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Abstract

Background: Trp cage is a recently-constructed fast-folding miniprotein. It consists of a short
helix, a 3,10 helix and a C-terminal poly-proline that packs against a Trp in the alpha helix. It is

known to fold within 4 ns.

Results: High-temperature unfolding molecular dynamics simulations of the Trp cage miniprotein
have been carried out in explicit water using the OPLS-AA force-field incorporated in the program
GROMACS. The radius of gyration (Rg) and Root Mean Square Deviation (RMSD) have been used
as order parameters to follow the unfolding process. Distributions of Rg were used to identify

ensembles.

Conclusion: Three ensembles could be identified. While the native-state ensemble shows an Rg
distribution that is slightly skewed, the second ensemble, which is presumably the Transition State
Ensemble (TSE), shows an excellent fit. The denatured ensemble shows large fluctuations, but a
Gaussian curve could be fitted. This means that the unfolding process is two-state. Representative
structures from each of these ensembles are presented here.

Background

Understanding the mechanisms behind protein folding,
which is one of the most fundamental biochemical proc-
esses, is proving to be a challenging task for biochemists
and biophysicists. Recent developments in instrumenta-
tion and methodology have enabled us to take major
steps forward in comprehending the dynamics of proteins
and peptides at the molecular level. Protein engineering
methods such as Phi-value analysis [1] and various spec-
troscopic techniques such as NMR have made the task
more practicable.

Proteins are composed of two major secondary structural
elements, helices and sheets, which, along with loops,
pack together to form super-secondary and tertiary struc-

tures. Trp cage is a novel, and a highly stable, mini-protein
fold. A 20-residue Trp-cage miniprotein has been
designed [2]. It has the sequence NLYIQWLKDGGPSS-
GRPPPS. While residues 1-9 form an alpha helix, residues
10-15 form a 3,10 helix. W6 is caged by the C-terminal
poly-proline stretch. D9 and R16 are involved in a stabi-
lizing salt-bridge interaction.

Molecular dynamics simulations, which make use of clas-
sical Newton mechanics to generate trajectories, are play-
ing an ever-expanding role in biochemistry and
biophysics due to substantial increases in computational
power and concomitant improvements in force fields. In
particular, the contribution of such studies to protein
folding is immense [1]. As pointed out by Fersht and
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Figure |
Time evolution of the root mean square deviation (nm) with
reference to the starting structure.

Dagget, molecular dynamics simulations are capable of
unraveling whole protein folding / unfolding pathways
[1]. Indeed, simulation techniques have been widely used
for studying helices and sheets. Today, folding simula-
tions of more-than-model peptides are being carried out
on high-power computers.

Despite being a new mini-protein construct, the Trp cage
motif has attracted considerable computational analysis.
Folding simulations of this protein in explicit water have
been carried out using what is known as the Replica
Exchange Method. A two-state folding mechanism has
been proposed and free energy surfaces have been deter-
mined [3]. Moreover, a few folding simulations of have
been carried out using implicit solvation models [4-6]. In
this article, the results of a high-temperature unfolding
simulation of the Trp-cage mini-construct are presented.
Three separate structural clusters are identified: the close-
to-native-state cluster, the intermediate cluster and the
denatured ensemble. These clusters, considered in terms
of their radii of gyration, are shown to be Gaussian ensem-
bles. Structural features representing each of these ensem-
bles are also illustrated.

Results and Discussion

Molecular dynamics simulations of the Trp-cage mini-
protein construct (PDB ID: 1L2Y) were carried out using
the OPLS-AA force-field incorporated in the freely availa-
ble program, GROMACS. The simulations were carried
out at 498 K, at which temperature the unfolding process
is favored. This temperature provides a good description
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Figure 2
Time evolution of the radius of gyration (nm)

of the unfolding process, at least in respect of CI2 and the
homeodomain of engrailed [7]. It is also much higher
than the melting temperature determined by experiment
(315 K) or through replica-exchange simulations (400 K)

[3].

It can be seen that the RMSD (figure 1) of the evolving
structure with reference to the starting structure increases
rapidly in the first 40 ps, during which time the only struc-
tural change observed is denaturation of the 3,10 helix.
This is followed by rapid unwinding of the second and
third turns of the helix. While the third turn unwinds
within 200 ps, the second turn remains intact for a little
longer and remains visible until 250 ps. The first helical
turn remains stable until about 800 ps after which it also
denatures. During this time period W6 begins to move out
of the cage that is formed by the prolines. The above listed
processes are not adequately reflected by the time-evolu-
tion of the Rg (figure 2) and are all categorized as close-to-
native-state ensemble. Representatives from this ensem-
ble are shown in figure 3a and 3b.

After 800 ps, there is a jump in the values of both RMSD
and Rg. The new value remains constant until about 3200
ps. This state is characterized by complete annihilation of
the cage. The W6 is released from the Pro cage and
becomes completely "solvent-exposed”. It must be noted
that the use of the term "solvent exposed" is not entirely
appropriate in this context as there is no real change in the
solvent-accessible surface area of the W side-chain. How-
ever, the point is that, this W is no longer protected by the
proline cage. Native contacts are retained in the form of a
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Figure 3

Representative structures from the folding pathway obtained
after (A) 0 ps (B) 700 ps (C) 1000 ps (D) 2500 ps (E) 4000 ps
(F) 5000 ps. Structures A and B belong to the first ensemble;
C and D to the second and E and F to the third. Color code:
Pro: Red; Trp: Blue; Asp: Green; Arg: Yellow

salt-bridge between D9 and R16. Representatives of this
ensemble are shown in figure 3¢, d. In fact, the folding
simulations carried out by Ruhong Zhou [3] point to an
intermediate state characterized by the single salt-bridge
interaction. This state, which is the only intermediate state
observable, may be the transition state ensemble (TSE).
This would mean that the unfolding process is two-stage
and is the reversal of the folding process. In order to assess
whether this state is indeed the TSE, lower temperature
simulations at 293 K were performed. Eight structures
were randomly obtained from this ensemble and the sim-
ulations were carried out for 5 ns on each of these struc-
tures. The progress of each simulation was monitored
using Rg. The idea is that, at temperatures favoring the
folding process, structures from the TSE roll down
towards the native state with a probability of approxi-
mately 0.5, assuming a two-state process [1]. Of the eight
simulations, three simulations showed a drastic fall in the
Rg, indicating a collapse towards the native state. In a
fourth simulation, there was a slight decrease in the Rg,
which was not drastic, but still implying a fall towards the
native state. In the other four simulations, a significant
jump in the Rg was observed, indicating a tendency
towards the unfolded conformation. These observations
show that this ensemble is, most probably, the TSE.

http://www.tbiomed.com/content/2/1/7

Table I: Rg range and time corresponding to each state seen in
the simulation

Ensemble Time (ps) Rg range (nm)
Native 0-800 0.7-08
TSE 800-3200 072 -1

Unfolded 3200-5000 08-14
Entire range 0-5000 07-14

After 3200 ps, a further jump in RMSD and Rg is observed
leading to a state where these values fluctuate markedly.
This highly disordered state, showing a measure of heter-
ogeneity, is the denatured ensemble, in which the salt-
bridge interaction that characterized the intermediate
state is also lost. There is a significant jump in the distance
between the Asp9 and Arg 16 sidechains after this time. As
a result, there are no native contacts in this state. This is
represented by structures in figures 3e and 3f.

In this manuscript, I also discuss a new method for iden-
tifying sufficiently populated states during the course of
an MD simulation. The idea is that each state is to a large
extent topologically different from any other state and can
be characterized by an approximately Gaussian distribu-
tion of the radius of gyration. This is to be expected
because each state lies at a defined height in the free-
energy well. In this simulation it can be observed that
transitions from one state to another are characterized by
a significant jump in the radius of gyration. The distribu-
tion of the radius of gyration was determined for each of
the three states and for the entire time-evolving system.
For each of the three ensembles and for the entire time
duration, the distribution was calculated over the ranges
of values shown in table 1. It was found that Gaussian-like
curves could be fitted for the three ensembles taken sepa-
rately, while the distribution for the entire system was
highly skewed (figure 4). The slight skew in the curve for
the close-to-native state ensemble might be due to the ina-
bility to sufficiently demarcate the helix unwinding stages
in the plot.

Conclusion

High-temperature unfolding molecular dynamics simula-
tions of a Trp cage miniprotein construct have been car-
ried out. This has shown that the process is two-stage, akin
to the folding process results [3]. The three ensembles,
including the TSE, are shown to be Gaussian with respect
to their Rg values.

Methods
The starting structures for the simulations were obtained
from PDB 1L2Y [3]. The first three models were used to
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carry out the 5 ns simulations and similar results were
obtained with each. Results presented here correspond to
model 1. All simulations were carried out using
GROMACS 3.2 [8,9], running on a single Fedora Linux
system. The OPLS-AA force field was used. The peptide
was solvated in a box containing approx. 500 water mole-
cules [10]. Periodic boundary conditions were employed
to eliminate surface effects. Energy minimization with a
tolerance of 2000 kJ/mol/nm was carried out using the
Steepest Descent method. All bonds were constrained
using LINCS [11]. The system was loosely coupled to a

temperature bath (at 498 K or 293 K) using Berendsen's
method [12]. Berendsen's pressure coupling was used.
Long-range electrostatics was handled using the PME
method [13]. All potential cut-offs were set at 1 nm. The
final MD simulations were carried out with a time-step of
2 fs and without any position restraints. All analyses were
conducted using programs built within GROMACS. The
RMSD values were obtained from a least square fit of the
respective non-hydrogen atoms (main-chain and side-
chain). The radius of gyration was also calculated for the
whole protein minus hydrogens as an indicator of the
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compactness of the overall structure. The compiled DSSP
[14], which was downloaded separately and run from
GROMACS, was used to calculate secondary structure
formation.
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