
Discrete Event Dynamic Systems
https://doi.org/10.1007/s10626-024-00407-0

Tracking dynamic deadlines in switchedmax-plus linear
systems with uncontrollable workloads

Roohallah Azarmi1 ·Mohsen Alirezaei2,3 · Dip Goswami1 · Twan Basten1

Received: 17 October 2022 / Accepted: 22 October 2024
© The Author(s) 2024

Abstract
Modern safety-critical cyber-physical systems such as medical imaging equipment or
autonomous vehicles need to respect strict deadlines on received data-processing workloads.
These deadlines and workloads are dynamic and uncontrollable and the systems typically
have only a limited discrete number of system configurations to respond to dynamic changes.
The number and types of processors allocated to a data-processing task, their operating volt-
age and frequency, and the resolution and frequency of sensing (e.g., images) are examples of
controllable configuration parameters. Guaranteeing dynamically changing deadlines under
uncontrollable workloads with a limited discrete number of response options can be phrased
as a multi-objective tracking problem for a switched max-plus linear system. This results
in a combined scheduling and control problem. We propose an integrated state-feedback
and model-predictive control solution that minimizes the number of deadline misses and the
cost of implementation (e.g., energy consumption). We demonstrate the effectiveness of our
approach through simulation.

Keywords Safety-critical cyber-physical systems · Dynamic deadlines ·
Uncontrollable workloads · Switched max-plus linear systems · MPC

B Roohallah Azarmi
r.azarmi@tue.nl; R.Azarmi.2016@ieee.org

Mohsen Alirezaei
m.alirezaei@tue.nl

Dip Goswami
d.goswami@tue.nl

Twan Basten
a.a.basten@tue.nl

1 Electronic Systems Group, Department of Electrical Engineering, Eindhoven University
of Technology (TU/e), Eindhoven, The Netherlands

2 Department of Mechanical Engineering, Eindhoven University of Technology (TU/e), Eindhoven,
The Netherlands

3 RTD Department, Siemens Industry Software and Services B.V., Helmond, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-024-00407-0&domain=pdf

Discrete Event Dynamic Systems

1 Introduction

Data is a key resource in today’smodernworld (Bajaber et al. 2016).Data-processing systems
and applications play a pivotal role in smart society, e.g., in buildings, transportation, health-
care systems, or security. Data-intensive sensing and control is rapidly gaining importance
(Van Horssen 2018). Prime examples of successful applications are surgical robotics (Oda
et al. 2009) and visual navigation (Chakraborty et al. 2016). Optimizing and controlling the
performance of data-processing systems is still a challenging task (Chen and Zhang 2014;
Fahad et al. 2014; Zhang et al. 2018; Stonebraker et al. 2005).

Safety-critical cyber-physical systems need to respect strict deadlines on processing data
workloads. The processing deadlines may dynamically change over time and the data pro-
cessing times depend on the content of the data as well as on the resources available for
processing (Gheorghita et al. 2009). For instance, in autonomous driving, processing dead-
lines may vary with the speed of the vehicle and timing requirements of feedback controllers.
The processing workload may depend on for instance the activated functionality (adaptive
cruise control, lane-keeping assist) and the number of relevant features (cars, lane markers)
in the sensor data. The time needed to process a given workload on an embedded compute
platform depends on the number, type, and speed of available processing cores. Dimen-
sioning a system for the worst case (highest workload and minimum deadline) is generally
expensive (Van Horssen 2018; Liroz-Gistau et al. 2013), e.g., in terms of the number of
required embedded processing units and energy consumption. To meet dynamic deadlines
under uncontrollable dynamic workloads while optimizing implementation cost is a chal-
lenging problem. The system configuration, such as resolution and rate of sensors and type,
number, and speed of the allocated processing units, needs to be continuously adapted to fit
the situation at hand. An important aspect is that the system often has only a limited, discrete
number of configuration options to respond to dynamic changes.

Meeting dynamic deadlines in a system with uncontrollable dynamic workloads while
minimizing implementation cost can be seen as amulti-objective tracking problem.Feedback
control is a systematic way to deal with tracking problems (Doyle et al. 2013). A variety
of solutions for traditional linear systems exists, e.g., proportional-integral-derivative (PID)
control (Aström and Hägglund 2006), state-feedback control (Dorf and Bishop 2008), and
model-predictive control (MPC) (Camacho and Alba 2013). However, tracking with only a
limited number of discrete options to respond to dynamic changes is challenging.

A means to cope with the combination of uncontrollable dynamic workloads and limited
system configuration options is the use of system scenarios (Gheorghita et al. 2009). A
number of well-defined modes of operation, the system scenarios, can be identified at design
time, determined for instance by data content and/or system configuration, with nominal
processing times per scenario. The system can then be appropriately configured at run-time.
In this way, our tracking problem reduces to an integrated scheduling and control problem.
Selecting a system configuration for each received workload is the control part; deciding on
the time to start the processing of the workload is the scheduling part. The solution needs to
take into account the characteristics of the workload, its processing deadline, time and cost
of processing for possible system configurations, and time and cost for switching between
configurations.

Max-plus algebra (MPA) is well suited to model and analyze timing aspects of discrete-
event systems with a basis similar to the domain of linear systems (Baccelli et al. 1992;
Komenda et al. 2018; Hardouin et al. 2018). A switched max-plus linear system (SMPLS)
consists of subsystems that each are a max-plus linear system. SMPLS are a suitable means

123

Discrete Event Dynamic Systems

to model, analyze, schedule and control timing aspects of systems with different modes of
operation (Van Den Boom and De Schutter 2012). Each system configuration is captured by
a subsystem in the SMPLS. Many real-life systems can be modeled through SMPLS, such
as production systems (Van Den Boom and De Schutter 2006; Basten et al. 2020), traffic
and railway networks (Van Den Boom and De Schutter 2006), and data-processing systems
(Geilen et al. 2020). SMPLS also form a suitable basis for the scheduling and control tracking
problem considered in this paper.

An SMPLS model typically assumes constant timing delays. Data-processing times on
modern processors, however, may suffer from small variations (relative to the coarse-grained
variations captured in the different workloads), depending for instance on the state of data
caches or small differences in the data content within a given workload. Such uncertainties
in data-processing times with respect to nominal processing times may be captured in an
SMPLS in max-plus-multiplicative form (Van Den Boom and De Schutter 2002).

This brings us to the following problem definition:

How to minimize deadline misses and implementation cost for a system with a limited
number of discrete system configurations under uncontrollable dynamic workloads and
dynamic deadlines in the presence of bounded model uncertainties?

The problem definition draws inspiration from data-processing systems, as elaborated above.
However, the solutions presented in this paper apply to any system that can be captured as
an SMPLS and satisfies the problem definition.

The contributions of this paper are as follows: We propose a control method for tracking
and optimizing performance of a class of systems with uncontrollable varying workloads and
dynamic workload deadlines, subject to input constraints in the form of a discrete number of
configuration options that are available to respond to dynamic changes.

1. The targeted class of systems is cast into the framework of SMPLS and respective struc-
tural properties are provided.

2. The proposed control method integrates MPC to select optimal sybsystems at run-time in
response to received workloads and state-feedback control to schedule the switching and
to cope with the model uncertainties. It takes into account the time and cost of switching.

3. The method is shown to satisfy tracking requirements, minimizing deadline misses and
optimizing the cost of implementation (e.g., energy consumption), enhancing robustness
against model uncertainties, uncontrollable dynamic workload variations, and dynami-
cally changing deadlines.

We review related work in Section 2. Section 3 introduces a motivating case study that
serves as running example. Section 4 gives max-plus preliminaries. The problem setting
is made precise in Section 5. Section 6 presents the control method. Section 7 shows its
effectiveness through simulation. Section 8 concludes.

2 Related work

Several classes of performance control problems in the max-plus domain are covered in
literature: optimization, tracking, and regulation problems. Optimization problems concern
maximizing the productivity of output per unit of time, e.g., van den Boom et al. (2020);
Alirezaei et al. (2012); Fusco et al. (2018); Brunsch et al. (2012); Nasri et al. (2014). Tracking
problems, as the problems considered in this paper and in Dirza et al. (2019); Menguy
et al. (2000); Schafaschek et al. (2020); Lahaye et al. (2008); Silva and Maia (2016), focus

123

Discrete Event Dynamic Systems

on dynamic set-point tracking. Finally, regulation problems, e.g., Aberkane et al. (2021);
Goncalves et al. (2017, 2015), cover a specific class of tracking problems where the timing
constraint (set-point) to be tracked is fixed.

The control solutions proposed for problems in the max-plus domain can be categorized
into four groups: MPC (van den Boom et al. 2020; Alirezaei et al. 2012; Dirza et al. 2019),
state-feedback control (Fusco et al. 2018; Brunsch et al. 2012), constraint-based optimal
control (Menguy et al. 2000; Schafaschek et al. 2020; Lahaye et al. 2008; Silva and Maia
2016), and nonlinear optimization (Nasri et al. 2014). The techniques developed inDirza et al.
(2019); Menguy et al. (2000); Lahaye et al. (2008); Silva and Maia (2016); Goncalves et al.
(2017, 2015) formax-plus regulation and trackingproblems all have continuous configuration
control variables. They are not applicable to our problem that considers systems with a
discrete set of configurations. The state-feedback control technique for regulation problems
developed inAberkane et al. (2021); Goncalves et al. (2017, 2015) ismoreover not applicable
to our problem because it assumes a fixed timing set-point for the outputs. Refs (van den
Boom et al. 2020; Alirezaei et al. 2012; Fusco et al. 2018; Brunsch et al. 2012; Nasri et al.
2014; Schafaschek et al. 2020; Aberkane et al. 2021) propose methods that are applicable
to systems that, similar to our case, have a discrete set of configurations. However, none of
these methods is applicable to systems with dynamic deadlines and uncontrollable dynamic
workloads.

The solutions most closely related to our solution are those of Dirza et al. (2019); Menguy
et al. (2000); Schafaschek et al. (2020); Lahaye et al. (2008); Silva and Maia (2016). The
solution for the max-plus tracking problem of Dirza et al. (2019) is MPC, where the model
prediction is essential to copewith the unpredictably changing output reference. The approach
of Dirza et al. (2019) assumes a perfect model for the system’s dynamics, and therefore no
system feedback is needed. The technique does not apply to systems with uncertainties and
dynamic workload variations. We integrate state feedback withMPC to cope with the combi-
nation of dynamic workloads andmodel uncertainties. For themax-plus tracking problems of
Menguy et al. (2000); Schafaschek et al. (2020); Lahaye et al. (2008); Silva andMaia (2016),
solutions for just-in-time control have been proposed. The synthesis for just-in-time control
for systems with dynamic deadlines is done based on residuation theory. This theory is well
suited to compute the latest activation times for the control inputs such that the outputs occur
in time to meet their deadlines. However, just-in-time execution is not necessarily optimal in
terms of implementation cost when there is a trade-off between the implementation cost and
the execution time of a subsystem selected in response to a received workload. It is desirable
to maintain some slack with respect to the dynamically changing deadlines to allow to opti-
mize implementation cost for future workloads. Nevertheless, residuation theory is useful
in our setting as well. We use a result from residuation theory in deriving feedback-gain
matrices, at design time, allowing for just-in-time activation of the control inputs at run-time
to ensure as-soon-as-possible execution of the selected subsystem.

The optimization and regulation techniques of van den Boom et al. (2020); Alirezaei
et al. (2012); Fusco et al. (2018); Brunsch et al. (2012); Nasri et al. (2014); Schafaschek
et al. (2020) for discrete control problems are applicable to our problem by considering the
worst-case output time reference and taking the worst-case workload. The discrete-control
tracking technique of Aberkane et al. (2021) is applicable to our problem by considering
the worst-case workload. However, assuming worst cases would lead to conservative and
expensive designs in terms of implementation cost. We may expect the result to be often far
from optimal. The results may only be competitive when changes in the output-time reference
and workload variation are small.

123

Discrete Event Dynamic Systems

In conclusion, existingmax-plus-based solutions in literature do not explicitly consider all
ingredients of the problem addressed in this paper: tracking dynamic deadlines at a minimal
implementation cost while we have uncontrollable dynamic workloads, (bounded) model
uncertainties, and a limited discrete number of system configurations to respond to dynamic
changes. This paper proposes MPC to cope with the unpredictable output reference and the
unpredictable dynamic workloads. We combine it with a state-feedback controller for the
timing of the configuration changes and to cope with the uncertainties in the system model.
The feedback-gain matrices of the state-feedback controller are computed using residuation
theory. The approach takes into account the time and cost of switching configurations.

3 Motivating example: an image-processing pipeline

Consider a simplified two-processor image-processing pipeline as illustrated in Fig. 1. The
pipeline iteratively processes received images in subsequent tasks P and Q. The processing
workload for each of the received images depends on the content of the data (e.g., the
number of features in the images) and cannot be controlled. The processor speeds (their
operating frequencies) can be controlled. Processor 1 has two speeds, processor 2 has three.
The nominal processing times ρn and ωn of tasks P and Q for the workload/processor
speed combinations are given in the table. Workloads capture coarse-grained variations in
task processing times. For given workloads, processing times may still show fine-grained
variations (because of image content, data caching, etc.). We assume that processing times
vary within intervals [τ −4, τ +2], with τ the nominal task processing times ρn orωn for any
of the workload/processor speed combinations. The table in Fig. 1 also provides the power
consumed per processor in each of its configurations. Power consumption is quadratically
proportional to speed. Changing the operating frequency of a processor is fast compared to
data processing. For the example, we assume it takes 1 time unit with a power consumption
of 1 unit of power. The memory allocation allows to buffer the data of two images already
processed by P but not yet by Q.

We can model the timing of the image-processing pipeline as an SMPLS. The system has
2 workloads and 6 (= 2 × 3) configurations. This leads to 12 (= 2 × 6) subsystems. These
subsystems only differ in their timing. The SMPLS has three states x1, x2, and x3. States
x2(k) and x3(k) correspond to the completion times of execution k − 1 of tasks P and Q1.
State x1(k) is the completion time of execution k−2 of task Q. It captures the buffer capacity
of 2 between tasks P and Q. Only if Q(k−2) has completed, P(k) can start. The SMPLS has
two inputs u1 and u2 capturing the activation times of the processor configuration with which
the received workload is processed. The SMPLS has one output y, capturing the production
time of the output data.

As a basis for the SMPLS model (elaborated in Section 4), we derive equations that relate
the completion times of executions k of tasks P and Q (x2(k + 1) and x3(k + 1)), buffer
availability time (x1(k + 1)), and output (y(k)) to earlier task completion times (x2(k) and
x3(k)), earlier buffer availability (x1(k)), and inputs (u1(k) and u2(k)) that trigger reconfig-
uration (switching). We assume given initial states x(0), capturing the initial availability of
the processors and buffer space. For simplicity, we assume that switching time is always 1,
even if processor speeds do not change. We obtain the following equations:

x1(k + 1) = x3(k) (1)

1 The indexing of the state variables was chosen to facilitate readability of the analyses later in the paper.

123

Discrete Event Dynamic Systems

P Q

Three speeds: lo, me (= 2×lo), hi (= 4×lo)Two speeds: lo, hi (= 2×lo)

Two-task image-processing pipeline

1 2

processor processing
 configuration time wl 1 wl 2 power

P hi ρn 15 30 80
lo 30 60 20

Q hi ωn 10 5 80
me 20 10 20
lo 40 20 5

Fig. 1 An image-processing pipeline

x2(k + 1) = max(x2(k), x1(k), u1(k) + 1) + ρn

x3(k + 1) = max(x3(k), x2(k + 1), u2(k) + 1) + ωn

y(k) = x3(k + 1)

The example is kept small so that it can serve as running example. It captures all aspects
relevant for the problem at hand though. It has a discrete number of controllable configura-
tions with a switching cost, uncontrollable workloads, fine-grained variations in processing
times, and an inverse relationship between processing times and implementation cost (power
consumption). These characteristics are shared by many cyber-physical systems with some
form of data-intensive time-critical control implemented on embedded compute platforms,
in the medical domain (imaging equipment), in automotive (assisted/autonomous driving),
and in manufacturing (chip lithography, production printing). Such systems may all benefit
from the proposed approach.

4 Max-plus preliminaries

This section introduces notations and background on MPA and (S)MPLS.

4.1 Max-Plus Algebra (MPA)

The domain of MPA is the set of real numbers R plus ε, denoted Rε . Element ε is referred
to as minus infinity or null. The basic operations of MPA are maximization and addition,
represented by ⊕ and ⊗:

z1 ⊕ z2 = max(z1, z2) , z1 ⊗ z2 = z1 + z2 , z1 ∈Rε , z2 ∈Rε , (2)

where we adopt the convention that for all z1 ∈Rε ,

max(z1, ε) = max(ε, z1) = z1 , z1 + ε = ε + z1 = ε . (3)

The structure (Rε,⊕,⊗) is called MPA (Baccelli et al. 1992; Cuninghame-Green 1979).
Operations ⊕ and ⊗ are respectively called the max-plus-algebraic addition and max-plus-
algebraic multiplication, since many properties and concepts from linear algebra can be
translated to MPA by replacing + by ⊕ and × by ⊗ (Baccelli et al. 1992; Cuninghame-
Green 1979).

123

Discrete Event Dynamic Systems

Matrix operations can be defined in MPA as follows. Let Z1 ∈R
m×n
ε , Z2 ∈R

m×n
ε , and

Z3 ∈R
n×p
ε , for three natural numbers, m, n, and p.

(
Z1 ⊕ Z2

)
i, j := (

Z1
)
i, j ⊕

(
Z2

)
i, j = max

((
Z1

)
i, j ,

(
Z2

)
i, j

)
, (4)

(
Z1 ⊗ Z3

)
i, j :=

⊕n

h=1

((
Z1

)
i,h ⊗ (

Z3
)
h, j

)
= max

h = 1, ... ,n

((
Z1

)
i,h + (

Z3
)
h, j

)
,

where i and j are respectively the row-index and column-index of the matrix entries and
(.)i, j indicates a matrix with its entries (Baccelli et al. 1992; Cuninghame-Green 1979).

4.2 MPLS

Amax-plus-linear system (MPLS), where k ∈ N0 is the iteration variable, is a set of equations
of the following form:

x(k + 1) = A⊗ x(k)⊕ B ⊗ u(k), (5)

y(k) = C ⊗ x(k)⊕ D ⊗ u(k).

In Eq. 5, x(k), u(k), and y(k) are respectively the state, the input, and the output vectors
at the kth iteration of the system; A, B, C , and D are the system matrices. The elements of
the vectors are event times (Baccelli et al. 1992; Cuninghame-Green 1979).

Motivating example: Returning to the example of Section 3, the event times of interest are
task completion times, buffer availability times, output times, and reconfiguration triggers.
We can derive a matrix representation from the equations in Eq. 1 that follows the format of
Eq. 5. The following is obtained by appropriate substitution for x2(k + 1) in the left-hand
side of the third equation and distribution of the processing times over the max expressions:

(6)

For concrete values of ρn and ωn , this provides an MPLS model for a given workload
running in a specific system configuration.

In line with our motivating example, we assume MPLS with a single output. The
numbers of states and inputs are given by Nx and Nu ; states and inputs are indexed by
Sx = {1, 2, ..., Nx } and Su = {1, 2, ..., Nu}.

4.3 SMPL systems

Recall that we consider systems with (uncontrollable) workload variations and (controllable)
system configurations. Such systems can be modeled as a switched MPLS (SMPLS) that
consists of subsystems that each are an MPLS (see Van Den Boom and De Schutter (2004)).
We consider single-output SMPLS in the form of Eq. 7 where matrices A(i) ∈R

Nx×Nx
ε ,

B(i) ∈R
Nx×Nu
ε , C (i) ∈R

1×Nx
ε , and D(i) ∈R

1×Nu
ε are the system matrices for the i th subsys-

tem, ranging over Ssub = {1, 2, ..., Nsub}.
[
x(k + 1)
y(k)

]
=

[
A(i)(k) B(i)(k)
C (i)(k) D(i)(k)

]
⊗

[
x(k)
u(k)

]
. (7)

123

Discrete Event Dynamic Systems

5 Problem setting

In this section, Section 5.3 in particular, we precisely define the scheduling and control
problem addressed in this paper. Section 5.1 first introduces the SMPLS specification we
take as a starting point. Section 5.2 defines the optimization objectives, specifically deadline
misses and implementation cost. Section 5.4 illustrates the scheduling and control challenge
through the motivating example.

5.1 SMPLS specification

We assume that the system of interest is specified in the form of a single-output SMPLS
as introduced in Section 4.3, with measurable states and with the output defined by one
of the states (i.e., there is a state j ∈ Sx such that for all subsystems i ∈ Ssub, C (i) =
A(i)
j and D(i) = B(i)

j , where, for any matrix M , Mj denotes row j of M). This is a valid
assumption if one of the system tasks produces the output and the system states correspond
to task completion times. Since the system matrices model delays, we further assume that
all non-ε entries are non-negative real numbers. Moreover, we assume that the model has
no redundancy (i.e., there are no two states j1, j2 ∈ Sx , j1 �= j2, such that for all subsystems
i ∈ Ssub, A

(i)
j1

= A(i)
j2

and B(i)
j1

= B(i)
j2
). Finally, we assume structural finiteness. That is, all

states and outputs after a system iteration are affected by either one of the inputs or one of the
system states at the iteration start. Since we consider single-output SMPLS with the output
equal to one of the states, this condition holds if and only if for all subsystems i ∈ Ssub, the
matrix [A(i) B(i)] does not have a null row. Such a null row would imply that the respective
state is continuously ε, which is not meaningful.

Motivating example: For a multiprocessor image-processing pipeline, it is reasonable to
assume that task completion times and buffer availability (the system states) are measurable.
The equations of Eq. 1 and the system matrices in Eq. 6 show that our motivating example
satisfies the other mentioned assumptions. Structural finiteness follows because all system
states (task completion times and buffer availability) depend on completion of earlier task
executions (actually implying that the A(i) matrices have no null row).

Let WS = {1, 2, ..., Nws} be the set of workloads. Since the system configuration is
controllable upon receipt of an uncontrollable workload, WS partitions Ssub into subsystem
sets S(w)

sub corresponding to workloads w ∈ WS. If workload w is received, the system can

only respond with a subsystem in S(w)
sub .

Motivating example: As explained in Section 3, ourmotivating example has 12 subsystems
for 2 workloads. The workloads WS = {1, 2} partition the subsystems in two sets of 6
subsystems each: Ssub = S(1)

sub ∪ S(2)
sub. A system configuration is defined by the received

workload and the speed of the two processors, e.g., (2, hi, lo) is the configuration in which
workload 2 is received and processed with processor 1 at high speed and processor 2 at low
speed. The two sets of subsystems are then S(1)

sub = {1 = (1, hi, hi), 2 = (1, hi,me), 3 =
(1, hi, lo), 4 = (1, lo, hi), 5 = (1, lo,me), 6 = (1, lo, lo)} and S(2)

sub = {7 = (2, hi, hi), 8 =
(2, hi,me), 9 = (2, hi, lo), 10 = (2, lo, hi), 11 = (2, lo,me), 12 = (2, lo, lo)}. The system
matrices A(i), B(i), C (i), and D(i), for i ∈ Ssub, all follow the structure of Eq. 6, with the
nominal values ρn and ωn given in Fig. 1.

Our approach takes into account the timeneeded to switch between configurations. Switch-
ing causes a delay in the activation time of the upcoming subsystem. The switching time
when switching from subsystem q to subsystem p of an SMPLS can be expressed as a vector

123

Discrete Event Dynamic Systems

d(q,p) = [d(q,p)
1 d(q,p)

2 . . . d(q,p)
Nu

]T or, equivalently, as a diagonal matix D(q,p)
sw ∈ R

Nu×Nu
ε

with the d(q,p)
j , 1 ≤ j ≤ Nu , values on the diagonal. Switching from subsystem q to sub-

system p can then be taken into account in the state-space equations as follows:
[
x(k + 1)

y(k)

]

=
[
A(p) B(p)

C (p) D(p)

]

⊗
[

x(k)

u(k) + d(q,p)

]

=
[
A(p) B(p) ⊗ D(q,p)

sw

C (p) D(p) ⊗ D(q,p)
sw

]

⊗
[
x(k)

u(k)

]

. (8)

Motivating example: Recall the equations in Eq. 1 specifying our motivating example.
These equations include the (constant) switching time of 1 as a delay after the activation
times u(k), in line with the first equality in Eq. 8. The system matrices in Eq. 6 include the
switching time conform the second equality in Eq. 8.

In the remainder, we assume that the switching time is included in the system matrices
B(i) and D(i) of the subsystem i ∈ Ssub to which the SMPLS is switching. When switching
times vary with to and from configurations, this leads to a potentially quadratic increase in
the number of subsystems in the SMPL model, if arbitrary switching is allowed. If switching
time does not depend on to and from configurations, the number of subsystems is unaffected.

We finally assume bounded additive uncertainty in the system matrices of the SMPLS
specification. That is, A(i)(k), B(i)(k), C (i)(k), and D(i)(k) represent the uncertain system
matrices of the i th subsystem at system iteration k, such that, for given error boundsαlb, αub ∈
R

+
0 , every matrix elementm of any of these matrices falls within interval [m−αlb,m+αub].
Motivating example: As explained in Section 3, workload processing times may vary

within given bounds. From themodel given in Eq. 6, it then easily follows that the uncertainty
in the system matrices is bounded and additive.

5.2 Dynamic deadlines and performance objectives

The first performance objective that needs to be optimized is the number of deadline
misses. We assume a dynamically varying reference of inter-arrival times of outputs,
�re f : R+

0 →R
+, given as a piece-wise constant function over the time domain. The refer-

ence production time of the output is defined through a signal yre f , with yre f (k) for system
iteration k given by

yre f (k) =
{

�re f (0), k = 0 ,

yre f (k − 1) + �re f (yre f (k − 1)), k ≥ 1 .
(9)

A deadline miss at iteration k, denoted DM(k), for k ≥ 0, is then defined as follows, where
y(k) is the actual output production time at iteration k:

DM(k) =
{
1, y(k) > yre f (k) ,

0, y(k)≤ yre f (k) .
(10)

We define an evaluationwindow over which the performance objectives are analyzed, with
an initial transient that is ignored. The number of missed deadlines Nes,ew

miss (k) at iteration k,

123

Discrete Event Dynamic Systems

with es ∈ N the starting iteration for evaluation and ew ∈ N the length of the evaluation
window, is defined as:

Nes,ew
miss (k) =

⎧
⎪⎨

⎪⎩

0, k < es + ew ,
ew−1∑

l = 0
DM(k − l), k ≥ es + ew .

(11)

The second performance objective is cost of implementation, which should be minimized.
To compute cost, we need the sequence of executed subsystems σ(k)∈ Ssub that specifies
the subsystem at iteration k of the system. For a given es and ew, the implementation cost is
defined as follows:

Costes,ew(k) =

⎧
⎪⎨

⎪⎩

0, k < es + ew ,
ew−1∑

l = 0
Cost(k − l), k ≥ es + ew ,

(12)

where Cost(k), for k ≥ 1, is given by a function G : S2sub × R
Nx
ε × Rε × (R

Nu
ε)2 → R

+
0

that defines for each pair of subsystems i, j ∈ Ssub the cost of executing j after i , given
the state x(k), the reference output deadline yre f (k), the activation times of j, (u(k − 1))
and the completion times of j (u(k)). Note that Cost(0), the cost of the first iteration, is left
undefined by assuming that G depends on a previous iteration. This is a technicality, because
we assume that G takes the switching cost into account, which is not defined for iteration 0.
If needed, Cost(0) can be defined by assuming a 0 switching cost, or by including a start-up
cost. We do not do so, because we are primarily interested in steady-state behavior, and not
in start-up behavior.

Motivating example: A concrete example of implementation cost is energy consumption.
Let Pj : Ssub → R

+
0 be a function that gives the power dissipation of processor j ∈ {1, 2}, for

running subsystem σ ∈ Ssub. The power numbers were already given in Section 3, Fig. 1. We
further assumed that switching a processor configuration takes one time unit and comes with
a power cost of one. The energy cost E(k) in system iteration k then consists of a switching
cost of 2, 1 unit of energy per processor, and an execution cost for both processors obtained
by subtracting the switching times of 1 and the activation times u(k − 1) of configuration
σ(k) from the completion times of σ(k), u(k):

E(k) = 2 + [P1(σ (k)) P2(σ (k))](u(k) − u(k − 1) − 1) (13)

The right-hand side of Eq. 13 follows the format of G introduced above, although the
cost does in this case not depend on the previous configuration σ(k − 1) nor on the output
reference. Moreover, the defined energy cost does not depend on whether or not a processor
is actively used. This could be adapted, for example, to distinguish between a running and
an idling processor.

5.3 Problem definition

We can now define our scheduling and control problem, namely how to minimize dead-
line misses and implementation cost for an SMPLS receiving an uncontrollable, dynamic
sequence of workloads wk ∈ WS (k ∈ N0) with dynamic deadlines yre f (k). The sys-
tem has a discrete number of response options to respond to workloads from WS specified

by subsystems S(w)
sub (w ∈ WS) such that S(w)

sub ∩ S(w′)
sub = ∅ (w,w′ ∈ WS, w �= w′) and

123

Discrete Event Dynamic Systems

Ssub = ⋃
w∈WS S

(w)
sub . Our (multi-objective) optimization problem is then as follows:

min
σ(k)∈ S

(wk)

sub , u(k)∈R
Nu
ε

Nes,ew
miss (k) , Costes,ew(k)

s.t. x(k + 1) = A(σ (k)) ⊗ x(k)⊕ B(σ (k)) ⊗ u(k)

y(k) = C (σ (k)) ⊗ x(k)⊕ D(σ (k)) ⊗ u(k),

(14)

where A(σ (k)), B(σ (k)),C (σ (k)), and D(σ (k)) are the uncertain system matrices of the selected
subsystem σ(k) in iteration k of the system.

5.4 Motivating example

Figure 2 shows a Gantt chart of seven iterations of our motivating example. The horizontal
axis is a time line. From bottom to top, the solid colored lines in the first seven rows show
the evolution of the states, control inputs, output, and output reference, in line with the
constraints in the problem definition of Eq. 14. The output y(k) aligns with the availability
of x3(k+1) in line with Eqs. 6 and 7. The top two rows of the Gantt chart show the pipelined
execution of tasks P and Q. In line with Eq. 1, the start time of P(k) is the maximum of
x1(k) (buffer availability), x2(k) (completion of P(k − 1)), and u1(k) + 1 (reconfiguration
time plus switching delay, the latter indicated with the dashed colored lines); the start time of
Q(k) is the maximum of x3(k), x2(k+1) signalling the completion of P(k) – the pipelining,
and u2(k) + 1. Task completion times result from adding the (uncertain) execution times ρ

and ω (shown in the blocks) of the executed subsystem. These task completion times are
the state availability times for the next iteration. Interestingly, we may observe that, up to
iteration 67, task Q is not critical for the timing of the system. In iteration 67 though, Q is
executed at a low speed, to save energy, leading to a deadline miss (y(67) being greater than
yre f (67)) and the need for a recovery action that increases the speed of processor 1 again in
iterations 68 and 69.

Figure 3 shows further details on the same seven iterations of the running example. It shows
the received workloads, the dynamic output reference, the two control inputs (switching
times), the subsystems being executed, the number of missed deadlines (with es = 10, ew =

1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880
Time

1700 1710 1720 1730 1740 1750

6564 66 67 68 69

57 10 8 17 7 16

13132829302928

63

Q

P

yref

y

u2

u1

x3

x2

x1

Fig. 2 Gantt chart of an execution fragment of the motivating example

123

Discrete Event Dynamic Systems

0
1
2

W
S

26
28
30

re
f(y

re
f)

0
1000
2000

u 1

0
1000
2000

u 2

0
5

10

0
2
4

N
m
is
s

10
,7

0
1
2

C
os
t1
0,
7 104

-10
0

10

SL

63 64 65 66 67 68 69
Iteration

2

1

26
29

1682 1711 1741 1772 1802 1831 1849

1711 1740 1770 1801 1831 1849 1863

8 8 8 7 9

1 2

0
1 1 1

12494

12494 12894

22314 22434 24954 25494

11
5

2 1

-12 9
15

Fig. 3 Workloads, output reference, control inputs, executed subsystems, missed deadlines, cost, and slack of
the execution fragment

7), the implementation cost, and the slack yre f (k) − y(k). As an example, following Eq. 13,
the implementation (energy) cost for iteration 67 is as follows:

E(67) = 2 + [20 20][(1802 − 1772 − 1) (1831 − 1801 − 1)]T = 1162 . (15)

Following Eq. 12, Costes,ew, with ew = 7, provides a sliding window of aggregated
energy cost over seven iterations. Figure 3 shows this aggregated cost.

The system misses its deadline at iteration 67 (indicated by the negative slack) because it
executes subsystem 9 with a low cost (1162, see Eq. 15) in an attempt to save energy. The
next deadlines are met again as higher-speed and higher-cost subsystems are selected. The
number of deadline misses in the evaluation window of seven iterations N 10,7

miss stays 1.
The execution snapshot shown in Figs. 2 and 3 illustrates the combined challenge of

selecting appropriate subsystems σ and switching times u in response to uncontrollable
workloads trading off deadline misses and implementation cost in an attempt to minimize
both.

123

Discrete Event Dynamic Systems

6 Tracking dynamic output inter-arrival times

This section proposes an integrated scheduling and control method to solve the problem
defined in Section 5.3. Section 6.1 gives an overview of the approach. Section 6.2 makes
the assumptions explicit under which our method is applicable. Section 6.3 presents a
state-feedback control approach to schedule subsystem switches. Section 6.4 describes com-
putation of the feedback-gain matrices. Section 6.5 provides an MPC approach to select the
appropriate subsystem at run-time in response to a received workload. Section 6.6 discusses
the controller implementation.

6.1 Overview of the proposed approach

Figure 4 illustrates the overall control structure. The integrated controller has two parts, a
state-feedback control and a model-predictive control. It simultaneously decides the timing
of switching u(k) and the subsystem σ(k) executed for each system iteration k. Given a sub-
system to execute, the state-feedback controller determines the earliest possible starting time
for this subsystem, given up-to-date information on the (uncertain) system states. Without
uncertainty in the execution times of the system, state feedback would not be needed. The
MPC decides on the subsystem to execute in response to a received workload by looking
ahead a given number of iterations, the prediction horizon. It uses a weighted sum of the
(normalized) objectives, deadline misses and implementation cost, to select the best subsys-
tem. It takes into account the state-feedback control in its predictions. The controller uses
a nominal and worst-case subsystems for both the MPC prediction and the computation of
the u(k). Subsystems are actuated as late as possible (ALAP, just in time) to enable as-soon-
as-possible (ASAP) execution of the subsystems through a feedback gain, using a specific
feedback-gain matrix per subsystem. The γ block in Fig. 4 represents the backward shift

Actual

subsystems

Sensing

(fully observable)

State-

feedback

control

Integrated controller

MPC

Prediction

loop

Fig. 4 The proposed feedback control structure

123

Discrete Event Dynamic Systems

operator (see Baccelli et al. (1992)), which is conceptually similar to the Z -transformation
in discrete-time control system theories.

6.2 Structural properties of our SMPLS

Problem definition Eq. 14 starts from a single-output SMPLS specification with bounded
model uncertainties and the subsystems partitioned into sets corresponding to configurations
that may be chosen to respond to uncontrollable workloads. For our approach to work, we
need a few assumptions.

Assumption 1 - Inputs affect states: The input matrices should not have null columns:
∀i ∈ Ssub ∀ j1 ∈ Su ∃ j2 ∈ Sx : B(i)

j2, j1
�= ε.

Assumption 2 - Controllability: A state is uncontrollable in a subsystem when it is not
directly affected by inputs (see Prou and Wagneur (1999)). So a state is uncontrollable if the
corresponding row in the subsystem’s input matrix is the null row. Let S(i)

un be the (indices
corresponding to) uncontrollable states in subsystem i ∈ Ssub, defined as S(i)

un = { j1 ∈ Sx |
∀ j2 ∈ Su : B(i)

j1, j2
= ε}. We assume that for all subsystems i1, i2 ∈ Ssub, S

(i1)
un = S(i2)

un .
That is, all subsystems have the same uncontrollable states, henceforth referred to as the
uncontrollable states of the SMPLS, denoted Sun . The set Sco = Sx \ Sun is the set of
controllable states. We assume that the state defining the output is controllable.

Assumption 3 - Full actuation: We assume a fully actuated system. Since we assume a
system model without redundancy, a subsystem i ∈ Ssub is fully actuated when the number
of controllable states in the subsystem is the same as the number of inputs. Because all
subsystems have the same controllable states and the same inputs, all subsystems, and hence
the SMPLS, are fully actuated if |Sco| = |Su | = Nu .

Motivating example: From the model in Eq. 6, it is clear that all inputs affect at least one
state (Assumption 1). This naturally follows from the fact that control inputs reconfigure
processors before a task executes and hence influence the task completion times. State 1 of
the example system, corresponding to buffer availability, is uncontrollable in all subsystems;
buffer availability is typically only indirectly controlled through task executions. The other
two states, corresponding to task completion times, are controllable in all subsystems. Hence,
Assumption 2 is satisfied, with Sun = {1} and Sco = {2, 3}. As a result, also Assumption 3
is satisfied. The example SMPLS is fully actuated.

6.3 Scheduling and coping with uncertainty: state-feedback control

The system matrices have bounded uncertainty due to small unpredictable deviations in
subsystem execution times (Section 5.1). Since we assume that states are measurable, these
deviations can be taken into account through state feedback. The state-feedback control
approach presented in this subsection controls the switching between subsystems by deciding
the timing of the control inputs.

Control law: Using state feedback x(k), the input activation times for subsystem i ∈ Ssub
executed in the current iteration are determined as follows:

u(k) = K (i) ⊗ x(k) , (16)

where K (i) is the feedback-gain matrix of subsystem i .
Closed-loop system dynamics: To obtain the closed-loop system dynamics, we eliminate

the input signals u(k) from the max-plus equations of Eq. 7 using the control law of Eq. 16.

123

Discrete Event Dynamic Systems

We arrive at the following, where A(i)
cl and C (i)

cl are the state and output matrices of the
closed-loop system, respectively:

x(k + 1) = A(i)
cl ⊗ x(k), with A(i)

cl = A(i) ⊕ (
B(i) ⊗ K (i)) , (17)

y(k) = C (i)
cl ⊗ x(k), with C (i)

cl = C (i) ⊕ (
D(i) ⊗ K (i)) . (18)

The feedback-gain matrix K (i) must satisfy both Eqs. 17 and 18. From the assumption
that the single output equals one of the system states (Section 5.1), we can conclude that
Eq. 17 implies Eq. 18. Hence, it suffices to consider Eq. 17.

We divide matrices A(i)
cl , A

(i), and B(i) into controllable and uncontrollable parts. Null
rows in the B(i) matrices do not providemeaningful information for computing the feedback-
gainmatrices. Let A(i)

co , B
(i)
co , and A(i)

cl,co be the |Sco| rows of A(i), B(i), and A(i)
cl corresponding

to the controllable parts. We then obtain the following equation for the controllable states, as
the starting point for the computation of the feedback-gain matrices:

[A(i)
cl,co]|Sco|×Nx = [A(i)

co]|Sco|×Nx ⊕
(
[B(i)

co]|Sco|×Nu ⊗ [K (i)]Nu×Nx

)
. (19)

6.4 Computing feedback-gainmatrices

Starting from Eq. 19, we consider two cases for computing the feedback gain for the i th

subsystem in the closed-loop system:

B(i)
co ⊗ K (i) ≺ A(i)

co , (20)

B(i)
co ⊗ K (i) � A(i)

co . (21)

Note that the subsystem to be executed after i can only be started after completing i ,
i.e., at A(i)

co ⊗ x , in line with Eq. 21. Inequality Eq. 20 has a trivial solution, namely minus-
infinity matrices for all i ∈ Ssub. It does not provide meaningful information for computing
the feedback-gain matrices.

Solving Eq. 21: With gains based on Eq. 21, we potentially delay the execution of sub-
systems. This allows to potentially cover scheduling policies from ASAP execution up to
and including ALAP or just-in-time execution with respect to the current deadline. To solve
Eq. 21, we again consider two cases, distinguishing whether or not the equality version of
Eq. 21 has at least one solution.

Solving the equality version of Eq. 21: In this case, we try to solve equality

B(i)
co ⊗ K (i)

eq = A(i)
co , (22)

with K (i)
eq being the solution. Equation 22 may not have a unique solution. To solve Eq. 22,

we apply methods of Butkovic (2010); Tsiamis andMaragos (2019) that build on residuation
theory. We aim to find the greatest solution. Taking the greatest solution as the basis for the
feedback-gain matrices provides ALAP actuation of the control inputs.

Solvability of Eq. 22: The number of unknown elements of the feedback-gain matrices
is Nu×Nx . Given the dimensions of A(i)

co in Eq. 22, we have Nco×Nx max-plus equations.
Since |Sco| = Nu (Assumption 3 in Section 6.2), we have sufficient equations to solve Eq. 22.

Solving Eq. 22: We find K (i)
eq solving Eq. 22 in two steps. In Step 1, based on the infinite

and finite entries of A(i)
co , we separate the equations into two parts. Then, Step 2 solves the

equations in two sub-steps; first, we determine the infinite entries of the matrix K (i)
eq after

which we derive its finite entries.

123

Discrete Event Dynamic Systems

Step 1: The equations from Eq. 22 can be re-ordered separating infinite and finite entries
of A(i)

co . Let NεA and NfA = Nco×Nx − NεA be the number of infinite and finite entries of

A(i)
co . Equation 22 can then be written as follows:

[B(i)
co,εA]NεA×(Nu×Nx) ⊗ [K (i)

eq,v](Nu×Nx)×1 = [ε]NεA×1 , (23)

[B(i)
co,fA]NfA×(Nu×Nx) ⊗ [K (i)

eq,v](Nu×Nx)×1 = [A(i)
co,v]NfA×1 , (24)

where K (i)
eq,v is K

(i)
eq in vector format, A(i)

co,v contains all finite entries of A
(i)
co in vector format,

and B(i)
co,εA resp. B(i)

co,fA are appropriately derived from B(i)
co .

Step 2a, computing infinite K (i)
eq,v entries: Equation 23 provides a collection of max-plus

additions between B(i)
co,εA and K (i)

eq,v entries that all have to resolve to ε. For finite B(i)
co,εA

entries, the K (i)
eq,v entry must be ε. Infinite B(i)

co,εA entries do not provide information about

the K (i)
eq,v entry. We then proceed to Step 2b.

Solvability of Eq. 24, a doubly R-astic matrix: By construction, all A(i)
co,v entries are

finite. It follows that Eq. 24 does not have a solution if B(i)
co,fA contains a null row. Similarly,

if B(i)
co,fA has a null column with index j , then we can set (K (i)

eq,v) j,1 to any value in a solution

for Eq. 24. Assumption 1 in Section 6.2 implies that B(i)
co,fA has no null columns. Since B(i)

co,fA
refers to the controllable states, it also has no null rows. That is, it is doubly R-astic. This is
a necessary (but not sufficient) condition for Eq. 24 to have a unique greatest solution.

Step 2b, computing finite K (i)
eq,v entries: Following (Butkovic 2010; Tsiamis and Maragos

2019), Eq. 24 has a solution if and only if

B(i)
co,fA ⊗

((
− (

B(i)
co,fA

)T)
⊗′A(i)

co,v

)

︸ ︷︷ ︸
*

= A(i)
co,v . (25)

In Eq. 25, (.)T provides the conjugate matrix in max-plus context and the ⊗′ operation is
defined as follows:

((
− (

B(i)
co,fA

)T)
⊗′A(i)

co,v

)

j,1
:= min

h

((
− (

B(i)
co,fA

)T)

j,h
+ (

A(i)
co,v

)
h,1

)
, (26)

which is a matrix-vector multiplication in min-plus algebra (Heidergott et al. 2014).
The *marked expression is a solution for Eq. 24 derived using residuation theory (Baccelli

et al. 1992; Cuninghame-Green 1979), named the principal solution in Butkovic (2010);
Tsiamis and Maragos (2019). If it is a solution, it is the greatest solution (with respect to
the canonical order on vectors in max-plus algebra). This provides a solution for the finite
entries of K (i)

eq,v .

A solution for Eq. 22: By combining the finite and infinite entries computed for K (i)
eq,v in

Steps 2b and 2a, we obtain solution K (i)
eq for Eq. 22.

Causality: An important practical concern for implementing a controller is the causality
of the control law. A causal control law avoids the need to activate control inputs before
a running subsystem has completed. Our feedback-gain matrices must be causal to ensure
causality of the control law. A matrix is causal if all its finite entries are non-negative (see
Goncalves et al. (2015)).

A solution for Eq. 21, the feedback-gain matrix: The solution K (i)
eq computed for Eq. 22

is not necessarily causal. Note though that we do not necessarily need a solution for equality
Eq. 22. We need a solution for inequality Eq. 21. So K (i)

eq can safely be made causal by

123

Discrete Event Dynamic Systems

replacing finite negative entries with 0. The resulting matrix K (i)
ca provides a solution for

inequality Eq. 21. This solution is our feedback-gain matrix for subsystem i ∈ Ssub. The
greater a gain matrix, the later the subsystem is executed. Taking the principal (greatest)
solution for Eq. 24 and then turning this into the smallest causal solution for Eq. 21 provides
ALAP actuation of the control inputs for ASAP execution of the subsystem.

Motivating example: Following the above steps for subsystem 8 of our running example,
we derive the following solutions for Eqs. 22 and 21, resp.:

K (8)
eq =

[−1 −1 ε

29 29 −1

]
, K (8)

ca =
[
0 0 ε

29 29 0

]
. (27)

K (8)
ca is the feedback-gain matrix for subsystem 8. Given that the nominal execution time of

task P in configuration 8 (= (2, hi,me)) is 30 (see Fig. 1), we may interpret this gain matrix
as an attempt to execute the next subsystem as soon as possible (the 0 entries) while actuating
the second processor as late as possible, hiding the reconfiguration delay of 1 (the 29 entries).

Solving the strict inequality version of Eq. 21: In this case, i.e., when Eq. 22 does not
have a solution, we need to find a lower-bound matrix [A(i)

colb]Nco×Nx ∈ R
+
ε,0 for subsystem i ,

sufficiently greater than A(i)
co , that guarantees a solution for Eq. 22 with A(i)

colb substituted for

A(i)
co . Since B(i)

co is doubly R-astic, we can always find this matrix. Following the reasoning
of the first case, [A(i)

colb,v](Nco×Nx)×1 can be found by solving Eq. 25, where A(i)
colb,v is the

vector format of the unknown matrix A(i)
colb. Using Eqs. 25 and 26, the following conditions

have to be met:

(
A(i)
colb,v

)

j1,1
− max

j2

((
B(i)
co,fA

)

j1, j2
, min

j3

((
−

(
B(i)
co,fA

)T)

j2, j3
+

(
A(i)
colb,v

)

j3,1

))
= 0 ,

(
A(i)
colb,v

)

j1,1
− max

((
A(i)
colb,v

)

j1,1
,
(
A(i)
co,v

)

j1,1

)
= 0 . (28)

Equation 28 can be solved numerically using the Levenberg-Marquardt algorithm (Moré
1978). Given the assumptions on our SMPLS, it may be possible to solve them more effi-
ciently, but this is left as future work. Since the feedback-gain matrices are computed at
design time, maximal efficiency is not essential.

A solution for Eq. 21, the feedback-gain matrix: From this point onward, we can obtain
the feedback-gain matrix for the considered subsystem as in the first case, by turning the
solution for Eq. 25 obtained with A(i)

colb,v into a causal matrix providing the desired solution
for Eq. 21.

The gain matrices obtained through the outlined approach realize ASAP execution of
the selected subsystem, with ALAP activation of the control inputs. ASAP execution is
meaningful when the primary goal is to avoid deadline misses. ASAP execution builds up
slack with respect to the unpredictable dynamically changing deadlines, reducing the risk of
missing future deadlines and providing room for optimizing future implementation cost. It
may be interesting to explore other control activation and subsystem scheduling policies in
future work. Care has to be taken that the run-time selection of subsystems remains tractable.
The MPC in our approach (see Fig. 4), developed in the next subsection, looks ahead in time
to select the best possible subsystem to execute in response to a workload and a given output
time reference, given the selected ASAP scheduling policy with ALAP control activation.

123

Discrete Event Dynamic Systems

6.5 Selecting the subsystem to execute: model-predictive control

We introduce an MPC approach to select a subsystem to execute in response to a received
workload. The MPC looks ahead for a set number of iterations, the optimization window,
optimizing a weighted sum of normalized deadline misses and normalized implementation
cost. Looking ahead improves performance and provides robustness against the model uncer-
tainties, uncontrollable dynamic workload variations, and unpredictably changing deadlines.

Predicting output times: We assume a finite prediction horizon. The workload to be pro-
cessed in a given iteration of the system is known; workloads for any later iterations are
unknown. The worst-case workload scenario is taken into account for any such future iter-
ations. As an example, assuming a prediction horizon of two, Eq. 29 below shows how to
predict the output production times at iteration k, where i ∈ Ssub is the subsystem executed
at iteration k and matrices with the ‘(wc)’ superscript are matrices of the subsystem executed
in response to the worst-case workload.

[
y(k)

y(k + 1)

]
=

[
C(i)

C(wc) ⊗ A(i)

]
⊗ x(k) ⊕

[
D(i) ε

C(wc) ⊗ B(i) D(wc)

]
⊗

[
u(k)

u(k + 1)

]
. (29)

Equation 29 can be adapted to larger prediction horizons. Besides worst-case C and D
matrices, also worst-case A and B matrices are then needed.

To realize an MPC approach with a look-ahead of at least two, we need to identify the
worst-case workload wwc and we need to define subsystems S(wc)

sub to respond to it. We
describe three different ways to do so.

First, a natural worst-case workload exists: A well-defined worst-case workload exists
if there is a subsystem that has matrices that are at least the matrices of any of the other
subsystems and that can only be used in response to a single workload. That particular
workload is then the worst-case workload. In our MPC technique, we can then use the
subsystems allowed in response to that workload (as defined in Section 5.1).

Motivating example: The SMPLS for our running example does not have a natural worst-
case workload. All the subsystems follow the model of Eq. 6. We see, for instance, that
A21 = ρn and A33 = ωn . The values given in Fig. 1 for these parameters show that ωn > ρn
for the first workload, whereas ρn > ωn for the second workload. In other words, for one
workload, task P is the slowest, while for the other workload task Q is the slowest.

If there is no clear worst-case workload, we can construct a synthetic worst-case workload
with its possible response(s) for use in the MPC. Note that the worst-case workload wwc

is essentially only an index. So without natural worst-case workload, we can simply take
wwc = Nws + 1. The challenge is to define meaningful subsystem responses to it. We
explain two possible ways.

Second, use application knowledge: The system model represents a system at hand that
may provide information that allows to construct a worst-case workload and its subsystem
responses. For the motivating example, the combined worst-case task execution times may
represent a worst-case workload. These worst-case task execution times can be used in the
matrices of Eq. 6 to create a worst-case (slowest) subsystem response. Since the subsystem
responses for the workload scenarios in the example are essentially scaled versions of the
slowest response to a particular workload, we may construct additional subsystem responses
for the worst-case workload by applying the same scaling.

Motivating example: Fig. 5 (right table) lists six subsystems as possible responses to a
synthetic worst-case workload taking the worst-case task execution times (left table). The

123

Discrete Event Dynamic Systems

w
l
w

w
c

P
hi

ρ n
30

lo
60

Q
hi

ω
n

10
m

e
20

lo
40

su
bs

ys
te

m
13

hi
hi

14
hi

m
d

15
hi

lo
16

lo
hi

17
lo

m
d

18
lo

lo

pr
oc

es
so

r
 p

ro
ce

ss
in

g
co

nfi
gu

ra
tio

n
tim

e
 p

ro
ce

ss
or

 c
on

fig
ur

at
io

ns

Fi
g.
5

T
he

w
or
st
-c
as
e
w
or
kl
oa
d
an
d
its

re
sp
on

se
s
fo
r
th
e
ru
nn

in
g
ex
am

pl
e

123

Discrete Event Dynamic Systems

slowest response (subsystem 18) results from operating both processors at low speed. Its
matrices are obtained by filling in the ρn and ωn values of Fig. 5 in the model of Eq. 6:

(30)

The system matrices for the other five subsystems in Fig. 5 can be obtained by scaling the
task execution times given in the figure by factors 2 and 4, respectively, depending on the
processor speeds in the configuration. The six subsystems complement the twelve subsystems
already given in Section 5.1.

Third, use worst-case system responses: A general way to obtain a worst-case subsystem
response for a synthetic worst-case workload is to take the element-wise maximum over the
subsystem matrices of all possible subsystems.

Motivating example: Taking the element-wise maximum over the matrices of all twelve
subsystems identified in Section 5.1 gives the following matrices:

(31)

The result is less conservative than the result of Eq. 30. The subsystem is indexed 13, as
before complementing the twelve actual subsystems of the system.

Feedback-gain matrices: With the worst-case workload and its subsystem responses
defined, we compute feedback-gain matrices for these subsystems, to the extent not already
done, following the procedure given in Section 6.4.

Predicting deadline misses: As explained in Section 5.2, our optimization targets two
objectives. The first objective is the number of deadline misses over a given evaluation
window. Ideally, the MPC should consider the full evaluation window in its predictions.
But this may be computationally infeasible. Hence, we introduce a separate optimization
window length ow ∈ N, defining the MPC prediction horizon. This parameter provides a
trade-off between optimality and computation time. Let σ̂ (1) ∈ S(wk)

sub be a subsystem that

can be executed in response to a received workload wk ∈ WS; let σ̂ (2), . . . , σ̂ (ow) ∈ S(wc)
sub

be subsystem responses for the worst-case workload. Eq. 32 defines the number of deadline
misses over the prediction horizon when executing subsystem sequence σ̂ in response to the
kth workload received wk . The λ j ∈ R

+
0 , for 1 ≤ j ≤ ow, are weighting factors to trade off

the importance of a missed deadline at iteration k and future deadline misses. Note that DM
in Eq. 32 depends (implicitly) on the executed subsystems from σ̂ .

Now,σ̂
miss (k) =

ow−1∑

l = 0

λow−l × DM(k + l) . (32)

In our experiments, λ j is set as follows:

λ1 = 1 , λ2 = 2 , λ j = λ j−1 + λ j−2 , ∀ j ≥ 3 . (33)

123

Discrete Event Dynamic Systems

This is conceptually similar to the Fibonacci sequence (see Sigler (2003)). This gives
more weight to deadline misses in the near future than to later deadline misses (similar
to, but not as strongly as, exponentially increasing λ j). This choice is reasonable because
we have workload knowledge for iteration k, whereas we use conservative workloads and
execution delays for future iterations.

To meaningfully compare different objectives in MPC, we have to properly normalize
objectives. The maximum value for Now,σ̂

miss (k) over a window of length ow is
∑ow

j=1 λ j and

its minimum value is 0. Therefore, the normalized version of Now,σ̂
miss (k) is defined as follows:

Now,σ̂
miss,no(k) = 1

∑ow
j=1 λ j

× Now,σ̂
miss (k) . (34)

Predicting implementation cost: The second optimization objective defined in Section 5.2
is the implementation cost. The implementation cost is also computed over an iteration
window of length ow. The predicted cost for executing subsystems σ̂ as defined above in
response to workload wk in iteration k is:

Costow,σ̂ (k) =
ow−1∑

l = 0

λow−l ×Cost(k + l) , (35)

where Cost(k) captures the cost of an iteration, depending among others on the executed
subsystem, as elaborated in Section 5.2. The cost prediction is weighted using the same λ j

parameters as the prediction of deadline misses.
If a synthetic worst-case workload was defined for the the deadline miss prediction, then

we need to have a meaningful implementation cost for the execution of subsystems defined
in response to this worst-case workload as well. We need both the execution and switching
cost for the newly introduced subsystems. One option is to assume constant values, for
instance, the values obtained by taking the maximum over the implementation cost of all
actual subsystems and by assuming the maximum switching cost for all switches. When
through scaling multiple subsystem responses were defined, the implementation cost may be
scaled accordingly for those subsystems.

We need to normalize cost to meaningfully compare cost with deadline misses. Note that
the MPC needs to consider |S(wk)

sub |× |S(wc)
sub |(ow−1) possible sequences for received workload

wk . Let S(k) be the set of all these sequences. The cost for subsystem sequence σ̂ at iteration
k is normalized considering the minimum and maximum costs over all sequences in S(k):

Costow,σ̂
no (k) = Costow,σ̂ (k) − minσ̂ ′∈S(k) Costow,σ̂ ′

(k)

maxσ̂ ′∈S(k) Costow,σ̂ ′
(k) − minσ̂ ′∈S(k) Costow,σ̂ ′

(k)
. (36)

Optimization algorithm: The MPC uses a weighting factor λdl ∈ [0, 1] to trade off the
implementation cost and the deadline misses over the optimization window. We assume
that the reference output times, the deadlines, are given over the optimization window. We
may assume worst-case output inter-arrival times or a continuation of the latest inter-arrival
time if these reference deadlines are not given. Since the number of deadline misses and

123

Discrete Event Dynamic Systems

implementation cost are never negative, our MPC uses a linear cost function, instead of a
quadratic one. Recall from above that S(k) is the set of all possible subsystem sequences
over the prediction horizon to be considered by theMPC in response to the received workload
at iteration k. The optimization problem solved by the MPC in each system iteration is as
follows:

min
σ̂∈S(k)

λdl × Now,σ̂
miss,no(k) + (1 − λdl)×Costow,σ̂

no (k)

s.t. u(k) = K (σ̂ (l)) ⊗ x(k)

x(k + 1) =
(
A(σ̂ (l)) ⊕ (

B(σ̂ (l)) ⊗ K (σ̂ (l)))
)

⊗ x(k)

y(k) =
(
C (σ̂ (l)) ⊕ (

D(σ̂ (l)) ⊗ K (σ̂ (l)))
)

⊗ x(k) ,

(37)

where the A(σ̂ (l)), B(σ̂ (l)),C (σ̂ (l)), D(σ̂ (l)), and K (σ̂ (l)) are the (nominal) systemand feedback-
gain matrices of the subsystems σ̂ (l), for 1 ≤ l ≤ ow.

Optimizing Eq. 37 returns the optimal sequence σ̂ ∈ S(k) at iteration k. The first element
of this sequence, σ̂ (1), is selected as the executed subsystem σ(k). It is actuated at times
u(k). The MPC computes the u(k) (using the feedback gains) and y(k) over the prediction
horizon to compute the deadline misses and implementation cost for its cost function. It uses
the closed-loop model as the closed-loop matrices can be computed offline. Output y(k) is
not explicitly computed because it aligns with one of the controllable states.

Computational complexity: The MPC explores all |S(wk)
sub |× |S(wc)

sub |(ow−1) options in S(k).
Per option, per iteration within the prediction horizon, two matrix multiplications (for u(k)
and x(k + 1)) are needed. The first one takes Nx × Nu binary additions and Nu × (Nx − 1)
binary max operations; the second one takes N 2

x binary additions and Nx × (Nx − 1) binary
max operations. The number of matrix multiplications can be further reduced by avoiding
repetitive computations (for instance, occurring for larger prediction horizons in combination
with a single worst-case subsystem response).

Motivating example: Figs. 2 and 3 discussed in Section 5.4 are obtained by applying
the MPC for the running example with one step look-ahead, i.e., ow = 1, and weighting
factor λdl = 0.8 in the cost function. We refer to this controller as Cmpc1. Figure 6 shows
the execution of the same seven iterations as in Fig. 3, but with the subsystems selected
by the MPC with two steps look-ahead, i.e., ow = 2, and using the worst-case workload
and its six possible responses of Fig. 5 in its prediction. The controller thus considers 36
predictions to determine the subsystem to execute at iteration k. It assumes that the reference
output inter-arrival time �re f (yre f (k)) is the same as the reference at iteration k − 1, i.e.,
�re f (yre f (k − 1)). We refer to this controller as Cmpc2,wc6. Comparing Fig. 6 with Fig. 3
shows that looking ahead for more than one step is beneficial to reduce the risk of missing an
output deadline. Interestingly, we also pay a smaller energy cost (15434) (seeCost10,7(69) in
Fig. 6) compared to the case with one step look-ahead (25494) (see Cost10,7(69) in Fig. 3).

Figure 7 shows the results with the subsystems selected byMPCwith two steps look-ahead
and the single worst-case subsystem response of Eq. 31. The resulting controller Cmpc2,wc1

determines the optimal response from six predictions. Comparing Fig. 7 with Figs. 3 and 6
confirms that looking ahead for more than one step is beneficial for reducing deadline misses.
However, with Cmpc2,wc1, we pay a greater energy cost (31394) (see Cost10,7(69) in Fig. 7)
compared to the energy cost of Cmpc2,wc6 (15434) (see Cost10,7(69) in Fig. 6).

123

Discrete Event Dynamic Systems

0
1
2

W
S

26
28
30

re
f(y

re
f)

0

1000

2000

u 1

0

1000

2000

u 2

0
5
10

0
1
2
3

N
m
is
s

10
,7

0

10000

C
os
t1
0,
7

0
5
10
15

SL

63 64 65 66 67 68 69
Iteration

2

1

26
29

1678 1707 1735 1763 1792 1822 1835

1707 1736 1764 1792 1821 1836 1864

9 8 8 8 8
2

5

0

9014 10734 10674 12494 14214 15734

15434

1
12

6 8 7

10 12

Fig. 6 Workloads, output reference, control inputs, executed subsystems, missed deadlines, cost, and slack
for Cmpc2,wc6

6.6 Controller implementation

We implemented our control approach in MATLAB. In each system iteration, the subsystem
selected by the MPC is executed, initiating the reconfiguration (subsystem switching) at the
actuation times computed through the control law (Eq. 16). Actuation times are computed
as soon as the relevant states are available. For instance, considering Fig. 2, this means
that u1(k) is computed as soon as x1(k) and x2(k) are available; u2(k) is then computed
as soon as also x3(k) is available. Following the ASAP execution policy, reconfiguration
is started earlier than prescribed by the control law if all relevant states (task completions,
buffer availability) have been observed. For example, processor 2 running task Q can be
reconfigured as soon as both the previous instance of Q and the current instance of P have
completed. Reconfiguration is delayed if (the relevant part of) the preceding system iteration
has not yet completed. For instance, reconfiguration of a processor cannot start before the
previous task execution on that processor has completed (captured by states x2 and x3 for
the two processors). Our implementation neglects the time needed to compute the controller
outputs. In practice, this time can be considered part of the reconfiguration (switching) times
included in the B and D matrices.

123

Discrete Event Dynamic Systems

0
1
2

W
S

26
28
30

re
f(y

re
f)

0
1000
2000

u 1

0
1000
2000

u 2

0
5
10

0
1
2
3

N
m
is
s

10
,7

0
2

C
os
t1
0,
7 104

0
5
10
15

SL

63 64 65 66 67 68 69
Iteration

2

1

26
29

1682 1712 1741 1769 1798

1829

1845

1711 1741 1770 1798 1827 1843 1863

8 8 8 7 7

2 2

0

15754 17694 19414 25694 32514 32414

31394

8 6
2

6 5 3

13

Fig. 7 Workloads, output reference, control inputs, executed subsystems, missed deadlines, cost, and slack
for Cmpc2,wc1

7 Simulation setup and results

We evaluate our approach on the motivating example. We provide the simulation setup and
present results that show the effectiveness of our approach.

7.1 Simulation setup

We implemented our approach in MATLAB (version R2017a) using the MPA toolbox
(Stanczyk 2016). Experiments were done on a computer with a 2.40 GHz CPU with 12
GB of RAM and a 64-bit operating system.

Distribution of workload scenarios: We choose a discrete uniform distribution of work-
loads, with occurrence probability 0.5 for bothWS1 andWS2.

Task-execution time distribution:We choose a single discrete probability distribution func-
tion (PDF) that captures the uncertainty in the execution times of the two tasks in the various
configurations; see Fig. 8 (left). Recall that task processing times are assumed to vary within
the bounded interval [τ − 4, τ + 2], with τ being the nominal task processing times ρn or ωn

for any combination of the workloads and processor configurations. That is, task execution

123

Discrete Event Dynamic Systems

Time

0

0.1

0.2

0.3

PD
F

0 1000 2000 3000
Time

26

28

30

32

re
f

+2-4

Fig. 8 PDF for task execution times (left) and output reference (right)

times vary within a range of seven time units. The execution times for a system iteration are
then obtained by adding the lower-bound value for the task execution time corresponding
to the subsystem considered for execution in that iteration to the value sampled from the
uncertainty distribution. The green, blue, and red circles correspond to the lower bound, the
nominal value, and the upper bound of the task execution times.

Dynamic output reference: The reference for the output inter-arrival times is set to a
piece-wise constant function over the time domain; Fig. 8 (right).

Reference solutions for comparison: We consider two reference solutions to evaluate our
MPC approach. The first one runs the processors at their fastest speeds (and hence the highest
cost). It executes subsystem 1 when workload 1 is received and subsystem 7 for workload 2.
This prioritizes avoiding deadline misses and follows approaches from van den Boom et al.
(2020); Alirezaei et al. (2012); Fusco et al. (2018); Brunsch et al. (2012); Nasri et al. (2014);
Schafaschek et al. (2020) as discussed in Section 2. The second reference solution runs the
processors at their lowest speeds (i.e., at the lowest cost). It executes subsystems 6 and 12
for workloads 1 and 2. This reference solution provides an approximate lower bound on the
implementation cost. We refer to these two reference controllers asChc andClc, respectively.

We perform two sets of experiments to assess the performance of our approach, one veri-
fying robustness against model uncertainties and one verifying robustness against workload
variations.Wecompare thefive controllers discussed so far, i.e.,Cmpc1,Cmpc2,wc1,Cmpc2,wc6,
Chc, and Clc. The system runs 110 iterations in each sub-experiment. By setting the starting
iteration for evaluation to 10, i.e., es = 10, we cut ten initial iterations (numbered 0 to 9) to
avoid transition effects. The length of the evaluation window is set to 100.

Verifying robustness against model uncertainties: For these experiments, we generate
three different sequences of 110 workload scenarios. To derive sufficient data for verifying
the robustness of the controllers against the model uncertainties, for each of these three
workload sequences, each controller runs fifty times with different task execution times. As
a result, for each controller, we obtain 150 values for the number of deadline misses and
energy cost.

Verifying robustness against workload variations: For these experiments, we generate 50
different sequences of 110 workload scenarios. For each of these 50 workload sequences,
each controller is run once. This gives fifty different values for the number of deadline misses
and energy cost per controller.

123

Discrete Event Dynamic Systems

7.2 Simulation results

Figures 9 and 10 provide the results for the two sets of experiments. The horizontal axes show
the number of sub-experiments, 150 for the first set and 50 for the second set. The top rows in
the graphs show N 10,100

miss (110), the number of deadline misses over the iterations, excluding
10 initial iterations. The bottom rows provide Cost10,100(110), the energy cost over the
iterations, again excluding 10 initial iterations. To compare the controllers, Tables 1 and 2
show the averages for the two objectives. We may draw the following conclusions:

– Comparing the green Cmpc1 controller with the black Cmpc2,wc1 controller and the pink
Cmpc2,wc6 controller shows that looking ahead for more than one step reduces the risk of
missing output deadlines, in line with earlier observations made in Section 6.5.

– ComparingCmpc2,wc1 (black) andCmpc1 (green) shows that looking ahead two iterations
with a single worst-case response (given in Eq. 31) increases conservatism. The risk of
missing deadlines is reduced but cost increases (because of higher processor speeds in
selected subsystem responses).

– Comparing Cmpc2,wc1 (black) and Cmpc2,wc6 (pink) shows that with six subsystems to
respond to the worst-case workload both the deadline misses and the energy cost are
reduced. On the one hand, looking ahead for more than one step reduces deadline misses.
By assuming the worst case in the look-ahead iterations, the controller typically chooses
a faster configuration. This naturally needs a higher energy cost for execution. On the
other hand, the six subsystems potentially used in response to the synthetic worst-case
workload add flexibility to use a suitable slower response when there is enough time
slack. A slower configuration has a lower energy cost for execution. Moreover, since the

Fig. 9 Performance analysis of the designed controllers based on the experiments done for verifying robustness
against model uncertainties

123

Discrete Event Dynamic Systems

95

100

105
N
m
is
s

10
,1
00

C lc

0

0.5

1

1.5

2

2.5

3

Chc

0

0.5

1

1.5

2

2.5

3

Cmpc1

0

0.5

1

1.5

2

2.5

3

Cmpc2,wc6

0

0.5

1

1.5

2

2.5

3

Cmpc2,wc1

0 50
0

2

4

6

8

C
os
t1
0,
10

0

105

0 50 0 50
N
E

0 500 50

Fig. 10 Performance analysis of the designed controllers based on the experiments done for verifying robust-
ness against workload variations

six worst-case-workload responses come from the system model, prediction accuracy is
improved.

– Controllers Cmpc1 (green), Cmpc2,wc1 (black), and Cmpc2,wc6 (pink) take, on average
over 200 experiments per controller, 0.0009s, 0.0052s, and 0.0293s to select a subsystem
and compute the control inputs. As expected, the prediction horizon and the number of
subsystems possible in response to the worst-case workload directly impact the running
times.

– From the observations so far, we conclude that both Cmpc2,wc6 (pink) and Cmpc2,wc1

(black) are robust against workload variations and model uncertainties, in the sense that
the number of deadline misses is small, with Cmpc2,wc6 outperforming Cmpc2,wc1. Over
the 200 experiments per controller, the controllers do not miss more than two deadlines in
any run of 100 system iterations and their energy cost does not show outliers. The results
show that robustness can be enhanced by increasing look ahead and defining suitable
worst-case subsystem responses for use in predictions. If the time needed for predictions
is too high because of the prediction window length in combination with the number of

Table 1 Performance summary for model-uncertainty experiments

Clc Chc Cmpc1 Cmpc2,wc1 Cmpc2,wc6

N10,100
miss (110) 100 0 0.4467 0.2600 0.0600

Cost10,100(110) 124440 608090 151370 227090 150260

↑21.6%, ↓75.1% ↑82.5%, ↓62.6% ↑20.7%, ↓75.3%

123

Discrete Event Dynamic Systems

Table 2 Performance summary for workload experiments

Clc Chc Cmpc1 Cmpc2,wc1 Cmpc2,wc6

N10,100
miss (110) 100 0 0.3400 0.2800 0.1000

Cost10,100(110) 124010 610994 151390 223200 147330

↑22.1%, ↓75.2% ↑80.0%, ↓63.5% ↑18.8%, ↓75.9%

worst-case system responses, parameter λdl in the MPC cost function may be adapted
to prioritize avoiding deadline misses. Also the nominal system matrices of subsystems
can be adapted. Choosing nominal system matrices closer to the upper-bound matrices
increases conservatism in the responses without adding computation time to the MPC
predictions. Note that upper and lower bounds on execution delays are typically given
and cannot be (easily) controlled. But the nominal system model can be chosen freely
within the bounds.

– Comparing Cmpc2,wc6 (pink) with the Clc controller (red) shows a higher energy cost, of
around 20% (see Tables 1 and 2), for Cmpc2,wc6. Recall that Clc minimizes energy cost,
without considering deadline misses. This leads to 100% deadline misses. We conclude
that the energy cost of our MPC controller Cmpc2,wc6 is acceptable (and to a large part
unavoidable) if one wants to avoid deadline misses.

– Comparing Cmpc2,wc6 (pink) with the (fastest, highest-cost) Chc controller (blue) shows
that the pink Cmpc2,wc6 controller misses some output deadlines, whereas the blue Chc

controller does not. However,Cmpc2,wc6 saves about 75% in energy cost compared toChc.
If the number of deadline misses of a controller designed following our MPC approach
is unacceptable in comparison to the fastest reference controller, its robustness may be
further tuned as discussed above.

8 Conclusion and future work

We presented a control method to track a dynamic reference on the output times of a system
that has a discrete number of system configurations to respond to uncontrollable received
workloads. By integrating state-feedback and predictive control, we obtain controllers that
minimize deadline misses and implementation costs. The controllers are robust against both
uncontrollable workload variations andmodel uncertainties. Our approach takes into account
the switching time and cost. Considering a two-core reconfigurable multi-processor system
as a motivating example and usingMATLAB simulations, we demonstrated the effectiveness
of our method.

In the current setup, our approach provides ASAP execution of system responses with
ALAP actuation. Realizing ALAP execution or other scheduling schemes is an interesting
topic for future work. Another next step may be to lift the assumption on the measurability of
system states by adding a max-plus-based observer to the framework. The requirement that
the SMPLS is fully actuated may also be a limiting factor. It is interesting to see whether our
approach can be adapted to under- and/or over-actuated systems.

Acknowledgements This research was supported in part by the Electronic Components and Systems for
EuropeanLeadership (ECSEL) JointUndertaking under grant numberH2020-ECSEL-2017-2-783162 through
the FitOptiVis project (Sau et al. 2021). We thank the anonymous reviewers, whose comments have helped us
greatly to improve our method and its presentation in the paper.

123

Discrete Event Dynamic Systems

Declarations

The authors declare that they have no financial or personal interests that influenced the work reported in this
paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aberkane S, Kara R, Amari S (2021) Modelling and feedback control for a class of Petri nets with shared
resources subject to strict time constraints using max-plus algebra. Int J Syst Sci 52(14):1–16

Alirezaei M, Van Den Boom TJ, Babuska R (2012)Max-plus algebra for optimal scheduling of multiple sheets
in a printer, American Control Conference (ACC). Montreal, QC, Canada, pp 1973–1978

Aström KJ, Hägglund T (2006) PID control. IEEE Control Syst Mag 1066
Baccelli F, Cohen G, Olsder GJ, Quadrat JP (1992) Synchronization and Linearity. Wiley, New York
Bajaber F, Elshawi R, Batarfi O, Altalhi A, Barnawi A, Sakr S (2016) Big data 2.0 processing systems:

Taxonomy and open challenges. J Grid Comput 14(3):379–405
Basten T et al (2020) Scenarios in the design of flexiblemanufacturing systems. System-Scenario-basedDesign

Principles and Applications, pp 181–224, Springer
Brunsch T, Raisch J, Hardouin L (2012) Modeling and control of high-throughput screening systems. Control

Eng Pract 20:14–23
Butkovic P (2010) Max-Linear Systems: Theory and Algorithms. Springer
Camacho EF, Alba CB (2013) Model Predictive Control. Springer
Chakraborty I, Mehta SS, Curtis JW, Dixon WE (2016) Compensating for time-varying input and state delays

inherent to image-based control systems, American Control Conference (ACC). Boston, MA, USA, pp
78–83

Chen CLP, Zhang C (2014) Data-intensive applications, challenges, techniques and technologies: A survey on
Big Data. Inf Sci 275:314–347

Cuninghame-Green RA (1979) Minimax algebra, vol 166. lecture notes in economics and mathematical sys-
tems. Springer-Verlag, Berlin

Dirza R, Marquez-Ruiz A, Özkan L, Mendez-Blanco CS (2019) Integration of max-plus-linear scheduling and
control. Comput Aided Chem Eng 46:1279–1284

Dorf RC, Bishop RH (2008) Modern Control Systems. Pearson Prentice Hall
Doyle JC, Francis AB, Tannenbaum AR (2013) Feedback Control Theory. Courier Corporation
Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya AY, Foufou S, Bouras A (2014) A survey of clustering

algorithms for big data: Taxonomy and empirical analysis. IEEE Trans Emerg Top Comput 2(3):267–279
Fusco M, Semsar-Kazerooni E, Zegers JC, Ploeg J (2018) Decision making for connected and automated

vehicles: A max-plus approach. Proc. IEEE 88th Vehicular Technology Conference (VTC), Chicago,
USA, pp 1–5

Geilen MCW et al (2020) Scenarios in dataflow modeling and analysis. In: System-Scenario-based Design
Principles and Applications, pp 145–180, Springer

Gheorghita SV et al (2009) System-scenario-based design of dynamic embedded systems. ACM Trans Des
Autom Electron Syst 14(1):1–45

Goncalves VM, Maia CA, Hardouin L (2015) On the steady-state control of timed event graphs with firing
date constraints. IEEE Trans Autom Control 61(8):2187–2202

Goncalves VM, Maia CA, Hardouin L (2017) On max-plus linear dynamical system theory: The regulation
problem. Automatica 75:202–209

Hardouin L, Cottenceau B, Shang Y, Raisch J (2018) Control and state estimation for max-plus linear systems.
Found Trends Syst Control 6(1):1–116

Heidergott B, Olsder GJ, Van Der Woude J (2014) Max Plus at work: modeling and analysis of synchronized
systems: a course on Max-Plus algebra and its applications, 48. Princeton University Press

123

http://creativecommons.org/licenses/by/4.0/

Discrete Event Dynamic Systems

Komenda J, Lahaye S, Boimond JL, Van Den Boom TJ (2018) Max-plus algebra in the history of discrete
event systems. Ann Rev Control 45:240–249

Lahaye S, Boimond JL, Ferrier JL (2008) Just-in-time control of time-varying discrete event dynamic systems
in (max,+) algebra. Int J Prod Res 46(19):5337–5348

Liroz-GistauM,AkbariniaR, Pacitti E, Porto F,Valduriez P (2013)Dynamicworkload-based partitioning algo-
rithms for continuously growing databases. Transactions on Large-Scale Data-and Knowledge-Centered
Systems XII, Springer, pp 105–128

Menguy E, Boimond JL, Hardouin L, Ferrier JL (2000) Just-in-time control of timed event graphs: update of
reference input, presence of uncontrollable input. IEEE Trans Autom Control 45(9):2155–2159

Moré JJ (1978) The Levenberg-Marquardt Algorithm: Implementation and Theory, Numerical Analysis. Lec-
ture Notes in Mathematics 630, Springer, pp 105–116

Nasri I, Habchi G, Boukezzoula R (2014) Use of (max,+) algebra for scheduling and optimization of HVLV
systems subject to preventive maintenance. Simul Model Pract Theory 46:149–163

Oda N, Ito M, Shibata M (2009) Vision-based motion control for robotic systems. IEEJ Trans Electr Electron
Eng 4(2):176–183

Prou J, Wagneur E (1999) Controllability in the max-algebra. Kybernetika 35:13–24
Sau C et al (2021) Design and management of image processing pipelines within CPS: Acquired experi-

ence towards the end of the FitOptiVis ECSEL project. Microprocessors and Microsystems: Embedded
Hardware Design (MICPRO), 87, Article 104350

Schafaschek G, Hardouin L, Raisch J (2020) Optimal control of timed event graphs with resource sharing and
output-reference update. at-Automatisierungstechnik 68(7):512–528

Sigler L (2003) Fibonacci’s Liber Abaci: a translation into modern English of Leonardo Pisano’s book of
calculation. Springer

SilvaGGD,MaiaCA (2016)On just-in-time control of timed event graphswith input constraints: a semimodule
approach. Discret Event Dyn Syst 26:351–366

Stanczyk J (2016) Max-Plus Algebra Toolbox for Matlab
Stonebraker M, Cetintemel U, Zdonik S (2005) The 8 requirements of real-time stream processing. ACM

Sigmod Rec 34:42–47
Tsiamis A, Maragos P (2019) Sparsity in max-plus algebra and systems. Discret Event Dyn Syst 29:163–189
van den Boom TJJ, van den Muijsenberg M, De Schutter B (2020) Model predictive scheduling of semi-cyclic

discrete-event systems using switching max-plus linear models and dynamic graphs. Discret Event Dyn
Syst 1–35

Van Den Boom TJJ, De Schutter B (2002) Model predictive control for perturbed max-plus-linear systems.
Syst Control Lett 45(1):21–33

Van Den Boom TJ, De Schutter B (2004) Modelling and control of discrete event systems using switching
max-plus-linear systems. IFAC Proc Vol 37(18):117–122

Van Den Boom TJ, De Schutter B (2006) Modelling and control of discrete event systems using switching
max-plus-linear systems. Control Eng Pract 14(10):1199–1211

Van Den Boom TJ, De Schutter B (2006) Dynamic railway network management using switching max-plus-
linear models. IFAC Proc Vol 39(12):343–348

Van Den Boom TJ, De Schutter B (2012) Modeling and control of switching max-plus-linear systems with
random and deterministic switching. Discret Event Dyn Syst 22(3):293–332

Van Horssen, EP (2018) Data-intensive feedback control: Switched systems analysis and design, Ph.D. Dis-
sertation, Eindhoven University of Technology

Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fus 42:146–157

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Discrete Event Dynamic Systems

Roohallah Azarmi received his B.Sc. and M.Sc. degrees from K. N.
Toosi University of Technology, Tehran, Iran, in 2012 and 2015,
respectively. He is currently a Ph.D. Researcher with the Electronic
Systems group, Department of Electrical Engineering, Eindhoven
University of Technology (TU/e), Eindhoven, The Netherlands. His
research interests include fractional calculus, control of discrete event
systems, model predictive control, PID controller tuning, dead-time
systems, process control, and multi-objective optimization.

Mohsen Alirezaei received his Ph.D. in Mechanical Engineering,
Robotics and Control in 2011 and was a postdoc researcher at Delft
University of Technology in 2012. He was a Senior Scientist in
the Integrated Vehicle Safety Department of TNO automotive (2012-
2019) and part time assistant professor at Delft University of Tech-
nology (2015-2019). He is currently working as a Fellow Scientist at
Siemens Industry Software and Services in Helmond and is part time
assistant professor at Eindhoven University of Technology (TU/e),
Eindhoven, the Netherlands. His research interests are verification
and validation of automated and cooperative automated driving and
advance driver assistance systems.

Dip Goswami is an Associate Professor in the Electronic Systems
group of the Department of Electrical Engineering at Eindhoven Uni-
versity of Technology (TU/e). His research focuses on various design
aspects of embedded control systems in resource-constrained domains
such as automotive and robotics. He has published in several inter-
national journals and conferences in the fields of embedded control
systems, robotics and cyber-physical systems, resulting in three best
paper awards.

123

Discrete Event Dynamic Systems

Twan Basten received the M.Sc. and Ph.D. degrees in computing sci-
ence from Eindhoven University of Technology (TU/e), Eindhoven,
the Netherlands. He is currently a Professor with the Department of
Electrical Engineering, TU/e. His current research interests include
the design of embedded and cyber-physical systems, dependable com-
puting, and computational models. He is a senior member of IEEE and
a life member of ACM.

123

	Tracking dynamic deadlines in switched max-plus linear systems with uncontrollable workloads
	Abstract
	1 Introduction
	2 Related work
	3 Motivating example: an image-processing pipeline
	4 Max-plus preliminaries
	4.1 Max-Plus Algebra (MPA)
	4.2 MPLS
	4.3 SMPL systems

	5 Problem setting
	5.1 SMPLS specification
	5.2 Dynamic deadlines and performance objectives
	5.3 Problem definition
	5.4 Motivating example

	6 Tracking dynamic output inter-arrival times
	6.1 Overview of the proposed approach
	6.2 Structural properties of our SMPLS
	6.3 Scheduling and coping with uncertainty: state-feedback control
	6.4 Computing feedback-gain matrices
	6.5 Selecting the subsystem to execute: model-predictive control
	6.6 Controller implementation

	7 Simulation setup and results
	7.1 Simulation setup
	7.2 Simulation results

	8 Conclusion and future work
	Acknowledgements
	References

