¼ 48.7 GPa. Fig. 2(b) shows the comparison of the simulated

effective elasticity against the continuum values from the matrix-
pore inclusion model captured via Mori-Tanaka effective estimates.
Furthermore, the elasticity content is condensed into the normal-
ized indentation moduli [Eqs. (46a) and (46b)] and compared with
the continuum matrix-pore inclusion (Mori-Tanaka) model,
Eq. (34), as displayed in Figs. 2(f and g). Using the same μVT
simulation strategy as in the isotropic case, a pore-pressure loading
normalized by the average Voigt-Reuss-Hill (VRH) bulk modulus
for materials with hexagonal symmetry (e.g., Berryman 2005)
p=ksVRH ¼ 0.05 is imposed. Figs. 4(a and b) display a comparison
of the μVT simulation results of the Biot coefficients of the con-
sidered transversely isotropic medium b ¼ b1ð1 − ~e3 ⊗ ~e3Þ þ
b3~e3 ⊗ ~e3, with the analytical solutions [Eqs. (43) and (44)] using

(a) (b)

Fig. 3. These plots correspond to the isotropic solid case: (a) simulated b labeled as “LEM (μVT),” continuum-based b calculated from effective
elasticity obtained from simulations in LEM, labeled as “Direct,” and b estimated from Mori-Tanaka labeled as “MT”; (b) N with simulated b labeled
as “LEM (NPT�),” with calculated b determined directly from simulations in LEM, labeled as “LEM (NPT��)”; N from Mori-Tanaka estimation is
labeled as “MT”

(a) (b) (c)

Fig. 4. These plots correspond to the transversely isotropic solid case: (a and b) simulated b1 and b3 labeled as “LEM (μVT),” continuum-based b1
and b3 using effective elasticity obtained from direct simulations, labeled as “Direct,” and the Mori-Tanaka estimations labeled as “MT”; (c) N using b
from simulations, labeled as “LEM (NPT�),” and from b obtained through direct effective elasticity simulations, labeled as “LEM (NPT��)”; the
Mori-Tanaka estimation for N is labeled as “MT”

© ASCE 04017016-8 J. Nanomech. Micromech.
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as inputs either the simulated effective elasticity obtained by the
LEM, labeled as “Direct,” or the analytical homogenized elasticity
as obtained from Eq. (34), labeled “MT.” Finally, a comparison of
theNPT simulation results with the analytical expression [Eq. (45)]
is shown in Fig. 4(c), displaying the evolution of the solid Biot
modulus N with R=L. In the evaluation of N from the NPT sim-
ulation results (i.e., the same pressure p=ksVRH ¼ 0.05 imposed on
the pore wall and the simulation box), a specification of Eq. (25) for
the transversely isotropic case reads

1

NðNPTÞ ¼
2UðNPTÞ

p2V0

−
�

2C11ðb1 − 1Þ2
ðC11 − C12ÞðC11 þ 2C12Þ

þ ðb3 − 1Þ½ðb3 − 1ÞðC11 þ C12Þ − 4C13ðb1 − 1Þ�
C33ðC11 þ C12Þ − 2C2

13

�
ð48Þ

where UðNPTÞ = free energy of the solid links in the NPT ensemble,
whereas the effective elasticityCij and Biot coefficients b1 and b3 are
previously determined by simulations [Figs. 2(b) and 4(a and b)].

Discussion

The idealized structures considered in this study represent a micro-
texture best captured by the Mori-Tanaka homogenization scheme.
The Mori-Tanaka scheme is often associated with a matrix-
inclusion microtexture where the matrix phase overshadows the
mechanical response of the inclusion phase(s) while considering
interactions between inclusions (in contrast to the dilute scheme;
see, for instance, Dormieux et al. 2006). Furthermore, for a two-
phase composite with spherical inclusions, the Mori-Tanaka
scheme corresponds to the Hashin-Shtrikman bounds (Weng 1984)
and, specifically for spherical voids, the upper Hashin-Shtrikman
bound. However, the presented methodology to estimate poroelas-
tic properties of heterogeneous media is independent of the micro-
textures being considered.

Although the discrete simulation results compare well against
their continuum poroelastic counterparts for both the isotropic
and transversely isotropic cases, a deviation is observed at higher
porosity values that merits further discussion. Specifically, for
small porosities, ϕ0 < 5 × 10−3 (or R=L ≤ 0.1), the two approaches
provide similar results. This is not surprising because—within this
limit—scale separability, delineating the domain of application of
the continuum models (here the Mori-Tanaka model), strictly ap-
plies. Beyond that limit, however, the results obtained from the dis-
crete and continuum approaches begin to differ. One possible
reason for the observed deviations is related to finite size effects

associated with the finite size of the simulation box, noting that
the elementary voxel size (a0) remains much smaller than the size
of the elementary heterogeneity at high porosities. To explore this
further, two quantities, δiso: and δti:, are defined to capture any de-
viations from the imposed elastic solid symmetry for the isotropic
and transversely isotropic cases; that is, for the isotropic case

δiso: ¼
jC44 − 1

2
ðC11 − C12Þj
C44

× 100 ð49Þ

and for the transversely isotropic case

δti: ¼
jC66 − 1

2
ðC11 − C12Þj
C66

× 100 ð50Þ

Using the elasticity constants Cij obtained from the simulations,
Figs. 2(e and h) plot δiso: and δti: versus R=L, showing that for
R=L > 0.1 the effective (i.e., composite) elasticity content captured
by the simulations departs from the material symmetries of the solid
phase. Within the range of considered values, δiso: ≤ 4 in the iso-
tropic case and δti: ≤ 8 in the transversely isotropic case. On the
other hand, the simulation results deviate from the continuum
solution for the poroelastic constants [Figs. 2(a and b)], for which
the continuum solutions [i.e., Eqs. (41) and (42) in the isotropic
case and Eqs. (43)–(45) for the transversely isotropic case] hold
irrespective of elastic homogenization scheme. Thus, the observed
deviation between discrete simulations and continuum calculations
in the high porosity limit for elastic and poroelastic properties
seems to be rooted in the finite size of the system as it challenges
both the application of Eshelby’s solution for an ellipsoidal inclu-
sion in an infinite medium (Eshelby 1957) and the Mori-Tanaka
homogenization scheme’s subjection of inclusions to the first mo-
ment (mean) of matrix stresses (Mori and Tanaka 1973; Beneviste
1987). The same deviation is observed for highly disordered sys-
tems (Laubie et al. 2017a) but attributed to the high stress concen-
trations between pore walls. In this vein, the probability density
function (PDF) of normalized solid stresses of the considered ideal-
ized pore-matrix structures in the μVT ensemble is plotted in Fig. 5
for three different R=L ratios. In violation of scale separability, for
R=L ¼ 0.157 and R=L ¼ 0.229, normalized stresses follow Gaus-
sian distributions. However, the long tails for R=L ¼ 0.443 indicate
areas of high stress concentration, a feature not captured by mean-
field–based theories of micromechanics. This is intimately related
to the requirement of scale separability in homogenization theory.
A key property of scale separability exploited in the theory of
homogenization is that the local problem cannot see the boundaries
(Pavliotis and Stuart 2007), which is clearly violated in cases of
high R=L ratios studied here.

Fig. 5. Probability density functions of σxx=p in the μVT ensemble for the considered matrix-pore structures for a transversely isotropic solid; among
the three R=L ratios plotted, one can observed the long distribution tails for R=L ¼ 0.443, indicative of high stress concentration between the pore
wall and simulation boundary box
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Surface energy effects are incorporated in poromechanics by
making a distinction between the free energy stored elastically into
the solid matrix ψs and energy u stored at the solid–fluid interface,
such that Ψs ¼ ψsðE;pÞ þ uðE;pÞ, with the energy balance
for the interface at equilibrium expressed as (Vandamme et al.
2010; Brochard et al. 2012)

du ¼ ~σsds ð51Þ

where ~σs denotes surface stress and s represents the actual area of
the pore walls per unit volume of porous material in its reference
configuration. Furthermore, for example, in the case of adsorption
in a linearly elastic isotropic porous material, one can obtain
material parameters αϵ and αφ to quantify strain and porosity
changes due to surface stresses, respectively (Vandamme et al.
2010). In this vein, the proposed method can be extended to capture
adsorption-induced structural phase transitions in a porous material
using an osmotic ensemble (Snurr et al. 1993; Mehta and Kofke
1994; Coudert et al. 2011)

Ωos:ðT;PÞ ¼ Ψs þ PV −
Z

P

0

Nads:ðT;pÞVmðT;pÞdp ð52Þ

where T, P, Ψs, V, Nads:, and Vm = temperature, pressure, the free
energy of the solid in the absence of adsorbed molecules, the vol-
ume of the porous host, the number of adsorbed molecules inside
the host, and the molar volume of the adsorbing species in its bulk
state, respectively. Then, one seeks the structure that minimizes
Ωos:. Once this structure is obtained, Nads:ðT;PÞ can be predicted
with standard grand canonical Monte Carlo (GCMC) simulations.
Classically, the main challenge of using Eq. (52) is access to Ψs,
which would be readily available via the LEM.

Conclusions

As the resolution of microtexture and heterogeneity of porous ma-
terials is progressing rapidly thanks to advancements in, e.g., CT
imaging techniques (Hubler et al. 2017), there is a need to adapt the
tools of poromechanics to model and predict the deformation of
porous materials in response to various external loadings. The dis-
crete poromechanics approach proposed and implemented in the
lattice element method aims at contributing to this effort well be-
yond the classical mean-field–based theories of continuum micro-
poromechanics, which do not capture microtextural information
beyond one-point correlation functions and are confined in their
application by the scale separability condition. Specifically, the dis-
crete nature of the approach provides access to local stresses and
displacements as well as force flow in a heterogeneous system,
which can illuminate the path for understanding stress and strain
localization in a multiphase porous composite and form a basis
for subsequent refinements to include irreversible deformation
(including fracture), deformation during flow, and so on. The
following points of observation deserve attention:
1. The discrete approach herein proposed considers a porous ma-

terial as an ensemble of mass points that interact via forces and
moments that derive from effective potentials. Illustrated here
for harmonic potentials for both two-body and three-body inter-
actions, it is thus readily understood that both the solid and
composite responses are relevant for linear poroelastic theory
only. However, this linear discrete poromechanics model can,
in a straightforward manner, be extended to the nonlinear
case through the consideration of nonharmonic effective poten-
tials (such as Lennard-Jones, Morse potential, and so on),
whose Taylor expansion around the (undeformed) equilibrium

configuration is the harmonic case. In other words, the calibra-
tion procedure herein suggested for the interaction energies
(“well-depth”) remains valid and just needs to be refined to
calibrate nonlinear potential parameters. As such, the LEM can
be contrasted with finite-element–based approaches because it
provides a consistent framework to coarse-grain interaction po-
tentials validated at a lower scale;

2. Reformulated within the context of statistical physics, the dis-
crete approach thus derived provides access to the classical por-
oelastic properties of highly heterogeneous porous materials as
macroscopic properties relevant to specific statistical ensemble
definitions. It was thus shown that the results from an μVT-
ensemble provide access to the tensor of Biot pore pressure
coefficients b, whereas the results from an NPT-ensemble per-
mit determination of the Biot solid modulus N. To achieve this
goal, an original reformulation of drained pressure conditions
was proposed to translate pressure in the pore space into inter-
action forces. Though the approach was here derived for a con-
stant pressure prevailing in the pore space, it could equally be
applied to varying pressures prevailing in the pore space. The
approach as such could thus possibly be used for coupled flow-
deformation problems and via some minor adaptation for
partially saturated situations, which will be reported in future
work; and

3. The discrete approach herein proposed removes by its very
nature the assumption of scale separability that delineates con-
tinuum microporomechanics approaches. This opens new in-
sights into the intimate interplay between the constituent and
composite behavior of porous materials. The proposed approach
can be viewed as a powerful tool to link micro to macro behavior
of porous materials, specifically for porous materials exhibiting
a large size range of heterogeneities that does not permit scale
separation.
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