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SUMMARY
A goal in visual neuroscience is to explain how neurons respond to natural scenes. However, neurons are
generally tested using simpler stimuli, often because they can be transformed smoothly, allowing the mea-
surement of tuning functions (i.e., response peaks and slopes). Here, we test the idea that all classic tuning
curves can be viewed as slices of a higher-dimensional tuning landscape. We use activation-maximizing
stimuli (‘‘prototypes’’) as landmarks in a generative image space and map tuning functions around these
peaks. We find that neurons show smooth bell-shaped tuning consistent with radial basis functions, span-
ning a vast image transformation range, with systematic differences in landscape geometry from V1 to infe-
rotemporal cortex. By modeling these trends, we infer that neurons in the higher visual cortex have higher
intrinsic feature dimensionality. Overall, these results suggest that visual neurons are better viewed as
signaling distances to prototypes on an image manifold.
INTRODUCTION

A central goal in sensory neuroscience is to explain how neurons

respond to natural images. Yet, to approach that understanding,

the field has had to rely on simplified stimuli. Simple visual stimuli

are easier to transform smoothly, which means that they can be

used to generate tuning curves, descriptions of the relationship

between a neuron’s firing rate and a key ‘‘variable of interest’’

(Seung and Sompolinsky, 1993). The best-known example is

the orientation tuning curve in primary visual cortex (V1) (Fig-

ure 1A). Here, the variable of interest is orientation, implemented

using images of gratings at different slants. If a V1 neuron shows

higher activity in response to a particular orientation, with

smoothly decreasing activity to gratings with dissimilar orienta-

tions, then it is concluded that this space is encoded by the

cell (Campbell et al., 1968). This type of tuning function has

been a reliable tool in studies of the early visual cortex (V1, V2,

V4) (Anzai et al., 2007; Hubel and Livingstone, 1987; Yau et al.,

2013) and in dorsal cortical areas, such as the middle temporal

(Maunsell and van Essen, 1983). Decades of work have resulted

in the accumulation of an open set of variables describing

neuronal function. However, there is no rationale about the

uniqueness of any of these variables, nor an estimated number

of all other potential variables that could be encoded by the

visual cortex. How many other explicit variables could there

be? How many more to explain a neuron’s response to natural

images?

Here, we take a broader perspective on this problem, by

considering the concept of a tuning landscape, defined as the

neuronal response function over the entire image manifold.

Since the natural image manifold is a bounded space (topologi-

cally compact), if neuronal responses represent a continuous
C
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function, they have to exhibit a maximum in that space (as per

the extreme value theorem) (Munkres, 2000); when input devi-

ates from the maximum, the function will smoothly decay or

stay constant. Given this maximum, we can revisit a framework

where such a peak represents a special combination of visual at-

tributes stored by the neuron—a prototype (Edelman, 1999;

Rosch, 1973) (Figure 1B). In this framework, prototypes serve

as landmarks in this representational space, and the neuron’s

tuning function signals the similarity between any given visual

input and its prototype(s) (Poggio and Girosi, 1990a, 1990b). If

this mechanism is accurate, then it follows that classic tuning

axes (e.g., orientation) are accurate descriptions of neuronal

function, but not unique. A more general distance-based

function could explain why neurons respond to nearly all kinds

of image types, from artificial computer-generated stimuli to

randomly selected natural images (Figure 1C). The theoretical

foundations for this concept have been developed extensively,

partially as solutions to view invariance (e.g., radial basis function

networks) (Maruyama et al., 1992; Poggio and Girosi, 1990a,

1990b), and as kernel machines (Anselmi et al., 2015) for visual

recognition. While this idea has been tested in some electro-

physiological (Logothetis et al., 1995) and imaging studies (Kay

and Yeatman, 2017), its full explanatory potential has not been

outlined, partially because there has been (1) no clear way to

identify the specific landmarks (prototypes) represented by

neurons and (2) no easy way to smoothly manipulate complex

naturalistic images. In this study, we solve both problems using

image generative models. We used a deep generator (Dosovit-

skiy and Brox, 2016) that maps 4,096-dimensional latent vectors

to naturalistic images. This model provided a parametric proxy

for natural image space, allowing us to smoothly manipulate

natural images and to use search algorithms (optimizers) to
ell Reports 41, 111595, November 8, 2022 ª 2022 The Author(s). 1
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Figure 1. Conceptual approach

(A) Orientation tuning curve (mean ± SEM) for a V1

multiunit site as evoked by Gabor patches.

(B) Schematic of a conceptual ‘‘tuning landscape’’,

the neuron’s activation function over the space of

all visual inputs (2D images); schematic shows two

input axes, green star shows location of peak; lines

over the landscape illustrate different experimen-

tally defined tuning axes (e.g., orientation, curva-

ture) as represented by images.

(C) Responses (mean ± SEM) of a single neuron in

anterior V4 to randomly selected stimuli; inset

shows top four images.

(D) Workflow for the Evolution of a preferred image

(prototype), combining the image generator (G,

latent codes as inputs and images as outputs),

neuronal responses to each generator image, and

an optimization algorithm (CMA-ES) that samples

the generator’s latent space to maximize neuronal

responses.

(E) Main experimental strategy: a 2-fold approach

to identify a peak in the image generator space

(Evolution) followed by an experiment character-

izing neuronal responses as image moves away

from preferred location in the generator space

(Manifold) (Figure S1).
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find tuning peaks in this space. We characterized the tuning

landscape of neurons in V1/V2, V4, and inferotemporal cortex

(IT) (Figures 1D and 1E), by mapping neuronal responses on a

2D manifold sampled around the peak, then identifying neuronal

tuning shape, extent, and smoothness. We also explored the

global distribution of peaks by conducting image searches in

reduced subspaces. We found three systematic changes in

both in vivo and in silico visual hierarchies: the tuning width

decreased along the hierarchy, the search convergence time

increased, and there was an increasing gap in responses be-

tween reduced subspaces and the full space. We explain these

trends using a simple model of radial tuning varying in tuning

width and intrinsic tuned dimensionality. Overall, our results sug-

gest that ventral stream neurons can be viewed as operating in a

multidimensional distance space, in analogy to hippocampal

place cells, where responses signal the proximity between two

points in physical space—the neuron’s spatial field center at

ðx0; y0Þ and the input location at ðx1;y1Þ. In this analogy, the radial

distance is the primary functional feature, while the direction of

approach to the spatial field center is secondary.

RESULTS

Neurons show bell-shaped tuning around peaks in the
generator space
Tomeasure the shape and extent of neuronal tuning in the gener-

ator space, our experimental approach comprised two parts, an

Evolution and a Manifold experiment (Figures 1D and 1E). The

Evolution experiment identified images that maximized neuronal

responses, and the Manifold experiment sampled the neighbor-

hood around such images. This allowed us to measure a local
2 Cell Reports 41, 111595, November 8, 2022
tuning landscape and to characterize the width and smoothness

of tuning around the observed peak.

Evolution experiments

This methodology was used previously (Rose et al., 2021). In

brief, after selection of a neuronal site (single or multiunit) in

V1/V2, V4, or IT (receptive fields in Figure S1A), we presented

shapeless, texture generator images, and recorded the firing

rates evoked by each image. These single-trial responses

were used as scores for the input vectors behind each gener-

ated image; then the optimizer (CMA-ES algorithm) (Loshchi-

lov, 2017) took the scores and vectors and proposed new

input vectors likely to maximize firing rates in the next gener-

ation. These input vectors were fed back into the generator to

create stimuli for the next round, closing the loop. Each cycle

lasted for 0.5–1 min; each experiment ran for �30 min, until

the neuronal site’s mean response stabilized into a local

maximum—having ‘‘evolved’’ a preferred stimulus (Figure 2B).

We refer to these GAN-derived preferred stimuli as proto-

types, as inspired by prototype and similarity theory, which

suggests that complicated concepts may be summarized by

templates (Edelman, 1999; Leopold et al., 2001). Prototypes

are pictorial illustrations of the specific combinations of

colors, shapes, and textures encoded at each given site;

they are often complex (Tanaka, 2003), and, while consistent

in shape and color over time, upon repeated recordings they

can vary in size, position, and other nuisance variables.

Each experiment also included the presentation of reference

images used to track neuronal isolation stability; these

included photographs, Gabor patches, or other stimuli, de-

pending on the site’s preferences, as established in separate

experiments (Rose et al., 2021).
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Figure 2. Characterizing tuning landscapes

(A) Schematic illustrating the two-part design for

defining the tuning landscape: Evolution and Mani-

fold experiments. The blue-yellow curve illustrates

the trajectory of latent vectors during an Evolution

experiment, as projected onto its top-three prin-

cipal-component space, with color representing

generation number (blue, first; yellow, last). This

trajectory was measured in an Evolution experiment

driven by a single neuron in posterior IT. The orange

hemisphere illustrates the sampling space for

Manifold experiments, based on the hemisphere in

the top-three principal-component space with the

longitude and latitude grid (18� intervals). This

hemisphere explored the manifold around the

approximate endpoint of the Evolution trajectory.

(B) Change in generated images throughout the Evo-

lution experiment for the same single unit. Images

illustrate mean latent code (every fourth generation,

from left to right, top to bottom). These latent codes

correspond to the curved trajectory in (A). Color

aroundeach image represents themeanactivation for

that generation.

(C) Example tuningmap for the same single unit. Inset

shows the image corresponding to each position of

the map.

(D) Distribution of the shape parameters k; b of the Kent function fits;mapswell-fit by Kent are colored red; the dashed line k = 2b is the boundary in parameter space

between unimodal and bimodal Kent functions (Figures S1, S2, S3, S4, S7, and S8).

Article
ll

OPEN ACCESS
Manifold experiments

The location of the prototype in the generator space was an an-

chor point to sample images along a manifold. To define this

sampling manifold, we performed a principal-component anal-

ysis on the trajectory of latent codes during evolution. The first

principal component corresponded roughly to the direction

taken during prototype synthesis (Figures S2A–S2C); we then

created a 2D sphere centered at the origin in the subspace

spanned by the first three components. The radius of this sphere

was defined by the norm of the latent code in the last generation

of the Evolution experiment (Figure 2A; STAR Methods). The

choice of exploring on the sphere was motivated by the geome-

try of the generator latent space (Wang and Ponce, 2022) and by

literature on sampling GANs (Kilcher et al., 2017; Wang and

Ponce, 2021; White, 2016). Images sampled from a grid around

the prototype (termed the manifold image space) were then dis-

played in a rapid-serial-visual presentation design, along with

images from other stimulus sets used to define neuronal tuning

(Enroth-Cugell and Robson, 1966; Lin et al., 2014; Pasupathy

and Connor, 1999; Russakovsky et al., 2015), such as Gabor

patches and curved 2D contours. We refer to the responses

over the manifold image space as the tuning map, defined as a

function over the 2D hemisphere. In the next three sections,

we report results pooling single and multiunits (SUs and MUs,

collectively named sites); differences between SUs and MUs

are examined in Figure 4.

Most Evolution experiments (79.1% of 91) resulted in a signif-

icant increase in the firing rate of the site under study (per two-

sample t tests of firing rate in initial two generations versus last

two generations, with criterion p < 0.001). Having identified tun-

ing peaks in the generator space, we then examined the shape of

tuning function in the Manifold experiments. We found that
neuronal sites decreased their responses smoothly when mov-

ing away from the prototype in any direction (Figures 2C and

S1B). This kind of tuning was reminiscent of tuning curves of

V1 simple cells responding in the space of oriented gratings.

Sites were significantly modulated by the manifold image set

(104/110 of experiments, p < 0.001, one-way ANOVA, 101 im-

ages per test, F-stat range [1.56,68.64]). For more relationships

between the success of the Evolution experiments and other

properties of tuning maps, see Figure S2.

Above, we noted that a common aspect of tuning curves is

their smoothness. Theoretical work suggests that tuning

smoothness can serve as a key inductive bias that enables

downstream readout neurons to learn from few examples

(Bordelon et al., 2021). We hypothesized that smoothness is

important because the neuronal code is noisy, and so a neuronal

population comprising smooth tuning maps would allow

information decoding with smaller errors. To characterize the

smoothness of these manifold tuning maps without committing

to a specific function type, we measured the Dirichlet energy

(DE) of the observed maps and compared this value with the en-

ergy of maps where the image-response relationships were

shuffled (see STARMethods and Figure S1E). This energy metric

integrates the squared norm of the gradient vectors over the

hemisphere, thus quantifying the relative smoothness of the tun-

ing function: a constant function will have zero DE, while a

rugged tuning function will result in a high DE. We found that

the observed tuning maps were remarkably smooth, showing a

significantly smaller DE than the upper ceiling defined by shuf-

fled data (observed versus image-identity shuffled maps, two-

sample t test, p < 0.001 in 96/110 experiments, T-stat ranged

from [�186.6,�8.3], Cohen’s d0 ranged from [�8.32,�0.37] for

the smooth channels).
Cell Reports 41, 111595, November 8, 2022 3
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Next, we set out to quantify the tuning shape around the pro-

totype. By visual inspection, we noticed that most tuning func-

tions appeared bell-shaped. To quantify this, we used the Kent

function to fit the 2D tuning maps. The Kent function is defined

on a sphere and is analogous to a 2D Gaussian in Euclidean

space. This function comprises parameters for (1) activity base-

line, (2) tuning amplitude, (3) two parameters for peak location,

and (4) three shape parameters. We found that Kent functions

generally fit the tuning maps well, with a median R2 of 0.72

(N = 110) (Figure 2D; for examples of raw and fitted tuning

maps, see Figure S3). For reference, the R2 noise ceiling ob-

tained by bootstrapping single-trial responses had a median

0.876 (N = 110) (STAR Methods). To contextualize this result,

we also repeated the Evolution-Manifold experiments using con-

volutional neural networks (CNNs), which are noise-free, and

measured how well the Kent function could fit these maps. The

tuning map fits from the VGG-16 network had an R2 value of

0.918 ± 0.050 (mean ± SD, median 0.922, N = 427 units sampled

across nine layers). The tuning maps of V1 driving sites were

less-well fit by the Kent function than V4 and IT driving sites:

R2 values for V1 were 0.665 ± 0.027 (N = 31), for V4 0.787 ±

0.029 (N = 21), and IT 0.787 ± 0.020 (N = 50).

Having established that the Kent function could serve as a

good model, we then used its shape parameters b,k to quantify

tuning, as the ratio of these parameters indicates the isotropy

versus anisotropy of the peak on the manifold sphere. The

parameter b = 0 indicates a perfectly isotropic peak, k= b> 2 in-

dicates a unimodal function, and k=b< 2 indicates a bimodal

function (see Figures 2D and S1D). In experiments with good

Kent fits (R2 > 0:5; n = 96), the 95% confidence interval of k=

b was ½7:02;9:51�, significantly larger than 2 (one-sample t test,

t = 18:37;p = 5:03 10� 33). This showed that most tuning func-

tions were indeed unimodal, bell shaped, and relatively isotropic

within the measured domain.

In summary, these analyses showed that, when neurons were

presented with smooth and complex deformations from their

preferred stimulus, they also showed a smooth reduction in firing

rate; this reduction was similar no matter in what direction the

transformation occurred. This is the signature of a radial basis

function, where the response change depends largely on the dis-

tance from the preferred stimulus, and less so in the direction

taken by the deformation. This type of response change is likely

to be characteristic of neurons in natural conditions, where

changes in the retinal image can be smooth (as in viewpoint

rotations) while varying across multiple visual features.

Relating neuronal tuning in generator space to other
image spaces
Neurons showed radial tuning around their preferred stimulus,

and we interpreted this tuning as a likely default behavior of neu-

rons when presented with generic but smooth image changes.

However, our overarching motivation was to define how neurons

respond across even larger image domains, involving images

with different low-level statistics, such as photographs and com-

puter-generated artificial stimuli. While the generator produces

an astronomical number of variations, it has limits. It produces

images with a certain textural style and is less photorealistic

than newer generators (Brock et al., 2018). Here, we advanced
4 Cell Reports 41, 111595, November 8, 2022
our goal of defining tuning function shapes by including images

created both within and outside the generator space. Specif-

ically, we collected responses of given sites to Manifold images,

to stimuli from classic image spaces, such as Gabor patches

(parametrized by orientation and spatial frequency), to bounded

2D contours (parameterized by orientation and curvature) (Pasu-

pathy and Connor, 2002), and to ImageNet photographs.

Together with our generator images, this image set spanned a

range from simple/artificial to complex/natural images. While

we reasoned that it would be easy to measure neuronal re-

sponses to these images, the key challenge was to find a com-

mon axis that would fit images with such diverse statistics. To

solve this problem, we developed a radial tuning curve analysis

(Figure 3A, left), aimed to construct 1D tuning curves using im-

age-response pairs with stimuli created from different spaces,

and to define the shape and extent of this tuning function. We

first considered each space separately and fit the neuronal re-

sponses as a function of image distance to the most activating

image in that space (responses were smoothed using Gaussian

process regression). Across these spaces, two features of each

tuning curve were comparable: (1) peak amplitude and (2) radial

tuning width (Figure 3A, right). The peak amplitude was defined

as the maximum response among images in each space,

signaling the effectiveness of the image space. For the radial tun-

ing width, we smoothed and integrated the area under this radial

tuning curve. This estimated the tuning width of the peak, i.e.,

how far away images could deviate from an optimum while still

allowing the neuron to stay responsive. Our image distance

was a perceptual similarity measure (LPIPS) based on CNNs

trained to match human perceptual judgments (Zhang et al.,

2018). We performed this analysis for each driving site and

compared the peak amplitude values and radial tuning widths

across each space.

We found the neuron-optimized manifold space had the high-

est peak amplitude (Figures 3B and 3C): the peak firing rate was

228:5± 16:8 spikes/s (mean Z score activation 2:532± 0:094,

combining single and multiunits) compared with 144.6 ± 12.7

spikes/s (Z score 0:630± 0:074) for the best natural images

and 181.2 ± 16.2 spikes/s (Z score 1:074± 0:112) and 160.9 ±

15.7 spikes/s (Z score 0:592± 0:086) for the best curved-object

images and Gabor patches (Figure 3C, paired t test, Z-scored

amplitude, versus natural reference t90 = 17:4; p = 1:53

10� 30; versus curvature images t71 = 10:2; p = 1:53 10� 15;

versus Gabor patches t69 = 16:3; p = 2:83 10� 25, Z score

specifics, STAR Methods). This confirms that optimized proto-

types were more activating for neurons than manually selected

ones (Ponce et al., 2019), even in the context of great V1/V4 arti-

ficial stimuli, such as curvature patches (Figure S5, for compar-

isons focusing on V1 and V4—for the V1 population, the peaks in

themanifold spacewere higher than those for Gabor patches; for

the V4 population, the peaks inmanifold spaceweremore similar

to those in curvature space).

Next, we computed the area under the interpolated radial tun-

ing curves (AUC), above the baseline firing rate. We normalized

the AUC by dividing the peak activation of each tuning curve,

to compare the tuning width while controlling for peak height

(Figure 3B; STAR Methods). We found that the median normal-

ized AUC for the manifold space was 0:370± 0:009 (Figure 3D),
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Figure 3. Characterizing tuning landscapes with radial tuning curves

(A) Schematic of radial tuning curve analysis: in each image space, we identified the most activating image and measured the perceptual distance of all other

images (in that space) to it. After plotting the activation as a function of image distance, we computed two statistics for each space: peak activation (C) and

normalized area under the curve (normAUC, D).

(B) Example of a radial tuning curve (same IT neuron as in Figure 2), quantifying responses to images across different spaces (generator images, blue; photo-

graphs, purple; curvature images, yellow). The scatter plot shows the mean ± SEM response to individual images. The solid blue line shows a fit through the

Manifold image responses, which were sampled most continuously in the space.

(C) Comparison of peak activations across image spaces, for the same driving sites recorded in both animals. Each site is denoted by a point; the gray lines

connect the values across image spaces for the same site.

(D) Tuning width estimated by the normalized AUC of the radial tuning curve, also compared across image spaces (Figure S5).
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compared with 0:164± 0:005 for the curvature space (paired

t test, p = 3:93 10� 42; Student t80 = 27:16), 0:153± 0:003

for Gabor shapes (p = 1:43 10� 40; t78 = 26:34), 0:424±

0:016 for natural images (p = 2:0 3 10� 8; t57 = � 6:52 Þ;
when including sessions where V1 sites drove the Evolution

and Gabors were used as evolution references, the average

was 0:334± 0:016 (p = 8:43 10� 2; t90 = 1:75 ; n:s:). We

should emphasize that, even when we focused on neurons

sampled from V1 and V4 and tested with their classic stimuli

spaces (Gabor patches and curvature images), our results

held: neurons had a larger absolute and normalized AUC in the

manifold space than in classic stimuli spaces (normalized AUC,

for the V4 population, Manifold versus curvature, t19 = 10:22;

p = 3:73 10� 9; for the V1 population, Manifold versus Gabor,

t34 = 8:24; p = 1:33 10� 9, Figure S5). This shows that tuning

curves measured in simpler image spaces can underestimate

both the dynamic response range of the neuron and the extent

(width) of its tuning. This can be viewed as evidence that classic

tuning curves are local sections of a higher-dimensional tuning

landscape.

What does the radial tuning width mean? To contextualize

these results, we characterized the geometry of these image

spaces using LPIPS. First, we measured the diversity of each

space as the average distance between two random samples.

We calculated the distance between 1,000 random samples

from the 50,000 ImageNet validation set and found that the
mean pairwise distance was 0:56± 0:07 (mean ± SD, [5, 95]

percentile ½0:46; 0:67�). In comparison, when we randomly

sampled 500 Manifold images, they spanned a mean difference

of 0:47± 0:04 ([5, 95] percentile ½0:41; 0:53�)—curvature and Ga-

bor patch spaces spanned amean distance of 0:17± 0:05 ([5, 95]

percentile ½0:08; 0:24�) and 0:16± 0:04 ([5, 95] percentile ½0:08;
0:22�). Thus, generator images covered a range of shape diver-

sity closer to that in the real-world images. Next, we examined

the sample density in these image space using nearest-neighbor

distances. For natural images, we computed the distance to a

nearest neighbor (within the 50K image set) for 1,000 images

from the ImageNet validation set: the mean distance was

0:364± 0:051 (mean ± SD), ([5, 95] percentile ½0:271;0:440�). In
contrast, in the Manifold experiments, the mean distance be-

tween nearest samples was 0:087± 0:035 ([5, 95] percentile

½0:029; 0:136�); for curvature and Gabor-patch spaces this dis-

tance was 0:031± 0:011 ([5, 95] percentile ½0:022; 0:045�) and
0:081± 0:006 ([5, 95] percentile ½0:068; 0:087�). For the radial tun-
ing analysis, this difference in sampling density made the tuning

width estimate in natural image space less accurate than the

more densely sampled spaces, such as the generator, curvature,

and Gabor spaces.

We have shown that the tuning width estimates in the gener-

ator space were smaller compared with those measured in the

space of real-world images. Why is this? First, our image gener-

ator is an imperfect approximation of the natural image space,
Cell Reports 41, 111595, November 8, 2022 5
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namely, it is not diverse and as realistic as the natural world itself;

a more photorealistic GAN might reveal tuning widths closer to

natural images. However, tuning width values estimated from

natural images were less reliable, due to the larger sampling

gap in photographs. This sampling gap was difficult to overcome

by increasing the sample size of natural images—even in a

50,000-image set, only 121 out of 1,000 images had any neigh-

bors within 0.3 perceptual distance, already a coarse step.

Finally, the gaps between natural image samples were some-

times larger than the tuning width in generator space (Figure 3B).

It is possible that natural image samples marked different tuning

peaks on the tuning landscape, further inflating the estimation of

radial tuning width. This large sampling gap is likely one reason

that smooth tuning curves are seldom reported for IT cortex

neurons.

In summary, we defined the shape and extent of neuronal tun-

ing across image spaces, including that of the generator, photo-

graphs, and classic parametric stimuli, such as Gabor functions.

We used a perceptual similarity metric to compare the neuronal

responses to this diverse image set. We found that neurons

showed a smooth decay consistent with that found in the gener-

ator space. The tuning functions measured around the neuronal

prototypewere larger in amplitude andwider in extent than those

measured over classic non-optimized stimuli. This confirmed

that manually selected image sets may not always overlap with

the preferred domain of the neuron and could underestimate

its full dynamic range and input domain. We interpreted this tun-

ing width as a feature that makes these neurons well suited for

processing naturalistic images, i.e., allowing them to remain

informative over large swaths in image space. Furthermore, we

hypothesize this expansive tuning function is the reason we

could use search algorithms (e.g., CMA-ES) to find peaks on

the tuning landscapes in the first place (see ‘‘inferring the geom-

etry of the tuning landscape by modelling’’): as we quantified

previously (Wang and Ponce, 2022), the mean distance among

each generation of images usually started around 0:4 and grad-

ually decayed to �0:2. This step size of image change seems to

be well suited to ‘‘climb’’ the slope of neuronal tuning peaks.

Areal differences of tuning landscapes
We have shown that neurons in the ventral stream have smooth

radial tuning functions spanning a large space of image transfor-

mations. Next, we investigated how these functions differed

across the visual hierarchy, focusing on neuronal sites in V1/

V2, V4, and IT. Neurons in these cortical areas are usually studied

using different stimuli, limiting comparisons. Here, the generator

space served as a common space for all areas. We examined

the local and global properties of the tuning landscapes using

the Evolution-Manifold design—finding a site’s local maximum

and then exploring the landscape by inducing deformations to

the favored image(s). Furthermore, we indirectly compared the

global characteristics of the tuning landscape by analyzing the

Evolution trajectories and by using a new set of reduced-dimen-

sion Evolution experiments.

Local properties

Because neurons become increasingly sensitive to specific

visual patterns over the cortical hierarchy (Kobatake and Tanaka,

1994; Rust andDiCarlo, 2010), one prediction is that tuning width
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in the generator space might vary across areas (Figure 4A). To

quantify tuning width across areas, we used the k parameter of

the Kent function, which characterizes tuning sharpness: the

higher the k value, the narrower the tuning width. In tuning

maps with reasonable fits ðR2 > 0:5; N = 96Þ, we found that

sites from higher visual areas showed a larger k value than those

from lower areas—V1 sites showed a mean (±SD) k of

0:72± 0:13; V4 sites, 1:82± 0:23, and IT sites, 3:19± 0:26

(Figures 4B and 4C(i), one-way ANOVA, F2;93 = 26:7; p = 73

10� 10; Spearman correlation between k and area level was

0:661ðdf = 96;p = 2:4 3 10� 13Þ). We confirmed this progres-

sion using two non-parametric statistics: we compared (1) the

normalized AUC for the radial tuning curves in each area (smaller

values indicate narrower tuning) and (2) the normalized volume

under the surface (VUS) for each tuning map (smaller means nar-

rower, STAR Methods). Both of these values showed a similar

trend: more anterior visual neurons showed sharper tuning

peak values than posterior neurons (Spearman correlation of

AUC values with ordinate hierarchical position [V1/V2, V4, and

IT], r = � 0:56 ðdf = 103; p = 5 3 10� 10Þ; for VUS r = �
0:57 ðdf = 103;p = 3 3 10� 10Þ. We also compared the tuning

width values for single versus multiunit signals in the same chan-

nels. Single units had narrower tuning, consistent with the view

that multiunits represent the local aggregated signal from single

units (Figure 4C(ii), for more examples see Figure S7). As noted

above, the tuning maps of V1 sites were less-well fit by the

Kent function than those of V4 and IT sites: mean R2 for V1

was 0:67± 0:03 ðN = 31Þ, for V4, 0:79± 0:03 ðN = 21Þ, and
for IT, 0:79± 0:02 ðN = 50Þ. This trend was in line with the

noise-ceiling R2 of the three microelectrode array populations,

measured by randomly splitting trials into two sets and

computing the R2: for V1, the noise ceiling for R2 was

0:74± 0:03 ðN = 31Þ, for V4, 0:89± 0:02 ðN = 23Þ, and for IT,

0:88± 0:02 ðN = 50Þ. Overall, this suggests that the tuning

maps in V1 were more affected by fluctuation, less bell-shaped,

and thus harder to fit by the Kent function.

As a control, we asked if there were any significant differences

in the perceptual similarity of images in the V1, V4, and IT

manifolds. We were surprised to find a small but significant dif-

ference in image diversity (quantified by the mean LPIPS image

distance between two images on the hemisphere) betweenman-

ifolds created by IT and V1 (IT, 0:421± 0:003; n = 33; V1,

0:410± 0:003; n = 36; two-sample t test t67 = 3:083; p =

0:003). This overall modulation of image diversity per visual

area was only marginally significant (one-way ANOVA across

the three areas F = 4:669; p = 0:012). This effect size was

small: for example, neuronal tuning in perceptual metric space

ranged from 0 to 0.60 (Figure 3), and the mean difference in

perceptual similarity between V1 and IT was �0.01. We hypoth-

esize that this difference in image diversity was a byproduct of

the Evolution and Manifold design: searching for features of

different complexity (i.e., for V1 versus for IT) may lead to trajec-

tories in different subspaces; since images were manipulated

along the second and third principal-component subspaces of

the search trajectory, the manifold exploration in different sub-

spaces could result in small but consistent differences in terms

of image diversity, reproducible per in silico Evolution and Mani-

fold experiments. As another control, we also conducted
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Figure 4. Comparison of tuning landscapes along the hierarchy

(A) (i) Examples of tuning axes sampled from manifolds in IT, V4, and V1 (rows); images show deformations from each site’s prototype, framecolor denotes

neuronal response. (ii) Activating regions within the synthetic image, identified via correlation-based feature localization (see STAR Methods).

(B) Example 2D tuning maps of sites at the V1/V2 border, in V4, and in PIT (columns), for both animals (rows).

(C) (i) Population tuning width values as quantified by the k coefficient (higher values / narrower tuning) across visual areas and animals. (ii) Tuning sharpness

values k for single and multiunits.

(D) Example tuning maps of units in VGG-16. Maps ordered by layer depth.

(E) Tuning sharpness value k as a function of layer in VGG-16. Each point represents one hidden-unit tuning map (Figures S3, S4, and S6).
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Evolution-Manifold experiments in V1 sites using textures that

were 1� wide (versus 3� wide as in the experiments above) and

found that the results above continued to hold (Figure S4). We

also investigated the shape of tuning landscapes far away from

the peak, by examining the concurrent responses of sites that

were not driving the evolution: those tuning maps were more

ramp and slope shaped (Figure S8).

We also asked if this pattern of increasing tuning sharpness

was specific to visual cortex or if it could emerge in artificial visual

hierarchies. We performed the same Evolution/Manifold experi-

ments in silico, driven by the activation of randomly selected

units from pre-trained CNNs. We found the same pattern of

results: tuning peaks over the manifold became sharper as a

function of layer depth. For example, in the VGG16 network (Si-
monyan and Zisserman, 2014), k values correlated positively

with layer depth (linear regression slope, 0:189± 0:008, p =

1:93 10� 91, N = 568 units in 12 layers, Figure 4E). We found

the same result using AlexNet, ResNet-101, ResNet50,

ResNet50-Robust, DenseNet, and CorNet-S (p values ranging

from 3310� 22 to 23 10� 124, N ranging from 600 to 1,200,

STAR Methods, Figures S6A–S6F).

So far, we have explored a local property of the tuning land-

scape, specifically that visual hierarchies comprise units with

progressively sharper tuning peaks in this naturalistic space.

One straightforward interpretation of this result relates to sparse

coding (Rolls and Tovee, 1995), as higher-order cortical units

respond to more specific combinations of visual attributes,

such as motifs present in faces (Desimone et al., 1984; Tsao
Cell Reports 41, 111595, November 8, 2022 7



Figure 5. Comparison of required search

dimensionality along the hierarchy

(A) Activity as a function of generation during Evo-

lution for neurons in V1/V2, V4, and IT using the full

input space (4,096D, orange) or a reduced space

(50D, blue), for each animal (top, bottom). Activity

normalized by maximal response within each ses-

sion, with mean ± SEM computed across sessions,

and smoothed via moving average (N = 3 genera-

tions). Evolution experiments that converged with

fewer generations were extrapolated with the same

activation value as the last generation.

(B) Effects of dimensionality restriction on activation

maximization for sites in V1, V4, or IT. The y axis

shows the ratio of the final-generation activation

values measured after evolving in a 50D space and

in a 4,096D space r50d � rbsl
rfull � rbsl

(see STARMethods). Each

dot shows one neuronal site, for both animals. As-

terisks show statistical significance.

(C) Activity as a function of generation during Evo-

lution for hidden units in CaffeNet layers using the full

space (orange) or reduced 50D space (blue).

(D) Effects of dimensionality restriction on activation maximization for hidden units in different layers. The y axis shows the ratio of the final-generation activation

values measured after evolving in a 50D space (deep blue), a 200D space (light blue), and a 4,096D space (red) (Figure S6).

Article
ll

OPEN ACCESS
et al., 2006). If these attribute combinations were less common

within the generator space, compared with simpler features,

such as colorful curved edges, then it would be easier to reduce

the responses of higher-order neurons by ‘‘moving away’’ from

the peak by the same distance.

Next, we examined a global property of the tuning landscape:

the distribution of prototypes. Evolution experiments showed the

existence of highly activating images in the search space and a

path following the gradient of the tuning function, from the initial

images (textures) to the final images (prototypes). By analyzing

these experiments, we could probe the global geometry of the

tuning landscape indirectly. The speed for finding a prototype

related to the frequency of these highly activating images in

the latent space. For example, specific combinations of visual

features (e.g., shapes, colors, and textures diagnostic of animal

features) should be statistically rarer compared with simpler fea-

tures (such as oriented edges). If higher-order neurons select for

more complex features, it should take longer to find them. This

prediction aligns with previous studies of sparse object coding

in the ventral stream, for example, those finding that V4 neurons

are tuned mostly for acute curvatures (Carlson et al., 2011), in

contrast to V1 neurons, which as a population tile a relatively

larger portion of orientation space (although V1 does over-repre-

sent some orientations; Dragoi et al., 2000). To test this idea in

the landscape context, we examined the convergence time of

Evolution experiments. We found that the mean firing rate for

sites in posterior regions (i.e., V1) converged to a steady state

over fewer generations than the firing rate for sites in more ante-

rior regions: the convergence timescale for V1/V2 neurons was

12 ± 1.2 generations (N = 34 experiments), compared with V4,

at 21.4 ± 3.3(N = 20), and IT at 28.7 ± 2.5(N = 30) (Figures

S6G–S6J). The convergence timescale was quantified by the

number of generations needed to reach 0.632 (1 � 1= e) of the

maximum mean firing rate per generation. This trend confirms

a previous report (Rose et al., 2021), also observed in silico in

AlexNet. This would be expected if higher visual neurons prefer
8 Cell Reports 41, 111595, November 8, 2022
features which were sparsely distributed in the space, and

harder to find.

If a neuron’s preferred visual features were common in the

generative space, the algorithm might still find a path to a peak

even if the search was limited to a fraction of the full latent space.

To test this, we performed a set of reduced-dimension Evolution

experiments, comprising two concurrent Evolutions for each

target site: in one track, the search occurred in the full 4,096-

dimensional (4,096D) latent space; in the other one, the search al-

gorithm was constrained to a randomly selected 50-dimensional

(50D) subspace. Trials from both tracks were interleaved.

Then, we measured the ratio R between the activation

increase in the 50D evolution and that in the 4,096D evolution.

We found that the mean ratio R for V1/V2 sites was

1:009± 0:023 ðn = 23Þ, for V4 sites, 0:839± 0:056 ðn = 19Þ,
and for IT sites 0:708± 0:060 ðn = 20Þ (Figures 5A and 5B);

Spearman correlation between hierarchy level and the activation

fraction was � 0:537 ðP = 6:7 3 10� 6Þ. We also calculated

d0, the average activation gap (per d-prime d0) across all genera-

tions and found a growing gap along the hierarchy (Spearman

correlation between hierarchy level and mean d0 was 0:547; p =

1:43 10� 6). Thus, early ventral-stream neurons could still guide

the evolution of their preferred image in constrained 50D spaces,

reaching similar (or sometimes higher) responses compared with

the 4,096D space. In contrast, late ventral-stream neurons could

not guide the evolution of their preferred image as successfully.

This result was also replicated on the artificial visual hierarchy

CaffeNet, where we found that limiting search space dimension

had a larger impact on units in deeper layers than in shallower

layers (Spearmancorrelationbetweenordinal layernumberand ra-

tio R is � 0:893, p = 2:43 10� 279; n = 800, 100 experiments

per layer for eight layers, Figures 5C and 5D, see STARMethods).

Together, these results suggest that the features preferred by

early cortical neurons were more prevalent in the generator im-

age space than the features preferred by late cortical neurons,

likely due to the latter’s selectivity for complex features
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(Kobatake and Tanaka, 1994); this may also explain why early

ventral stream neurons showed broader tuning widths than

those of higher-order neurons. We conclude that this trend in

tuning specificity is likely to be a general feature of hierarchical

networks that learn from natural data.
Inferring the geometry of the tuning landscape by
modeling
Above, we reported three systematic changes along the hierar-

chy of the ventral stream and CNNs: deeper in the hierarchy,

(1) the time to convergence in Evolution increased, (2) the tuning

width of neurons decreased, and (3) reducing the search dimen-

sionality had a stronger negative effect on activation. Is there a

mechanism that accounts for all these effects? We postulated

that these trends were manifestations of a systematic difference

of tuning landscapes along the ventral stream. To provide more

intuition into this, we designed a simple synthetic tuning function

to simulate these changes. We modeled the neuron’s tuning

function in the 4,096D latent space of the generator, with a sim-

ple multivariate Gaussian. We then conducted the Evolution,

Manifold and reduced-dimension Evolution experiments on

this synthetic tuning function while varying two major parame-

ters—the number of tuning dimensions D and the tuning width

s. We quantified these experiments using the above statistics

(normalized VUS, convergence timescale, and activation ratio

between 50D and full-space evolution) and tested which varia-

tions in these two parameters could reproduce the three system-

atic changes in the ventral pathway.

More formally, the neuronal Gaussian tuning function was

parametrized by a center z0, the bandwidth s2, and the Hessian

matrix H. Viewed from the peak of that Gaussian z0, this is a

radial basis function, with neural activation decreasing along

any direction leading away from the peak with a speed depend-

ing on s and H. The bandwidth s2 controlled the general tuning

width, while the Hessian H controlled the curvature (or tuning

width) along different directions.

rðzÞ = exp

�
� 1

2s2
ðz � z0ÞTHðz � z0Þ

�

v2r

vz2
jz0 = � 1

s2
H

With no loss of generality, we assumed H is a diagonal matrix,

since we can always rotate the coordinates of z to an eigen basis

of H, diagonalizing it. In previous work, the number of tuned

feature dimensions by an IT neuron was hypothesized to be

one variable underlying the trade-off between selectivity and

tolerance in IT (Zoccolan et al., 2007). In our model, we changed

the number of tuned features by controlling the eigen-spectrum

(i.e., diagonal values) of H. We made the simplifying assumption

that the Hessian matrix had only two different eigenvalues: 1 and

ε = 10� 6z0. In the eigen space of l = 1, themodel neuron had a

Gaussian bell-shaped tuning curve with tuning width s along

each dimension. In the eigenspace of l = ε, the neuron had

effectively flat tuning—it was agnostic to the feature changes

along those dimensions. We let the neuron have D tuning
dimensions (with eigenvalue 1) and 4,096D non-tuning dimen-

sions (with eigenvalue ε), then the Hessian matrix is H =

diagð½1; 1;.1; ε; ε;.; ε�Þ. In this experiment, we manipulated

the number of tuned dimensions D, and the general tuning width

s. We illustrated the effect of D and s in two dimensions in Fig-

ure 6A. The center z0 of the tuning function was chosen isotropi-

cally on the sphere of radius R, by sampling a 4,096D random

vector from normal distribution and normalizing its norm z0 = R.

Evolution speed

We hypothesized that the tuning width swould affect the success

rate and convergence time of the Evolution experiments. Here, we

found that, given the same number of tuned features D, the larger

the tuning width s, the faster the search converged. At the other

extreme, an overly small tuning width led to a failed Evolution for

a larger tuned dimension (D = 20 � 160). When the tuning width

swasfixed, the timerequired toconvergealso increasedasa func-

tion of tuned dimension D. These trendsmade sense: if the tuning

function covers a tiny region in the whole image space and has

close to zero value everywhere else, then it will be nearly impos-

sible for the evolutionary algorithm to find a slope and to climb

the mountain; and if there are more tuned axes D, it should take

longer to optimize each. Thus, the first systematic change of

increasing search convergence time along the hierarchy could

be captured by moderately decreasing the tuning width s and

increasing the number of tuned features D (note that this model

did not incorporate noise as in neuronal recordings, so conver-

gence time comparisons were limited).

Manifold tuning width

We hypothesized that the width of Gaussian tuning function s

would affect the tuning width (normalized VUS) measured in the

Manifold experiment. These quantities were not the same: the

manifold on which we measured the tuning sharpness was not

guaranteed to reside in the tuned subspace of the neuron. Sec-

ond, the peak found by the Evolution experiment was not guaran-

teed to be the globalmaximumof the tuning function.Despite that,

we found that the manifold result could be reproduced by the dif-

ference in s and, surprisingly, also by the tuned dimension D (Fig-

ure 6D). Intuitively, the larger the tuning width s, the broader tuned

it was at the peak found by the Evolution experiments. Moreover,

given the same s, the smaller the number of tuned dimensions D,

the broader tuned it was in a Manifold experiment. Intuitively,

along those non-tuned axes, the ‘‘neuron’’ showed an infinitely

wide tuning curve. Thus, if the subspace covered by the PC2,3

axes mixed up some tuned and some untuned dimensions, it

would lead to a broader tuning curve. Notably, the shape of tuning

map in this simplified example (Figure 6B up, middle) resembled

the shape of tuning maps for some V1 neurons observed in vivo.

Effect of reduced dimension

Finally,wehypothesized that the larger the tuneddimensionalityD,

the larger the detrimental effect of constraining searches to a

random 50D subspace. We found we could reproduce this

observed effect by changing the number of tuned dimensions D.

With a small number of tuned dimensions (e.g., D = 10), the two

evolutions (4,096Dversus 50D) resulted in indistinguishable evolu-

tion trajectories, regardless of the tuning width s (Figures 6B and

6E). This scenario is comparable with what we observed for V1

neurons. However, with a larger D, the difference between

4,096D and 50D evolution emerged. Specifically, with the same
Cell Reports 41, 111595, November 8, 2022 9
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Figure 6. Inferring tuning landscape geometry

(A) 2D demonstration of the main model, showing evolution paths (green) over image space when the activation function has different values for tuning width or

dimensionality.

(B) Evolution, Manifold, and reduced-dimensionality experiments in three example conditions (s = 20;D = 20; s = 20;D = 40; s = 40;D = 80). Relevant

statistics annotated on top. The shaded area in the Evolution and the Reduced Dim. Evolution panels shows standard deviation of activation values in each

generation.

(C–E) The phase space spanned by the tuned dimension D and the tuning width s. Each panel plots a statistic of the Evolution-Manifold experiment as a function

of D and s, averaged over five repetitions.

(C) Evolution convergence time, in the unit of generation. On this heatmap, thewhite region defined by blue boundary denotes the conditionswhere Evolutions failed.

(D) The tuning width of Manifold experiment quantified by normalized volume under surface. The white region outlines conditions where the Manifold tuning map

was flat.

(E) The ratio between the final activation of 50D and full-space Evolution search. The white region outlines conditions where both 50D and full-space Evolution failed.
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tuningwidth s, the performance gap increasedwith the number of

tuned dimensions D; given the same D, the performance gap

decreased with the tuning width s (Figure 6E). Overall, this model

provided a simple explanation of the systematic changes we

observed in vivoand in silico.Under theassumptionsof thismodel,

there is a likely increaseof tuneddimensionalityD across stagesof

the ventral stream, potentially accompanied by a change in tuning

widths. This inferencegeneralizesprevious resultson the tuneddi-

mensions of IT neurons (Zoccolan et al., 2007).

DISCUSSION

To generalize our understanding of neuronal responses in the

natural world, we must characterize tuning using stimuli of
10 Cell Reports 41, 111595, November 8, 2022
appropriate complexity, comprising enough visual attributes to

evoke the full response range of given neurons. Driven by this

motivation, we have assumed a neurocentric (versus strictly hu-

man-interpretable) perspective, asking how neurons respond

when the visual world changes smoothly around their preferred

stimulus, regardless of the specific transformation. We believe

that this brings us one step closer to natural conditions, illus-

trating how neurons respond to generic smooth transformations

before they learn statistical associations between different im-

ages—those helpful for invariance (e.g., Li and DiCarlo, 2010).

We paired complex-image generators with the classical tuning

function, which maps neuronal responses to values of a given

parameter space. Tuning functions comprise at least one

neuronal response peak and a measure of response decay as
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stimuli deviate from this preferred value. This decay is important

because, when viewed in the framework of Fisher information,

neuronal responses are highly informative about the stimulus

regions causing the largest changes in firing rate (Dayan and

Abbott, 2005). However, this is complicated in scenarios when

neuronal responses reflect information about multiple variables

(Benichoux et al., 2017), and in situations of high neuronal vari-

ability, when it is the peak that can be most informative (Butts

and Goldman, 2006). Consequently, we prioritized identification

of response peaks corresponding to the neuron’s ‘‘preferred’’

combination of visual attributes, not because we believe that

neurons can only be informative when signaling at their maximal

response but, because to a downstream decoder, any change in

a neuron’s response must signify a change from something.

From views in classical single-neuron studies to those distrib-

uted coding frameworks, that something is thought to be the

visual attributes or parameters that best activate the neuron.

Once we found a location in image space evoking a maximal

response, we had to choose how to ‘‘move’’ away from that

location. In our data, there seemed to be no special axes for

deviating from the peak—all were relatively isotropic, at least

within the expected range of neuronal response variability.

This is consistent with work applying basis function interpola-

tion as a solution to the problem of categorizing novel views

or objects—as described by Edelman, ‘‘the shape of the basis

function reflects the prior knowledge concerning the change in

the output as one moves away from the data point . In the

absence of evidence to the contrary, all directions of movement

are considered equivalent, making it reasonable to assume that

the basis function is radial’’ (Edelman, 1999). But, since we only

measured 2D sections of larger spaces, this may not be true if

more directions were probed. Imaginably, there could be spe-

cial locations linking these peaks, some inducing invariance re-

sponses, some inducing sharper activity drop-off. So, ulti-

mately, how does the view of neuronal tuning landscapes

relate to invariance? To answer this question, more electro-

physiology experiments are required (and underway). Prelimi-

nary findings suggest that invariance is not a constant feature

of the neuron but depends on the activity evoked by the choice

of probe stimuli. While we leave this for future work, these find-

ings highlight the importance of testing the full response dy-

namics of neurons.

Overall, we conclude that it serves to think of neuronal tuning

in multi-attribute feature space the same way as we think about

hippocampal place cells acting in a 2D arena, where a neuron’s

primary responses depend on the proximity to a physical loca-

tion, less on the direction in which the animal moves to or from

it (but see McNaughton et al. [1983] for an effect of entering di-

rection on place field). To push this analogy further, recent works

support the view that place cells form a map not just for physical

spaces but also for cognitive spaces. Namely, they could

encode ‘‘locations’’ in the multidimensional space spanned by

task-related variables, such as pitch of auditory cues, accumu-

lated evidence, or even social status of a virtual character (Aro-

nov et al., 2017; Rueckemann and Buffalo, 2017; Tavares

et al., 2015). So, the tuning landscape view of visual encoding

in the ventral stream connects to the modern view of hippocam-

pus in the cognitive space.
Limitations of the study
Generalization would be broader if more than one generative

network were used and if neurons from anterior IT were sampled.

If a larger number of natural images could be used as references,

the connection between results in the generative network space

and natural images would be stronger.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Electrophysiological data

(formatted mat file)

This paper https://doi.org/10.17605/OSF.IO/GPZM5

Image stimuli (natural images, contours and

the images synthesized from the generative

adversarial network)

This paper;

(Pasupathy and Connor, 2002)

https://doi.org/10.17605/OSF.IO/GPZM5

https://depts.washington.edu/shapelab/

resources/stimsonly.php

Experimental models: Organisms/Strains

Rhesus Macaques Florida facility of PrimGen/PreLabs Macaca mulatta

Software and algorithms

MATLAB Mathworks https://www.mathworks.com

Python Python Software Foundation https://www.python.org/

Pytorch (Paszke et al., 2019) https://pytorch.org/

Scikit-learn (Pedregosa et al., 2011) https://scikit-learn.org/stable/

Code for analyzing in vivo

electrophysiological data, calculating

statistics and generating figures

This paper https://github.com/PonceLab/

Tuning-Manifold-Charting

Code for conducting in silico experiments

on neural network and analyzing the results

This paper https://github.com/PonceLab/

Tuning-Manifold-Charting-in-silico
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Carlos R.

Ponce (carlos_ponce@hms.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Formatted neuronal spiking data, natural image stimuli, and the images synthesized from the generative adversarial network

have been deposited in Open-Science Framework (OSF) repository and are publicly available as of the date of publication.

These data are enough for reproducing results in the publication. The DOI is listed in the key resources table.

d All original code for neurophysiological data analysis has been deposited in aGitHub repository (https://github.com/PonceLab/

Tuning-Manifold-Charting), and all original code for conducting and analyzing in silico experiments has been deposited in the

GitHub repository (https://github.com/PonceLab/Tuning-Manifold-Charting-in-silico). Both are publicly available as of the date

of publication. We also made self-contained Jupyter notebooks that allows online exploration of our dataset. DOIs are listed in

the key resources table.

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two male adult rhesus macaques (A and B,Macaca mulatta, ages 6–7, 10–11 kg) were used in the study. All procedures conform to

the Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee at

Washington University and Harvard Medical School.
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METHOD DETAILS

Neuronal recording
Two male adult rhesus macaques (A and B) were implanted with chronic floating microelectrode arrays (Microprobes for Life

Sciences, MD) in the right hemisphere: one array was located at the posterior lip of the lunate sulcus (corresponding to the V1/V2

transition), one on the prelunate gyrus (V4) and another anterior to the inferior occipital sulcus (PIT). We refer to these sites as V1/

V2, V4 and IT (Boussaoud et al., 1991; Gattass et al., 1981, 1988). The locations of the arrays were chosen based on sulcal landmarks,

around local vasculature.

Neurophysiology data was acquired using OmniPlex Neural Recording Data Acquisition Systems (Plexon Inc.), with the

PlexControl client to sort electrical events online based on waveform and interspike intervals. Because all Evolution experiments

were based on a closed loop between neuronal activity and image synthesis, spike sorting was done at the beginning of each

experiment. Within each channel, events were estimated as arising from single-units, multi-units or ‘‘hash’’ using a 1-5 scale, where

1 indicated strong confidence on the presence of a single-unit (based on waveform shape, inter-spike interval and separation from

themain hash signal) and 5 indicated hash/multiunit activity. We use the term site to refer to all signal types; across experiments, sites

comprised mostly multiunits/hash and a fraction of single units.

After data collection, spike/event times were discretized into 1-ms bins and convolved with a symmetric Gaussian probability den-

sity function with a 2-ms standard deviation.

General animal experiment setup
Experimental sessions were run using MonkeyLogic2 (Hwang et al., 2019), which directed the presentation of visual stimuli on

ViewPixx EEG monitors (ViewPixx Technologies). Refresh rate was 120 Hz at a resolution of 1920x1080 pixels. The monkeys

were placed 58 cm from the screen. Gaze position was tracked via ISCAN cameras (ISCAN Inc.). Animals fixated 0.25�-diameter

circles, with fixation window that permitted eye movements up to 1.0–1.3� from the fixation point during stimulus presentation;

they obtained reward if they held their gaze on the target for 2-3 s. Rewards delivered via DARIS Control Module System (Crist

Instruments).

Receptive fields mapping
At the start of each experimental session, receptive field locations were estimated as follows. While the animal performed a fixation

task, at eachmoment, a single square test image was presented at a single position for 100-ms. The image could be a photograph or

a previously collected generator image and on any given presentation, it could be sized either at 1�-, 2�- or 4�-width. Positions were

randomly sampled from grids ranging from [-2�–2�], [-4�–4�] or [-8�–8�] of the central visual field, in steps of 1�, 2�or 4� for the three

sizes. After data collection, neuronal responses (events/second) were quantified as a function of stimuli location. A 2-D Gaussian

function was fit to this 2-D response grid to estimate the center of the receptive field. Because the test image width was so large

and because we did not sample a dense enough position grid, we did not obtain a strict estimate of RF size (particularly for V1/

V2 and V4 sites) and our data over-estimates it. The receptive-field center distribution of all neuronal sites fromV1/V2, V4 and IT visual

areas are shown in Figure S1A. After estimating RF center location, Evolution andManifold experiments were carried out with stimuli

at the estimated center location, sized to cover the region with most activity. Usually, stimuli were made larger than the estimated RF

size. This helped to prevent the site from responding to the high-contrast, salient image edge. Moreover, larger image sizes provided

a canvas to engage both the classical RF and its surround during optimization of the neuronal response.

Evolution experiments
After finding the optimal location the evolving textures, the experiment started by presenting 30 synthetic images and 10 reference

images, only one presentation per image. Reference images were selected if they were known to evoke high activity from the array

site under study, per independent experiments. The initial 30 synthetic images were approximations of Portilla and Simoncelli tex-

tures (Portilla and Simoncelli, 2000) recreated in the generator. After all imageswere presented, their input vectors and the site’s spike

rate responses (averaged over 50-200 ms after image onset) were provided to the update function of Cholesky CMA-ES algorithm,

which then gave 40 new vectors as outputs. These vectors were provided to the generator to create 40 new images, and the cycle

began again, i.e., the 40 synthetic images and the same 10 reference images were presented to the subject. Each experiment

comprised tens of cycles (generations) and were stopped 10-20 generations after firing rate convergence was observed.

Manifold experiments
After evolving a preferred stimulus (a prototype), the goal was to measure the tuning landscape around it, by sampling images in a

smooth, continuous fashion. By examining the distribution of latent vectors during the Evolution experiments and applying principal

component analysis, we found a properly scaled PC1 recreated the measured prototype — PC1 vector re-created an image like the

evolved image in the final generation, once scaled to the norm and sign of the observed prototype latent vector. Image contrast could

bemanipulated via positive scaling of the latent vector (illustrated in Figure B.1 A ofWang and Ponce, 2022). Settling on PC1 v1 of the

trajectory to represent the prototype, the next two vectors orthogonal to PC1 were used to form a basis of three vectors. A two-

dimensional sphere was defined in the subspace spanned by these three vectors, and images were sampled along the azimuth
Cell Reports 41, 111595, November 8, 2022 e2
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and elevation angle q; 4 uniformly. Samples were along q;4 in
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Note these points did not form a uniform grid on the sphere. The distortion by mapping a 2d grid onto a spherical surface was

greater near the ‘‘north pole’’ and ‘‘south pole’’ of the sphere; for example, the 11 images at either 4 = p
2 or � p

2 were exactly the

same, resulting in 101 unique images in each hemisphere. Thus, we correct for this distortion effect in the subsequent computation

of tuning functions and statistics of tuning maps.

We performed 46 experiment sessions on monkey A, and 45 experiment sessions on monkey B. As we mentioned above, in 10 of

themonkey B experiments, we performedManifold experiments in three subspaces following theEvolution experiment, using PC2-3,

PC49-50, and two random vectors as the perturbation vectors v2; v3 in the Manifold experiments. Thus, we had N = 91 standard

experimental pairs with an Evolution experiment and a Manifold experiment in PC2-3 space. Initial analysis found that the tuning

maps in the PC49-50 and random subspaces were comparable to those in PC2-3 space. So, when characterizing the tuning

maps, we pooled the additional maps (PC49-50, Random) with the PC2-3 maps, resulting in N = 111 tuning maps of neuronal sites

driving the Evolution.

Reduced-dimension evolution experiments
To probe the global geometry of the tuning landscape, and to investigate how it changed from posterior to anterior visual cortex, we

performed reduced-dimension Evolution experiments. In each session, after receptive field mapping, we performed paired Evolution

experiments, using the same neuronal unit as the driving unit in two parallel Evolution experiments, using independent optimizers.We

called each Evolution a thread. The stimuli created by the two Evolution threads were presented in an interleaved fashion. One thread

was the reduced-dimension Evolution, with the optimizer constrained to search in a randomly selected 50-dimensional subspace; the

other thread was the full-space Evolution, searching in the full 4096-dimensional space. The 50-dimensional subspace was selected

independently for each session. We developed a new optimizer that operated on the hypersphere of arbitrary dimension SphereCMA

(Wang and Ponce, 2022) for these experiments. This ensured that the search codes would have the same norm throughout the Evo-

lution. Without this constraint, using the original Cholesky CMA-ES, the vector norm of the codes differed greatly in the two threads,

which made it difficult to compare the two threads. The same optimizer was applied to each Evolution thread, with the same pop-

ulation size (N = 31) but different dimensionalities (4096D vs 50D). The same 10 reference images were used for both threads.

We performed 34 sessions on each monkey (A and B), within which 23 sessions were driven by V1 neurons, 20 by V4 neurons,

and 25 by IT neurons.

CNN models of the ventral stream
In the past few years, many CNN models have been developed to solve the object recognition problem. Though generally, these

models incorporate many working principles of the ventral stream, some of them are better models than others. To find the CNN

models that resemble the population representations in the primate ventral stream the most, we consulted the BrainScore (Schrimpf

et al., 2018) (http://www.brain-score.org/) leaderboard and selected a few top and classic networks: AlexNet (Krizhevsky et al., 2012)

(No. 57), VGG16 (Simonyan and Zisserman, 2014) (No.5), ResNet50 (He et al., 2016) (No.11), ResNet50-Robust (Madry et al., 2017)

(No.3), ResNet101 (He et al., 2016) (No.4), DenseNet-169 (Huang et al., 2016) (No.9), CorNet-S (Kubilius et al., 2018) (No. 1). Source

and specification of the models are as follows, all implemented in PyTorch (Paszke et al., 2019). ResNet50-Robust weights were ob-

tained from https://github.com/MadryLab/robustness, ε = 8/255 version. CorNet-s model definition and weights from https://github.

com/dicarlolab/CORnet. All other models’ definitions and weights were obtained from the model zoo in torchvision https://pytorch.

org/vision/stable/models.html. All seven models were used to analyze tuning sharpness progression along the visual hierarchy

(Figures 4D-4E, S6A–S6F). AlexNet, VGG16, ResNet50).

In silico evolution-, manifold and reduced-dimension experiments
To corroborate our findings in the ventral stream hierarchy in vivo, we performed parallel experiments for CNN. For each network, we

picked the major convolutional and fully connected layers (n = 8 � 16). For convolutional layers, we selected the units in the center

of the feature map of each channel, mirroring the process of us presenting the image at the receptive field (RF) of recorded neurons.

For each unit, we first measured its receptive field by backpropagating its activation back to the image, where we defined a square

box around the pixels that contributed to its activation. This ‘‘receptive field’’ was in turn used to resize the images. Next, we used the

activity of this unit to drive the Evolution experiment, using the same CMA-ES algorithm and generator. Finally, we used the same
e3 Cell Reports 41, 111595, November 8, 2022
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method to analyze the trajectory and to sample images on 2d hemispheres around the prototype as we did in the Manifold experi-

ments. We measured the activations of the recorded units responding to the manifold image set, thus obtaining the tuning maps of

these CNN units.

For the reduced-dimension Evolution, we replicated these experiments using units from the eight layers of CaffeNet and AlexNet,

with 100 units selected from the feature map center of the first 100 channels of each layer (except for the first layer, conv1, which has

fewer channels). For each unit, we performed a reduced-dimension Evolution in a 50, 100, 200, and 400-dimensional random sub-

space and the 4096d full space. For each dimensionality for each unit, the Evolution was repeated 10 times with independently

sampled random subspace. We used the same optimization algorithm (SphereCMA) in vivo and in silico. The score trajectories

were analyzed in the same fashion in vivo and in silico.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fitting tuning maps with kent function
By visual inspection, neuronal tuning functions were usually unimodal and likely to be well-fitted with a Gaussian function, but since

the domain of the sampled tuning function was not a flat Euclidean space, it was not strictly correct to fit these responses using a

Gaussian function. Thus, we used the Kent function, which is a natural analogue to the Gaussian function on the 2-D sphere S2:

fðxÞ = A exp
n
k gT

1 , x + b
h�
gT
2,x

�2 � �
gT
3,x

�2io
+b

where x is a 3D vector, which, in our case, is the 3D coordinate of the latent vector on the PC basis of the Manifold experiments.

g1;g2;g3 form an orthonormal basis set in 3D space, in which g1 is the direction of the center of the distribution; and g2;g3 are an-

alogues to the maximal and minimal covariance axes, if the peak is anisotropic. We parametrized the 3D orthonormal basis set using

the following angle convention: q;4 represent the azimuth and elevation angles corresponding to g1 vector, while j is the angle of g2

to the equator of the sphere. Thus, when the function is unimodal (single peak), q;4 parametrize the location of the peak on the

sphere, and j encodes the direction of elongation around the peak. Beyond these, A;b control the scaling and baseline, k controls

the concentration ("peaked-ness") of the function, b controls the degree of anisotropy around the peak. Overall, this function com-

prises 7 parameters A;b;k;b;q;4;j. We fit the Kent function to the tuning maps from in silico experiments or in vivo experiments using

‘curve_fit‘ from ‘SciPy‘ in ‘Python‘ or ‘fit‘ function in MATLAB.

Noise ceiling of explained variance
To control trial-to-trial variability in tuning map fitting, we computed the noise ceiling of explained variance R2 as follows. For each

Manifold session, we resampled the single trial neuronal responses to each image to get a bootstrapped mean tuning map r0½i�. Then
we computed the explained variance of the original mean tuning map r½i� by the bootstrapped one r0½i�.

Rbstrp = 1 �
P

iðr½i� � r0½i�Þ2P
iðr½i� � rÞ2

This procedure was replicated 500 times to estimate the average Rbstrp, which we regarded as the ceiling of explainable variance

when fitting the noisy tuning map.

Quantifying tuning width using volume under the surface
We generalized the idea of area under the curve (AUC) to the volume under the surface (VUS) for the 2-D tuning map in our scenario.

The tuning map was defined on a hemisphere A½q;4�;with q˛
�� p

2;
p
2

�
; 4˛

��p
2;

p
2

�
; we integrated the evoked firing rate over the hemi-

sphere and normalized its peak firing rate to 1. This statistic has a theoretical maximum of 2pz6:28 which is obtained when the

neuron responds equally and above baseline over the whole hemisphere; it also has a theoretical minimum of 0, where no place

on the hemisphere (i.e., no image) evoked activity above baseline. The value of VUS can be interpreted as the equivalent area on

the hemisphere that evoked the maximal firing rate in this space:

VUS =
1

A � b

Z
dqd4maxðA½q;4� � b; 0Þ; A = maxA½q;4�

The baseline b is the mean firing rate in the [0,50]-ms period after stimulus onset, across all trials in the experiment. A½q;4� is
computed as the mean firing rate in [51,200] milliseconds. Numerical integration on the sphere was performed using the method

in Rafaely (2019) (Rafaely, 2019).

Quantifying tuning map smoothness by dirichlet energy
To quantify the smoothness of a tuning map, we adapted a functional frommathematics, the Dirichlet energy of a function. This func-

tional integrates the squared norm of gradient in the domain of the function, which, in our case, is a spherical manifold. Here we used

finite difference estimation of gradient and discrete quadrature over sphere for integration. The distortion effect of the non-uniform

sampling on sphere is accounted for in this calculation.
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DE =

Z
M

kVfðxÞk2dx

To estimate how trial-to-trial variability affected DE, we performed 1000 trials resampling for each image, thus we obtained a dis-

tribution of average tuning maps and a distribution of Dirichlet energy. To estimate the null distribution, we shuffled the correspon-

dence of the response and the position on the image manifold and computed the Dirichlet energy again (Figure S1B). We used the t

statistic and Cohen’s d0 of these two distributions to quantify the smoothness of a tuningmap. Recall that Cohen’s d0 is the difference
between the mean of two distributions measured in the unit of combined standard deviation. So, a wider null distribution or a wider

trial resampled distribution will make d0 smaller, while a larger separation between the Dirichlet energy of the shuffled map and the

resampled map will create a larger smoothness measure (Figure S1E).

Similarly, total variation energy is defined as follows, i.e., integrating the norm of the gradient (without squaring) on the manifold.

TVE =

Z
M

kVfðxÞkdx

We replicated our analysis of smoothness using this TVE measure, with equivalent results: 94/110 experiment with smaller total

variation energy than shuffled control (P< 0:001), range of T ˛ ½�277:6; �5:8�, Cohen’s d0 ˛ ½ �12:41; �0:26�.

Quantifying activation increase in evolution experiments
Wewanted todesigna statistic toquantify theactivation increaseduringEvolutionexperiments. Inspiredbydelta fluorescenceover fluo-

rescence (DFOF) in two-photon imaging, we used the difference of activation over initial activation (DAOA) to quantify the relative

increase.

DAOA =
rend;50:200 � rinit;50:200

rinit;50:200

This statistic was key to connect the Evolution experiment to Manifold tuning maps (Figure S2E). We used the k in Kent fitting to

quantify sharpness of tuning maps. In all experiments where the tuning maps were well-fit by a Kent function (R2 > 0:5), the

Spearman correlation between DAOA and k was 0:609 ðP = 1:0 3 10� 8; N = 76Þ. One possibility was that this correlation

was mediated by the areal difference of tuning width: we found that neuronal sites in higher visual cortex had sharper tuning

maps and larger activation increase in Evolution experiments. We tested this by computing the correlation for neuronal sites in

three cortical areas separately, and we found these correlation values were also statistically significant: V1 (r = 0:564; P =

2:63 10� 3;N = 27), V4 (r = 0:492;P = 0:029;N = 20), IT (r = 0:586;P = 1:03 10� 3;N = 29). Pictorially, the neuron-guided

Evolution that ‘‘climbed’’ to a taller peak (rend;50:200) on the tuning landscape or started at a lower level (rinit;50:200), tended to reach a

sharper peak measured by the Manifold experiment. This relationship was consistent with the picture of the Evolution experiment

allowing neuronal searches for a peak on the tuning landscape, and the Manifold experiment characterizing the tuning around the

peak.

Comparing tuning across image space via radial tuning curve analysis
In this experiment, we measured site responses to images to different image sets: Manifold, gratings, curved objects, and photo-

graphs, resulting in image-response pairs fIi; rig for each image set. We first computed the image distancematrices between all pairs

of images using the LPIPS distance D (Zhang et al., 2018)

d½i; j� = DðIi; IjÞ
Then, we found the image evoking the highest response in the neuron, i.e., the tuning peak in that image space.

k = arg max
i

ri; rMAX = max
i

ri

Finally, we fit the neuronal response as a function bf of the image distance to the highest activating image Ik , this is the radial tuning

function. Specifically, we used a non-parametric fitting method, Gaussian process regression (MATLAB function fitrgp.m).

bf = fitrgpðd½k; :�; r½ : �Þ
To compute the area under the curve, we integrated the area under the estimated function; the definite integral is performed from

0 to the maximal distance from the peak image DMAX (Figure 3A right). Normalized AUCwas computed by dividing the area under the

curve by the peak activation.

AUC =

ZDMAX

0

bf ðxÞdx; DMAX = max
i

d½k; i�
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normAUC = AUC=rMAX

As the distance matrix was computed between all image pairs, the normAUC statistic quantified how fast the response decreased

from a peak on the tuning landscape, averaging the different directions of deviating from the peak.

Convergence speeds of evolution experiments
For each Evolution experiment, we computed the response firing rate in the evoked time window ½50; 200�ms for every image. Then

we used Gaussian process regression (Rasmussen and Williams, 2006) (fitrgp.m in MATLAB) to obtain the smoothed and averaged

optimization trajectory bf ðtÞ. Next, we computed the generation number C63 when 63.2% of maximal activation rmax, (i.e.,

0:632ðrmax � rinit Þ+ rinit ) was reached, quantifying the timescale of convergence per Evolution experiment.

Effect of dimensionality restriction on evolutions

For the reduced-dimension Evolution experiments, we measured the effect of constraining search dimensionality on the activation

increase for units in all three cortical areas (V1/V2, V4, and IT). We defined a ratio R between the activation increases in 4096D and

50D as follows:

R =
r50d; end � r50d;init

r4096d; end � r4096d;init

r50d;init and r50d; end are the average firing rate for all images in the first and the last generation in the 50D reduced-dimension Evo-

lution; r4096d;init and r4096d; end are those average firing rates for the full space Evolution.

To reduce the noise in the single-trial neural responses, we also used the integrated d0 to quantify the difference: we calculated d0

between the set of single trial firing rates in each generation of 4096D vs 50D Evolution (i in the following equation), and then averaged

the d0 over all generations.

d0 =
1

N

XN
i

d0ðr50d;i½ : �; r4096d;i½ : �Þ
Correlated feature attribution
The goal of this model was to localize the visual attributes— shapes, colors, and textures— selected by neurons during the Evolution

experiments, within the whole evolved image.While this can be approximated by superimposing the independently measured recep-

tive fields of the neurons, this analysis presents an alternative that works using only the Evolution data itself. We encourage the

readers to read our paper dedicated to this method (Wang and Ponce, 2022) and our code (https://github.com/Animadversio/

Neuronal_Feature_Attribution_Model). Briefly, our tactic was to rely on CNN feature (hidden) units sharing similar response properties

as the recorded neuron. First, we picked a convolutional layer in a pretrained CNN (e.g., AlexNet, VGG-16, ResNet-50, ResNet-50-

robust) and computed the correlation and covariance of each unit with the observed (V1/V2, V4 or IT) neuronal responses across all

Evolution images fIei g. The correlation and covariance were both tensors with the same shape as the activation tensor of a layer to a

single image F½c;x;y�. Using Python convention of indexing, the tensors were

C½c; x; y� = corrðr½ : �; F½ :; c; x; y�Þ
Q½c; x; y� = covðr½ : �;F½ :; c; x; y�Þ
Note that thousands of images were displayed in the Evolution experiments. Given the hundreds of thousands of features in the

convolutional layer, the subsequent memory cost required us to compute correlation values via online updates. We built a custom

pipeline to compute the correlation and covariance value for each feature unit when propagating images through the neural network,

in a batch-update fashion. Next, we selected the most correlated feature units by thresholding the t statistics associated with cor-

relation value t = r
ffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffi
1� r2

p . We set the threshold as tR3 for the presented results, although we varied this threshold to test the robust-

ness with no changes in overall conclusions. The units with correlation values less than this threshold were excluded by setting their

weight to zero. Because CNNs usually exhibit boundary artifacts, we also excluded the feature units at the border of feature maps.

The original covariance tensor Q½c; x; y� became the sparse tensor ~Q½c; x; y� after unit exclusion. Note, we chose to include only the

positively correlated units in the model, because we found the feature visualization from it more intuitive.

Next, we factorized the sparse ~Q tensor through non-negative matrix factorization (Lee and Seung, 1999, 2001) (decomposing a

spatial-channel tensor into the product of a few non-negative spatial masks and channel vectors).

argmin
Vr ;Sr

k ~Q½c; x; y� �
X
r

Vr ½c�Sr ½x; y�k22; Sr ½x; y�R0;Vr ½c�R0
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We used the coordinate-descent solver with Frobenius norm minimization as objective and nndsvda initialization as implemented

in ‘scikit-learn‘ package (Pedregosa et al., 2011). Here we kept the factor number to three. The order of the factors was arbitrary, but

the magnitude of each factor signified howmuch it contributed to the whole tensor, potentially representing the feature’s importance

to the Evolution process. As an example, factorizing the ~Q tensor in layer 3 of ResNet50-robust model to 3 components usually ac-

counted for 0:132± 0:003 variance of the original tensor (N = 90).

Finally, we used penalized regression (Ridge) to determine the weights wr of the three factors, such that these weights multiplying

the CNN activations predict the neuronal activity the best.

min
wr

X
i

kr½i� � X
c;x;y;r

F½i; c; x; y�Vr ½c�Sr ½x; y�wrk22
This model could predict the neuronal response to Evolution andManifold experiment well, Pearson correlation between predicted

and actual neuronal response toManifold imageswas 0:70± 0:02 acrossN = 90 sessions; correlationwas 0:67± 0:03when including

all reference images. We visualized the spatial masks combined by weights

				 P3
r = 1

wrSr ½x; y�
				 as the feature attribution mask (Figure 4A

(ii)), with the brighter region representing the image area correlated with and probably contributing to higher neuronal activation.

Because the goal of this analysis was to find an image-level attribution instead of just predicting neural responses, we used cor-

relation rather than regression to identify image regions related to changes in neural activity. Directly using penalized regression on

the full feature tensor or dimension reduced feature tensor (per sparse random projection or principal component analysis) often re-

sulted in an overly sparse weight tensor with no coherent spatial structure, inadequate for interpretation (Wang and Ponce, 2022).

Moreover, we chose to use matrix factorization instead of just mean or max compression of the weight tensor across the channel

dimension, since this disambiguated unique features and highlighted the spatially coherent features more clearly. Visually, it broke

down a complex feature into spatial composition of several simpler ones.

Inclusion criteria for non-driving units
In addition to the driving units, we also recorded the activities of other neuronal sites in our three electrode arrays. We used one-way

ANOVA tests to select neuronal sites that were modulated in the Manifold image space, using image identity as the main factor with

the criterion of p< 0:001. These well-modulated sites were included in other analyses, comprising N = 3427 non-driving- and 104

driving sites; these constituted 43.4% and 1.3% of all recorded units.

Measuring tuning map similarity
We measured the similarity of tuning maps based on functional correlation (Wikipedia Editors, n.d.) on the manifold, which general-

ized the correlation of functions in Euclidean space. This could be interpreted as the angular similarity between twomean-subtracted

functions defined on the manifold. Our rationale for using this method is as follows. As the tuning maps we measured were defined

over a hemisphere, some points were sampled closer to each other than to the others (e.g., around the hemisphere ‘‘poles’’), thus the

similarity of the response at those points in any tuning maps was not surprising. Functional correlation tackles this problem elegantly

by considering the underlying metric structure over which we are sampling the map.

The equations for this correlation follow below; the integrals were evaluated using discrete quadrature on the hemisphere (Rafaely,

2019). J is the Jacobian of the map from ½q;4� parameter to the Euclidean coordinate of the hemisphere.

f =

Z
M

dxjdetJjfðxÞ; Var½f � =
Z
M

dxjdetJjðfðxÞ � fÞ2
< f; g> =

Z
M

dxjdetJj fðxÞgðxÞ
corrðf ; gÞ =
< f � f ;g � g>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½f �,Var½g�p
Note that correlation in Euclidean space yields an even higher correlation value, so our results were not artifacts created by the

correlation calculated on a spherical domain.

Naive bayes decoding for population neural activity
WeusedNaive Bayes decoding (Rish andRish, 2001)method to assess how variability affected decoding.We assumed the response

of each neuronal site was an independent normal variable with a mean miðIÞ and variance s2i ðIÞ depending on the image identity I.

Thus, we could write the likelihood of an image identity given a vector of neural responses as
e7 Cell Reports 41, 111595, November 8, 2022
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logLðIjrÞ =
X
i

� 1

2



ri � miðIÞ

siðIÞ
�2

� log si

Then assuming a uniform prior on the image identity, we could get the distribution of image identity based on a response vector

using Bayes’ rule.

pðIj
		rÞ = softmaxðlogLðIjrÞÞj

With this conditional distribution, we estimated the expected decoding error in terms of the L2 or angular distance between the

latent vectors corresponding to the image

EL2 =
X
j

kzj � zrealkpðIj
		rÞ
Eang =
X
j

arccos < zj; zreal > pðIj
		rÞ
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