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Abstract The study of higher-dimensional black holes is a subject which has
recently attracted vast interest. Perhaps one of the most surprising discoveries
is a realization that the properties of higher-dimensional black holes with the
spherical horizon topology and described by the Kerr–NUT–(A)dS metrics are
very similar to the properties of the well known four-dimensional Kerr metric.
This remarkable result stems from the existence of a single object called the
principal tensor. In our review we discuss explicit and hidden symmetries of
higher-dimensional Kerr–NUT–(A)dS black hole spacetimes. We start with
discussion of the Killing and Killing–Yano objects representing explicit and
hidden symmetries. We demonstrate that the principal tensor can be used
as a “seed object” which generates all these symmetries. It determines the
form of the geometry, as well as guarantees its remarkable properties, such
as special algebraic type of the spacetime, complete integrability of geodesic
motion, and separability of the Hamilton–Jacobi, Klein–Gordon, and Dirac
equations. The review also contains a discussion of different applications of
the developed formalism and its possible generalizations.
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4 Higher-dimensional Kerr–NUT–(A)dS metrics . . . . . . . . . . . . . . . . . . . . . 71
4.1 Canonical form of the metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Parameters and alternative form of the metric . . . . . . . . . . . . . . . . . . 75
4.3 Euclidean signature: instantons . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Lorentzian signature: black holes . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Multi-Kerr–Schild form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Hidden symmetries of Kerr–NUT–(A)dS spacetimes . . . . . . . . . . . . . . . . . 91
5.1 Principal tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Killing tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Uniqueness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Proof of commutation relations . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5 Principal tensor as a symplectic structure . . . . . . . . . . . . . . . . . . . . 105

6 Particles and fields: Integrability and separability . . . . . . . . . . . . . . . . . . . 108
6.1 Complete integrability of geodesic motion . . . . . . . . . . . . . . . . . . . . 109
6.2 Separation of variables in the Hamilton–Jacobi equation . . . . . . . . . . . . 117
6.3 Separation of variables in the wave equation . . . . . . . . . . . . . . . . . . . 118
6.4 Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5 Tensor perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.6 Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Further developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.1 Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Classical spinning particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3 Stationary strings and branes . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4 Generalized Kerr–NUT–(A)dS spacetimes . . . . . . . . . . . . . . . . . . . . 147
7.5 Lifting theorems: hidden symmetries on a warped space . . . . . . . . . . . . 153
7.6 Generalized Killing–Yano tensors . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.7 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



Black holes, hidden symmetries, and complete integrability 3

A Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.1 Tensor notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2 Exterior calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B Phase space formalism and complete integrability . . . . . . . . . . . . . . . . . . . 164
B.1 Symplectic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.2 Complete integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.3 Hamilton–Jacobi equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.4 Covariant formalism on a cotangent bundle . . . . . . . . . . . . . . . . . . . 175

C Integrability conditions for conformal Killing–Yano forms . . . . . . . . . . . . . . 176
C.1 Laplace operator and conformal Killing–Yano forms . . . . . . . . . . . . . . 176
C.2 Integrability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

D Kerr–NUT–(A)dS metric related quantities . . . . . . . . . . . . . . . . . . . . . . 181
D.1 Properties of metric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
D.2 Spin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

E Myers–Perry metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
E.1 Tangherlini solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
E.2 Myers–Perry solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
E.3 Kerr–Schild form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
E.4 Special spinning black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

F Spinors in curved space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
F.1 Dirac spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
F.2 Symmetry operators of the Dirac operator . . . . . . . . . . . . . . . . . . . . 195
F.3 Killing–Yano tensors and Killing spinors . . . . . . . . . . . . . . . . . . . . . 197

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



4 Valeri P. Frolov et al.

1 Introduction

Black holes in four and higher dimensions

The study of four-dimensional black holes has begun long time ago. Their
detailed characteristics were obtained in the 1960s and 1970s, also known as
the “golden age” of the general relativity. A summary of the obtained results
can be found, for example, in the books by Misner et al (1973); Wald (1984);
Hawking and Ellis (1973); Chandrasekhar (1983); Frolov and Novikov (2012);
Frolov and Zelnikov (2011). According to the proven theorems, assuming the
weak energy condition for the matter, the black hole horizon has to have
spherical topology. The most general stationary vacuum black hole solution of
the Einstein equations is axially symmetric and can be described by the Kerr
metric.

The interest in four-dimensional black holes is connected with the im-
portant role these objects play in modern astrophysics. Namely, there exist
strong evidences that the stellar mass black holes manifest themselves in sev-
eral X-ray binaries. Supermassive black holes were discovered in the centers of
many galaxies, including our own Milky Way. Great discovery made by LIGO
on September 14, 2015 gives first direct confirmation that strong gravitational
waves have been emitted in the process of the coalescence of two black holes
with masses around 30 solar mass (Abbott et al 2016). Three month later
LIGO registered gravitational waves from another merging black hole binary.
These events marked the beginning of the gravitational waves astronomy. In
all previous observations the information concerning astrophysical black holes
was obtained by registering the electromagnetic waves emitted by the matter
in the black hole vicinity. Such matter usually forms an accretion disc whose
temperature and size are determined by the mass and angular momentum of
the black hole. Before reaching a distant observer, the emitted radiation propa-
gates in a strong gravitational field of the black hole; to extract the information
contained in astrophysical observations one needs to solve the equations for
particle and wave propagation in the Kerr spacetime. Fortunately, the remark-
able properties of this geometry, namely the complete integrability of geodesics
and the separability of wave equations, greatly simplify the required calcula-
tions. Based on these results there were developed powerful tools for studying
physical effects in the black hole vicinity and their observational manifesta-
tion. Similar tools were also used for the study of quantum evaporation of
mini-black holes.

In this review we mainly concentrate on black holes in dimensions greater
than four, with a particular focus on their recently discovered remarkable ge-
ometric properties. Black holes in higher dimensions, see e.g., Emparan and
Reall (2008); Horowitz (2012) for extended reviews, have attracted much at-
tention for several reasons. A first reason is connected with the development
of string theory and the demand for the corresponding black hole solutions. In
order to make this theory consistent one needs to assume that besides usual
four dimensions there exist (at least six) additional spatial dimensions.
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A second reason stems from the (in past 20 years very popular) brane-
world models (Maartens and Koyama 2010; Pavsic 2002; Raychaudhuri and
Sridhar 2016). In these models the usual matter and the non-gravitational
fields are confined to a four-dimensional brane, representing our world. This
brane is embedded in higher-dimensional bulk spacetime where only gravity
can propagate. Higher-dimensional black holes play a very special role in the
brane-world models. Being just a clot of gravity, they can ‘live’ both on and
outside the brane. Mini-black-holes whose size is smaller than the size of extra
dimensions thus play a role of probes of extra dimensions. One of the intriguing
features of the brane-world models that is intensively discussed in the literature
is a possibility of mini-black-hole formation in the collision of high energy
particles in modern TeV colliders (see e.g., Landsberg (2015); Aad et al (2014)
and references therein). Numerous discussions of this effect generated a great
interest in the study of properties of higher-dimensional black holes.

A third main reason to study higher-dimensional black holes comes from
the desire to better understand the nature of gravitational theory and in par-
ticular to identify which properties of gravitational fields are specific to four
dimensions and which of them are valid more generally irrespective of the
spacetime dimension (Emparan and Reall 2008).

Remarkable properties of the Kerr black hole

The Kerr metric has the following remarkable properties: the equations of mo-
tion for a free particle in this geometry are completely integrable and the phys-
ically interesting field equations allow for the separation of variables. What
stands behind these properties?

In a simpler case, when a black hole does not rotate, the answer is well
known. The corresponding Schwarzschild solution is static and spherically
symmetric. As a result of this symmetry, the energy of the particle and the
three components of its angular momentum are conserved. One can thus con-
struct four integrals of geodesic motion that are functionally independent and
mutually Poisson commute, choosing, for example, the (trivial) normalization
of the four-velocity, the particle’s energy, the square of its total angular mo-
mentum, and a projection of the angular momentum to an arbitrary ‘axis.
According to the Liouville’s theorem, the existence of such quantities makes
the geodesic motion in the spherically symmetric black hole case completely
integrable.

For rotating black holes the situation is more complicated since the total
angular momentum is no longer conserved. Surprisingly, even in this case there
exists another integral of motion, nowadays known as the Carter’s constant.
Obtained in 1968 by Carter by a method of separation of variables in the
Hamilton–Jacobi equation (Carter 1968a,b), this additional integral of motion
is quadratic in momentum, and, as shown later by Walker and Penrose (1970),
it is in one-to-one correspondence with the rank 2 Killing tensor of the Kerr ge-
ometry. A rank 2 Killing tensor kab is a symmetric tensor whose symmetrized
covariant derivative vanishes, ∇(ckab) = 0. It was demonstrated by Carter in
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the same papers (Carter 1968a,b) that not only the Hamilton–Jacobi equa-
tion but also the Klein–Gordon equation allows for a complete separation of
variables in the Kerr spacetime.

Remark: This fact may not be as surprising as it looks at first sight. In fact, the follow-
ing 3 problems: complete integrability of geodesic equations, separability of the
Hamilton–Jacobi equation, and separability of the Klein–Gordon equation are
closely related. Namely, looking for a quasi-classical solution Φ ∼ exp(iS) of
the Klein–Gordon equation (gab∇a∇b−m2)Φ = 0, one obtains the Hamilton–
Jacobi equation gab∇aS∇bS+m2 = 0. By identifying ∇aS with the momen-
tum pa, one reduces the problem of finding the action function S to the prob-
lem of integrating the Hamilton equations of motion for a relativistic particle.

Following Carter’s success a boom of discoveries regarding the remarkable
properties of the Kerr geometry has taken place. Teukolsky (1972, 1973) de-
coupled the equations for the electromagnetic and gravitational perturbations
and separated variables in the obtained master equations. Equations for mass-
less neutrinos were separated Unruh (1973) and Teukolsky (1973), and the
equations for the massive Dirac field were separated by Chandrasekhar (1976)
and Page (1976).

Penrose (1973) and Floyd (1973) demonstrated that in the Kerr geome-
try there exists a new fundamental object, the so called Killing–Yano tensor
fab, which behaves as a ‘square root’ of the Killing tensor. This object is a
2-form that obeys the following equation: ∇(cfa)b = 0. If fab is non-degenerate,
the integrability conditions for this equation imply that the spacetime is alge-
braically special, of Petrov type D (Collinson 1974). Hughston and Sommers
(1973) showed that the existence of such Killing–Yano tensor necessarily im-
plies that the corresponding spacetime admits also two commuting Killing
vectors, generating time translation and rotation.

It is interesting to note that some of the above described properties extend
beyond the case of the vacuum Kerr geometry. Namely, in 1968 Carter obtained
a 6-parametric solution of the Einstein–Maxwell equations with a cosmolog-
ical constant Λ that shares with the Kerr geometry many of the remarkable
properties (Carter 1968b,c). Besides the cosmological constant Λ, the mass M
and the angular momentum J , this solution contains also an electric charge
Q, a magnetic monopole P , and the NUT parameter N . The whole class of
Carter’s metrics admits the Killing–Yano tensor (Demianski and Francaviglia
1980; Carter 1987).

Carter’s solution is now called the charged Kerr–NUT–(A)dS metric. In the
absence of the NUT parameter it is the most general regular solution describing
a stationary isolated black hole in the four-dimensional asymptotically flat
(Λ = 0) or (anti) de Sitter (Λ 6= 0) space. The hidden symmetries of the four-
dimensional Kerr–NUT–(A)dS metric and its generalization by Plebański and
Demiański (1976) will be discussed in detail in chapter 3.

Higher-dimensional black objects

With the advent of interest in higher-dimensional black holes at the beginning
of this century the following questions arose: (i) How far can the results on the
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four-dimensional black holes be generalized to higher dimensions? (ii) What is
the most general solution describing a stationary black hole in asymptotically
flat and/or asymptotically (anti) de Sitter space? iii) What can one say about
particle motion and field propagation in the gravitational field of such black
holes? By now partial answers to some of these questions have been obtained.

The ‘zoo’ of higher-dimensional black holes is vast: there exist extended
objects such as as black strings and branes, and the topology of the horizon of
an isolated stationary higher-dimensional black hole needs not to be spherical,
see e.g. Emparan and Reall (2002a); Elvang and Figueras (2007); Kunduri and
Lucietti (2014). In particular, in 2002 Emparan and Reall obtained an exact
solution of 5-dimensional vacuum Einstein equation which describes a sta-
tionary rotating black hole with toroidal horizon (Emparan and Reall 2002b).
Later many new exact 5-dimensional vacuum stationary black hole solutions
with a more complicated structure of the horizon were found. There are strong
arguments that similar solutions do also exist in more than five dimensions,
though the stability of all these objects is in question, e.g., Santos and Way
(2015). Many useful references on this subject can be found in the remarkable
review by Emparan and Reall (2008), see also Emparan et al (2010); Kunz
(2015); Kleihaus and Kunz (2017).

The problem of uniqueness and stability of the higher dimensional black
holes is far from its solution—see e.g. a review Hollands and Ishibashi (2012)
and references therein.

Higher-dimensional Kerr–NUT–(A)dS black holes

Within this ‘zoo’ of higher dimensional black objects there exists a large im-
portant family of black hole solutions which are natural generalizations of the
four-dimensional Kerr–NUT–(A)dS solution. Called higher-dimensional Kerr–
NUT–(A)dS metrics, these solutions will be in the main focus of this review.
They have the spherical topology of the horizon, and in the absence of the NUT
parameters, describe isolated rotating black holes in either asymptotically flat
or asymptotically (A)dS spacetime.

Remark: Let us emphasize, that even if the stationary black hole maintains the spherical
horizon topology, its horizon may be ‘distorted’—the sizes of symmetric cycles
on the horizon may vary non-monotonically with the polar angle. Such ‘bumpy’
black holes were conjectured to exist in Emparan and Myers (2003) and later
found numerically in Emparan et al (2014). These black holes do not belong
to the Kerr–NUT–(A)dS family and are not studied in this review. However,
it might be an interesting problem for future studies to see whether some of
the integrability results presented here for ‘smooth’ Kerr–NUT–(A)dS black
holes could be extended to bumpy black holes or other black holes as well.

Let us briefly recapitulate a history of study of the Kerr–NUT–(A)dS fam-
ily of black hole solutions. Denote by D = 2n+ ε a total number of spacetime
dimensions, with ε = 0 in even dimensions and ε = 1 in odd dimensions. A
higher-dimensional generalization of the Schwarzschild black hole solution was
readily obtained by Tangherlini (1963). The Tangherlini solution is static and
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spherically symmetric, it admits SO(D − 1) group of rotational symmetries,
and contains exactly one arbitrary parameter which can be identified with
the gravitational radius and is related to the black hole mass. A task of find-
ing a higher-dimensional generalization of the Kerr geometry is much harder
and was achieved by Myers and Perry (1986). The general solution contains,
besides the mass M , up to (n− 1 + ε) independent rotation parameters.

In ‘our three-dimensional world’ we are used to think about rotations as op-
erations about a given axis and identify the angular momentum with a 3-vector
Ja. In a general case, however, the angular momentum is described by a rank
2 antisymmetric tensor Jab. In three dimensions one can write Ja = εabcJbc,
where εabc is the totally antisymmetric tensor, and the usual description is
recovered. In higher dimensions such relation no longer exists. Nevertheless,
one can always write Jab in a canonical form by finding a set of mutually
orthogonal 2-planes such that the components of Jab vanish unless the two
indices ‘belong’ to the same 2-plane. Since the number of spatial dimensions is
D−1, the largest possible number of mutually orthogonal 2-planes (and hence
the number of independent components of the angular momentum tensor) is
(n−1 + ε). This is also the number of independent components of the angular
momentum of the black hole which enters the general Myers–Perry solution.

It took another 20 years to find a generalization of the Myers–Perry metric
which includes the cosmological constant. Hawking et al (1999) found singly-
spinning Kerr–(A)dS metrics in all dimensions. These metrics were then gen-
eralized by Gibbons et al (2005) and Gibbons et al (2004) to the case of
a general multiple spin. After several attempts to include NUT parameters
(Chong et al 2005b; Chen et al 2007), Chen et al (2006a) finally found the
most general higher-dimensional Kerr–NUT–(A)dS metric, generalizing the
higher-dimensional Carter-like ansatz studied previously in Klemm (1998). It
is the purpose of this review to study the most general Kerr–NUT–(A)dS
metric (Chen et al 2006a) and its remarkable symmetries.

Explicit and hidden symmetries

Despite of being significantly more complicated, the most general Kerr–NUT–
(A)dS metrics in all dimensions have very similar properties to their four-
dimensional ‘cousin’, the Kerr metric. A discussion of this similarity and its
origin is the subject of the present review. Namely, we shall describe a funda-
mental geometric structure which is responsible for the remarkable properties
of the Kerr–NUT–(A)dS metrics. These properties stem from the existence
a complete set (‘tower’) of explicit and hidden symmetries that are ‘miracu-
lously’ present in these spacetimes. Moreover, the existence of such a Killing
tower of symmetries is also a characteristic property of the Kerr–NUT–(A)dS
spacetimes. It is possible that some of the hidden symmetries may also exist in
other higher-dimensional black object spacetimes and their study is an open
interesting problem. But we concentrate on the case when the metric possesses
the complete tower of hidden symmetries.
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What do we mean by a hidden symmetry? We say, that a spacetime pos-
sesses a symmetry if there exists a transformation which preserves its geometry.
This means that the metric, as well as all other quantities constructed from
it (for example curvature), remain unchanged by such a transformation. Con-
tinuous symmetry transformations are generated by Killing vector fields; we
call the corresponding symmetries explicit. By famous Noether’s theorem they
generate conserved charges. Let us demonstrate this on an example of particle
motion.

The motion of a free particle in a curved spacetime can be described using
the Hamiltonian formalism. A state of the particle is characterized by a point
(xa, pa) in the phase space. Its motion is defined by the Hamiltonian, which
is quadratic in momenta. The explicit symmetry generated by the Killing
vector ξa implies that the quantity paξ

a remains constant along the particle’s
worldline, it is an integral of motion. Integrals of motion are phase space
observables that Poisson commute with the Hamiltonian.

An important property of integrals of motion generated by spacetime sym-
metries is that they are linear in momentum. However, this does not exhaust
all possibilities. There may exist integrals of motion that are higher-order poly-
nomials in particle momenta. The existence of such integrals implies that the
spacetime admits a special geometric structure, known as a Killing tensor.
Killing tensors are in one-to-one correspondence with constants of geodesic
motion that are homogeneous in particle momenta, namely, a rank r Killing
tensor gives rise to a homogeneous constant of motion of degree r in momen-
tum. Inhomogeneous polynomial integrals of geodesic motion can be decom-
posed into their homogeneous parts and are associated with Killing tensors of
various ranks.

Perhaps the best known example of a Killing tensor is the spacetime metric
itself. The corresponding conserved quantity is the Hamiltonian for the rela-
tivistic particle and its value is proportional to the square of particle’s mass.
Familiar Killing vectors, associated with the explicit spacetime symmetry, are
Killing tensors of rank 1. To distinguish from this case, we call the geometric
structure of the spacetime encoded in Killing tensors of rank 2 and higher a
hidden symmetry.

Complete integrability of geodesic motion

The existence of integrals of motion simplifies the study of dynamical systems.
There exits a very special case, when the number of independent commuting
integrals of motion of a dynamical system with N degrees of freedom, described
by a 2N -dimensional phase space, is equal to N . Such a system is called com-
pletely integrable and its solution can be written in terms of integrals, a result
known as the Liouville theorem (Liouville 1855). Specifically, the equation of
motion for a free relativistic particle in a D-dimensional spacetime can be ex-
plicitly solved if there exist D independent Killing vectors and Killing tensors,
including the metric, which are ‘in involution’.
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Remark: For Killing tensor fields there exists an operation, a generalization of the Lie
bracket, which allows one to construct from two Killing tensors a new one. This
operation, called the Schouten–Nijenhuis commutator, will be defined in sec-
tion 2.1. ‘In involution’ then means that the Schouten–Nijenhuis commutator
of the corresponding tensor fields mutually vanishes. On the level of the phase-
space observables this is equivalent to the statement that the corresponding
conserved quantities mutually Poisson-commute.

Consider, for example, a five-dimensional Myers–Perry metric with two
independent rotation parameters. This metric has three Killing vectors: one
generates translations in time, and the other two correspond to rotations in the
two independent 2-planes of rotation. Together with the normalization of the
5-velocity this gives 4 integrals of geodesic motion. For complete integrability,
an additional integral corresponding to a Killing tensor is needed. This tensor
can be found by Carter’s method, that is by separating the variables in the
Hamilton–Jacobi equation written in the standard Boyer–Lindquist coordi-
nates (Frolov and Stojković 2003a,b), making the geodesic motion completely
integrable in this case. Interestingly, in more than five dimensions and for gen-
eral multiply-spinning black holes the Boyer–Lindquist type coordinates are
not ‘nice’ anymore and Carter’s method no longer works. This mislead people
to believe that the geodesic motion in these spacetimes is no longer integrable
and black holes of smaller generality were studied.

Principal tensor and its Killing tower

It turns out that the restriction on rotation parameters is not necessary and
even for the most general multiply-spinning Kerr–NUT–(A)dS black holes one
can find special coordinates in which the Hamilton–Jacobi equation separates,
proving the geodesic motion completely integrable. A breakthrough in solving
this problem occurred in 2007, when it was demonstrated that the Myers–Perry
metric as well as the most general Kerr–NUT–(A)dS spacetime in any number
of dimensions both admit a non-degenerate closed conformal Killing–Yano
2-form (Frolov and Kubizňák 2007; Kubizňák and Frolov 2007). The claim is
that the very existence of this single object implies complete integrability of
geodesic motion in all dimensions. Let us explain why this is the case.

Starting with the four-dimensional Kerr metric, we already know that the
integrability is guaranteed by the existence of a Killing tensor k, which in
its turn is written as a square of the Killing–Yano 2-form f . Its Hodge dual
h = ∗f is again a 2-form which obeys the following equation:

∇chab = gcaξb − gcbξa , ξa =
1

D − 1
∇bhba . (1.1)

The object that satisfies such an equation is called a closed conformal Killing–
Yano 2-form. Closed conformal Killing–Yano tensors of higher ranks obey a
similar type of equation and they are Hodge dual to Killing–Yano tensors.
A remarkable property of closed conformal Killing–Yano tensors is that their
wedge product is again a closed conformal Killing–Yano tensor (Krtouš et al
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2007a; Frolov 2008; Frolov and Kubizňák 2008). In particular, given a single
closed conformal Killing–Yano 2-form in (2n+ε)-dimensions, one can construct
up to n non-trivial closed conformal Killing–Yano tensors of increasing rank
by taking its wedge powers.

In four dimensions this does not help much. Already at the first step of
this procedure, one obtains a 4-form that is proportional to the totally anti-
symmetric tensor. In higher dimensions, however, the story is quite different:
there is enough room to ‘accommodate’ non-trivial higher-rank closed confor-
mal Killing–Yano tensors. It is evident, that the smaller is the tensor-rank of
the original form h the larger number of its non-trivial higher-rank “succes-
sors” one can obtain. This makes the case of a 2-form h a special one. One can
also assume that the matrix rank of this 2-form is the largest possible, that is,
the 2-form is non-degenerate. In (2n+ ε)-dimensional spacetime the maximal
matrix rank is 2n. By ‘squaring’ the Killing–Yano tensors obtained as Hodge
duals of the so constructed ‘successors’ of h, one obtains the whole Killing
tower of n independent Killing tensors (Krtouš et al 2007a). Supplemented by
the (n + ε) integrals of motion corresponding to explicit symmetries (as we
shall see later such symmetries can also be generated from h), one obtains
a set of D = 2n + ε (generically independent) mutually Poisson commuting
constants of geodesic motion, making such a motion completely integrable. In
the following chapters we discuss these results in very details, and give the
corresponding references.

Since the expression “non-degenerate closed conformal Killing–Yano 2-
form” is quite long, and since this object is a ‘main hero’ of our review we
shall simply call it a principal tensor. It happens that the existence of the
principal tensor has consequences extending far beyond the above described
property of complete integrability of geodesic motion. Being a maximal rank
2-form, the principal tensor can be written as

h =

n∑
µ=1

xµe
µ ∧ êµ , (1.2)

where 1-forms eµ and êµ form an orthonormal basis. Let us include in the
definition of the principal tensor one additional requirement. Namely, that
all the eigenvalues xµ are independent and different, and that this is valid
not only at a point, but in some spacetime domain. In other words, xµ are
functionally independent scalar functions in this domain and they can be used
as coordinates. We shall demonstrate that the other n+ε coordinates ψk can be
chosen so that the Killing vectors, corresponding to explicit symmetries, take
the form ∂ψk . The coordinates (xµ, ψk) are called the canonical coordinates.

Using canonical coordinates, internally connected with and determined by
the principal tensor h, greatly simplifies the study of properties of a space-
time which admits such an object. Namely, we demonstrate that the corre-
sponding spacetime necessarily possesses the following remarkable properties
(Houri et al 2007; Krtouš et al 2008; Houri et al 2008b): (i) When the Ein-
stein equations are imposed one obtains the most general Kerr–NUT–(A)dS
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metric. (ii) The geodesic motion in such a space is completely integrable, and
the Hamilton–Jacobi, Klein–Gordon, and Dirac equations allow for complete
separation of variables. The separation of variables occurs in the canonical
coordinates determined by the principal tensor.

‘Hitchhikers guide’ to the review

The review is organized as follows. In chapter 2 we introduce the Killing vec-
tors, Killing tensors, and the family of Killing–Yano objects and discuss their
basic properties. In particular, the principal tensor is defined and its most
important properties are overviewed. Chapter 3 contains a summary of the
symmetry properties of the four-dimensional Kerr metric and its Kerr–NUT–
(A)dS and Plebański–Demiański generalizations. We demonstrate how the ex-
plicit and hidden symmetries of the Kerr spacetime arise from the principal
tensor. Chapter 4 gives a comprehensive description of the higher-dimensional
Kerr–NUT–(A)dS metrics. In chapter 5, starting from the principal tensor
which exists in a general higher-dimensional Kerr–NUT–(A)dS spacetime, we
construct a tower of Killing and Killing–Yano objects, responsible for the ex-
plicit and hidden symmetries of this metric. In chapter 6 we discuss a free
particle motion in the higher-dimensional Kerr–NUT–(A)dS spacetime and
show how the existence of the principal tensor in these metrics leads to a com-
plete integrability of geodesic equations. We also demonstrate the separability
of the Hamilton–Jacobi, Klein–Gordon and Dirac equations in these space-
times. Chapter 7 contains additional material and discusses further possible
generalizations of the theory of hidden symmetries presented in this review.

To help the reader with various concepts used in the review, we included
some complementary material in appendices. Appendix A summarizes our no-
tation and conventions on exterior calculus; appendix B reviews the symplectic
geometry, the concept of complete integrability, and the requirements for sep-
arability of the Hamilton–Jacobi equation. Appendix F covers basic notions
of a theory of spinors in a curved spacetime, discusses symmetry operators of
the Dirac operator, as well as introduces Killing spinors and reviews their
relationship to special Killing–Yano forms. Integrability conditions for the
Killing–Yano objects are summarized in appendix C. Appendix E discusses
the Myers–Perry solutions in its original and Kerr–Schild forms and supple-
ments thus material in section 4.4. Finally, various identities and quantities
related to the Kerr–NUT–(A)dS metric are displayed in appendix D.

Before we begin our exploration, let us mention several other review papers
devoted to hidden symmetries and black holes that might be of interest to the
reader (Frolov and Kubizňák 2008; Kubizňák 2008, 2009a; Yasui and Houri
2011; Cariglia et al 2012; Frolov 2014; Cariglia 2014; Chervonyi and Lunin
2015).
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2 Hidden symmetries and Killing objects

In this chapter we discuss Killing vectors and Killig tensors, which are respon-
sible for explicit and hidden symmetries of spacetime. We also introduce the
Killing–Yano tensors which are generators of hidden symmetries and discuss
their basic properties. Named after K. Yano (Yano 1952), these new symme-
tries are in some sense ‘more fundamental’ than the Killing tensors. A special
attention is devoted to a subclass of closed conformal Killing–Yano tensors and
in particular to the principal tensor which plays a central role for the theory
of higher-dimensional black holes.

2.1 Particle in a curved spacetime

Geometrical properties of a curved spacetime and its various symmetries can
be studied through investigation of geodesic motion. For this reason we start
with a short overview of the description of relativistic particle in a curved
spacetime, formulated both from a spacetime perspective and in terms of the
phase space language.

Phase space description

Let us consider a D-dimensional spacetime (configuration space) M and a
point-like particle moving in it. In the Hamilton approach the motion is de-
scribed by a trajectory in the 2D-dimensional phase space. A point in the
phase space represents a position x and a momentum p of the system. The
momenta p are naturally represented as covectors (1-forms) on the configura-
tion space, the phase space Γ thus corresponds to a cotangent bundle over the
configuration space.

The cotangent bundle has a natural symplectic structureΩ. Namely, let xa

be coordinates on the configuration space M , then the components pa of the
momentum p = padx

a with respect to the co-frame dxa serve as remaining
coordinates on the phase space, (xa, pa). The natural symplectic structure
takes the form:1

Ω = dxa ∧ dpa , (2.1)

so (xa, pa) are in fact canonical coordinates on the phase space. Although we
used a particular choice of the spacetime coordinates, the symplectic structure
Ω is independent of such a choice.

Using the symplectic structure we can introduce the standard machinery
of the symplectic geometry: we can define symplectic potential θ, the Poisson
brackets { , }, or the Hamiltonian vector field XF associated with an ob-
servable F . The overview of the symplectic geometry and the convention used
in this review can be found in section B.1 of the appendix, cf. also standard
books Arnol’d (1989); Goldstein et al (2002).

1 The sum over configuration space indices a = 1, . . . , D is assumed.
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Nijenhuis–Schouten bracket

An observable A is a function on the phase space. In what follows let us
concentrate on observables that are monomial in momenta, also called the
tensorial powers of momenta, that is observables of the form

A = aa1...ar (x) pa1
. . . pas , (2.2)

where aa1...as = a(a1...as) are components of a symmetric tensor field of rank
s on the configuration space.

It is straightforward to check that given two such observables A and B,
of orders r and s, respectively, their Poisson bracket C = {A,B} is again a
tensorial power of order r+ s− 1 with the tensorial coefficient c. The Poisson
brackets of monomial observables thus define an operation c = [a, b]NS on
symmetric tensor fields, called the Nijenhuis–Schouten bracket,

C = {A,B} ⇔ c = [a, b]NS . (2.3)

It is explicitly given by

ca1...ar−1cb1...bs−1 = r ae(a1...ar−1 ∇ebcb1...bs−1) − s be(b1...bs−1 ∇eaca1...ar−1) .
(2.4)

If one of the tensors, say a, is of rank one, i.e., a vector field, the Nijenhuis–
Schouten bracket reduces to the Lie derivative along a,

[a,k]NS = £ak . (2.5)

In particular, for two vectors it reduces to the Lie bracket,

[a, b]NS = [a, b] . (2.6)

Time evolution and conserved quantities

The time evolution in the phase space is determined by the Hamiltonian H.
Namely, the time derivative of an observable F is given by

Ḟ = {F,H} . (2.7)

In particular, for canonical coordinates (xa, pa) one gets the Hamilton canon-
ical equations

ẋa =
∂H

∂pa
, ṗa = − ∂H

∂xa
, (2.8)

which fully determine dynamical trajectories in phase space.
An observable K, which remains constant along the dynamical trajectories,

is called a conserved quantity or an integral/constant of motion. Thanks to
(2.7), it must commute with the Hamiltonian H,

{K,H} = 0 . (2.9)
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Relativistic particle and propagation of light

The motion of a free relativistic particle in a curved spacetime is given by the
following simple Hamiltonian:

H =
1

2
gabpapb . (2.10)

The Hamilton canonical equations read

ẋa = gabpb , ṗa = −1

2
gbc,a pbpc , (2.11)

and lead to the geodesic equation

pb∇bpa = 0 , (2.12)

with the covariant derivative determined by the metric.
The value of the Hamiltonian (2.10) remains constant, H = − 1

2m
2, and de-

termines the mass m of the particle. It gives the normalization of the momenta
as

gabpapb = −m2 . (2.13)

With this normalization, the affine time parameter σ entering these equation
is related to the proper time τ of the particle as

τ = mσ . (2.14)

With minor modifications, the above formalism can also describe the prop-
agation of light, understood as a motion of massless particles. The only differ-
ence is that one has to consider solutions for which the value of the Hamiltonian
(2.10) vanishes. Denoting by l the momentum in the massless case, we thus
have

gablalb = 0 . (2.15)

The corresponding Hamilton equations lead to the null geodesic equation

la∇alb = 0 . (2.16)

Remark: The normalization (2.13) fixes the norm of the momentum. The momentum
thus has D − 1 independent components. For a massive particle one can iden-
tify these with the spatial velocities, while the energy (the time component of
the momentum) is computable from the normalization. In the massless case,
one cannot chose an arbitrary magnitude of velocity, only a direction of the ray.
At the same time, there exists an ambiguity in the choice of the affine param-
eter along the ray. Its rescaling results in the transformation la → l̃a = αla,
where α is constant. Although two such null particles differ just by a scale of
their momenta and they follow geometrically the same path in the spacetime,
they correspond to two physically different photons: they differ by their energy,
or, intuitively, by their ‘color’. Instead of a freedom of choosing an arbitrary
magnitude of velocity for massive particles, in the case of null particles we
have thus a freedom choosing an arbitrary energy, i.e., an arbitrary ‘color’.
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In the description of the relativistic particle above the configuration space
is the whole D-dimensional spacetime, suggesting thus D degrees of freedom.
However, the correct counting of the physical degrees of freedom is D − 1.
The difference is related to the existence of the constraint H = const and the
remaining time-reparametrization freedom σ → σ+const. For more details on
the time-reparametrization symmetry and related constraints see, e.g., Frolov
and Zelnikov (2011); Sundermeyer (1982); Thirring (1992); Rohrlich (2007).

A charged relativistic particle under the influence of electromagnetic force
can be described in a similar way, starting from the Hamiltonian

H =
1

2
gab (pa − qAa)(pb − qAb) . (2.17)

Combining the Hamilton canonical equations yields the equation of motion:

ẋb∇bẋa = qF abẋ
b , (2.18)

where Fab = Ab,a −Aa,b is the Maxwell’s tensor.

2.2 Explicit and hidden symmetries

If the spacetime has some symmetries they can be always ‘lifted up’ to the
phase space symmetries. The corresponding integrals of motion are observables
in the phase space which are linear in momenta. However, the contrary is not
true: not every phase space symmetry can be easily reduced to the configura-
tion space. Symmetries which have the direct counterpart on the configuration
space will be called the explicit symmetries, those which cannot be reduced to
the configuration space transformation are called the hidden symmetries.

Killing vectors

We start with the description of explicit continuous symmetries of the space-
time geometry. These are described by Killing vectors. A curved spacetime
with metric g admits a continuous symmetry (isometry) if there exists its
continuous transformation into itself preserving the metric. Simply speaking,
any measurement of the local spacetime properties (such as curvature) gives
the same result before and after the symmetry transformation. Such a trans-
formation is generated by the corresponding Killing vector ξ and the isometry
condition can be written in the following form:

£ξg = 0 , (2.19)

which is equivalent to the so called Killing vector equation

∇(a ξb) = 0 . (2.20)

Two isometries can be composed together, giving again an isometry; the
symmetries of the metric form a Lie group called the isometry group. Genera-
tors of the symmetries, the Killing vectors, form the corresponding Lie algebra,
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i.e., a linear space with antisymmetric operation given by the Lie bracket. In-
deed, any linear (with constant coefficients) combination of Killing vectors is
again a Killing vector, and for two Killing vectors ξ and ζ their commutator
[ξ, ζ] is also a Killing vector.

The dynamics of a free relativistic particle is completely determined by
the spacetime geometry, cf. Hamiltonian (2.10). According to Noether’s theo-
rem the continuous symmetry implies the existence of an integral of motion,
which can be written in terms of the Killing vector ξ as I = ξ · p = ξapa. The
corresponding Hamiltonian vector field reads

XI = ξa ∂xa − ξb,apb ∂pa . (2.21)

Upon a canonical projection to the spacetime manifold it reduces back to the
Killing vector ξ:

π∗XI = ξa ∂xa = ξ . (2.22)

When the canonical projection of a phase space symmetry to the spacetime
reduces to a well defined spacetime transformation, which is a symmetry of
the spacetime geometry, we say that the symmetry is explicit. Killing vectors
thus generate explicit symmetries.

The well-definiteness of the projection requires that it is a quantity solely
dependent on the spacetime variables, i.e., independent of the momentum.
Clearly it means that the ∂xa -term in the Hamiltonian vector field XI must
not depend on the momentum, which requires that the observable I is linear in
momentum. The integrals of particle motion in curved space that correspond
to explicit symmetries are thus linear in particle’s momentum.

Remark: The applicability of Killing vectors extends also to the infinite-dimensional
dynamical systems, for example, those describing various fields. Namely, given
a Killing vector ξ and a conserved energy momentum tensor Tab, we have the
following conserved current:

Ja = Tabξb , (2.23)

which in its turn implies the existence of the corresponding conserved charge.
Indeed, upon using the Killing equation (2.20) and the fact that Tab is sym-
metric, we have

∇aJa = ∇a(Tabξb) = ξb∇aTab + Tab∇aξb = Tab∇(aξb) = 0 .

Killing tensors

Besides the conserved quantities which are linear in momentum, there might
also exist more complicated conserved quantities that indicate the existence
of deeper and less evident symmetries. For the motion of relativistic particles
these hidden symmetries are encoded in Killing tensors. Namely, the Killing
tensors are in one-to-one correspondence with the integrals of geodesic motion
that are monomial in momenta.
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Let us assume that the system has an integral of motion K of the mono-
mial form (2.2), K = ka1...as(x) pa1 . . . pas , where the tensor k is completely
symmetric, ka1...as = k(a1...as). Calculating the Poisson bracket

{K,H} =
∂K

∂xc
∂H

∂pc
− ∂H

∂xc
∂K

∂pc
, (2.24)

with the Hamiltonian (2.10), we obtain

{K,H} = ka1...as
,c g

capapa1
. . . pas − s

1

2
gkl,a1

ka1...aspa2
. . . paspkpl . (2.25)

Introducing the covariant derivative ∇ corresponding to the metric g, the last
expression can be rewritten in a covariant form

{K,H} = (∇a0ka1...as) pa0
pa1

. . . pas . (2.26)

Requiring that K is the integral of motion, the condition {K,H} = 0 must
hold for an arbitrary choice of pa, which gives that the tensor k has to obey

∇(a0ka1...as) = 0 . (2.27)

This relation is called the Killing tensor equation and the symmetric tensor k
that solves it is a Killing tensor of rank s (Stackel 1895). A (trivial) example
of a Killing tensor, which is present in every spacetime, is the metric itself.
The Killing tensor of rank s = 1 reduces to the Killing vector discussed above.

The condition {K,H} = 0 can be also written in terms of the Nijenhuis–
Schouten bracket

[k, g]NS = 0 , (2.28)

which can be regarded as an alternative form of the Killing tensor equation.
The conserved quantity K corresponds to a symmetry of the phase space

which is generated by the Hamiltonian vector field:

XK = s kac2...cspc2 . . . pcs ∂xa − kc1...cs ,a pc1 . . . pcs ∂pa . (2.29)

Its point-by-point projection into spacetime gives

π∗XK = s kac2...cspc2 . . . pcs ∂xa , (2.30)

which for s ≥ 2 explicitly depends on particle’s momenta and cannot thus
be regarded as a pure spacetime quantity. This means that the phase space
symmetry generated by K does not have a simple description in the spacetime.
We call such symmetries the hidden symmetries.

In other words, Killing tensors of order s ≥ 2 represent symmetries that do
not generate a spacetime diffeomorphism and in that sense they are not ‘en-
coded’ in the spacetime manifold. Their presence, however, can be ‘discovered’
by studying the particle dynamics in the spacetime. This is to be compared
to the action of Killing vectors, s = 1, for which the projection defines a
spacetime isometry and the symmetry is explicit, cf. (2.22).
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Given two constants of geodesic motion K(1) and K(2) of the type (2.2),
their Poisson bracket {K(1),K(2)} is also an integral of motion of the same
type. This immediately implies that provided k(1) and k(2) are two Killing
tensors, so is their Nijenhuis–Schouten bracket [k(1),k(2)]NS. Slightly more
generally, an integral of motion that is polynomial in the momentum corre-
sponds to an inhomogeneous Killing tensor, defined as a formal sum of Killing
tensors of different ranks. Such objects together form the Lie algebra under
the Nijenhuis–Schouten bracket.

Similarly, given two monomial integrals of geodesic motion K(1) and K(2)

of order s1 and s2, respectively, their product K = K(1)K(2) is also a mono-
mial constant of geodesic motion of order s = s1 + s2. This means that K

corresponds to a Killing tensor k given by ka1...as = k
(a1...as1
(1) k

as1+1...as)

(2) . In

other words, a symmetrized product of two Killing tensors is again a Killing
tensor.

This hints on the following definition. A Killing tensor is called reducible,
if it can be decomposed in terms of the symmetrized products of other Killing
tensors and Killing vectors. Otherwise it is irreducible.

Remark: An interesting generalization of Killing tensors has been recently proposed in
Aoki et al (2016). It follows from considering ‘inconstructible rational first
integrals’ of the type C = A/B, where A and B are monomials of arbitrary
orders. By requiring that the resultant ratio C is an integral of geodesic mo-
tion, the corresponding tensor a (and similarly b) has to obey the following
generalized Killing tensor equation:

∇(aaa1...as) = α(aaa1...as) , (2.31)

for some vector α. We refer the interested reader to Aoki et al (2016) for more
details on this development.

Conformal Killing vectors and Killing tensors

So far we have discussed monomial integrals of relativistic particle motion (of
order s in momentum) and have shown that they correspond to Killing vectors
(s = 1) and Killing tensors (s ≥ 2). Let us now briefly mention conformal
generalizations of these objects that provide integrals for propagation of light.
These quantities are conserved only along null geodesics. A conformal Killing
vector ξ is a vector obeying the conformal Killing vector equation

∇(aξb) = αgab , (2.32)

for some function α. Obviously, for α = 0 we recover a Killing vector. Given a
conformal Killing vector ξ, we can construct the observable I conserved along
null geodesics: I = ξ · l = ξala. Indeed, using the null geodesic equation (2.16)
and the constraint (2.15), we have

İ = la∇aI = la∇a(ξblb) = lalb∇aξb = lalb∇(aξb) = α lalbg
ab = 0 . (2.33)
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Remark: Similarly to Killing vectors, conformal Killing vectors provide conserved quan-
tities for any matter and fields whose energy momentum tensors Tab is (i)
conserved: ∇aTab = 0 and (ii) traceless: Tabgab = 0. Namely, the current
Ja = Tabξb obeys the conservation law, ∇aJa = 0, as a result of the confor-
mal Killing equation. Indeed, we have

∇aJa = ∇a(Tabξb) = ξb∇aTab + Tab∇aξb = Tab∇(aξb) = αTabgab = 0 .

Considering next a monomial observable K of rank s, (2.2), we find that
it is an integral of null geodesic motion if the symmetric tensor k satisfies the
conformal Killing tensor equation (Walker and Penrose 1970; Hughston et al
1972):

∇(a0ka1...as) = g(a0a1αa2...as) , (2.34)

with α being some (symmetric) tensor of rank s − 1. For α = 0 we recover
Killing tensors.

It is obvious that symmetries generated by conformal Killing tensors (for
s ≥ 2) are again hidden. Moreover, by the same arguments as in the case
of Killing tensors, it can be shown that the Nijenhuis–Schouten bracket of
two conformal Killing tensors is again a conformal Killing tensor. Similarly,
a symmetrized product of two conformal Killing tensors is again a conformal
Killing tensor.

2.3 Separability structures

The geodesic motion in any number of spacetime dimensions can be also stud-
ied using the Hamilton–Jacobi equation. This approach is reviewed in sec-
tion B.3 of the appendix. In this approach, the family of trajectories can be
integrated as orbits of the momentum field, which is determined as the gradi-
ent of the Hamilton’s characteristic function S. This function is the solution
of the (time-independent) Hamilton–Jacobi equation

H
(
q,
∂S

∂q
(q)
)

= E . (2.35)

The important case of interest is when this equation can be solved by a
separation of variables. As explained in appendix B, this is closely related
to the integrability of the given dynamical system. For a motion of free rel-
ativistic particle there exists a beautiful intrinsic geometric characterization
for separability of the corresponding Hamilton–Jacobi equation. It is described
by the theory of separability structures (Benenti and Francaviglia 1979, 1980;
Demianski and Francaviglia 1980; Kalnins and Miller 1981).

Separability structures are classes of separable charts for which the Hamil-
ton–Jacobi equation allows an additive separation of variables. For each sep-
arability structure there exists such a family of separable coordinates which
admits a maximal number of, let us say r, ignorable coordinates. Each system
in this family is called a normal separable system of coordinates. We call the
corresponding structure the r-separability structure. Its existence is governed
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by the following theorem:

Theorem: A manifold M with a metric g admits an r-separability structure
if and only if it admits r Killing vectors l(i) (i = 0, . . . , r− 1) and D− r rank
2 Killing tensors k(α) (α = 1, . . . , D − r), all of them independent, which:
(i) all mutually (Nijenhuis–Schouten) commute:[

k(α),k(β)

]
NS

= 0 ,
[
l(i),k(β)

]
NS

= 0 ,
[
l(i), l(j)

]
NS

= 0 , (2.36)

(ii) Killing tensors k(α) have in common D − r eigenvectors m(α), such that

[m(α),m(β)] = 0 , [m(α), l(i)] = 0 , g(m(α), l(i)) = 0 . (2.37)

It is evident, that the existence of a separability structure implies the com-
plete integrability of geodesic motion. Indeed, the requirement of indepen-
dence means that r linear in momenta constants of motion L(i) associated
with Killing vectors l(i) and (D − r) quadratic in momenta constants of mo-
tion K(α) corresponding to Killing tensors k(α) are functionally independent.
Moreover, equations (2.36) and the discussion in the appendix B imply that
all such constants are in involution, that is obey conditions (B.19). Hence the
geodesic motion is completely integrable.

Let us mention yet another theorem which relates the (additive) separa-
bility of the Hamilton–Jacobi equation with the (multiplicative) separability
of the Klein–Gordon equation

�φ = m2φ , (2.38)

with the wave operator � = gab∇a∇b. Following Benenti and Francaviglia
(1979) we have the following:

Theorem: The Klein–Gordon equation allows a multiplicative separation of
variables if and only if the manifold possesses a separability structure in which
the vectors m(α) are eigenvectors of the Ricci tensor. In particular, if the
manifold is an Einstein space, the Hamilton–Jacobi equation is separable if
and only if the same holds for the wave equation.

The existence of a separable structure has strong consequences for the ge-
ometry: it restricts significantly a form of the metric in the normal separable
coordinates. Namely, let ya = (ψi, xα) be separable coordinates, where we de-
noted by ψi the ignorable coordinates associated with the Killing vectors l(i) =
∂ψi . The inverse metric (β = 1) and other Killing tensors (β = 2, . . . , D − r)
then read

k(β) =

D−r∑
α=1

[
(M−1)αβ(∂xα)2 +

∑
i,j

N ij
α (xα)(M−1)αβ∂ψi∂ψj

]
. (2.39)

Here, M is a (D− r)× (D− r) Stäckel matrix, that is a non-degenerate matrix
whose each β-th column depends on a variable xβ only, Mα

β = Mα
β(xβ), and

Nα = Nα(xα) are (D − r) of r × r matrices of one variable.
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We will see a particular realization of this structure in chapter 5 where we
write down the metric consistent with a special example of separable structure,
namely the off-shell Kerr–NUT–(A)dS metric. The separable structure of the
Kerr–NUT–(A)dS spacetimes justifies the complete integrability of geodesic
motion, as well as the fact that the Hamilton–Jacobi equation and the wave
equations allow for a separation of variables, see chapter 6.

2.4 Defining the Killing–Yano family

Motivation: parallel transport

In the previous section we have discussed observables F (x,p), depending on
a position x and momenta p, which are conserved along geodesics. Namely,
we have seen that the monomials in momenta, (2.2), are in one-to-one corre-
spondence with Killing tensors (2.27). Interestingly, this construction can be
generalized to tensorial quantities. Let us consider a rank-s tensorial quantity

wa1...as = Bc1...cra1...asp
c1 . . . pcr , (2.40)

depending on the particle momenta p and the position x through the tensor
B. Using the particle’s equations of motion (2.12), we can show that the
quantity (2.40) is parallel-transported along geodesics if and only if the tensor
B satisfies the generalized Killing tensor equation

∇(c0Bc1...cr)a1...as = 0 , (2.41)

as discussed by Collinson and Howarth (2000).
A special case occurs when r = 1 and the tensor B is completely antisym-

metric. In such a case it is called a Killing–Yano form (Yano 1952) and we
denote it by f :

fa0a1...as = f[a0a1...as] , ∇(bfc)a1...as = 0 . (2.42)

The corresponding conserved tensorial quantity w

wa1...as = fca1...asp
c (2.43)

has now the special property that, apart from being parallel-transported, it is
also ‘perpendicular’ to particle’s momentum at every index,

wa1...aj ...asp
aj = 0 . (2.44)

This property has been used for an explicit construction of the parallel-trans-
ported frame in the Kerr geometry (Marck 1983b,a) and its higher-dimensional
generalizations (Connell et al 2008; Kubizňák et al 2009a), see chapter 7 for
more details. Conversely, any skew-symmetric quantity w that is liner in mo-
menta and parallel-transported along and orthogonal to any geodesic, defines
the Killing–Yano tensor f .
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Decomposition of the covariant derivative

One can arrive at the definition of the Killing–Yano tensor, (2.42), also by
studying a general decomposition of the covariant derivative of an antisym-
metric form into its irreducible parts, e.g., Semmelmann (2003). Such a covari-
ant derivative belongs to the space T∗⊗ΛM of tensors with all but the first
indices antisymmetric. This space naturally splits into three subspaces given
by the projectors A, C, and T , defined as

(Aσ)aa1...ap = σ[aa1...ap] , (2.45)

(Cσ)aa1...ap =
p

D−p+1
ga[a1

σb|b|a2...ap] , (2.46)

(T σ)aa1...ap = σaa1...ap − σ[aa1...ap] −
p

D−p+1
ga[a1

σb|b|a2...ap] , (2.47)

with σ ∈ T∗⊗ΛM , i.e., with σ satisfying σaa1,...ap = σa[a1...ap]. These pro-
jectors are orthogonal with respect to the natural scalar product given by the
metric and close to the identity Id = A+ C + T .

Using these projectors, the covariant derivative of an antisymmetric form
ω decomposes as

∇ω = A∇ω + C∇ω + T∇ω . (2.48)

The first term is called an antisymmetric part and depends only on the exterior
derivative dω, the second term is called a divergence part and depends only
on the divergence (co-derivative) ∇ · ω ≡ −δω. The third term is given by
the action of the so called twistor operator (Semmelmann 2003; Moroianu and
Semmelmann 2003; Leitner 2004):

Taωa1...ap = (T ∇ω)aa1...ap

= ∇aωa1...ap −∇[aωa1...ap] −
p

D−p+1
ga[a1

∇bω|b|a2...ap] .
(2.49)

Remark: Note that we have defined here the twistor operator as an operator acting on
the space of antisymmetric forms. Perhaps better known is the twistor operator
defined on Dirac spinors which naturally complements the Dirac operator.
Both twistor operators are closely related, but not identical. In particular, any
p-form constructed from a twistor spinor (by sandwiching gamma matrices)
belongs to the kernel of the above p-form twistor operator, see appendix F.

Differential forms with vanishing exterior derivative are called closed forms,
forms with vanishing divergence are called divergence-free or co-closed. Such
forms play important role for example in the Hodge decomposition or in
the de Rham cohomology. Here we are mostly interested in forms for which
the twistor operator vanishes. These forms are called conformal Killing–Yano
forms (Kashiwada 1968; Tachibana 1969), see also Benn et al (1997); Benn
and Charlton (1997); Kress (1997); Jezierski (1997); Cariglia (2004), or twistor
forms e.g. Semmelmann (2003); Moroianu and Semmelmann (2003); Leitner
(2004). They satisfy the condition

∇aωa1...ap = ∇[aωa1...ap] +
p

D−p+1
ga[a1

∇bω|b|a2...ap] . (2.50)
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The space of conformal Killing–Yano forms has two important subspaces:
Killing–Yano and closed conformal Killing–Yano forms.

The form f is called a Killing–Yano form (Yano 1952; Yano and Bochner
1953) if its covariant derivative is just given by the antisymmetric part. It
obeys the condition:

∇afa1...ap = ∇[afa1...ap] , (2.51)

and is clearly divergence-free.
The form h is called a closed conformal Killing–Yano form (Krtouš et al

2007a; Carter 1987; Semmelmann 2003; Moroianu and Semmelmann 2003;
Leitner 2004) if its covariant derivative is given just by the divergence part. It
obeys the following equation:

∇aha1...ap =
p

D−p+1
ga[a1

∇bh|b|a2...ap] , (2.52)

and is obviously closed.
Finally, we could identify forms for which the covariant derivative is given

by the twistor operator. Since for such objects both the exterior derivative
and coderivative vanish, they are called harmonic forms. A special subcase of
all types of forms introduced above are covariantly constant forms. All these
definitions are summarized in the following table:

Decomposition of the covariant derivative of a form ω

General form ∇ω = A∇ω + C∇ω + T∇ω

Closed form ∇ω = C∇ω + T∇ω dω = 0

Divergence-free co-closed form ∇ω = A∇ω + T∇ω δω = 0

Conformal Killing–Yano form ∇ω = A∇ω + C∇ω Tω = 0

Killing–Yano form ∇ω = A∇ω δω = 0 , Tω = 0

Closed conformal Killing–Yano form ∇ω = C∇ω dω = 0 , Tω = 0

Harmonic form ∇ω = T∇ω dω = 0 , δω = 0

Covariantly constant form ∇ω = 0 dω = 0 , δω = 0 , Tω = 0

Alternative definitions

The definition of conformal Killing–Yano forms (2.50) can be reformulated in
a slightly modified form:

Theorem: The antisymmetric form ω is a conformal Killing–Yano form if
and only if there exists antisymmetric forms κ and ξ such that the covariant
derivative ∇ω can be written as

∇aωa1...ap = κaa1...ap + p ga[a1
ξa2...ap] . (2.53)

The forms κ and ξ are then uniquely given by the following expressions:

κa0a1...ap = ∇[a0
ωa1...ap] , ξa2...ap =

1

D − p+ 1
∇aωaa2...ap . (2.54)
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Indeed, by antisymmetrizing (2.53) one obtains the first relation (2.54). Sim-
ilarly, contracting the first two indices in (2.53) leads to the second relation
(2.54). Substituting these two relations back to (2.53) one recovers the defini-
tion (2.50).

Similarly, f is a Killing–Yano form if there exist a form κ such that

∇afa1...ap = κaa1...ap . (2.55)

A p-form h is a closed conformal Killing–Yano form if there exist a form ξ
such that

∇aha1...ap = p ga[a1
ξa2...ap] , (2.56)

with κ and ξ given by expressions analogous to (2.54).
Alternatively, the symmetrization of (2.53) in first two indices leads to

∇(a0
ωa1)a2...ap = ga0a1

ξa2...ap − (p− 1) g[a2|(a0
ξa1)|a3...ap] , (2.57)

which was originally postulated as a definition of conformal Killing–Yano forms
(Kashiwada 1968; Tachibana 1969). The equivalence of (2.53) and (2.57) fol-
lows from the fact that one can reconstruct ∇a0ωa1...ap from ∇[a0

ωa1...ap] and
∇(a0

ωa1)a2...ap . Killing–Yano forms are those for which ξ = 0, which gives

∇(a0
fa1)a2...ap = 0 , (2.58)

recovering the definition (2.42).

Killing–Yano objects in a differential form notation

Contracting (2.53) with a vector X we see that the p-form ω is a conformal
Killing–Yano form if and only if its covariant derivative can be written as (see
appendix A for notations on differential forms)

∇Xω = X · κ+X ∧ ξ , (2.59)

for ‘some’ (p+1)-form κ and ‘some’ (p−1)-form ξ. These forms are then given
by

κ =
1

p+ 1
∇ ∧ ω , ξ =

1

D − p+ 1
∇ · ω , (2.60)

cf. (2.54), giving the following explicit definition, see (2.50):

∇Xω =
1

p+1
X · (∇ ∧ ω) +

1

D−p+1
X ∧ (∇ · ω) . (2.61)

The Killing–Yano forms are then defined as objects obeying

∇Xf = X · κ , (2.62)

whereas closed conformal Killing–Yano tensors are those satisfying

∇Xh = X ∧ ξ . (2.63)
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Definitions (2.59), (2.62), and (2.63) remain equally valid for inhomoge-
neous (closed conformal) Killing–Yano forms, provided κ and ξ satisfy

π κ =∇ ∧ f , (D − π) ξ =∇ · h , (2.64)

using the rank operator π introduced in (A.16).

2.5 Basic properties of conformal Killing–Yano forms

Conformal Killing–Yano forms

The conformal Killing–Yano tensors have a nice behavior under the Hodge
duality. Namely, using the relations (A.8), (A.10), it is easy to show that
equation (2.61) implies

∇X(∗ω) =
1

p∗ + 1
X ·(∇∧∗ω)+

1

D − p∗ + 1
X∧(∇ ·∗ω) , with p∗ = D − p .

(2.65)
This relation means that

– The Hodge dual of a conformal Killing–Yano tensor is again a conformal
Killing–Yano tensor.

– The Hodge dual of a closed conformal Killing–Yano tensor is a Killing–
Yano tensor and vice versa.

The name “conformal” Killing–Yano tensor is connected with the behavior
of these objects under a conformal rescaling. Namely, if ω is a conformal
Killing–Yano p-form on a manifold with metric tensor g, then

ω̃ = Ωp+1ω (2.66)

is a conformal Killing–Yano p-form with the conformally scaled metric g̃ = Ω2g
(Benn and Charlton 1997).

The existence of conformal Killing–Yano tensors implies the existence of a
conformal Killing tensor and hence also a conserved quantity for null geodesics.
Namely, having two conformal Killing–Yano p-forms ω1 and ω2, obeying (2.59),
the following object:

kab = ω1
(a
c2...cp ω2

b)c2...cp , (2.67)

is a rank-2 conformal Killing tensor which gives rise to a quantity

K = kablalb (2.68)

that is conserved along any null geodesic with momentum l. To prove this
statement, let us calculate the symmetrized covariant derivative of k,

∇(akbc) = ω2
(a
e2...ep ∇bω1

c)e2...ep + ω1
(a
e2...ep ∇bω2

c)e2...ep . (2.69)
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Substituting relation (2.57) for the symmetrized covariant derivative of ω1 and
ω2, only the first term in (2.57) survives the contraction with the second form,
and we obtain

∇(akbc) = g(ab
(
ω2

c)
e2...ep ξ1

e2...ep + ω1
c)
e2...ep ξ2

e2...ep
)
, (2.70)

which proves that k satisfies the conformal tensor equation (2.34).
The conservation of (2.68) along null geodesics is related to the conserva-

tion of another tensorial quantity

F = l ∧ (l · ω), (2.71)

which is parallel-transported along any null geodesic with momentum l, Ḟ =
∇lF = 0. Indeed, using the geodesic equation (2.16), conformal Killing–Yano
condition (2.59), Leibniz rule (A.4), and l2 = 0, we have

Ḟ = l ∧ (l ·∇lω) = l ∧ [l · (l · κ+ l ∧ ξ)] = l ∧ [l2ξ − l ∧ (l · ξ)] = 0 . (2.72)

Defining F 1 and F 2 for ω1 and ω2, any product of F ’s, l’s, and the metric g
is also parallel-propagated along null geodesics. In particular, this is true for

F1ac2...cp F2b
c2...cp = lalbK , (2.73)

with K given by (2.68). This means that K̇ = 0, and we again obtained that
kab must be a conformal Killing tensor.

Contrary to conformal Killing tensors, conformal Killing–Yano tensors do
not form in general a graded Lie algebra, though they do in constant curva-
ture spacetimes (Kastor et al 2007). See Cariglia et al (2011a); Ertem and
Acik (2016); Ertem (2016) for attempts to generalize this property using the
suitably modified Schouten–Nijenhuis brackets.

Remark: It is well known that skew-symmetric tensors form a (graded) Lie algebra with
respect to the skew-symmetric Schouten–Nijenhuis (SSN) bracket (Schouten
1940, 1954; Nijenhuis 1955), defined as

[α, β]SSN
a1...ap+q−1

=

= pαb[a1...ap−1
∇bβap...ap+q−1] + (−1)pqq βb[a1...aq−1

∇bαaq...ap+q−1] ,
(2.74)

for a p-form α and a q-form β. This fact led Kastor et al (2007) to investigate
whether, similar to Killing vectors, Killing–Yano tensors form a subalgebra of
this algebra. Unfortunately, such statement is not true in general, the authors
were able to give counter examples disproving the conjecture. On the other
hand, the statement is true in maximally symmetric spaces. We also have the
following property: let ξ be a conformal Killing vector satisfying £ξg = 2λg,
and ω be a conformal Killing–Yano p-form. Then

ω̃ = [ξ,ω]SSN = £ξω − (p+ 1)λω (2.75)

is a new conformal Killing–Yano p-form (Benn and Charlton 1997; Cariglia
et al 2011a).

Let us finally mention that conformal Killing–Yano tensors are closely re-
lated to twistor spinors, and play a crucial role for finding symmetries of the
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massless Dirac operator. At the same time the subfamilies of Killing–Yano and
closed conformal Killing–Yano tensors are responsible for symmetries of the
massive Dirac equation (Carter and McLenaghan 1979; Benn and Charlton
1997; Cariglia 2004; Cariglia et al 2011a), see the discussion in section 6.4 and
appendix F.

Killing–Yano forms

An important property of Killing–Yano tensors is that they ‘square’ to Killing
tensors. Namely, having two Killing–Yano p-forms f1 and f2, their sym-
metrized product

kab = f1
(a
c2...cp f2

b)c2...cp (2.76)

is a rank-2 Killing tensor. This property again follows by taking a symmetrized
covariant derivative and employing the Killing–Yano condition (2.58). It can
also be obtained by contracting the associated forms w1 and w2 defined by
(2.43). Since they are both parallel-transported, the contracted quantity

K = w1c1...cp w2
c2...cp = kab papb (2.77)

is also conserved and hence k is a Killing tensor.
It is obvious that this property can be immediately generalized to other

cases. For example, let f1, f2, and f3 be three Killing–Yano 3-forms. Then

kabc = f1
(a|d|

e f2
b|e|

f f3
c)f

d (2.78)

is a rank-3 Killing tensor and gives rise to a constant of geodesic motion, given
by the contracted product of associated forms wi (2.43),

K = Tr(w1 ·w2 ·w3) = kabcpapbpc . (2.79)

Similar is true for other products of the associated parallel transported w’s.

Remark: Similar to Killing vectors, Killing–Yano tensors provide conserved charges for
the fields. For simplicity, let us consider a Killing–Yano 2-form f . A naive
generalization of (2.23) would read

jab = Tacfc
b . (2.80)

It is easy to verify that by using the Killing–Yano equation (2.58), the ‘current’
j is again divergence free, ∇ · j = 0. However, it is no longer completely
antisymmetric and hence one cannot use the Stokes theorem to construct
the corresponding conserved quantities. For this reason, Kastor and Traschen
(2004) considered an ‘upgraded’ current, given by

jab = fcdRcd
ab − 2facRc

b + 2fbcRc
a + fabR , (2.81)

which is both manifestly antisymmetric and divergence-free. This property can
be immediately generalized for higher-rank Killing–Yano tensors and leads to
a definition of ‘intensive’ Yano–ADM charges, see Kastor and Traschen (2004);
Kastor et al (2005) for more details.
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Closed conformal Killing–Yano forms

Closed conformal Killing–Yano tensors are conformal Killing–Yano tensors
that are in addition closed with respect to the exterior derivative. This addi-
tional property implies the following two important results.

Consider a (non-null) geodesic with a momentum p and denote by

P ab = δab −
papb
p2

(2.82)

a projector to the space orthogonal to its tangent vector (which is proportional
to the momentum). It satisfies

P · p = 0 , ∇pP = 0 . (2.83)

Let h be a rank-s closed conformal Killing–Yano tensor. It allows us to define
a new s-form

Fa1...as = P b1a1
. . . P bsas hb1...bs , (2.84)

which is parallel-transported along the geodesic. Indeed, using the properties
(2.83) and employing the defining property (2.63) one has

pa∇aFa1...as = P b1a1
. . . P bsas p

a∇ahb1...bs = sP b1a1
. . . P bpas p[b1ξb2...bs] = 0 . (2.85)

In fact the converse is also true. When a form F defined by (2.84) is parallel-
transported along any geodesic, it implies that h is a closed conformal Killing–
Yano form.

The second property of closed conformal Killing–Yano forms which plays a
key role in the construction of hidden symmetries in higher-dimensional black
hole spacetimes is the following statement (Krtouš et al 2007a; Frolov 2008):

Theorem: Let h1 and h2 be two closed conformal Killing–Yano p-form and
q-form, respectively. Then their exterior product

h = h1 ∧ h2 (2.86)

is a closed conformal Killing–Yano (p+ q)-form.

This property can be considered as an ‘antisymmetric analogue’ of the state-
ment that a symmetrized product of (conformal) Killing tensors is again a
(conformal) Killing tensor. In order to prove this theorem, we take the covari-
ant derivative of h along an arbitrary direction X, use the Leibniz rule, and
closed conformal Killing–Yano condition (2.63) for both h1 and h2, to obtain

∇Xh = (∇Xh1)∧h2 +h1∧(∇Xh2) = (X∧ξ1)∧h2 +h1∧(X∧ξ2) = X∧ξ ,
(2.87)

with

ξ = ξ1 ∧ h2 + (−1)ph1 ∧ ξ2 , (2.88)

which proves that h also satisfies the condition (2.63) for closed conformal
Killing–Yano forms.
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2.6 Integrability conditions and method of prolongation

The conformal Killing–Yano equation (2.61) represents an over-determined
system of partial differential equations (Dunajski 2008) and significantly re-
stricts a class of geometries for which nontrivial solutions may exist. For this
reason it is very useful to formulate and study integrability conditions for these
objects. For example, it was shown in Mason and Taghavi-Chabert (2010)
that the integrability condition for a non-degenerate conformal Killing–Yano
2-form implies that the spacetime is necessary of type D of higher-dimensional
algebraic classification (Coley et al 2004; Milson et al 2005). We refer to ap-
pendix C for detailed derivation of integrability conditions for (closed confor-
mal) Killing–Yano tensors.

Taking into account that (closed conformal) Killing–Yano conditions im-
pose severe restrictions on the spacetime geometry, it is natural to ask the
following questions: (i) What is the maximum possible number of independent
Killing–Yano symmetries that may in principle exist? (ii) Given a spacetime,
is there an algorithmic procedure to determine how many Killing–Yano sym-
metries are present? Fortunately, the answers to both of these questions are
known. Given a geometry, there is an effective method, called the method of
prolongation, that provides an algorithmic tool for determining how many at
most solutions of an over-determined system of Killing–Yano equations may
exist (Houri and Yasui 2015). See also Houri et al (2017) for a recent study of
the prolongation of the Killing tensor equation.

Prolongation of the Killing vector equation

Let us first consider the case of Killing vectors. For a Killing vector ξ, the
Ricci identities give the following integrability condition:

∇a∇b ξc = −Rbcaeξe , (2.89)

see (C.15) for a more general formula and its proof. We can thus rewrite the
Killing equation (2.20) and its integrability condition as a system of first-order
partial differential equations for the 1-form ξa and a 2-form Lab:

∇aξb = Lab , ∇aLbc = −Rbcadξd . (2.90)

These relations imply that all higher derivatives of ξa and Lab at a given point
x are uniquely determined by the values of ξa and Lab at this point. Hence, the
Killing vector ξ in the neighborhood of x is determined by the initial values
of ξa and Lab at x. The maximum possible number of Killing vector fields
is thus given by the maximum number of these initial values. Since Lab is
antisymmetric, the maximum number reads

NKV(D) = D +
1

2
D(D − 1) =

1

2
D(D + 1) . (2.91)

As can be expected, the maximum number of Killing vectors exists in maxi-
mally symmetric spacetimes, see below.
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Let us now explain the algorithm for finding the number of independent
Killing vectors in a given spacetime. In the first step we take a derivative of
the second equation (2.90), employ the Ricci identity and the first equation
(2.90), to obtain

ξe∇aRbcde − ξe∇dRbcae −RadbeLce +Radc
eLbe −RbcaeLde +Rbcd

eLae = 0 .
(2.92)

Given the spacetime, the Riemmann tensor and its derivatives are known and
this condition represents a system of D2(D2−1)/12 linear algebraic equations
for ξa and Lab at any point. Although some of these equations may be triv-
ially satisfied, some will reduce the number of possible independent Killing
vector solutions. In the second step we differentiate this equation further, and
employing the Ricci identity and equations (2.90) again, obtain another set of
algebraic equations, and so on. After a finite number of steps the algorithm
terminates. This procedure determines the actual number of Killing vectors in
our spacetime.

Maximum number of (closed conformal) Killing–Yano forms

The method of prolongation has been readily extended to (closed conformal)
Killing–Yano tensors, in which case one can use an elegant description in terms
of the so called Killing connection. We refer to the work by Houri and Yasui
(2015) for details and state only the formulae for the maximum number of
(closed conformal) Killing–Yano tensors, e.g. Kastor and Traschen (2004).

Using the Killing–Yano equation (2.55) for a Killing–Yano p-form f and
its integrability conditions (C.15), we find

∇afa1,...ap = κaa1...ap ,

∇aκa0a1,...ap =
p+ 1

2
Rca[a0a1

f ca2,...ap] .
(2.93)

Since both fa1...ap and κa0a1...ap are completely antisymmetric, we have at
most

NKY(D, p) =

(
D

p

)
+

(
D

p+ 1

)
=

(
D + 1

p+ 1

)
=

(D + 1)!

(D − p)! (p+ 1)!
(2.94)

Killing–Yano p-forms.
Similarly, using the equation (2.56) for a closed conformal Killing–Yano

p-form h and its integrability conditions (C.27), we find

∇aha1,...ap = p ga[a1
ξa2...ap]

∇aξa2...ap =
1

D − p
(
−Rba hba2...ap +

p− 1

2
Rbca[a2

hbca3...ap]

)
.

(2.95)

Again, since both ha1...ap and ξa2...ap are completely antisymmetric, we have
at most

NCCKY(D, p) =

(
D

p

)
+

(
D

p− 1

)
=

(
D + 1

p

)
=

(D + 1)!

(D − p+ 1)! p!
(2.96)



32 Valeri P. Frolov et al.

closed conformal Killing–Yano forms. The same result can be obtained realiz-
ing that any closed conformal Killing–Yano tensor h of rank p is given by a
Hodge dual of a Killing–Yano (D−p)-form. We can thus substitute p→ D−p
in (2.94) obtaining again (2.96).

We refer the reader to a recent paper by Batista (2015), where the integra-
bility conditions are studied for a general conformal Killing–Yano tensor and
to appendix C for the overview and derivations of the integrability conditions
for Killing–Yano and closed conformal Killing–Yano forms.

2.7 Killing–Yano tensors in maximally symmetric spaces

The maximally symmetric spaces possess the maximum number of Killing–
Yano and closed conformal Killing–Yano tensors. Their special properties have
been studied in Batista (2015). In what follows let us write explicitly a basis
for these tensors in the simple case of a D-dimensional flat space, using the
Cartesian coordinates.

Consider a set A of p ordered indices,

A = {a1, . . . ap} such that 1 ≤ a1 < a2 < · · · < ap ≤ D . (2.97)

Then the following
(
D
p

)
objects:

f{a1,...ap} = dxa1 ∧ dxa2 ∧ · · · ∧ dxap , (2.98)

labeled by such a set, are (covariantly constant) translational Killing–Yano
p-forms Kastor and Traschen (2004).

Furthermore, the following
(
D
p+1

)
objects:

f̂
{a0,...ap}

= x[a0dxa1 ∧ dxa2 ∧ · · · ∧ dxap] , (2.99)

labeled by a set of p+ 1 indices, are the rotational Killing–Yano forms Kastor
and Traschen (2004). Indeed, taking the covariant derivative, we have

∇f̂
{a0,...ap}

=
1

p+ 1
dx[a0 ∧ dxa1 ∧ dxa2 ∧ · · · ∧ dxap] , (2.100)

which proves the statement. The total number of Killing–Yano tensors (2.98)
and (2.99) is

(
D
p

)
+
(
D
p+1

)
= NKY(D, p), giving thus a complete set of linearly

independent Killing–Yano p-forms in flat space.
A basis in the space of closed conformal Killing–Yano p-forms can be con-

structed as the Hodge dual of the basis in the space of Killing–Yano (D−p)-
forms. Let Ā be a complimentary set to set A, (2.97), consisting of all integers
1, . . . , D which are different from those in A. Clearly, the Hodge dual of the
translation Killing–Yano form fA is, up to a sign, given again by the same type

of the form, ∗fA = ±f Ā, only indexed by the complimentary set Ā. Ignoring
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the unimportant sign, we can thus define the (covariantly constant) transla-
tional closed conformal Killing–Yano forms by the same formula as above,

h{a1,...ap} = dxa1 ∧ dxa2 ∧ · · · ∧ dxap , (2.101)

labeled again by a set of p indices. Since any closed form h can locally be
written as h = db, for our translation forms we may, for example, write

hA = df̂A . (2.102)

Hence, in flat space, the rotational Killing–Yano forms are potentials for the
translational closed conformal Killing–Yano forms.

Similarly, we can define the rotational closed conformal Killing–Yano p-
forms as Hodge duals of the rotational Killing–Yano (D−p)-forms. Let us
consider f̂A labeled by a set A of (D−p+1) indices. Expanding the antisym-
metrization in (2.99) with respect to the first index and taking the Hodge dual
gives

∗ f̂A = ± 1

D − p+ 1

(∑
a∈A

xadxa
)
∧ ∗fA . (2.103)

Ignoring unimportant prefactors and renaming the labeling set Ā → A, we can
define the following basis of rotational closed conformal Killing–Yano p-forms:

ĥA =
(∑
a∈Ā

xadxa
)
∧ hA , (2.104)

labeled by a set A of p− 1 indices. The divergences of these forms are

ξ̂A =
1

D − p+ 1
∇ · ĥA = hA . (2.105)

Each of the closed conformal Killing–Yano forms (2.104) can be obtained from
the potential

b̂A =
1

2

(∑
a∈Ā

(xa)2
)
hA . (2.106)

2.8 Principal tensor

There exists a very deep geometrical reason why the properties of higher-
dimensional rotating black holes are very similar to the properties of their four-
dimensional ‘cousins’. In both cases, the spacetimes admit a special geometric
object which we call the principal tensor. As we shall see, this tensor generates
a complete set of explicit and hidden symmetries and uniquely determines the
geometry, given by the off-shell Kerr–NUT–(A)dS metric. The purpose of this
section is to introduce the principal tensor, a ‘superhero’ of higher-dimensional
black hole physics, and discuss its basic properties.
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Definition

We define the principal tensor h as a non-degenerate closed conformal Killing–
Yano 2-form. Being a closed conformal Killing–Yano 2-form it obeys the equa-
tion

∇chab = gcaξb − gcbξa , ξa =
1

D − 1
∇bhba , (2.107)

or in the language of differential forms

∇Xh = X ∧ ξ , ξ =
1

D − 1
∇ · h . (2.108)

Note that since h is closed, there exists, at least locally, a potential 1-form b
such that

h = db . (2.109)

The condition of non-degeneracy means that the principal tensor has the max-
imal possible (matrix) rank and possesses the maximal number of functionally
independent eigenvalues.2

Darboux and null frames

In order to explain the imposed condition of non-degeneracy in more details
and to exploit the algebraic structure of the principal tensor we shall now
introduce the Darboux frame. Consider a (D = 2n + ε)-dimensional manifold
with (Riemannian—see later) metric g. For any 2-form h in this space there
exists an orthonormal frame (eµ, êµ, ê0), called the Darboux frame, so that we
can write

h =
∑
µ

xµe
µ ∧ êµ , (2.110)

g =
∑
µ

(
eµ eµ + êµ êµ

)
+ ε ê0 ê0 . (2.111)

Here, the 1-forms eµ and êµ, µ = 1 . . . , n, accompanied in odd dimensions with
ê0, are orthogonal to each other and normalized with respect to the metric,
and the quantities xµ are related to the ‘eigenvalues’ of the 2-form h (see
below).

The condition that the principal tensor is non-degenerate requires that
there are exactly n nonvanishing eigenvalues xµ, which, in a suitable neigh-
borhood, give n functionally independent (non-constant and with linearly in-
dependent gradients) functions.

The Darboux frame is closely related to eigenvectors of the principal tensor.
Let us denote by ]h a variant of the principal tensor with the first index raised

2 In the Lorentzian signature we additionally assume certain generality of eigenvectors
and eigenvalues, see the discussion below.



Black holes, hidden symmetries, and complete integrability 35

by the metric,3 (]h)ab = gachcb. This is a real linear operator on the tangent
space which is antisymmetric with respect to the transposition given by the
metric. As such, it has complex eigenvectors coming in complex conjugate
pairs (mµ, m̄µ) with imaginary eigenvalues ±ixµ,

]h ·mµ = −ixµmµ ,
]h · m̄µ = ixµ m̄µ , (2.112)

and a subspace of real eigenvectors with the vanishing eigenvalue. The maximal
possible rank guarantees that in even dimensions there is no eigenvector with
the vanishing eigenvalue and in odd dimensions there is exactly one eigenvector
ê0 with the vanishing eigenvalue,

]h · ê0 = 0 . (2.113)

The eigenvectors are null and satisfy the null-orthonormality conditions4

g(mµ,mν) = 0 , g(m̄µ, m̄ν) = 0 , g(mµ, m̄ν) = δµν . (2.114)

These eigenvectors can be used to define the Darboux frame. Namely, the
vectors

eµ = − i√
2

(
mµ − m̄µ

)
, êµ =

1√
2

(
mµ + m̄µ

)
, (2.115)

together with ê0 in odd dimensions, form an orthonormal basis and satisfy

]h · eµ = −xµ êµ , ]h · êµ = xµ eµ ,
]h · ê0 = 0 . (2.116)

The dual frame of 1-forms (eµ, êµ, ê0) is exactly the Darboux frame in which
the principal tensor takes the form (2.110). At the same time, the null-ortho-
normality conditions (2.114) for the basis eigenvectors (mµ, m̄µ, ê0) imply
that the inverse metric can be written as

g−1 =
∑
µ

(
mµ m̄µ + m̄µmµ

)
+ ε ê0 ê0 , (2.117)

recovering (2.111) upon the use of (eµ, êµ, ê0).
The Darboux basis can also be understood in terms of the eigenvectors of

tensor Q, defined as the square of the principal tensor,

Qab = ha
c hbc . (2.118)

Being a particular case of definition (2.67), Q is a conformal Killing tensor.
Since it can clearly be written as

Q =
∑
µ

x2
µ

(
eµeµ + êµêµ

)
, (2.119)

3 We will use this notation just in this section since we want to be more explicit here.
Elsewhere we raise indices implicitly, without the sharp symbol.

4 The eigenvectors can be chosen orthonormal with respect to the hermitian scalar product
on the complexification of the tangent space, 〈a, b〉 = g(ā, b). Such orthonormality relations
translate into null-orthonormality conditions (2.114) written in terms of the metric.
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one gets the following eigenvector equations:

Q · eµ = x2
µ eµ , Q · êµ = x2

µ êµ , Q · ê0 = 0 . (2.120)

To summarize, the 2-form algebraic structure of the principal tensor splits
the tangent space into orthogonal 2-planes, each of which is spanned on the
pair of vectors (eµ, êµ), in odd dimensions supplemented by an additional
one-dimensional subspace spanned on ê0.

Metric signature

All the formulae so far were adjusted to the Euclidean signature. For other sig-
natures of the metric, most of the formulae can be written in the same way, only
the reality of various quantities is different. In particular, for the Lorentzian
signature one of the 1-forms in the Darboux frame is imaginary and two of
the null eigenvectors are real (and not complex conjugate anymore). One can
also perform a suitable ‘Wick rotation’ and define real and properly normal-
ized canonical frames. This will be done, for example, in the next chapter
when discussing the canonical Darboux basis for the Kerr spacetime in four
dimensions. In higher dimension, on other hand, we will use mostly the formal
Euclidean definitions even in the case of Lorentzian signature (chapter 5) and
we will perform the Wick rotation only for the coordinate form of the metric,
see section 4.4.

However, the non-Euclidean signatures allow also other possibilities. The
Darboux frame can take an exceptional ‘null form’ when some of the vectors
in (2.110) are null, cf. Milson (2004). It can also happen that some of the
eigenvalues xµ have a null gradient dxµ which complicates the choice of the
special Darboux frame discussed below, see (2.122). We do not consider such
exceptional cases in our review. We assume that the principal tensor allows
the choice of the Darboux frame in the form (2.122) and that eigenvalues xµ
are not globally null (although they can become null on special surfaces as,
for example, at the horizon). A study and the classification of the exceptional
null cases is an interesting open problem.

Special Darboux frame

In order to write down the Darboux frame above, we just exploited the alge-
braic properties of the principal tensor: that it is a maximally non-degenerate
2-form in the space with metric. Such a frame is not fixed uniquely. We still
have a freedom which allows us to independently rotate each 2-plane spanned
on eµ, êµ:

eµ → cosα eµ − sinα êµ , mµ → exp(−iα)mµ ,

êµ → sinα eµ + cosα êµ , m̄µ → exp(iα) m̄µ .
(2.121)

This freedom allows one to further simplify the key objects related to the
principal tensor, for example, to obtain a nice expression (2.131) below for the
1-form ξ.



Black holes, hidden symmetries, and complete integrability 37

Namely, by using the property that the principal tensor is a closed confor-
mal Killing–Yano form, one can require Krtouš et al (2008) that

êµ · dxν = 0 (2.122)

for any µ and ν. Moreover, with this condition the dual frame 1-forms eµ

satisfy
dxµ =

√
Qµ e

µ , (2.123)

where Qµ is metric component Qµ = gµµ. We call such a frame the special
Darboux basis. We will see that the special Darboux frame is used when the
metric is specified, see chapter 3 for the case of four dimensions and chapter 4
for a general higher-dimensional case.

To justify that conditions (2.122) and (2.123) can be enforced, we take the
covariant derivative of the eigenvector equation (2.112) along the direction
mν . After employing the closed conformal Killing–Yano condition (2.107),
one obtains

(]h+ ixµI) ·∇mνmµ + (mµ · ξ)mν + i(mν · dxµ)mµ = 0 . (2.124)

Taking component inmµ direction and using the eigenvector condition (2.112)
again, one finds

mν · dxµ = 0 for µ 6= ν , (2.125)

and
mµ · dxµ = imµ · ξ (2.126)

when µ = ν. In odd dimensions, by a similar argument, one gets also

ê0 · dxµ = 0 . (2.127)

With the help of (2.117), (2.125), and (2.127), the function Qµ ≡ gµµ =

dxµ · g−1 · dxµ can be written as Qµ = 2 |mµ · dxµ|2. It means that

mµ · dxµ =
i√
2

√
Qµ exp(iα) (2.128)

for some phase α. Now we can take an advantage of the freedom (2.121) and
fix the phase so that

mµ · dxµ =
i√
2

√
Qµ . (2.129)

Relations (2.115) then immediately imply

eµ · dxµ =
√
Qµ , eν · dxµ = 0 for ν 6= µ , êκ · dxµ = 0 , ê0 · dxµ = 0 ,

(2.130)
which proves all the assertions given above.

As a bonus, the equation (2.126) now yields

ξ =
∑
µ

√
Qµ êµ +

√
Q0 ê0 , (2.131)
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with yet unspecified function Q0. Upon contracting with the principal tensor
(2.110) and using (2.123), we obtain

ξ · h = −
∑
µ

xµ
√
Qµ e

µ = −d
(1

2

∑
µ

x2
µ

)
. (2.132)

Employing further the Cartan identity and the closeness of h, we finally obtain

£ξh = ξ · dh+ d(ξ · h) = 0 . (2.133)

Note that although we used the special Darboux frame to prove this relation,
it is of course valid universally: the principal tensor is conserved along the flow
generated by ξ.

Importantly, by further studying the integrability conditions for the princi-
pal tensor, it can be shown that Krtouš et al (2008); Houri et al (2009); Yasui
and Houri (2011); Krtouš (2017)

£ξg = 0 . (2.134)

ξ is thus a Killing vector which we call the primary Killing vector.
The two properties (2.133) and (2.134) play a crucial role in the construc-

tion of the canonical metric admitting the principal tensor, see the discussion
in chapter 5 and original papers Houri et al (2007); Krtouš et al (2008); Houri
et al (2009).

Killing tower

The special Darboux frame is only the first consequence of the existence of
the principal tensor. One of the keystone properties of the principal tensor is
that it can be used to generate a rich symmetry structure which we call the
Killing tower. It is a sequence of various symmetry objects which, in turn,
guarantee many important properties of the physical systems in spacetimes
with the principal tensor. Here we only shortly sketch how the Killing tower is
build to get an impression of this symmetry structure. We return to the Killing
tower in chapter 5, where we explore its definitions and properties in much
more detail, and in chapter 6, where we review its main physical consequences.

Starting with the principal tensor h, we can build the following objects
Krtouš et al (2007a); Frolov (2008); Frolov and Kubizňák (2008):

(i) Closed conformal Killing–Yano forms h(j) of rank 2j:

h(j) =
1

j!
h∧j . (2.135)

(ii) Killing–Yano forms f (j) of rank (D − 2j):

f (j) = ∗h(j) . (2.136)
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(iii) Rank-2 Killing tensors k(j),

kab(j) =
1

(D−2j−1)!
f (j)a

c1...cD−2j−1
f (j)bc1...cD−2j−1 . (2.137)

(iv) Rank-2 conformal Killing tensors Q(j):

Qab(j) =
1

(2j−1)!
h(j)ac1...c2j−1h

(j)bc1...c2j−1 . (2.138)

(v) Killing vectors l(j):
l(j) = k(j) · ξ . (2.139)

For j = 0, the Killing tensor reduces to the metric, k(0) = g, and the Killing
vector l(0) coincides with the primary Killing vector, l(0) = ξ. We call the other
Killing vectors l(j) the secondary Killing vectors. Note also that for j = 1,

h(1) = h, and the conformal Killing tensor reduces to the previously defined
object (2.118), Q(1) = Q.

Remark: To show that l(j) are indeed Killing vectors, we note that taking covariant
derivative of (2.139) and employing the Killing tensor equation (2.27) for k(j)

and ξ gives Houri et al (2007)

∇(al
b)
(j)

=
1

2
£ξk

ab
(j) − ξ

c∇ckab(j) . (2.140)

Since the Killing tensor k(j) is build up only using h and g, the Lie derivative
in the first term vanishes due to conditions (2.133) and (2.134). Similarly, the
covariant derivative in the second term vanishes thanks to ∇ξh = 0 which
is a direct consequence of the principal tensor equation (2.108). Let us, how-
ever, note that this proof relies on the condition (2.134), which is difficult to
prove; see discussion in chapter 5, especially section 5.4. The character of the
other objects in the Killing tower follows from the general properties of con-
formal Killing–Yano forms discussed previously in this section. See chapter 5
for further discussion.

The objects in the Killing tower encode symmetry properties of the geom-
etry. Killing vectors characterize its explicit symmetries, while Killing tensors
describe the hidden symmetries. Together they generate a sufficient set of con-
served quantities for a free particle motion, yielding such a motion completely
integrable. They also define symmetry operators for the wave operator. The
objects in the Killing–Yano tower enable one to separate the Dirac equation.
We will discuss all these consequences in chapter 6.

Geometry admitting the principal tensor

As can be expected, the existence of the principal tensor imposes very re-
strictive conditions on the geometry. In fact, it determines the geometry: the
most general geometry consistent with the existence of the principal tensor is
the off-shell Kerr–NUT–(A)dS geometry. This geometry is the main object of
our study in the following sections. Since it contains, as a special subcase, the
metric for a general multiply-spinning black hole, it represents a generaliza-
tion of the Kerr solution to an arbitrary dimension. For this reason, we start in
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the next section with a review of the properties of the four-dimensional Kerr
solution.

In chapter 4 we introduce the general higher dimensional off-shell Kerr–
NUT–(A)dS geometry. We define canonical coordinates in which the metric
acquires a manageable form. With this machinery we shall return back to the
discussion of the principal tensor in chapter 5.

The Killing tower can be build directly from the principal tensor, with-
out referring to a particular form of the metric. This construction, sketched
above, is discussed in detail in chapter 5. However, it is also useful to present
these objects in an explicit coordinate form. This is the reason why we are
postponing the further discussion of the Killing tower till chapter 5, only after
we introduce the metric itself. Since the metric is determined by the existence
of the principal tensor, the utilization of the metric in the discussion of the
principal tensor does not mean a loss of generality.
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3 Kerr metric and its hidden symmetries

The main goal of this review is to describe properties of Kerr–NUT–(A)dS
family of higher-dimensional black holes related to hidden symmetries. As we
shall see many of these properties are similar to those of the Kerr metric. A
deep reason for this is the existence of the principal tensor. In order to prepare
a reader for ‘a travel’ to higher dimensions, where all the formulas and relations
look more complicated and the calculations are more technically involved, we
summarize the results concerning the properties of the Kerr metric and its
four-dimensional generalization described by the Kerr–NUT–(A)dS spacetime
in this chapter. We also briefly discuss a related family of Plebański–Demiański
spacetimes which share with the Kerr metric some of its hidden symmetries.

3.1 Kerr metric

The Kerr metric describes a rotating black hole. Found by Kerr (1963), it
is the most general stationary vacuum solution of Einstein’s equations in an
asymptotically flat spacetime with a regular event horizon. The general prop-
erties of the Kerr metric are well known and can be found in many textbooks,
see, e.g., Misner et al (1973); Hawking and Ellis (1973); Wald (1984); Chan-
drasekhar (1983); Frolov and Novikov (2012); Frolov and Zelnikov (2011). In
this section, we discuss the Kerr solution from a perspective of its hidden sym-
metries. As we shall demonstrate later, many of the remarkable properties of
the Kerr geometry, that stem from these symmetries, are naturally generalized
to black holes of higher-dimensional gravity.

In the Boyer–Lindquist coordinates the Kerr metric takes the following
form:

g = −
(

1−2Mr

Σ

)
dt2 − 4Mra sin2 θ

Σ
dtdφ+

A sin2 θ

Σ
dφ2 +

Σ

∆r
dr2 +Σ dθ2,

(3.1)

Σ = r2 + a2 cos2 θ , ∆r = r2 − 2Mr + a2 , A = (r2 + a2)2 −∆r a
2 sin2 θ .

(3.2)

The metric does not depend on coordinates t and φ, ξ(t) = ∂t and ξ(φ) = ∂φ
are two (commuting) Killing vectors. The Killing vector ξ(t) is uniquely char-
acterized by the property that it is timelike at infinity; the metric is station-
ary. The characteristic property of ξ(φ) is that its integral lines are closed.
In the black hole exterior the fixed points of ξ(φ), that is the points where
ξ(φ) = 0, form a regular two-dimensional geodesic submanifold, called the axis
of symmetry—the metric is axisymmetric. The induced metric on the axis is

γ = −Fdt2 + F−1dr2 , F =
∆r

r2 + a2
. (3.3)
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The Kerr metric is characterized by two parameters: M and a . At far
distances, for r →∞, the metric simplifies to

g ≈ −
(

1− 2M

r

)
dt2− 4Ma sin2 θ

r
dtdφ+dr2 + r2(dθ2 + sin2 θ dφ2) . (3.4)

From this asymptotic form one concludes that M is the mass, and J = aM
is the angular momentum of the black hole. The parameter a is called the
rotation parameter. Similar to the mass M , it has a dimensionality of length.
The ratio of a and M is a dimensionless parameter α = a/M , called the
rotation rapidity. Similar to the case of the Schwarzschild black hole, one can
use M as a scale parameter and write the Kerr metric (3.1) in the form

g = M2g̃ , (3.5)

where g̃ is a dimensionless metric that contains only one non-trivial dimen-
sionless parameter: the rotation rapidity α.

3.2 Carter’s canonical metric

The Boyer–Lindquist coordinates naturally generalize the Schwarzschild co-
ordinates to the case of a rotating black hole. We now present yet another
form of the Kerr metric in which its hidden symmetry is more evident. Let us
perform the following coordinate transformation:

y = a cos θ , ψ = φ/a , τ = t− aφ . (3.6)

Then the Kerr metric (3.1) takes the form

g =
1

Σ

[
−∆r(dτ + y2dψ)2 +∆y(dτ − r2dψ)2

]
+Σ

[
dr2

∆r
+
dy2

∆y

]
, (3.7)

Σ = r2 + y2 , ∆r = r2 − 2Mr + a2 , ∆y = a2 − y2 . (3.8)

As we shall see, similar coordinates will be very useful in higher dimensions.
To stress this, we call (τ, r, y, ψ) the canonical coordinates.

Off-shell canonical metric

In the new form of the metric (3.7) the parameters of the solution, mass M
and rotation parameter a, enter only through functions ∆r and ∆y, both being
quadratic polynomials in r and y, respectively. It is often convenient not to
specify functions ∆r(r) and ∆y(y) from the very beginning, but consider a
metric with arbitrary functions instead:

g = −∆r

Σ
(dτ + y2dψ)2 +

∆y

Σ
(dτ − r2dψ)2 +

Σ

∆r
dr2 +

Σ

∆y
dy2 ,

Σ = r2 + y2 , ∆r = ∆r(r) , ∆y = ∆y(y) .

(3.9)
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We call such an ansatz the off-shell canonical metric. This name emphasizes
the fact that in a general case this metric is not a solution of Einstein’s equa-
tions.

It turns out that many calculations and results become more transparent
and simpler when performed without specifying a concrete form of functions
∆r(r) and ∆y(y), that is, for the off-shell metric. For example, an important
property of the off-shell metric is that its determinant g does not depend on
functions ∆r(r) and ∆y(y):

√−g = Σ = r2 + y2 . (3.10)

The inverse metric to (3.9) reads

g−1 =
1

Σ

[
−∆−1

r (r2∂τ + ∂ψ)2 +∆−1
y (y2∂τ − ∂ψ)2 +∆r(∂r)

2 +∆y(∂y)2
]
.

(3.11)

Going on-shell: Kerr–NUT–(A)dS metric

If one requires that the off-shell metric satisfies the Einstein equations, the
functions ∆r(r) and ∆y(y) take a special form. We call the metric (3.9) with
such functions ∆r(r) and ∆y(y) an on-shell metric.

For example, the on-shell metric with functions ∆r(r) and ∆y(y) given by
(3.8) reproduces the Kerr solution. However, one can easily check that this
is not the most general vacuum on-shell metric. For example, one can add a
linear in y term, 2Ny, to the function ∆y. Such a generalization of the Kerr
metric is known as the Kerr–NUT solution, and the parameter N is called the
NUT (Newmann–Tamburino–Unti) parameter (Newman et al 1963).

Remark: There are many publications which discuss the physical meaning and inter-
pretation of the NUT parameter. In the presence of NUT parameters the
spacetime is not regular and possesses a bad causal behavior, see, e.g., Grif-
fiths et al (2006); Griffiths and Podolský (2006a,b); Griffiths and Podolský
(2007), see also Clément et al (2015) for more recent developments.

As we shall now demonstrate, the form (3.9) of the metric is very conve-
nient for generalizing the Kerr–NUT geometry to the case of a non-vanishing
cosmological constant: the functions ∆r(r) and ∆y(y) simply become fourth-
order polynomials of their arguments. To show this, let us impose the vacuum
Einstein equations with the cosmological constant Λ, Rab− 1

2Rgab+Λgab = 0,
implying

Rab = Λgab . (3.12)

We consider first the trace equation

R = 4Λ , (3.13)

which takes a very simple form

∂2
r∆r + ∂2

y∆y = −4Λ(r2 + y2) , (3.14)
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and allows a separation of variables

∂2
r∆r + 4Λr2 = C , ∂2

y∆y + 4Λy2 = −C . (3.15)

The solution to each of these two equations contains 2 independent integration
constants. Thus, together with the separation constant C one has 5 integration
constants. However, the metric (3.9) remains invariant under the following
rescaling:

r → pr, y → py, τ → p−1τ, ψ → p−3ψ, ∆r → p4∆r, ∆y → p4∆y .
(3.16)

This means that one of the five integration constants can be excluded by means
of this transformations. One more constant is excluded by one of the equa-
tions of the system (3.12). After this all other equations (3.12) are identically
satisfied. We write the answer in the following standard form:

∆r = (r2 + a2)(1− Λr2/3)− 2Mr ,

∆y = (a2 − y2)(1 + Λy2/3) + 2Ny .
(3.17)

The four parameters in these functions are Λ, M , N , and a. For Λ = 0 and
N = 0 this metric coincides with the Kerr metric, M and a being the mass
and the rotation parameter, respectively. In addition to these two parameters,
a general solution (3.17) contains the cosmological constant Λ, and the NUT
parameter N . Solutions with non-trivial N contain singularities on the axis of
symmetry in the black hole exterior. The solution with parameters M , a, and
Λ describes a rotating black hole in the asymptotically de Sitter (for Λ > 0),
anti de Sitter (for Λ < 0), or flat (for Λ = 0) spacetime. A similar solution
containing the NUT parameter N is known as the Kerr–NUT–(A)dS metric.

Remark: The general form of the Kerr–NUT–(A)dS metric in four dimensions was first
obtained by Carter (1968b), and independently re-discovered by Frolov (1974)
by using the Boyer–Lindquist-type coordinates. The charged generalization of
the Kerr–NUT–(A)dS metric, which still takes the canonical form (3.9), was
studied in Carter (1968c); Plebański (1975). In 1976 Plebanski and Demianski
considered a metric that is conformal to the Kerr–NUT–(A)dS one and demon-
strated that such a class of metrics includes also the accelerating solutions,
known as the C-metrics (Plebański and Demiański 1976) (see section 3.9).

The metric for the Kerr–NUT–(A)dS spacetime can be written in a more
symmetric form by writing x = ir, bx = iM , and by = N . This gives

∆x = (a2 − x2)(1 + Λx2/3) + 2bxx ,

∆y = (a2 − y2)(1 + Λy2/3) + 2byy ,
(3.18)

and the Kerr–NUT–(A)dS metric takes the following form:

g =
∆y

y2 − x2
(dτ+x2dψ)2 +

∆x

x2 − y2
(dτ+y2dψ)2 +

y2 − x2

∆y
dy2 +

x2 − y2

∆x
dx2 ,

(3.19)
which is symmetric with respect to the formal substitution x ↔ y. It is this
form of the Kerr–NUT–(A)dS metric, which will be generalized to higher di-
mensions.
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Hidden symmetries

The off-shell metric (3.9) possesses the following property:
Theorem: The (off-shell) canonical metric (3.9) admits a principal tensor

h = ydy ∧ (dτ − r2dψ)− rdr ∧ (dτ + y2dψ) , (3.20)

which can be generated from a potential b, h = db, given by

b = −1

2

[
(r2 − y2)dτ + r2y2 dψ

]
. (3.21)

The fact that h obeys the closed conformal Killing–Yano equation (2.108)
can be verified by a straightforward (but rather long) calculation, or perhaps
more efficiently, by using the computer programs for analytic manipulations.
The condition of non-degeneracy follows from the discussion of the Darboux
frame below, proving that h is a principal tensor. We may therefore apply the
results of section 2.8 and in particular construct the Killing tower associated
with h.

The Hodge dual of h is a Killing–Yano tensor f = ∗h

f = rdy ∧ (dτ − r2dψ) + ydr ∧ (dτ + y2dψ) . (3.22)

Using h and f , we can construct the corresponding conformal Killing tensor
Qab = hachb

c and the Killing tensor kab = facfb
c. They have the following

form:

Q =
1

Σ

[
r2∆r(dτ + y2dψ)2 + y2∆y(dτ − r2dψ)2

]
+Σ

[
y2dy2

∆y
− r2dr2

∆r

]
,

(3.23)

k =
1

Σ

[
y2∆r(dτ + y2dψ)2 + r2∆y(dτ − r2dψ)2

]
+Σ

[
r2dy2

∆y
− y2dr2

∆r

]
,

(3.24)

or, in coordinates (τ, r, y, ψ):

Qab =


y2 − r2 0 0 −r2y2

0 − r2 0 0
0 0 y2 0
−1 0 0 0

 , (3.25)

kab =


0 0 0 −r2y2

0 − y2 0 0
0 0 r2 0
− 1 0 0 r2 − y2

 . (3.26)

A remarkable property of the off-shell metric (3.9) is that the potential b,
the principal tensor h, the Killing–Yano tensor f , and Q and k in the form
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(3.25) and (3.26), do not depend on functions ∆r(r) and ∆y(y). In particular
this means that they have the same form as in the flat spacetime. Certainly,
this property is valid only for the special choice of coordinates. However, the
very existence of such coordinates is a non-trivial fact. As we shall see later,
this is a generic property which remains valid also for higher-dimensional black
holes.

The principal tensor generates the following primary ξ(τ) and secondary
ξ(ψ) Killing vectors:

ξa(τ) =
1

3
∇bhba = ∂aτ , ξa(ψ) = −kabξb(τ) = ∂aψ . (3.27)

The primary Killing vector is timelike at infinity, reflecting the fact that the
metric is stationary. Moreover, a linear combination ξ(φ) = a−1ξ(ψ) − aξ(τ) =
∂φ has fixed points which form the axis of symmetry—the integral lines of
this vector are closed cycles—making the metric axisymmetric.

The constructed Killing vectors ξ(τ) and ξ(ψ), together with the Killing ten-
sor k and the metric g, are all independent and mutually (Nijenhuis–Schouten)
commute. This means that the corresponding four integrals of motion for the
geodesics are all independent and in involution, making the geodesic motion
completely integrable.

Darboux basis and canonical coordinates

As discussed in section 2.8, in the presence of the principle tensor there exists
a natural convenient choice of the tetrad, known as the Darboux basis, (2.110).
To illustrate its construction for the Kerr metric, we consider the eigenvalue
problem (2.120) for the conformal Killing tensor Q:

Qabz
b = λza , (3.28)

where for different eigenvalues λ eigenvectors za are mutually orthogonal. Us-
ing expression (3.25), the characteristic equation

det(Qab − λδab) = 0 (3.29)

takes the following explicit form:

(λ+ r2)2(λ− y2)2 = 0 , (3.30)

giving the following eigenvalues of Q: −r2 and y2, where (r, y) are the canoni-
cal coordinates.5 The eigenvectors for each eigenvalue form a two-dimensional

5 Note that in the Lorentzian signature, the corresponding first eigenvalue is negative.
This results in a slightly modified Darboux form of the principal tensor and the metric,
see equations (3.34) and (3.35) below. Let us also notice that although the coordinate r is
spacelike or timelike in a generic point, it becomes null at the horizon in the Kerr–NUT–
(A)dS spacetime. In a more general case, one of the eigenvalues of the tensor h might become
null not only on a surface but in some domain (Dietz and Rudiger 1981; Taxiarchis 1985).
In what follows we do not consider this case.
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plane. Whereas the 2-plane corresponding to y is spacelike, the 2-plane asso-
ciated with r is timelike. It is then easy to check, that there exists such an
orthonormal basis {n, n̂, e, ê} which obeys the relations

habn̂
b = −rna , habnb = −rn̂a , habêb = yea , habe

b = −yêa . (3.31)

This basis is defined up to 2-dimensional rotations in each of the 2-planes. We
fix this ambiguity by the following choice of the normalized (in the black hole
exterior) Darboux basis:

n =

√
∆r

Σ
∂r , n̂ =

1

Σ

√
Σ

∆r

(
∂ψ + r2∂τ

)
,

e =

√
∆y

Σ
∂y , ê =

1

Σ

√
Σ

∆y

(
−∂ψ + y2∂τ

)
.

(3.32)

The corresponding dual basis of 1-forms is

ν =

√
Σ

∆r
dr , ν̂ =

√
∆r

Σ

(
dτ + y2dψ

)
,

ε =

√
Σ

∆y
dy , ε̂ =

√
∆y

Σ

(
dτ − r2dψ

)
.

(3.33)

In this basis we have

h = −rν ∧ ν̂ + yε ∧ ε̂ , (3.34)

g = −ν̂ν̂ + νν + εε+ ε̂ε̂ . (3.35)

Moreover, since the conditions (2.122) are satisfied,

n̂ · dr = 0 = n̂ · dy , ê · dr = 0 = ê · dy , (3.36)

we have a special Darboux frame. For completeness, let us also express Q and
k in this frame, giving

Q = −r2(−ν̂ν̂ + νν) + y2(εε+ ε̂ε̂) , (3.37)

k = −y2(−ν̂ν̂ + νν) + r2(εε+ ε̂ε̂) . (3.38)

The principal tensor also naturally determines the canonical coordinates.
This goes as follows.

– The eigenvalues of the principal tensor, r and y, determined by relations
(3.31), are used as two of the canonical coordinates.

– Since the principal tensor obeys £ξh = 0 for both, the primary and sec-
ondary Killing vectors ξ(τ) and ξ(ψ), its eigenvalues (r, y) are invariant
under the action of τ and ψ translations.

– Since the Killing vectors ξ(τ) and ξ(ψ) commute, they spread two-dimen-
sional invariant surfaces; the values of r and y are constant on each such
surface. One can hence use the Killing parameters τ and ψ as coordinates
on the invariant surfaces. This completes the construction of the canonical
coordinates (τ, r, y, ψ).
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Principal tensor: immediate consequences

Let us now summarize the properties of the off-shell metric (3.9) that are
immediately related to the existence of the principal tensor h.

1. The principal tensor h exists for any off-shell metric (3.9). It generates the
Killing ‘turret’ of symmetries: Killing–Yano tensor f , conformal Killing
tensor Q, Killing tensor k, and both generators of the isometries ξ(τ) and
ξ(ψ).

2. The integrability condition for h implies, generalizing the result of Collinson
(1974), that the spacetime is necessary of the special algebraic type D. See
Mason and Taghavi-Chabert (2010) for a higher-dimensional version of this
statement.

3. The set {g,k, ξ(τ), ξ(ψ)} forms a complete set of independent mutually
(Nijenhuis–Schouten) commuting symmetries that guarantee complete in-
tegrability of geodesic motion, see section 3.4.

4. The principal tensor also determines the preferred Darboux frame and the
canonical coordinates (τ, r, y, ψ). Such geometrically defined coordinates
are convenient for separating the Hamilton–Jacobi and the wave equation,
while the Darboux frame is the one where the Dirac equation separates,
see section 3.5.

5. The canonical metric (3.9) is the most general spacetime admitting the
principal tensor, see also section 3.3.

3.3 Uniqueness of the Kerr metric

The Kerr metric was originally obtained by Kerr (1963) as ‘one of many’ spe-
cial algebraic type solutions (see Teukolsky (2015) for a historical account). A
few years later the solution was rediscovered by Carter (1968b) by imposing
a special metric ansatz (assuming two commuting Killing vectors) and by re-
quiring that both the Hamilton–Jacobi and wave equations should be solvable
by a method of separation of variables (see also Debever (1971)). This not only
allowed Carter to rederive the Kerr metric but to generalize it and to include
the cosmological constant and the NUT parameter.

Remark: Carter’s derivation actually fits into the context of the theory of separability
structures discussed in section 2.3. Considering the r = 2 separability structure
in coordinates (τ, ψ, r, y), the separability of the Hamilton–Jacobi equation
and, in an Einstein space, also of the Klein–Gordon equation is guaranteed for
any 2×2 Stäckel matrix M and any two matrices Nr = Nr(r) and Ny = Ny(y)
through relation (2.39). In particular, the following choice leads to the Carter’s
canonical metric (3.9):

M =

 r2

∆r

y2

∆y

− 1
∆r

1
∆y

 , Nr = −
1

∆2
r

(
r4 r2

r2 1

)
, Ny =

1

∆2
y

(
y4 − y2

−y2 1

)
.

See also Kolář and Krtouš (2016) for a higher-dimensional version of Carter’s
original argument.
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It is well known that any stationary and asymptotically flat black hole
solution of the Einstein–Maxwell equations (with non-degenerate horizon) is
the Kerr–Newman metric. The extended discussion of this uniqueness theorem
and references can be found, e.g., in Mazur (2000); Hollands and Ishibashi
(2012). It is interesting that another version of the uniqueness theorem can be
formulated:

Theorem: The most general vacuum with Λ solution of the Einstein equations
that admits a principal tensor is the Kerr–NUT–(A)dS geometry.

It is a special case of the higher-dimensional uniqueness theorem (Houri et al
2007; Krtouš et al 2008), which will be discussed in chapter 5. See Dietz
and Rudiger (1981); Taxiarchis (1985) for earlier studies of this issue in four
dimensions, where also exceptional metrics corresponding to the null forms of
the principal tensor are discussed.

The proof of this statement proceeds in two steps. First, it can be shown
that the most general off-shell metric that admits the principal tensor has to
admit two commuting Killing vectors and takes the form (3.9). Second, by
imposing the Einstein equations, the remaining metric functions are uniquely
determined and depend on 5 independent constants related to the mass, an-
gular momentum, NUT charge, and the cosmological constant, yielding the
Kerr–NUT–(A)dS spacetime. Note that if in addition we require regularity
outside the horizon and in particular the absence of cosmic strings (see sec-
tion 3.8), the NUT charge has to vanish, and the Kerr–(A)dS geometry is
recovered.

We have yet another observation. Employing solely the principal tensor one
can construct the principal electromagnetic field, given by Frolov et al (2017)

F = e
(
dξ +

2

3
Λh
)
, ξ =

1

3
∇ · h , (3.39)

which solves the test Maxwell equations for the metric (3.9) obeying (3.12).
In four dimensions, this field can be backreacted on the geometry, provided a
suitable choice of the metric functions ∆r and ∆y is done in (3.9), to yield an
electrically charged Kerr–NUT–(A)dS geometry. Moreover, if instead of (3.39)
one considers the sourceless ‘aligned with h’ electromagnetic field studied by
Krtouš (2007), we recover the Kerr–NUT–(A)dS solution which is both elec-
trically and magnetically charged. In this sense, the four-dimensional charged
Kerr–NUT–(A)dS solution is uniquely defined by the principal tensor.

3.4 Geodesics

Integrals of motion

Since the off-shell metric (3.9) besides two Killing vectors ξ(τ) and ξ(ψ) pos-
sesses also the irreducible rank 2 Killing tensor k, there exist the following
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four integrals of geodesic motion:

gabpapb = −m2 , kabpapb = K , pτ ≡ ξa(τ)pa = −E , (3.40)

pψ ≡ ξa(ψ)pa = Lψ = aLφ − a2E . (3.41)

Here pa is the four-momentum of the particle of mass m, and E and Lφ are its
energy and angular momentum, respectively. The last conserved quantity, K,
is the analogue of the Carter constant for the off-shell metric. The existence
of 4 independent commuting integrals of motion makes the geodesic motion
completely integrable.

The last two relations of the system (3.40) can be used to express pr and
py as functions of the integrals of motion

pr = ±
√Xr
∆r

, py = ±
√
Xy
∆y

, (3.42)

where

Xr = (Er2 −Lψ)2 −∆r(K +m2r2) , Xy = −(Ey2 +Lψ)2 +∆y(K −m2y2) .
(3.43)

The signs ± in (3.42) are independent; the sign change occurs at turning points
where Xr = 0 and Xy = 0, respectively.

First-order form of geodesic equations

As a consequence of complete integrability, the geodesic equations can be
written in a first-order form, that is, as a set of the first-order differential
equations. Let us denote by the “dot” a derivative with respect to the affine
parameter σ (see section 2.1). Then using the relation

pa = gabẋ
b , (3.44)

we rewrite equations (3.40) in the form

ξ(τ)aẋ
a = −E , ξ(ψ)aẋ

a = Lψ , gabẋ
aẋb = −m2 , Kabẋ

aẋb = K . (3.45)

These four equations for ẋa = (τ̇ , ṙ, ẏ, ψ̇) can be solved to obtain the following
set of the first order ordinary differential equations:

Σ ṙ = ±
√
Xr , (3.46)

Σ ẏ = ±
√
Xy , (3.47)

Σ τ̇ =
r2(Er2 − Lψ)

∆r
− y2(Ey2 + Lψ)

∆y
, (3.48)

Σ ψ̇ =
Er2 − Lψ

∆r
+
Ey2 + Lψ

∆y
, (3.49)

with Xr = Xr(r) and Xy = Xy(y) given by (3.43), and Σ = r2 +y2. As earlier,
signs ± in the equations (3.46) and (3.47) are independent. The change of the
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signs in these equations occurs at turning points, where Xr = 0 and Xy = 0,
respectively. The convenience of the usage of the parameter σ is that the
equations of motion (3.46)–(3.48) allow for a simple limit m → 0 (in Xr and
Xy) and hence can be used for massless particles as well.6

Instead of the affine parameter σ, one can use another parameter σ̃, so that

dσ

dσ̃
= Σ . (3.50)

For such a parametrization, the left hand side of the system of equations
(3.46)–(3.48) contains a derivative dxa/dσ̃. This effectively decouples the first
two equations (3.46) and (3.47), which can now be solved by integration. The
result is then plugged to the last two equations (3.49) and (3.48) which yield
integrals for ψ and τ .7

To translate (3.46)–(3.48) to the Boyer–Lindquist coordinates (t, r, θ, φ),
one should use the following relations:

t = τ + a2ψ , φ = aψ , y = a cos θ , Lψ = aLφ − a2E . (3.51)

Taking into account these remarks, it is easy to check that the equations
(3.46)–(3.48) re-written in the Boyer–Lindquist coordinates take the standard
form, which can be found, e.g. in Carter (1968a); Bardeen (1973); Misner et al
(1973). Detailed discussion of particle and light motion in the four-dimensional
Kerr–NUT–(A)dS spacetime can be found in Hackmann and Lammerzahl
(2012); Grenzebach et al (2014).

Action-angle variables

Instead of studying the details of particle’s orbits, one might be interested in
such ‘global’ characteristics as, for example, the motion frequencies. A useful
tool for this is provided by an action-angle formalism. This formalism is also
useful for studying the adiabatic invariants and for the development of the
perturbation theory when a system slightly differs from a completely integrable
one. For the comprehensive discussion of this subject, we refer the reader to the
remarkable books by Goldstein et al (2002) and Arnol’d (1989). Here we just
briefly discuss a construction of the action-angle variables for a free particle
moving in the metric (3.9). See appendix B for a general introduction to this
subject.

For our dynamical system the coordinate φ is cyclic while the value of
the coordinate y is bounded and changes in the interval (y−, y+). The sys-
tem admits different types of trajectories, depending on the concrete value of
the integrals of motion {m2,K,E, Lφ} so that the range of the coordinate r

6 In fact, for massless particles one could instead of the Killing tensor k use the conformal
Killing tensor Q, defining Qablalb = K in (3.40) and similarly in (3.45). As can be expected,
in the massless limit m→ 0, the resultant equations (3.46)–(3.48) remain the same.

7 As we shall see, a similar trick does not work in higher dimensions. However, proceeding
differently, the velocity equations can still be decoupled and in principle solved by integra-
tion, see section 6.1.
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may be unbounded. Let us here focus on the case of bounded trajectories for
which the radial coordinate changes in the interval (r−, r+). In such a case
the corresponding level set for (r, y, φ) sector is a compact three-dimensional
Lagrangian submanifold which, according to the general theorem, is a three-
dimensional torus. One can choose three independent cycles on this torus as
follows. Let us fix y and φ and consider a closed path, which propagates from
the minimal radius r− to the maximal radius r+, and after this returns back
to r− with opposite sign of the momentum. Another path is defined similarly
for the y-motion. The third pass r =const, y =const is for the φ-motion.

This allows us to introduce the following action variables, Ii = (Ir, Iy, Iφ)
for ‘spatial directions’

Ir = Ir(m
2,K,E, Lφ) =

1

π

∫ r+

r−
dr

√Xr
∆r

,

Iy = Iy(m2,K,E, Lφ) =
1

π

∫ y+

y−
dy

√
Xy
∆y

,

Iφ = Lφ .

(3.52)

Here r± and y± are turning points of r and y, respectively, and we used the
fact that φ is a cyclic coordinate with period 2π.

Since the Hamiltonian is a function of integrals of motion, c.f. (B.20), it
can also be written in terms of the action variables as

H = H(Ii, E) . (3.53)

The angle variables Φi are introduced as conjugates to Ii. The Hamilton equa-
tions of motion in these variables take the form

İi = 0 , Φ̇i = ωi =
∂H

∂Ii
(Ii, E) . (3.54)

The (constant) quantities ωi are characteristic frequencies. If their ratios are
not rational, the trajectories of the particle are not periodic.

We will return to the discussion of the action-angle variables in more details
later, when discussing geodesics in the higher-dimensional Kerr–NUT–(A)dS
spacetimes.

Parallel transport

There are many problems with interesting astrophysical applications that re-
quire solving the parallel transport equations in the Kerr metric. One of them
is a study of a star disruption during its close encounter with a massive black
hole, see, e.g., Frolov et al (1994) and references therein.

Let us consider a timelike geodesic in the Kerr geometry and denote by
u its tangent vector. We have seen in section 2.4 that w = u · f , where f
is the Killing–Yano tensor (3.22), is parallel-transported along the geodesic,
∇uw = 0, c.f. (2.43). This means that a bi-vector ∗F ≡ u ∧w = u ∧ (u · f)
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is also parallel-propagated, ∇u∗F = 0 . Since the Hodge duality operator ∗
commutes with the covariant derivative one also has

∇uF = 0 . (3.55)

That is, a 2-dimensional plane F = u · (u ∧ h) is orthogonal to ∗F and
parallel-transported along the geodesic. Let e1 and e2 be two orthonormal
vectors which spread this 2-plane, and m be a complex null vector m =
1√
2
(e1 + ie2). It is easy to show that one can find such a real function ϕ so

that m exp (iϕ) is parallel-transported along the geodesic. Thus one obtained
a parallel-transported basis (u,w,m, m̄) (Marck 1983b). Similar procedure
also works for constructing a parallel-transported basis along null geodesics,
see Marck (1983a). Interestingly, both these constructions can be generalized
to higher dimensions. We shall discuss this subject in section 7.1.

The principal tensor also allows one to solve an equation for a propaga-
tion of polarization of electromagnetic waves in the spacetime with the metric
(3.9). In the leading order of the geometric optics approximation the Maxwell
equations reduce to the equations for null geodesics. A vector of a linear polar-
ization q is orthogonal to null geodesics and parallel-propagated along them.

Let us consider first an arbitrary geodesic and denote by u its tangent
vector. Let q be a parallel-propagated vector along this geodesic, ∇uq = 0.
Then the quantity q·f ·u = −q·w is obviously a constant along any timelike or
null geodesic. For null geodesics there exists an additional conserved quantity
defined by the principal tensor h. Let l be a tangent vector to a null geodesic
in an affine parametrization,∇ll = 0, and let q be a parallel-propagated vector
along it obeying q ·l = 0. Then the following quantity: q ·h ·l is also conserved.
Indeed,

∇l(q · h · l) = q · (∇lh) · l = q · (l ∧ ξ) · l = 0 , (3.56)

where we used the closed conformal Killing–Yano condition (2.63), l2 = 0, and
q · l = 0.

Denoting by z = h + i ∗ h, we just showed that the following complex
number:

q · z · l (3.57)

is constant along the null ray (Walker and Penrose 1970). This result allows
one to easily find a polarization of a photon after its scattering by a rotating
black hole and determine the angle of the corresponding Faraday rotation
(Connors and Stark 1977; Connors et al 1980; Ishihara et al 1988).

3.5 Separation of variables in the canonical metric

In this section we show that the fundamental physical equations do separate in
the (off-shell) canonical spacetime (3.9). We also discuss the intrinsic charac-
terization of such separability, linked to the existence of the principal tensor. In
particular, we concentrate on the Hamilton–Jacobi, Klein–Gordon, and Dirac
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equations, and do not discuss the electromagnetic and gravitational perturba-
tions. Whereas for the Maxwell equations the link between separability and
the principal tensor still can be found, e.g. Benn et al (1997); Araneda (2016),
this is not obvious for the gravitational perturbations.

Hamilton–Jacobi equation

Equations (3.46)–(3.48) allow one to find trajectories of massive particles in
the Kerr spacetime. This problem can be alternatively studied by using the
Hamilton–Jacobi equation, following Carter’s original paper (Carter 1968a).

Using the inner time variable σ, related to the particle proper time τ = mσ,
see section 2.1, the Hamiltonian of a free particle with mass m reads

H =
1

2
gabpapb . (3.58)

Since this is an autonomous system (H does not explicitly depend on σ), the
time-dependent Hamilton–Jacobi equation

∂S̄

∂σ
+H(xa, pa)

∣∣
pa=S̄,a

= 0 (3.59)

can be solved by the ansatz

S̄(xa, σ) =
1

2
m2σ + S(xa) . (3.60)

This results in the following time-independent Hamilton–Jacobi equation:

gabS,aS,b +m2 = 0 , (3.61)

for the Hamilton’s principal function S(xa), see section B.3 for more details. A
solution of this equation, which contains 4 independent constants, is a complete
integral.

Let us now study the Hamilton–Jacobi equation (3.61) in the canonical
spacetime (3.9). Since the coordinates τ and ψ are cyclic, the Hamilton’s func-
tion S can be written in the form

S(xa) = −Eτ + Lψψ + Ŝ(r, y) . (3.62)

It is a remarkable property of canonical coordinates (τ, r, y, ψ) that a further
additive separation of variables is possible. Namely, by substituting

S(xa) = −Eτ + Lψψ + Sr(r) + Sy(y) (3.63)

into (3.61) one finds a consistent equation provided that functions Sr and Sy
satisfy the following ordinary differential equations:

∆r(∂rSr)
2 − Xr

∆r
= 0 , ∆y(∂ySy)2 − Xy

∆y
= 0 . (3.64)
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Here, Xr and Xy are given by (3.43) and the quantity K in these functions
plays a role of the separation constant. The solution to (3.64) can be calculated
in terms of the elliptic integrals,

Sr(r) = ±
∫ r

r0

dr

√Xr
∆r

, Sy(y) = ±
∫ y

y0

dy

√
Xy
∆y

. (3.65)

The choice of the initial coordinates r0 and y0 is not important, since their
change just adds a constant to S; in the case when the motion has turning
points it is convenient to choose r0 and y0 to coincide with them. Since the
solution S given by (3.63) depends on coordinates xa and four independent
constants Pa = (m2,K,E, Lψ), it is a complete integral. As discussed in sec-
tion B.3, its existence implies complete integrability of geodesic motion in
canonical spacetimes.

Remark: The separability of the Hamilton–Jacobi equation (3.61) is intrinsically char-
acterized by the existence of the separability structure, see section 2.3. Namely,
the Killing tensors g and k, together with the Killing vectors ξ(τ) and ξ(ψ)

satisfy (2.36). Moreover, the Killing tensors have in common the following
eigenvectors: ∂r and ∂y that together with ξ(τ) and ξ(ψ) obey (2.37). Hence
all the requirements of the theorem in section 2.3 are satisfied and the sepa-
rability of the Hamilton–Jacobi equation is justified.

It turns out that in four dimensions the Hamilton–Jacobi equation sep-
arates also in the standard Boyer–Lindquist coordinates, giving a complete
integral in the form

S(xa) = −Et+ Lφφ+ Sr(r) + Sθ(θ) , (3.66)

where Sr is formally given by the same integral (3.65), with Lψ = a(Lφ−aE).

The parameters Pa can be identified with new momenta in the phase
space. We denote the canonically conjugate coordinates by Qa. The Hamil-
ton’s function S(xa, Pa) is a generating function of the canonical transforma-
tion (xa, pa)→ (Qa, Pa),

pa =
∂S

∂xa
, Qa =

∂S

∂Pa
. (3.67)

The new coordinates are of the form

Q1 =
∂S

∂m2
=

∂Sr
∂m2

+
∂Sy
∂m2

, Q3 =
∂S

∂E
= −τ +

∂Sr
∂E

+
∂Sy
∂E

,

Q2 =
∂S

∂K
=
∂Sr
∂K

+
∂Sy
∂K

, Q4 =
∂S

∂Lψ
= ψ +

∂Sr
∂Lψ

+
∂Sy
∂Lψ

.
(3.68)

The first two equations allow one to write the ‘old’ coordinates r and y in
terms of Pa and the ‘new’ coordinates Q1 and Q2. After this the last two
equation define τ and ψ as functions of Qa and Pa.
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The parameters (m2,K,E, Lψ) denote values of the integrals of motion Pa
on the phase space. A four-dimensional subspace of the phase space, deter-
mined by the fixed values of these parameters, is a Lagrangian submanifold
(see section B.2). The coordinates Qa conjugate to Pa have simple evolution

dQa

dσ
=
∂H

∂Pa
. (3.69)

Thus the equation of motion in the new coordinates are

Q1 =
1

2
σ + const , Q2 = const , Q3 = const , Q4 = const . (3.70)

Let us notice, that these equations can also be written in the form ∂S̄/∂Pa =
const.

Separability of the Klein–Gordon equation

Let us next concentrate on the massive Klein–Gordon equation in the space-
time (3.9). Denote by � the scalar wave operator

� = gab∇a∇b . (3.71)

Then the massive Klein–Gordon equation (which is essentially an eigenfunction
equation for the wave operator) reads

(�−m2)Φ =
1√−g ∂a

(√−ggab∂bΦ)−m2Φ = 0 , (3.72)

where the latter expression for � is a well known identity. Using the expression
(3.10) for the determinant of the canonical metric, and the formula (3.11) for
the inverse metric, we write this equation in the following form:

√−g(�−m2)Φ = ∂r(∆r∂rΦ) + ∂y(∆y∂yΦ)

− 1

∆r
(r2∂τ + ∂ψ)2Φ+

1

∆y
(y2∂τ − ∂ψ)2Φ−m2(r2 + y2)Φ = 0 .

(3.73)

This equation allows the multiplicative separation of variables

Φ = e−iEτeiLψψR(r)Y (y) , (3.74)

giving the following ordinary differential equations for functions R(r) and
Y (y):

∂r(∆r∂rR) +
Xr
∆r

R = 0 , ∂y(∆y∂yY ) +
Xy
∆y

Y = 0 . (3.75)

Here, functions Xr and Xy are the same as in equations (3.43). They con-
tain all the parameters (m2,K,E, L), with parameter K playing the role of a
separation constant.
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Both equations (3.75) have a similar form—they can be written as the
second-order ordinary differential equations with polynomial coefficients. How-
ever, there is an essential difference between them. The coordinate y is re-
stricted to the interval y ∈ [−a, a] and the endpoints of this interval, y = ±a,
are singular points of the y-equation. Regularity of Y at these points cannot
be satisfied for an arbitrary value of the parameter K, therefore, for regular
solutions K has a discrete spectrum. In other words, one needs to solve the
Sturm–Liouville boundary value problem. The solutions of this problem for the
scalar field are called spheroidal wave functions. They were studied in detail
by Flammer (1957). Similar spherical harmonics for fields of higher spin are
called spin-weighted spheroidal harmonics, see, e.g. Fackerell and Crossman
(1977).

The separability of the Klein–Gordon equation (3.72) can be intrinsically
characterized by the existence of the following complete set of mutually com-
muting operators: {�,K,Lτ ,Lψ}, where

� = ∇agab∇b , K = ∇akab∇b , Lτ = iξa(τ)∇a , Lψ = iξa(ψ)∇a . (3.76)

The separated solution (3.74) is simply the ‘common eigenfunction’ of these
operators. Let us note that whereas the operators constructed from Killing vec-
tors always commute with the box operator, those constructed from a Killing
tensor result in a general case in ‘anomalies’ obstructing this commutation.
General conditions under which the anomalies vanish were studied by Carter
(1977) (see also Kolář and Krtouš (2015) for a recent study in a general dimen-
sion). In particular, it turns out that when the Killing tensor is constructed
as a square of a Killing–Yano tensor (as in our case) the anomalies vanish and
the commutation is guaranteed. We finally mention that since the canonical
metric (3.9) admits a separability structure with common eigenevectors of the
Killing and Ricci tensors, the theorem discussed in section 2.3 applies and the
separability of the Klein–Gordon equation is guaranteed.

Separability of the Dirac equation

As we already mentioned the equations for massless fields with non-zero spin
in the Kerr metric allow complete separation of variables. This was discovered
by Teukolsky (1972, 1973). Namely, he demonstrated that these equations
can be decoupled and reduced to one scalar (master) equation, which in its
turn allows a complete separation of variables. Later Wald showed that the
solution of the master equation allows one to re-construct a solution of the
original many-component equation (Wald 1978).

To separate variables in the massive Dirac equation in the Kerr metric,
Chandrasekhar (1976, 1983) used another approach. Namely, he used a special
ansatz for the spinor solution, and demonstrated that this allows one to obtain
the separated equations for the functions which enter this ansatz. It turns out
that the separability of the massive Dirac equation in the Kerr spacetime is
also connected with its hidden symmetry, and, as a result, it also takes place
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in the canonical metric (3.9) for an arbitrary choice of the metric functions
∆r(r) and ∆y(y). Let us now demonstrate this result.

The Dirac equation in curved spacetime writes as(
γa∇a +m

)
ψ = 0 . (3.77)

Here γa are gamma matrices, γa = (γ0, γ1, γ2, γ3), obeying {γa, γb} = 2gab,
and ∇a stands for the spinorial covariant derivative, defined as

∇a = ∂a +
1

4
ωabcγ

bγc . (3.78)

We denoted by ∂a = ea · ∂ a derivative in the direction of ea and ωabc are
the standard spin coeficients with respect to frame ea. The 1-forms of the
curvature, ωbc = eaωa

b
c, obey the Cartan equations dea + ωab ∧ eb = 0.

To study the Dirac equation (3.77) in the canonical spacetime (3.9), let us
chose the basis of 1-forms as ea = (ν̂,ν, ε̂, ε), (3.33), and the dual basis of
vectors as ea = (n̂,n, ê, e), (3.32). The spin connection is then obtained from
the Cartan’s equation and is given as follows:

ων̂ν = −Aν̂ −Bε̂ , ων̂ε̂ = −Bν + Cε , ων̂ε = −Dν̂ − Cε̂ ,
ωνε̂ = Bν̂ − Eε̂ , ωνε = Dν − Eε , ωε̂ε = −Cν̂ − F ε̂ , (3.79)

where

A =
d

dr

(√∆r

Σ

)
, B =

r

Σ

√
∆y

Σ
, C = − y

Σ

√
∆r

Σ
,

D =
y

Σ

√
∆y

Σ
, E =

r

Σ

√
∆r

Σ
, F = − d

dy

(√∆y

Σ

)
.

(3.80)

Using the connection (3.79) and the inverse basis (3.32), we thus find the
following explicit form of the Dirac equation:[γ0

Σ

√
Σ

∆r

(
∂ψ + r2∂τ

)
+ γ1

(A
2

+ E +

√
∆r

Σ
∂r

)
+
γ2

Σ

√
Σ

∆y

(
−∂ψ + y2∂τ

)
+ γ3

(
D − F

2
+

√
∆y

Σ
∂y

)
+
B

2
γ0γ1γ2 +

C

2
γ0γ2γ3 +m

]
ψ = 0 .

(3.81)

To proceed further, we use the following representation of gamma matrices:

γ0 =

(
0 −I
I 0

)
, γ1 =

(
0 I
I 0

)
, γ2 =

(
σ2 0
0 −σ2

)
, γ3 =

(
σ1 0
0 −σ1

)
,

(3.82)
where σi are the Pauli matrices. In this representation, the separation of the
Dirac equation can be achieved with the ansatz

ψ =


(r − iy)−1/2R+Y+

(r + iy)−1/2R+Y−
(r + iy)−1/2R−Y+

(r − iy)−1/2R−Y−

 ei(Lψψ−Eτ) , (3.83)
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where functions R± = R±(r) and Y± = Y±(y). Inserting this ansatz in (3.81),
we obtain eight equations with four separation constants. The consistency of
these equations requires that only one of the separation constants is indepen-
dent, we denote it by K. Hence we recovered the following four coupled first
order ordinary differential equations for R± and Y±:

dR±
dr

+R±
∆′r ± Vr

4∆r
+R∓

mr ∓K√
∆r

= 0 ,

dY±
dy

+ Y±
∆′y ± Vy

4∆y
− Y∓

K ± imy√
∆y

= 0 ,

(3.84)

where

Vr = 4i(Lψ − Er2) , Vy = 4(Lψ + Ey2) . (3.85)

As we shall see in section 6.4, this approach can be generalized to the case of
higher-dimensional Kerr–NUT–(A)dS spacetimes.

Remark: Similar to the Klein–Gordon case, the separability of the Dirac equation can be
intrinsically characterized by the existence of the corresponding set of mutually
commuting operators whose common eigenfunction is the separated solution.
The set consists of {D, K, Lτ , Lψ} , where D = γa∇a is the Dirac operator,

K = γabchbc∇a +
2

3
γa(∇ · h)a (3.86)

is the symmetry operator corresponding to the principal tensor, and

Lτ = ξa(τ)∇a +
1

8
γab(dξ(τ))ab , Lψ = ξa(ψ)∇a +

1

8
γab(dξ(ψ))ab (3.87)

are the symmetry operators associated with the explicit symmetries. Here,
γa1...ap is the antisymmetrized product of p gamma matrices, γa1...ap =
γ[a1 . . . γap]. We refer to section 6.4 and references Carter and McLenaghan
(1979); Cariglia et al (2011a,b) for more details.

3.6 Special limits of the Kerr metric

Flat spacetime limit: M = 0

Let us discuss now special limiting cases of the Kerr geometry. In the absence
of mass, that is when M = 0, the curvature vanishes and the spacetime is flat.
The Kerr metric (3.1) then takes the following form:

g = −dt2 +
(
r2 + a2 cos2 θ

) [ dr2

r2 + a2
+ dθ2

]
+
(
r2 + a2

)
sin2 θ dφ2 . (3.88)

By changing the coordinates according to

T = t , Z = r cos θ , X =
√
r2 + a2 sin θ cosφ , Y =

√
r2 + a2 sin θ sinφ ,

(3.89)



60 Valeri P. Frolov et al.

the metric is transformed into the Minkowski metric

g = −dT 2 + dX2 + dY 2 + dZ2 . (3.90)

A surface r = const is an oblate ellipsoid of rotation

X2 + Y 2

r2 + a2
+
Z2

r2
= 1 . (3.91)

The M → 0 limit of the Kerr metric in canonical coordinates is also quite
straightforward. The metric maintains the same form (3.9), with ∆r = r2 +
a2. Since the expressions (3.20)–(3.22) for h, b,f , and the expressions (3.25),
(3.26) for Qab, k

a
b do not contain the mass parameter at all, they remain

unchanged.
Let us find an expression for the potential b, (3.21) in Cartesian coordi-

nates . For this purpose we first use the transformation (3.6) from canonical
coordinates (τ, r, y, ψ) to the Boyer–Lindquist coordinates (t, r, θ, φ), to recover

b = −1

2

[
(r2 − a2 cos2 θ)dt− a(r2 sin2 θ − a2 cos2 θ)dφ

]
. (3.92)

After this we make the coordinate transformation (3.89) and omitting trivial
constant terms, we find

b = −1

2

[
R2dT − a(XdY − Y dX)

]
, (3.93)

where R2 = X2 + Y 2 + Z2. It is easy to check that the potential (3.93) is
a special linear combination of the potentials (2.102) and (2.106). One then
finds

h = db = dT ∧ (XdX + Y dY + ZdZ) + adX ∧ dY . (3.94)

Using the terminology of section 2.7 one can say that h consists of two parts,
the translational part, dX∧dY , and a rotational 2-form, dT ∧(XdX+Y dY +
ZdZ). For a = 0 the potential b is static and spherically symmetric, that is,
it has the property £ξb = 0 valid for the Killing vectors ξ generating the
time-translation and three-dimensional rotations. The term proportional to a
spoils the spherical symmetry. It singles out a two-plane (X,Y ) and preserves
the invariance of b only with respect to rotations in this two plane. In other
words, b is axisymmetric.

Using the following notations for flat space Killing vectors, generators of
the Poincare group:

LX = Y ∂Z − Z∂Y , LY = Z∂X −X∂Z , LZ = X∂Y − Y ∂X ,
P T = ∂T , PZ = ∂Z ,

(3.95)

one finds

kab = facf bc = Lab + a(P aTL
b
Z + LaZP

b
T ) + a2(P aTP

b
T − P aZP bZ) , (3.96)
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where

Lab = LaXL
b
X + LaY L

b
Y + LaZL

b
Z . (3.97)

The relation (3.96) implies that the Killing tensor kab in the flat spacetime is
reducible, and the corresponding conserved quantity is

kabpapb = L2 + 2apTLZ + a2(p2
T − p2

Z) , (3.98)

where L2 is the square of the total angular momentum.
Let us finally note that the primary Killing vector is ξ(τ) = 1

3∇ · h = P T ,

while the secondary Killing vector reads ξ(ψ) = −k · ξ(τ) = a2P T + aLZ .

Extremal black hole: M = a

In the limit a = M , the event and inner horizons have the same radius r+ =
r− = M . Such a rotating black hole is called extremal. The spatial distance
to the horizon in the limit a → M infinitely grows. It is interesting that
some of the hidden symmetries in the vicinity of the horizon of extremal black
holes become explicit. Two connected effects take place: the eigenvalues of the
principal tensor become functionally dependent, and, besides ∂t and ∂φ, two
new additional Killing vectors arise. Let us discuss the case of the extremal
black hole in more detail.

We start by noticing that in the extremal limit the function ∆r, (3.8),
which enters the Kerr metric (3.1), takes the form ∆r = (r − M)2. As a
result r becomes a ‘bad coordinate’ in the vicinity of the horizon. To obtain a
regular metric near the extremal horizon we first make the following coordinate
transformation:

r = M(1 + ερ) , τ = MT/ε , y = Mz , ψ = (ϕ+ T/ε)/M . (3.99)

After writing the Kerr metric (3.1) in new coordinates (T, ρ, z, ϕ), taking the
limit ε → 0, and rescaling by a constant factor, g → M−2g (just to simplify
expressions), one obtains the following metric (Bardeen and Horowitz 1999):

g = (1 + z2)

(
−ρ2dT 2 +

dρ2

ρ2
+

dz2

1− z2

)
+

1− z2

1 + z2
(2ρdT + dϕ)2 . (3.100)

It is again a solution of the vacuum Einstein equations. The limiting metric g
has two obvious Killing vectors

ξ = ∂ϕ , η = ∂T , (3.101)

which can be obtained by taking the limit of the following Killing vectors of
the original Kerr metric: −M∂τ and ε−1(M∂τ +M−1∂ψ).

In the same limit, the potential b, (3.21), after omitting an infinite constant,
ignoring the overall sign, and making rescaling b→M−3b, takes the form

b = ρ(1 + z2)dT +
1

2
z2 dϕ . (3.102)
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This yields the following (closed conformal) Killing–Yano quantities for the
metric g (3.100):

h = db = (1 + z2)dρ ∧ dT + 2ρzdz ∧ dT + zdz ∧ dϕ , (3.103)

f = −z(1 + z2)dρ ∧ dT + 2ρdz ∧ dT + dz ∧ dϕ . (3.104)

The primary Killing vector is

ξ =
1

3
∇ · h = ∂ϕ . (3.105)

However, the action of the Killing tensor kab = facf
c
b on ξ does not produce

a new Killing vector, as one has

kabξ
b = −ξa . (3.106)

It is easy to check that besides Killing vectors ξ and η the metric (3.100)
allows two additional Killing vectors

ζ1 = T∂T − ρ∂ρ , ζ2 = (T 2 + ρ−2)∂T − 2Tρ∂ρ − 4ρ−1∂ϕ . (3.107)

Thus the original group of symmetries of the Kerr spacetime is enhanced in the
extremal near-horizon geometry and becomes U(1) × SL(2, 1) (Bardeen and
Horowitz 1999). This is the origin of the Kerr/CFT correspondence (Guica
et al 2009). Moreover, the Killing tensor is reducible (Galajinsky 2010; Ras-
mussen 2011; Al Zahrani et al 2011) and can be presented in the form

kab = η(aζ
b)
2 − ζa1 ζb1 + 4ξaξb + gab . (3.108)

Non-rotating black hole: a = 0

The last limiting case of the Kerr metric which we are going to consider
here is that of a non-rotating black hole. The limit a → 0 can be easily
taken in the Kerr metric in the Boyer–Lindquist coordinates (3.1). It gives
the Schwarzschild metric

ds2 = −Fdt2 +
dr2

F
+ r2(dθ2 + sin2 θdφ2) , F = 1− 2M

r
. (3.109)

The same limit in the canonical coordinates is slightly more involved. The
reason is that the range of coordinate y is chosen such that the function ∆y =
a2 − y2 is non-negative. In the limit a → 0 it implies that this range would
become degenerate. In order to escape this problem one should rescale y, for
example, by setting y = a cos θ. Range of θ remains regular under the limit.

The best way to study the fate of hidden symmetries in the limit a→ 0 is
to return from canonical to the Boyer–Lindquist coordinates first, using (3.6),
and then take the limit a→ 0. The leading in a terms give

b = −1

2
r2dt (3.110)
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for the potential b. One also has

h = rdt ∧ dr , f = r3 sin θdφ ∧ dθ . (3.111)

The resultant closed conformal Killing–Yano tensor is degenerate,

h ∧ h = 0 , (3.112)

and so are tensors Q and k. Moreover, the Killing tensor k is reducible. De-
noting by (LX ,LY ,LZ) the three Killing vectors that generate the spherical
symmetry of the Schwarzschild metric:

LX = − cosφ∂θ + cot θ sinφ∂φ , LY = sinφ∂θ + cot θ cosφ∂φ , LZ = ∂φ ,
(3.113)

one has

kab = LaXL
b
X + LaY L

b
Y + LaZL

b
Z . (3.114)

The primary Killing vector is ξ = ∂t, while the secondary Killing vector
vanishes, kabξ

b = 0.

3.7 Kerr–Schild form of the Kerr metric

It is a remarkable property of the Kerr metric that it can be written in the
Kerr–Schild form, that is, as a linear in M deformation of flat spacetime (Kerr
and Schild 1965; Debney et al 1969). This property is intrinsically related
to the special algebraic type of the Weyl tensor and the existence of hidden
symmetries.

Starting from the canonical form of the metric (3.7) we may write

g = −∆r

Σ

(
(dτ + y2dψ)2 − Σ2

∆2
r

dr2
)

+
∆y

Σ
(dτ − r2dψ)2 +

Σ

∆y
dy2

= −∆r

Σ
l l+ dr l+ l dr +

∆y

Σ
(dτ − r2dψ)2 +

Σ

∆y
dy2 ,

(3.115)

where we introduced a null vector

l ≡ dτ + y2dψ +
Σ

∆r
dr =

√
Σ

∆r
(ν + ν̂) . (3.116)

Defining new coordinates

dτ̂ = dτ +
r2

∆r
dr − y2

∆y
dy , dψ̂ = dψ +

dr

∆r
+
dy

∆y
, (3.117)

we find that

l = dτ̂ + y2dψ̂ , (3.118)
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and the term (dτ − r2dψ) in the metric (3.115) reads (dτ̂ − r2dψ̂ + Σ
∆y
dy).

Upon recalling the form (3.2) of the metric function ∆r, the Kerr metric then
rewrites in the Kerr–Schild form

g = g̊ +
2Mr

Σ
l l , (3.119)

where

g̊ = −∆̊r

Σ
l2 + dr l+ l dr +

∆̊y

Σ

(
dτ̂ − r2dψ̂ +

Σ

∆̊y

dy
)2

+
Σ

∆̊y

dy2 ,

∆̊r = r2 + a2 , ∆̊y = ∆y = a2 − y2 , Σ = r2 + y2

(3.120)

is the flat metric. Indeed, introducing ‘flat’ canonical coordinates (̊τ , r, y, ψ̊) as

dτ̂ = dτ̊ +
r2

∆̊r

dr − y2

∆̊y

dy , dψ̂ = dψ̊ +
dr

∆̊r

+
dy

∆̊y

, (3.121)

brings the metric g̊ into the ‘canonical form’ of the Kerr metric

g̊ =
1

Σ

[
−∆̊r(dτ̊ + y2dψ̊)2 + ∆̊y(dτ̊ − r2dψ̊)2

]
+Σ

[dr2

∆̊r

+
dy2

∆̊y

]
, (3.122)

with M = 0. We can also check that l = dτ̊ + y2dψ̊ + Σ
∆̊r
dr is a null vector

with respect to the flat metric g̊.
The principal tensor can be written as

h = −rdr ∧ l+ yε ∧ ε̂ . (3.123)

The vector l is an eigenvector of the principal tensor. At the same time it
is a principal null direction of the metric, and a vector that plays a special
role for the Kerr–Schild structure (3.119). This nicely illustrates how all such
properties: hidden symmetries, special algebraic type of the Weyl tensor, and
the Kerr–Schild form, are interconnected. As we shall see, this remains true
also for higher-dimensional Kerr–NUT–(A)dS spacetimes.

3.8 Remarks on the choice of angle variable

In the next chapter, we shall discuss higher-dimensional metrics that generalize
the four-dimensional Kerr metric (3.1). We shall see that there exists a natural
canonical form for such metrics, where the coordinates are determined by the
principal tensor. Part of these coordinates are Killing parameters associated
with the corresponding primary and secondary Killing vectors. These angle
coordinates are similar to the angle ψ, used in (3.9). A natural question is
how these angles are related to the other set of angle variables, similar to φ
in (3.1). In order to clarify this point, let us make here a few remarks, which
will be useful later.
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Axis of rotational symmetry

In a general case, one says that a D-dimensional manifold is cyclicly symmetric
(or just cyclic) if it is invariant under an action of the one-parametric cyclic
group SO(2). It requires that the Killing vector generating this symmetry has
closed orbits.

Fixed points of a Killing vector field are points where the Killing vector
vanishes. These points intuitively correspond to an axis of symmetry. In gen-
eral, the manifold does not have to be smooth at these points or the metric
does not have to be regular (a well known example is a conical singularity).
In such cases we speak about a generalized axis of symmetry.





( )

( )zb

0 



( )

( ) 0 

0 

Fig. 3.1 Killing vectors with closed and open orbits. Left figure shows the action of
the symmetry with non-closed orbits. The corresponding Killing vector does not have fixed
points. The right figure illustrates the action of the cyclic group with closed orbits. The
corresponding Killing vector has fixed points which form the axis of symmetry ρ = 0.

As an example, consider a flat four-dimensional spacetime equipped with
cylindrical coordinates (T,Z, ρ, φ). In order to have a regular metric at ρ = 0,
the coordinate ϕ must be periodic, with period 2π. The point ρ = 0 is a
fixed point of the Killing vector ξ(ϕ) in the plane T,Z = const. In a general
case, however, a Killing vector field may not have fixed points. For example,
consider a Killing vector η = ξ(ϕ) + αξ(Z). One finds η2 = ρ2 + α2 > 0 for a
non-vanishing value of α. Thus, the Killing vector η neither has fixed points nor
it is cyclic. However, fixed points exist for ξ(ϕ). These two cases are illustrated
in figures 3.1. The left figure shows a symmetry in a three-dimensional flat
space generated by the Killing vector η. The orbits are not closed and this
vector field does not vanish anywhere. The case when the symmetry is cyclic
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group, orbits are closed, and there is an axis of symmetry, is shown in the right
figure. The symmetry is generated by the Killing vector ξ(ϕ), which vanishes
at the axis of symmetry, ρ = 0.

Twisting construction

In principle, one could modify the flat spacetime by making the orbits of
the Killing vector η cyclic. This can be achieved by cutting the spacetime
along the half-plane ϕ = 0 and re-gluing it shifted by α in the Z-direction. In
other words, we identify points with coordinates (T, ρ, ϕ, Z) given by values
(T, ρ, 0, Z) and (T, ρ, 2π, Z + 2πα). This can be reformulated in coordinates
adapted to the Killing vector η. If we define

ζ = Z − αϕ , ψ = ϕ , (3.124)

we have η = ∂ψ, and the identifications of the spacetime can be formulated as
a periodicity of the coordinate ψ, i.e., the identification of ψ = 0 and ψ = 2π
with the same values of T, ρ, ζ. In such a way we obtain what we call a twisted
flat spacetime.

In this spacetime the Killing vector η is cyclic but (as in the previous case)
it does not have fixed points. On other hand, the Killing vector ξ(ϕ) has still
fixed points but it is not cyclic anymore. Its orbits are not closed and the
corresponding symmetry group is not SO(2) but R. The twisted spacetime
thus has only a generalized axis of the symmetry at ρ = 0. This axis does not
form a regular submanifold of the full twisted spacetime.

Rotating string and conical singularity

Similar ‘twisting’ construction can be done with time-like Killing vector ξ(T )

instead of ξ(Z). The Killing vector η = ξ(ϕ) + αξ(T ) generates a cyclic sym-
metry in a spacetime which is obtained by cutting the flat spacetime along
half-plane ϕ = 0 and re-gluing it so that the coordinates

τ = T − αϕ , ψ = ϕ , (3.125)

are identified as (τ, ρ, ψ = 0, Z) ↔ (τ, ρ, ψ = 2π, Z). This spacetime cor-
responds to a thin straight spinning cosmic string, cf., e.g., section 3.4.1 in
Griffiths and Podolský (2009). In this spacetime η is cyclic but does not have
fixed points and ξ(ϕ) has fixed points but it is not cyclic. The cosmic string is
located on the irregular generalized axis of symmetry at ρ = 0.

Because of the time-like nature of the Killing vector ξ(T ), a new phe-
nomenon occurs in this case. The Killing vector η is spacelike far from the
axis, for ρ > |α|, and timelike near the axis, for ρ < |α|. The surface ρ = |α|,
where η2 = 0, is an ergosurface of the Killing vector η. Let us emphasize that,
although η2 = 0, these are not fixed points of the Killing vector η since η
is not vanishing here. The ergosurface contains orbits of the symmetry which
are null closed curves, they correspond to light rays orbiting the axis in closed
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trajectories. Inside the ergosurface, where the Killing vector is timelike, the
orbits of the symmetry are closed time-like curves. Clearly, such a behavior
is not very physical. However, it seems that in a generic case it may not be
escaped.

There is yet another aspect related to the identification of the axis of the
symmetry and its regularity. Let us consider an axisymmetric spacetime with
coordinate ϕ ∈ (0, 2π) which parameterizes orbits of the cyclic symmetry. In
general, the metric may not be regular on the axis—it can contain a conical
singularity. Such a singularity can be eliminated choosing a different range
of periodicity for coordinate ϕ. It can be achieved by introducing a rescaled
coordinate φ = βϕ which is required to be periodic on the interval (0, 2π).
Physically, the conical singularity corresponds to a static thin string on the
axis (Vilenkin and Shellard 2000; Griffiths and Podolský 2009).

Kerr geometry

For the canonical metric (3.9) of the rotating black hole spacetime, the co-
ordinates τ and ψ are directly connected with the principal tensor of this
spacetime. Namely, they are the proper Killing coordinates for the primary
ξ(τ) and secondary ξ(ψ) Killing vectors. If one makes the coordinate ψ to be
cyclic by identifying ψ = 0 and ψ = 2π, the corresponding spacetime is not
axisymmetric, since the Killing vector ξ(ψ) does not have fixed points.

We can then ask if one can find the correct axisymmetric coordinate. For
that we need to find a Killing vector which has fixed points. Let us consider
a vector η = ξ(ψ) + αξ(τ) and require that it vanishes at some points. It
can be shown that this happens only if the following two conditions are met:
∆y = 0 and α = −a2. The vector η = ξ(ψ) − a2ξ(τ) thus has fixed points at

roots of ∆y. The coordinates adapted to this Killing vector are t = τ + a2ψ,
ϕ = ψ. However, if one makes ϕ periodic on the interval (0, 2π), there would
be a conical singularity on the axis. One has to make an additional rescaling
φ = aϕ leading to the Boyer–Lindquist coordinates (t, r, θ, φ) given by (3.6).
If the coordinate φ is made periodic on interval (0, 2π), the axis is regular:
the spacetime contains a cyclic Killing vector ξ(φ) = 1

aξ(ψ) − aξ(τ) with fixed
points identifying the axis and there is no conical singularity on this axis.

Effect of NUT charges

Let us briefly comment on a more complicated metric with non-trivial NUT
parameters for which the metric functions ∆r and ∆y are given by (3.18)
with Λ = 0. The polynomial ∆y has now two nontrivially different roots ±y
and the coordinate y runs between these roots, y ∈ (−y,+y). In this case one
can find two candidates for the Killing vector with fixed points: η+ and η−,
with fixed points at y = +y and y = −y, respectively. One can choose one of
the properly rescaled corresponding coordinates, say φ+, to be periodic with
period 2π. With such a choice, the submanifold y = +y becomes the regular
axis. Physically, it corresponds only to a semi-axis of the spacetime. The other
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semi-axis y = −y is not regular, the cyclic Killing vector η+ does not have
fixed points here. Of course, one can assume periodicity of the other coordinate
φ−, making thus the semi-axis y = −y regular. However, the semi-axis y = +y
becomes now non-regular. So, it is not a priori guaranteed that one can chose
a unique Killing vector which makes the spacetime globally axisymmetric.

3.9 Hidden symmetries of the Plebański–Demiański metric

The Plebański–Demiański metric (Plebański and Demiański 1976) is the most
general four-dimensional electrovacuum solution of Einstein’s equations that
is stationary, axisymmetric, and whose Weyl tensor is of the special algebraic
type D. It describes a wide family of spacetimes that generalize the Kerr–
NUT–(A)dS family described in previous sections. Besides the cosmological
constant, mass, rotation, and NUT parameter it also admits electric and mag-
netic charges and the acceleration parameter. As we shall discuss now, the
Plebański–Demiański metric admits a ‘weaker’ (conformal) form of hidden
symmetries of the Kerr geometry.

Solution

Generalizing the canonical form of the Kerr–NUT–(A)dS spacetime (3.9), the
Plebański–Demiański solution reads

g = Ω2
[
−∆r

Σ
(dτ + y2dψ)2 +

∆y

Σ
(dτ − r2dψ)2 +

Σ

∆r
dr2 +

Σ

∆y
dy2

]
,

F = dA , A = −er
Σ

(
dτ + y2 dψ

)
− gy

Σ

(
dτ − r2 dψ

)
,

(3.126)
where Σ = r2 + y2. It obeys the Einstein–Maxwell equations with the electric
and magnetic charges e and g and the cosmological constant Λ provided the
functions ∆y = ∆y(y) and ∆r = ∆r(r) take the following form:

∆r = k + e2 + g2 − 2mr + εr2 − 2nr3 − (k + Λ/3)r4 ,

∆y = k + 2ny − εy2 + 2my3 − (k + e2 + g2 + Λ/3)y4 ,
(3.127)

while the conformal factor Ω reads

Ω−1 = 1− yr . (3.128)

Constants k,m, ε, n are free parameters that are related to mass, rotation,
NUT parameter, and acceleration. The Kerr–NUT–(A)dS geometry belongs
to this class, but it can be identified only after a proper redefinition of coordi-
nates and parameters. We refer to Griffiths and Podolský (2006b) for details
and for a discussion and the interpretation of special cases of the Plebański–
Demiański metric. For a recent progress on understanding the thermodynamics
of accelerating black holes see Appels et al (2017); Astorino (2017).
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Hidden symmetries

The Plebański–Demiański metric admits a hidden symmetry of a non-degen-
erate rank-2 conformal Killing–Yano 2-form:8

h = Ω3
[
ydy ∧ (dτ − r2dψ)− rdr ∧ (dτ + y2dψ)

]
, (3.129)

obeying

∇ahbc = ∇[ahbc] + 2 ga[bξc] , ξa =
1

3
∇chca . (3.130)

This property remains true also for the off-shell metric (3.126), characterized
by arbitrary functions ∆r(r), ∆y(y) and an arbitrary conformal factor Ω(r, y)
(Kubizňák and Krtouš 2007).

The corresponding Hodge dual, f = ∗h, is yet another non-degenerate
conformal Killing–Yano 2-form, given by

f = Ω3
[
rdy ∧ (dτ − r2dψ) + ydr ∧ (dτ + y2dψ)

]
. (3.131)

These 2-forms generate both isometries of the metric according to

ξ ≡ 1

3
∇ · h = ∂τ , η ≡ 1

3
∇ · f = ∂ψ , (3.132)

as well as give rise to the corresponding conformal Killing tensors. Namely,

Q
(h)
ab = hachb

c reads

Q(h) = Ω4
[r2∆r

Σ
(dτ + y2dψ)2 +

y2∆y

Σ
(dτ − r2dψ)2 +

Σ

∆y
y2dy2− Σ

∆r
r2dr2

]
,

(3.133)

while for Q
(f)
ab = facfb

c we have

Q(f) = Q(h) +Ω2(r2 − y2) g . (3.134)

The existence of either of these conformal Killing tensors guarantees com-
plete integrability of null geodesic motion. Namely, we have the following con-
stants of null geodesic equations:

ξaẋ
a = −E , ηaẋ

a = L , Q
(h)
ab ẋ

aẋb = K , gabẋ
aẋb = 0 . (3.135)

These four equations can be solved for ẋa = (τ̇ , ṙ, ẏ, ψ̇), giving:

Ω2Σ ṙ = ±
√
Xr , (3.136)

Ω2Σ ẏ = ±
√
Xy , (3.137)

Ω2Σ ψ̇ =
Er2 − L
∆r

+
Ey2 + L

∆y
, (3.138)

Ω2Σ τ̇ =
r2(Er2 − L)

∆r
− y2(Ey2 + L)

∆y
, (3.139)

8 This 2-form is no longer closed. In consequence the structure of hidden symmetries is
weaker than that of the Kerr–NUT–(A)dS spacetime. For example, only null but not timelike
geodesics are integrable in the Plebański–Demiański background.
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where

Xr = (Er2 − L)2 −K∆r , Xy = −(Ey2 + L)2 +K∆y . (3.140)

cf. the expressions for null geodesics (m2 = 0) in Kerr–NUT–(A)dS spacetimes,
(3.46)–(3.48). Similar to the discussion therein, the equations for ṙ and ẏ can
be decoupled by introducing the convenient geodesic parameter.

For a discussion of the integrability of a charged particle motion in the
Plebański–Demiański metric see Duval and Valent (2005). As a consequence
of the existence of the conformal Killing–Yano 2-form h, also the massless
Hamilton–Jacobi, Klein–Gordon, and Dirac equations separate in the Plebański–
Demiański backgrounds. We do not review here the corresponding calculations.
The first two are easy to perform and we refer to the original papers (Kamran
and McLenaghan 1983, 1984a) for the separability of massless Dirac equation;
see also Torres del Castillo (1988); Silva-Ortigoza (1995) for a discussion of
electromagnetic and Rarita–Swinger perturbations.

Higher-dimensional generalizations

As we shall see in the next chapter, the four-dimensional Kerr–NUT–(A)dS
metrics can be generalized to higher dimensions. However, similar attempts for
the Plebański–Demiański metric have failed so far. In particular, people have
tried to obtain a higher-dimensional generalization of an accelerated black hole
described by the so called C-metric, which is a special case of the Plebański–
Demiański class.

Remark: The C-metric typically describes a pair of black holes moving in the opposite
direction with constant acceleration caused either by a cosmic string of nega-
tive energy density between them or by two positive-energy strings pulling the
black holes from infinity. As the string is present, the corresponding solution
does not represent, strictly speaking, a regular isolated black hole.

A straightforward method of multiplying the higher-dimensional Kerr–
NUT–(A)dS spacetime (4.1) with a properly chosen conformal factor Ω, ac-
companied by a proper adjustment of metric functions Xµ, turned out to be
very naive and does not work, e.g., Kubizňák and Krtouš (2007). However,
a partial success has been achieved in five dimensions, where two different
factors, rescaling various parts of the Kerr–NUT–(A)dS spacetime, have been
used to construct a new metric whose limits lead to the black holes of spheri-
cal horizon topology on one side and to the black rings with toroidal horizon
topology on the other side (Lu et al 2009, 2010; Lü and Vázquez-Poritz 2014).
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4 Higher-dimensional Kerr–NUT–(A)dS metrics

Higher-dimensional Kerr–NUT–(A)dS metrics (Chen et al 2006a) describe a
large family of geometries of various types and signatures that solve the vac-
uum Einstein equations with and without the cosmological constant. Param-
eterized by a set of free parameters that can be related to mass, rotations,
and NUT parameters, they directly generalize the four-dimensional Carter’s
canonical metric (3.9) studied in the previous chapter. The general rotating
black holes of Myers and Perry (E.7) (Myers and Perry 1986), their cosmo-
logical constant generalizations due to Gibbons et al (2004, 2005), the higher-
dimensional Taub-NUT spaces (Mann and Stelea 2004, 2006; Clarkson and
Mann 2006; Chen et al 2007), or the recently constructed deformed and twisted
black holes (Krtouš et al 2016a), all emerge as certain limits or subcases of the
Kerr–NUT–(A)dS spacetimes. All such geometries inherit hidden symmetries
of the Kerr–NUT–(A)dS metrics.

In this chapter, we perform a basic analysis of the Kerr–NUT–(A)dS met-
rics, discussing their signature, coordinate ranges, scaling properties, and mean-
ing of free metric parameters. We also identify their several special subcases,
namely, the sphere, the Euclidean instanton, and various black hole solutions.
The discussion of hidden symmetries is postponed to the next chapter.

4.1 Canonical form of the metric

Metric

The canonical metric describing the Kerr–NUT–(A)dS geometry inD = 2n+ ε
number of dimensions (with ε = 0 in even and ε = 1 in odd dimensions) reads

g =

n∑
µ=1

[
Uµ
Xµ

dx2
µ +

Xµ

Uµ

( n−1∑
j=0

A(j)
µ dψj

)2 ]
+ ε

c

A(n)

( n∑
k=0

A(k)dψk

)2
. (4.1)

The employed coordinates naturally split into two sets: Killing coordinates
ψk (k = 0, . . . , n−1+ε) associated with the explicit symmetries, and radial
and longitudinal coordinates xµ (µ = 1, . . . , n) labeling the orbits of Killing
symmetries.

Remark: As we shall see in the next chapter, both types of canonical coordinates are
uniquely determined by the principal tensor h. Namely, xµ’s are the eigenval-
ues of the principal tensor and ψj ’s are the Killing coordinates associated with
the primary (j = 0) and secondary (j > 0) Killing vectors generated by this
tensor. Such a choice of coordinates, internally connected with the principal
tensor, makes the canonical form of the metric (4.1) quite simple. It is also
directly ‘linked to’ the separability properties of the geometry.
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The functions A(k), A
(j)
µ , and Uµ are ‘symmetric polynomials’ of coordinates

xµ:

A(k) =

n∑
ν1,...,νk=1
ν1<···<νk

x2
ν1
. . . x2

νk
, A(j)

µ =

n∑
ν1,...,νj=1
ν1<···<νj
νi 6=µ

x2
ν1
. . . x2

νj , Uµ =

n∏
ν=1
ν 6=µ

(x2
ν − x2

µ) ,

(4.2)
and each metric function Xµ is a function of a single coordinate xµ:

Xµ = Xµ(xµ) . (4.3)

If these functions are unspecified, we speak about the off-shell metric. The
vacuum Einstein equations with a cosmological constant restrict these func-
tions into a polynomial form (see (4.16) below). With this choice we call (4.1)
the on-shell metric. We see that the metric components of the on-shell Kerr–
NUT–(A)dS metric are rational functions of the coordinates xµ. Constant c
that appears in odd dimensions is a free parameter.

The metric (4.1) is written in the most symmetric form adjusted to the
Euclidean signature and is very convenient for the analysis of explicit and
hidden symmetries. This most symmetric form is naturally broken when one
describes the black hole case: in order to guarantee the Lorentzian signature,
one needs to assume that some of the coordinates and parameters take imag-
inary values. In what follows we shall call this procedure a ‘Wick rotation’.
We should also mention that coordinates ψj are different from the ‘standard
azimuthal’ angles φµ, used in the Boyer–Lindquist form of the Myers–Perry
metric (see next section).

The inverse metric takes the following form:

g−1 =

n∑
µ=1

[
Xµ

Uµ
∂2
xµ+

Uµ
Xµ

( n−1+ε∑
k=0

(−x2
µ)n−1−k

Uµ
∂ψk

)2 ]
+ε

1

cA(n)
∂2
ψn . (4.4)

The determinant of the metric reads

det[gab] =
(
cA(n)

)ε
V 2 , V ≡

n∏
µ,ν=1
µ<ν

(x2
µ − x2

ν) = det[A(j)
µ ] . (4.5)

As in four dimensions, it is independent of the choice of arbitrary functions
Xµ(xµ). Correspondingly, the Levi-Civita tensor is given by

ε =
(
cA(n)

) ε
2 V dx1 ∧ · · · ∧ dxn ∧ dψ0 ∧ · · · ∧ dψn−1+ε . (4.6)
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Special Darboux frame

The metric and its inverse can be obtained by employing the natural orthonor-
mal frame of 1-forms eµ, êµ (µ = 1, . . . , n), and ê0 (in odd dimensions):

eµ =
(Uµ
Xµ

)1
2

dxµ , ê
µ =

(Xµ

Uµ

)1
2
n−1∑
j=0

A(j)
µ dψj , ê

0 =
( c

A(n)

) 1
2

n∑
k=0

A(k)dψk ,

(4.7)
and the dual frame of vectors eµ, êµ, ê0,

eµ =
(Xµ

Uµ

)1
2

∂xµ , êµ =
(Uµ
Xµ

)1
2
n−1+ε∑
k=0

(−x2
µ)n−1−k

Uµ
∂ψk , ê0 =

(
cA(n)

)− 1
2∂ψn .

(4.8)

The duality follows from important properties of the metric functions A
(j)
µ and

Uµ listed in appendix D.1 (see (D.13)–(D.15)). In this frame the metric and
its inverse take the trivial diagonal forms:

g =

n∑
µ=1

(
eµeµ + êµêµ

)
+ ε ê0ê0 , g−1 =

n∑
µ=1

(
eµeµ + êµêµ

)
+ ε ê0ê0 .

(4.9)
It is explicitly seen here that we use a Euclidean normalization of the frame and
we do so even in the Lorentzian case, in which case some of the frame vectors
become imaginary. We shall provide a detailed discussion of the signature and
suitable choices of coordinates and signs of the metric functions in the next
section.

In this frame the principal tensor takes the following simple form:

h =

n∑
µ=1

xµ e
µ ∧ êµ , (4.10)

which is exactly the form (2.110) discussed in section 2.8. Moreover, one can
easily check that the additional condition (2.122) is satisfied. For this reason,
the frame {eµ, êµ, ê0} is nothing but the special Darboux frame introduced in
section 2.8.

Curvature

The curvature of the metric (4.1) has been calculated in Houri et al (2007).
The important property of the Ricci tensor is that it is diagonal in the frame
(4.7), a property that complements a rich symmetry structure of the geometry.
It reads

Ric = −
n∑
µ=1

rµ
(
eµeµ + êµêµ

)
− r0 ê

0ê0 . (4.11)



74 Valeri P. Frolov et al.

In even dimensions the components rµ are

rµ =
1

2

X ′′µ
Uµ

+

n∑
ν=1
ν 6=µ

xνX
′
ν−xµX ′µ

Uν(x2
ν−x2

µ)
−

n∑
ν=1
ν 6=µ

Xν −Xµ

Uν(x2
ν−x2

µ)
=

∂

∂x2
µ

[
n∑
ν=1

x2
ν

(
x−1
ν Xν

)
,ν

Uν

]
,

(4.12)
while in odd dimensions we have

rµ =
1

2

X̄ ′′µ
Uµ

+
1

2xµ

X̄ ′µ
Uµ

+

n∑
ν=1
ν 6=µ

xνX̄
′
ν−xµX̄ ′µ

Uν(x2
ν−x2

µ)
=

∂

∂x2
µ

[
n∑
ν=1

xνX̄
′
ν

Uν

]
, r0 =

n∑
ν=1

X̄ ′ν
xνUν

.

(4.13)
In the latter relations we used the shifted metric functions

X̄µ = Xµ +
εc

x2
µ

. (4.14)

The scalar curvature simplifies to

R = −
n∑
ν=1

X̄ ′′ν
Uν
− 2 ε

n∑
ν=1

1

xν

X̄ ′ν
Uν

. (4.15)

In the above expressions, the prime denotes a differentiation with respect to
the (single) argument of the metric function, e.g., X ′µ = Xµ,µ.

On-shell metric

Imposing the vacuum Einstein equations, Rab − 1
2Rgab + Λgab = 0, results in

the following form of the metric functions (Chen et al 2006a; Houri et al 2007):

Xµ =


−2bµ xµ +

n∑
k=0

ck x
2k
µ for D even ,

− c

x2
µ

− 2bµ +

n∑
k=1

ck x
2k
µ for D odd .

(4.16)

The parameter cn is related to the cosmological constant as

Ric = (−1)n(D − 1)cng ⇔ Λ =
1

2
(−1)n(D − 1)(D − 2)cn . (4.17)

Remark: It is interesting to note that, similar to four dimensions, a single equation
corresponding to the trace of the Einstein equations, R = 2D

D−2
Λ, almost fully

determines relations (4.16). Once this equation is valid, all other Einstein’s
equations require just equality of the absolute terms in all polynomials Xµ
and otherwise they are identically satisfied (Houri et al 2007).
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4.2 Parameters and alternative form of the metric

Before we proceed to discussing various special cases of the on-shell Kerr–
NUT–(A)dS spacetimes, let us comment on a different, more convenient for
its interpretation, form of the metric, and the parameters of the solution.
For simplicity, in the rest of this section we restrict our discussion to even
dimensions D = 2n, that is ε = 0, analysis in odd dimensions would proceed
analogously.

Parametrization of metric functions

In even dimensions, the metric (4.1) simplifies to9

g =
∑
µ

[
Uµ
Xµ

dx2
µ +

Xµ

Uµ

(∑
k

A(k)
µ dψk

)2 ]
. (4.18)

Inspecting the on-shell metric functions Xµ, (4.16), we see that they are
given by a common even polynomial J modified by µ-dependent linear terms:

Xµ = λJ (x2
µ)− 2bµxµ . (4.19)

The parameter λ is trivially related to cn in (4.16) according to λ = (−1)ncn.
Instead of other coefficients ck, it will be useful to characterize the common
polynomial J using its roots. Assuming they are all real the polynomial can
be written as

J (x2) =
∏
ν

(a2
ν − x2) =

n∑
k=0

A(k)(−x2)n−k , (4.20)

where the constants A(k) can be expressed in term of new parameters a2
µ in

a similar way as the functions A(k) in terms of x2
µ in (4.2), cf. (D.4) in ap-

pendix D.1. We shall give the interpretation of all the parameters below. How-
ever before that, let us start with a remark on two types of angular variables.

Two types of angular variables

As we already mentioned, the canonical ‘angles’ ψk in the metric (4.18) are the
Killing parameters for the primary and secondary Killing vectors constructed
from the principal tensor. In a general case, such Killing vectors do not have
fixed points and the angles do not correspond to azimuthal angles in inde-
pendent rotation 2-planes. However, there may exist other angular variables
such that the corresponding Killing vectors have fixed points and, hence, they
define axes of symmetry and planes of rotation.

9 The Greek indices always take values µ, ν, . . . = 1, . . . , n and, in even dimensions, the
Latin indices from the middle of alphabet take values j, k, l, . . . = 0, . . . , n− 1. We do not
use the Einstein summation convention for them but also we do not indicate limits in sums
and products explicitly, i.e.,

∑
µ ≡

∑n
µ=1,

∑
k ≡

∑n−1
k=0 .
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Remark: The same thing happens with the Kerr metric written in the canonical form
(3.9). As explained in section 3.8, the axisymmetry of the Kerr metric implies
that, aside the Killing coordinate ψ, there exists another angular variable φ,
such that the Killing vector ∂φ has fixed points and corresponds to the az-
imuthal angle in the 2-plane of rotation.

We can indeed introduce new higher-dimensional angular variables φα, that
have a desired property (at least for the special case, when bµ = 0 for µ < n,
see below). These new angular coordinates φα are linear combinations of ψk:

φα = λaα
∑
k

A(k)
α ψk ⇔ ψk =

∑
α

(−a2
α)n−1−k

Uα
φα
λaα

. (4.21)

Since they are just linear combinations of ψ’s with constant coefficients, they
are also Killing coordinates. Using these angles, the metric can be written in
the form10

g =
∑
µ

[
Uµ
Xµ

dx2
µ +

Xµ

Uµ

(∑
α

Jµ(a2
α)

Uα
1

λaα
dφα

)2 ]
, (4.22)

where Jµ, A
(k)
µ , Jµ, A(k)

µ , Uµ, and Uµ are defined and related as

Jµ(a2) =
∏
ν

ν 6=µ

(x2
ν − a2) =

∑
k

A(k)
µ (−a2)n−1−k ,

Jµ(x2) =
∏
ν

ν 6=µ

(a2
ν − x2) =

∑
k

A(k)
µ (−x2)n−1−k ,

(4.23)

and
Uµ = Jµ(x2

µ) , Uµ = Jµ(a2
µ) , (4.24)

cf. appendix D.1.

Parameters of the solution

The on-shell geometries (4.18) and (4.22) are labeled by parameters aµ, bµ, and
λ. As we have already said, the clearest interpretation has the parameter λ. Af-
ter plugging the metric into the Einstein equations, Rab − 1

2Rgab + Λgab = 0,
one finds that λ is related to the cosmological constant Λ according to

Λ = (2n− 1)(n− 1)λ , (4.25)

cf. (4.17). A general wisdom tells us that a’s should be related to rotations (at
least in the weak field limit), and b’s to the mass and NUT charges. However,
the exact interpretation depends on various other choices that have to be made
before interpreting the meaning of the parameters.

10 Note that in this form of the metric, one cannot straightforwardly set λ, related to
the ‘radius of the deformed sphere’, to zero. The ‘vacuum limit’ λ → 0 is discussed in the
Lorentzian signature in section 4.4. Lorentzian version of (4.21) is given by (4.45) below.
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First we realize that the parameters aµ and bµ are not independent. There
exists a one-parametric freedom in rescaling coordinates, metric functions, and
parameters which leaves the metric in the same form:

xµ → sxµ , φα → φα , ψk → s−(2k+1)ψk ,

aµ → saµ , bµ → s2n−1bµ , λ→ λ ,

Xµ → s2nXµ , Uµ → s2(n−1)Uµ , A(k)
µ → s2kA(k) .

(4.26)

This transformation simply rescales dimensional coordinates xµ and parame-
ters aµ, properly rescales NUT parameters bµ, and leaves untouched dimen-
sionless angles φα. Using this transformation, one of the parameters aµ can
be set to a suitable value. Later we shall fix this freedom by imposing the
condition (4.41).

Taking into account this freedom, we find that for a fixed cosmological
constant the on-shell Kerr–NUT–(A)dS metric in D = 2n dimensions contains
2n−1 independent parameters. In the black hole case they are connected with
mass, (n− 1) rotations parameters, and (n− 1) NUT charges.

Similar counting would proceed in odd dimensions, where the analogous
scaling freedom reduces the number of independent free parameters in D =
2n+ 1 dimensions to 2n− 1, giving mass, n rotations parameters, and (n− 2)
NUT parameters for the black hole case, see Chen et al (2006a).

4.3 Euclidean signature: instantons

The Kerr–NUT–(A)dS metric can describe various geometries. Depending on
a choice of coordinate ranges and values of parameters it can have both Eu-
clidean and Lorentzian signatures. We will see in the next chapter that com-
mon feature of the solution independent of a particular interpretation of the
geometry is the presence of a rich symmetry structure. If one is interested
mainly in the symmetries of the Kerr–NUT–(A)dS geometry and its integra-
bility and separability properties, the general form of the metric presented
above is sufficient to proceed directly to chapters 5 and 6.

In the rest of this chapter we make a short overview of several impor-
tant special cases of the Kerr–NUT–(A)dS metric. In this section we explain
appropriate coordinate ranges for Euclidean version of the geometry, in the
next section we discuss the Wick rotations of coordinates appropriate for the
Lorentzian signature.

Sphere

Let us begin with a ‘trivial’ example of a D dimensional sphere. This ho-
mogeneous and isotropic metric is a very special case of Kerr–NUT–(A)dS
geometry. The corresponding metric is obtained by setting the NUT and mass
parameters equal to zero, bµ = 0, while keeping the parameters aµ arbitrary,
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and λ > 0. The on-shell metric functions Xµ then simplify and take the form
of a common polynomial λJ (x2) in the corresponding variable:

Xµ = λJ (x2
µ) . (4.27)

The roots of this polynomial are exactly the parameters a2
µ whose interpre-

tation is discussed below. With this choice we can employ the orthogonality
relations (D.24) in the angular part of the metric (4.22) and transform it to
the following form:

g =
∑
µ

[
Uµ

λJ (x2
µ)
dx2

µ −
J(a2

µ)

Uµ
1

λa2
µ

dφ2
µ

]
. (4.28)

Here J(a2) =
∏
ν(x2

ν − a2) is given by definition (D.1) analogous to (4.20)
above.

Let us introduce n + 1 new coordinates ρµ, µ = 0, 1, . . . , n, instead of n
coordinates xµ, and apply the Jacobi transformation

λρ2
µ =

J(a2
µ)

−a2
µ Uµ

=

∏
ν(x2

ν − a2
µ)

−a2
µ

∏
ν 6=µ(a2

ν − a2
µ)

, λρ2
0 =

A(n)

A(n)
=

∏
ν x

2
ν∏

ν a
2
ν

. (4.29)

Then one can show that the new coordinates ρµ are restricted by the constraint

n∑
µ=0

ρ2
µ =

1

λ
, (4.30)

and the x-part of the metric can be written as∑
µ

Uµ
λJ (x2

µ)
dx2

µ = dρ2
0 +

∑
µ

dρ2
µ . (4.31)

Using these relations we obtain the following simple form of the metric g

g = dρ2
0 +

∑
µ

[
dρ2

µ + ρ2
µ dφ

2
µ

]
, (4.32)

with coordinates ρµ constrained by (4.30). Clearly, (ρ0, ρµ, φµ) are multi-
cylindrical coordinates on a 2n-dimensional sphere embedded in a (2n+1)-
dimensional flat space. The sphere is given by the constrain equation (4.30).

It is interesting to observe that this metric describes the maximally sym-
metric geometry of the sphere of the same radius 1/

√
λ for any choice of

parameters aµ. Going in the opposite direction, from the spherical geometry
(4.32), expressed in coordinates (ρ0, ρµ, φα), to the Kerr–NUT–(A)dS metric
(4.28), and then to (4.22), expressed in the coordinates (xµ, φα), it turns out
that the parameters aµ characterize a freedom in implicit definitions (4.29)
of variables xµ obeying the constrain (4.30). Jacobi coordinates xµ are sort-
of elliptic coordinates (the surfaces of given xµ being elliptical or hyperbolic
surfaces) with an exact shape governed by parameters aµ.
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To specify the ranges of coordinates in details, let us start with λ > 0,
ρ0 ∈ R, ρµ ∈ R+ and φα ∈ (−π, π) for which the metric (4.32) is the homoge-
neous geometry on the sphere. Assuming further

0 < a1 < · · · < an , (4.33)

the ranges of the coordinates xµ should be chosen as

− a1 < x1 < a1 , aµ−1 < xµ < aµ , µ = 2, . . . , n , (4.34)

which guarantees that Uµ are nonsingular and Xµ/Uµ > 0. The boundaries of
xµ-ranges coincide with the roots of the metric functions Xµ and correspond
to symmetry axes. Inspecting (4.32), we see that the axes are given by ρν = 0.
In terms of coordinates xµ, Jacobi transformation (4.29) gives that xµ = aµ
identifies with ρµ = 0, and, for µ > 1, xµ = aµ−1 corresponds to ρµ−1 = 0.
Each of the axes ρµ = 0 (for µ < n) thus splits into two regions described by
xµ = aµ and xµ+1 = aµ, respectively. Finally, a sign of x1 is the same as the
sign of ρ0.

For non-vanishing parameters bµ one cannot use the orthogonality relation
(D.24) and transform the Kerr–NUT–(A)dS metric (4.22) to the form (4.28).
However, we have at least learned that coordinates xµ take values between the
roots of metric functions Xµ, and these roots represents the axes of the Killing
symmetry. This property survives in the generic case.

Let us finally note that the metric (4.32) or the corresponding Kerr–NUT–
(A)dS form (4.22) can also describe a pseudo-sphere of various signatures,
obtainable by a suitable Wick rotation of coordinates. We will discuss this
below after we introduce the black hole solutions.

Euclidean instantons

Let us now describe the choice of coordinate ranges and parameters for which
the Kerr–NUT–(A)dS metric describes a non-trivial geometry of the Euclidean
signature.

Remark: For briefness we call such metrics Euclidean instantons or simply instantons.
In fact, in order to be a ‘proper instanton’, the space must be regular and the
corresponding gravitational action finite. These properties can impose addi-
tional restrictions on the parameters of the solution, which we do not study
here and refer the interested reader to a vast literature on the subject of
gravitational instantons, e.g. Hawking (1977); Page (1978a,b); Gibbons and
Hawking (1979); Eguchi et al (1980); Hunter (1998); Mann (1999); Chamblin
et al (1999); Mann and Stelea (2004, 2006); Clarkson and Mann (2006); Chen
et al (2007); Yasui and Houri (2011).

Let us assume that λ > 0 and all coordinates xµ, ψk and parameters aµ,
bµ are real. We further order parameters aµ as in (4.33) and xµ so that

x1 < x2 < · · · < xn . (4.35)

This guarantees that Uµ are nonsingular and their signs are sgnUµ = −(−1)µ.
As we have seen above, when all bµ vanish, the ranges of xµ coordinates are
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Fig. 4.1 Euclidean instanton. The graph of the common polynomial λJ (x2) combined
with various linear contributions 2bµxµ. Intersections of the polynomial with these linear
lines correspond to roots of the metric functions Xµ, cf. (4.19). The shaded areas indicate
regions where sgnXµ = −(−1)µ. These regions can be chosen as ranges of coordinates xµ,
cf. (4.36).

given by (4.34). If some parameters bµ do not vanish, the ranges of xµ must
be modified. Since the signature of the metric (4.18) is determined by the
signs of metric functions Xµ/Uµ, to obtain a Euclidean metric we thus need
sgnXµ = −(−1)µ. Therefore, the ranges of coordinates xµ,

−xµ < xµ <
+xµ , (4.36)

should be chosen between the roots ±xµ of metric functions Xµ such that the
suitable sign of Xµ is guaranteed.

For small values of the NUT parameters bµ these roots will be ‘close’ to
the roots aµ of the common polynomial λJ (x2). As one can see in figure 4.1,
if

sgn bµ = −(−1)µ , (4.37)

the relevant roots ±xµ of Xµ are

Xµ(±xµ) = 0 , aµ−1 <
−xµ <

+xµ < aµ , (4.38)

with the only exception of −x1 which is the largest root of X1 smaller than
−a1.

For such a choice the metric (4.18) represents the Euclidean instanton of
signature (+ + · · ·+). Parameters bµ encode deformations of the geometry,
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namely how it deviates from the geometry of the sphere. For non-vanishing
bµ, parameters aµ become essential. That is they do not just label a choice of
coordinates, as in the maximally symmetric case, but their change results in
the change of the geometry (e.g. its curvature).

The global definition and regularity of the geometry described by met-
rics (4.18) or (4.22) has to be established by specifying which Killing angles
should be cyclic and what are the periods of these cyclic angles. In the maxi-
mally symmetric case, which we discussed above, there was a natural choice of
cyclic coordinates φα ∈ (−π, π) with their natural identification at φα = ±π.
However, in general, any linear combination of Killing coordinates (with con-
stant coefficients) forms again a Killing coordinate and it is not a priory clear
which of the Killing coordinates should be periodic. Learning a lesson from
the maximally symmetric case, the angles ψk are typically not those which
should be periodic. Since Killing coordinates are non-trivially coupled in the
metric (the metric is not diagonal in these directions), a particular choice of
the periodicity of Killing coordinates can introduce a non-trivial twisting of
the geometry, as well as possible irregularities on the axes. We will not discuss
these characteristics in more detail as this is still an open problem awaiting its
complete solution. For our purposes it is sufficient to simply remember that
the Euclidean instanton describes a deformed and twisted spherical-like geom-
etry. Other examples of compact Riemannian manifolds that can be obtained
as special limits of the Kerr–NUT–(A)dS metrics include the most general
explicitly known Einstein–Kähler and Einstein–Sasaki metrics, see e.g. Yasui
and Houri (2011) and references therein.

4.4 Lorentzian signature: black holes

Let us now discuss the Kerr–NUT–(A)dS metrics with the Lorentzian sig-
nature. For vanishing NUT parameters such metrics describe an isolated ro-
tating higher-dimensional black hole in either asymptotically flat or asymp-
totically (anti-)de Sitter spacetime. We start our discussion with the case of
non-vanishing NUT parameters and proceed to the Kerr-(A)dS and Myers–
Perry black holes in the the next step.

General multiply-spinning black holes with NUTs

The Lorentzian signature can be achieved by a suitable Wick rotation of co-
ordinates and parameters. Different choices can lead to physically different
spacetimes. We concentrate on the case where the coordinate xn is Wick-
rotated to a radial coordinate r and the angular coordinate φn to a time
coordinate t:

xn = ir , φn = λant , (4.39)

with r and t real, while the remaining x’s and φ’s retain their original character.
We also define the (real) mass parameter M by

bn = iM . (4.40)
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To obtain the correct signature we also need to correlate the sign of the cosmo-
logical constant with the sign of a2

n. By employing the scaling transformations
(4.26) we can use this freedom to impose the following condition:

a2
n = − 1

λ
. (4.41)

Thank to this choice, the temporal coordinate φn is Wick-rotated by an imag-
inary factor only for λ > 0. Namely, introducing the cosmological scale `, we
get

λ =
1

`2
> 0 : an = i` , φn = i

t

`
,

λ = − 1

`2
< 0 : an = ` , φn = − t

`
.

(4.42)

Let us now introduce a notation which will allow us to separate the angular
sector from the temporal and radial ones. For the angular sector we employ
the barred indices. Using n̄ = n− 1 we can thus write the ranges for barred
Greek indices: µ̄, ν̄ = 1, . . . , n̄ and barred Latin indices k̄, l̄ = 0, . . . , n̄− 1. We

also use quantities Ā
(k̄)
µ̄ , Ūµ̄, J̄ (x2), Ā(k̄), etc. to denote the same expressions as

A
(k)
µ , Uµ, J (x2), A(k), only with appropriately modified ranges of coordinates.

Using this notation and after the Wick rotation the Kerr–NUT–(A)dS
metric (4.22) takes the following form:

g = −∆r

Σ

(∏
ν̄

1 + λx2
ν̄

1 + λa2
ν̄

dt−
∑
ν̄

J̄(a2
ν̄)

aν̄(1 + λa2
ν̄)Ūν̄

dφν̄

)2
+

Σ

∆r
dr2 +

∑
µ̄

(r2+x2
µ̄)

∆µ̄/Ūµ̄
dx2

µ̄

+
∑
µ̄

∆µ̄/Ūµ̄
(r2+x2

µ̄)

(
1−λr2

1+λx2
µ̄

∏
ν̄

1+λx2
ν̄

1+λa2
ν̄

dt+
∑
ν̄

(r2+a2
ν̄)J̄µ̄(a2

ν̄)

aν̄(1+λa2
ν̄) Ūν̄

dφν̄

)2
,

(4.43)

where the metric functions read

∆r = −Xn =
(
1−λr2

)∏
ν̄

(
r2+a2

ν̄

)
− 2Mr , Un = Σ =

∏
ν̄

(r2 + x2
ν̄) ,

∆µ̄ = −Xµ̄ =
(
1+λx2

µ̄

)
J̄ (x2

µ̄) + 2bµ̄xµ̄ , Ūµ̄ =
∏
ν̄

ν̄ 6=µ̄

(x2
ν̄ − x2

µ̄) . (4.44)

We call the coordinates (t, r, xµ̄, φµ̄) the generalized Boyer–Lindquist coordi-
nates and the form (4.43) with (4.44) the generalized Boyer–Lindquist form of
the Kerr–NUT–(A)dS black hole geometry.11

11 As opposed to the Myers–Perry coordinates (t, r, µk, φk), the coordinates (t, r, xµ̄, φµ̄)
are already all independent, c.f. constraint (E.9). For this reason the metric (4.43) is ‘closer’
to the Boyer–Lindquist form of the Kerr geometry in four dimensions than the Myers–Perry
form (E.7).
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Alternatively, it is useful to write the Lorentzian metric in the Carter-like
form. To do this, we split the set of Killing coordinates ψk into temporal
coordinate τ ≡ ψ0 and angular coordinates ψ̄k̄ ≡ ψk̄+1. After Wick rotation,
relations (4.21) become

τ ≡ ψ0 =
1∏

µ̄(1 + λa2
µ̄)
t−
∑
µ̄

(−a2
µ̄)n̄

(1 + λa2
µ̄)Ūµ̄

φµ̄
aµ̄

,

ψ̄k̄ ≡ ψk̄+1 =
λk̄+1∏

µ̄(1 + λa2
µ̄)
t−
∑
µ̄

(−a2
µ̄)n̄−1−k̄

(1 + λa2
µ̄)Ūµ̄

φµ̄
aµ̄

,

(4.45)

giving

t = τ +
∑
k̄

Ā(k̄+1)ψ̄k̄ ,
φµ̄
aµ̄

= λτ −
∑
k̄

(
Ā(k̄)
µ̄ − λĀ(k̄+1)

µ̄

)
ψ̄k̄ (4.46)

for the inverse expressions. With these definitions, the metric (4.18) takes the
following Carter-like form:

g = −∆r

Σ

(
dτ +

∑
k̄

Ā(k̄+1)dψ̄k̄

)2
+

Σ

∆r
dr2

+
∑
µ̄

(r2+x2
µ̄)

∆µ̄/Ūµ̄
dx2

µ̄ +
∑
µ̄

∆µ̄/Ūµ̄
(r2+x2

µ̄)

(
dτ +

∑
k̄

(
Ā

(k̄+1)
µ̄ − r2Ā

(k̄)
µ̄

)
dψ̄k̄

)2
,

(4.47)

generalizing (3.7) in four dimensions.
Let us now discuss the suitable ranges of coordinates. We assume ordering

of the parameters aµ̄ as
0 < a1 < · · · < an̄ . (4.48)

When all the NUT parameters vanish, each xµ̄ takes its values in the interval
bounded by two neighbours of the corresponding aµ̄. One can also identify the
proper ranges of coordinates when NUT parameters bµ̄ do not vanish, provided
they satisfy additional requirements. Namely, they should have signs

sgn bµ̄ = (−1)µ̄ , (4.49)

and the metric functions Xµ̄ should have roots close to a’s,

Xµ̄(±xµ̄) = 0 , aµ̄−1 <
−xµ̄ <

+xµ̄ < aµ̄ (4.50)

(with the exception of −x1 which is the largest root of X1 smaller than −a1).
The coordinates xµ̄ then take the following values:

−xµ̄ < xµ̄ <
+xµ̄ , (4.51)

and satisfy
x1 < x2 < · · · < xn̄ , (4.52)

see figure 4.2 describing this situation. The ranges and periodicity of coor-
dinates φµ̄ and ψ̄k̄ have to be specified to meet some kind of regularity on
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Fig. 4.2 Black hole geometries. The graph of the common polynomial
λJ (x2) = −(1 + λx2)J̄ (x2) is combined with various linear contributions 2bµ̄xµ̄. In-
tersections of the polynomial with these linear lines correspond to roots of the metric
functions ∆µ̄ = −Xµ̄, cf. (4.44). The shaded areas indicate regions where sgn∆µ̄ = −(−1)µ̄.
These regions can be chosen as ranges of coordinates xµ̄, cf. (4.51).

−λJ (−r2)

−λJ (−r2)

2Mr 2Mr

r rri riro ro

λ > 0λ ≤ 0

rc

Fig. 4.3 Black hole horizons. The roots of the metric function ∆r = −λJ (−r2)− 2Mr,
cf. (4.44), determine horizons of the black hole. The diagrams show graphs of the even order
polynomial −λJ (−r2) and of the linear term 2Mr. Their intersections define the horizons.
For λ ≤ 0 there can be two intersections (outer and inner horizons), one touching intersection
(extremal horizon) or no intersections (naked singularity). For λ > 0 there is one additional
intersection corresponding to the cosmological horizon.
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the axes. These conditions highly depend on the values of parameters aµ and
NUT parameters bµ̄; a complete discussion of this problem has not yet been
performed in the literature. The temporal coordinates τ and t are real, and
so is the radial coordinate r. The metric function ∆r determines the horizon
structure. Depending on the sign of the cosmological constant it has typically
two or three roots ri, ro, and rc that identify the inner horizon, the outer hori-
zon, and (for λ > 0) the cosmological horizon. The form of the metric function
is illustrated in figure 4.3.

Vacuum rotating black holes with NUTs

For the vanishing cosmological constant, λ = 0, the black hole metric (4.43)
significantly simplifies and reads12

g = −∆r

Σ

(
dt−

∑
ν̄

J̄(a2
ν̄)

aν̄ Ūν̄
dφν̄

)2
+

Σ

∆r
dr2

+
∑
µ̄

(r2+x2
µ̄)

∆µ̄/Ūµ̄
dx2

µ̄ +
∑
µ̄

∆µ̄/Ūµ̄
(r2+x2

µ̄)

(
dt+

∑
ν̄

(r2+a2
ν̄)
J̄µ̄(a2

ν̄)

aν̄ Ūν̄
dφν̄

)2
,

(4.53)

with the metric functions

∆r = −Xn =
∏
ν̄

(
r2+a2

ν̄

)
− 2Mr ,

∆µ̄ = −Xµ̄ = J̄ (x2
µ̄) + 2bµ̄xµ̄ ,

(4.54)

and other metric functions unchanged.

The metric (4.47) does not change its form for the vanishing cosmological
constant, apart from the simplification of the metric functions (4.54). Note
also that the relations (4.45) and (4.46) between temporal coordinates and
angles partially decouple:

τ = t−
∑
µ̄

(−a2
µ̄)n̄

Ūµ̄
φµ̄
aµ̄

, ψ̄k̄ = −
∑
µ̄

(−a2
µ̄)n̄−1−k̄

Ūµ̄
φµ̄
aµ̄

, (4.55)

t = τ +
∑
k̄

Ā(k̄+1)ψ̄k̄ ,
φµ̄
aµ̄

= −
∑
k̄

Ā(k̄)
µ̄ ψ̄k̄ . (4.56)

12 Note that the fact that the vacuum limit, λ → 0, can be taken in (4.43) has its origin
in the gauge choice (4.41).
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Kerr–(A)dS, Myers–Perry, and Tangherlini metrics

Let us now focus on the physically interesting case of black hole geometries for
which all the NUT parameters bµ, apart from the mass parameter bn, vanish.
In this case only the metric function ∆r = −Xn differs from the simple form
(4.27). One can thus employ the orthogonality transformation (D.24) of the
angular part of the metric (4.22), as we did in the case of a sphere, obtaining
so the terms (4.28) augmented with an extra piece proportional to mass M :

g =
∑
µ̄

Uµ̄
λJ (x2

µ̄)
dx2

µ̄ +
Σ

∆r
dr2 −

∑
µ̄

J(a2
µ̄)

Uµ̄
1

λa2
µ̄

dφ2
µ̄ − λ

J(a2
n)

Un
dt2

+
2Mr

Σ

(∑
µ̄

Jn(a2
µ̄)

Uµ̄
1

λaµ̄
dφµ̄ +

Jn(a2
n)

Un
dt

)2

.

(4.57)

Here, we have split the sums to angular terms µ̄ = 1, . . . , n̄ and temporal/radial
terms µ = n, employed the Wick rotation and the gauge fixing (4.39)–(4.42),
and introduced metric functions (4.44).

To write down the metric in Myers–Perry coordinates, we next employ the
Jacobi transformation, to transform n̄ variables xµ̄ to n̄+ 1 variables µν̄ :

µ2
ν̄ =

J̄(a2
ν̄)

−a2
ν̄ Ūν̄

=

∏
ᾱ(x2

ᾱ − a2
ν̄)

−a2
ν̄

∏
ᾱ 6=ν̄(a2

ᾱ − a2
ν̄)
, µ2

0 =
Ā(n̄)

Ā(n̄)
=

∏
ᾱ x

2
ᾱ∏

ᾱ a
2
ᾱ

, (4.58)

subject to a constrain
n̄∑
ν̄=0

µ2
ν̄ = 1 . (4.59)

The new coordinates µν̄ are related to the coordinates ρν̄ introduced in
(4.29) by

λρ2
ν̄ =

a2
ν̄ + r2

a2
ν̄ − a2

n

µ2
ν̄ , (4.60)

and

1− λR2 ≡ λρ2
n = (1− λr2)

(
µ2

0 +
∑
ν̄

µ2
ν̄

1 + λa2
ν̄

)
. (4.61)

Employing these relations and other non-trivial identities for the Jacobi trans-
formation, the metric (4.57) can be written in the following form:

g = −(1− λR2)dt2 +
2Mr

Σ

(
dt+

∑
ν̄

aν̄µ
2
ν̄

1 + λa2
ν̄

d(φν̄ − λaν̄t)
)2

+
Σ

∆r
dr2 + r2dµ2

0 +
∑
ν̄

r2 + a2
ν̄

1 + λa2
ν̄

(
dµ2

ν̄ + µ2
ν̄dφ

2
ν̄

)
+

λ

1− λR2

(
r2µ0dµ0 +

∑
ν̄

r2 + a2
ν̄

1 + λa2
ν̄

µν̄dµν̄

)2
,

(4.62)
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with the metric functions given by

∆r = (1− λr2)
∏
ν̄

(r2 + a2
ν̄)− 2Mr ,

Σ =
(
µ2

0 +
∑
ν̄

r2µ2
ν̄

r2 + a2
ν̄

)∏
µ̄

(r2 + a2
µ̄) .

(4.63)

This is the Kerr–(A)dS metric derived by Gibbons et al (2004, 2005). We
remind that in these expressions the coordinates µν̄ are constrained by (4.59).
For vanishing bµ̄, the parameters aµ̄ are directly related to rotations of the
black hole.

If also the parameters aµ̄ vanish, we obtain the Schwarzschild–Tangherlini–
(A)dS black hole (Tangherlini 1963)

g = −fdt2 +
dr2

f
+ r2dΩ2

n̄ , f = 1− λr2 − 2Mr3−2n , (4.64)

where one can use, for example, the following parametrization of the homoge-
neous spherical metric in n̄ dimensions:

dΩ2
n̄ = dµ2

0 +
∑
ν̄

(
dµ2

ν̄ + µ2
ν̄dφ

2
ν̄

)
, (4.65)

using the coordinates µν̄ and φν̄ . Other parameterizations of dΩ2
n̄, suitable

for a given problem, are of course possible.
If on the other hand the cosmological constant vanishes, λ = 0, the Kerr–

(A)dS metric (4.62) yields the (even-dimensional) Myers–Perry solution (My-
ers and Perry 1986)

g = −dt2 +
2Mr

Σ

(
dt+

∑
ν̄

aν̄µ
2
ν̄dφν̄

)2
+

Σ

∆r
dr2

+ r2dµ2
0 +

∑
ν̄

(r2 + a2
ν̄)
(
dµ2

ν̄ + µ2
ν̄dφ

2
ν̄

)
,

∆r =
∏
ν̄

(r2 + a2
ν̄)− 2Mr , Σ =

(
µ2

0 +
∑
ν̄

r2µ2
ν̄

r2 + a2
ν̄

)∏
µ̄

(r2 + a2
µ̄) ,

(4.66)

discussed in more details in appendix E. Indeed, if we identify indices ν̄ =
1, . . . , n̄ with indices i = 1, . . . ,m of appendix E for coordinates µν̄ , φν̄ and
parameters aν̄ , and if we relate metric functions as Σ = rU , ∆r = r(V −2M),
we recover metric (E.7) with (E.8) in even dimensions (ε = 0).

4.5 Multi-Kerr–Schild form

In section 4.5, we have seen that the Myers–Perry metric can be cast as a linear
in mass deformation of the flat space, that is in the Kerr–Schild form (E.29).
The same remains true for the higher-dimensional Kerr-(A)dS solutions (4.62)
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of Gibbons et al (2004, 2005), replacing the flat space with the corresponding
maximally symmetric geometry. Remarkably, in the presence of NUT charges,
the on-shell metric (4.1) can be written in the multi-Kerr–Schild form (Chen
and Lu 2008), that is as a multi-linear deformation of the maximally symmetric
space, with deformation terms proportional to generalized masses, see (4.82)
below. The modified construction goes as follows.

Introducing the following complex null 1-forms µν and µ̄ν :

µν =

n−1∑
j=0

A(j)
ν dψj + i

Uν
Xν
dxν , (4.67)

µ̄ν =

n−1∑
j=0

A(j)
ν dψj − i

Uν
Xν
dxν , (4.68)

complemented with

ε̂0 =

n∑
j=0

A(j)dψj (4.69)

in odd dimensions, the canonical metric (4.1) reads

g =
∑
ν

1

2

Xν

Uν

(
µνµ̄ν + µ̄νµν

)
+ ε

c

A(n)
ε̂0ε̂0 . (4.70)

When all coordinates xν and ψj are real, the null 1-forms µν and µ̄ν are
complex conjugate. If some x’s are imaginary, say xn = ir, the corresponding
1-forms are real and independent.

Now we break the symmetry between µν and µ̄ν and eliminate µ̄ν using
the following relation:

µ̄ν = µν − 2i
Uν
Xν
dxν . (4.71)

The metric (4.70) can be rewritten as

g =
∑
ν

Xν

Uν
µνµν − i

∑
ν

Xν

Uν

(
µνdxν + dxνµ

ν
)

+ ε
c

A(n)
ε̂0ε̂0 . (4.72)

Expressing the on-shell metric functions Xν , (4.16), as a deformation of the
background functions X̊ν :

Xν = X̊ν − 2bνx
1−ε
ν , X̊ν = Xν |bκ=0 , (4.73)

allows one to re-write the Kerr–NUT–(A)dS metric as

g = g̊ − 2
∑
ν

bνx
1−ε
ν

Uν
µνµν , (4.74)

where the ‘background’ metric g̊ is given by the same expression (4.72), just
with the metric functions X̊ν ,

g̊ =
∑
ν

Xν

Uν
µνµν − i

∑
ν

X̊ν

Uν

(
µνdxν + dxνµ

ν
)

+ ε
c

A(n)
ε̂0ε̂0 . (4.75)
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In order to be able to interpret the metric g̊ as the (A)dS metric written in the
Kerr–NUT–(A)dS form with metric functions X̊ν , one has to be able to write
1-forms µν and ε̂0 in terms of the background coordinates in a way analogous
to (4.67) and (4.69),

µν =

n−1∑
j=0

A(j)
ν dψ̊j + i

Uν

X̊ν

dxν , ε̂0 =

n∑
j=0

A(j)dψ̊j . (4.76)

These conditions can be formally solved for ψ̊j

dψ̊j = dψj + i
∑
ν

(−x2
ν)n−1−j 2bνx

1−ε
ν

XνX̊ν

dxν . (4.77)

One can even introduce the Kerr–Schild coordinates

dψ̂j =
∑
ν

(−x2
ν)n−1−j

Uν
µν , (4.78)

in terms of which

dψ̂j = dψj + i
∑
ν

(−x2
ν)n−1−j

Xν
dxν = dψ̊j + i

∑
ν

(−x2
ν)n−1−j

X̊ν

dxν . (4.79)

Unfortunately, this construction is spoiled by complex character of various
quantities. We have shown that the ‘background’ metric g̊ has the same form
as the original metric with metric functions X̊ν . However, this metric is, in
general, complex. Indeed, in (4.74) g is real, but null 1-forms µν are complex

and thus g̊ is complex. It corresponds to the fact that coordinates ψ̊ν are, in
general complex, as can be seen from (4.77), e.g., with xµ, ψj , and bν real.

Interestingly, there exists an important subcase when this construction
gives a real result. Let us assume that some of the coordinates xµ are Wick-
rotated into imaginary values. We have seen, that such a Wick rotation is
needed for the Lorentzian signature, when xn = ir. More generally, let us
assume the Wick rotation for the last D − n̄ coordinates xν , for some n̄,

xν = irν for ν > n̄ . (4.80)

Let us also assume that the corresponding NUT charges are also Wick-rotated
and the remaining NUT charges vanish,

bν = 0 for ν = 1, . . . , n̄ ,

bν = iMν for ν = n̄+ 1, . . . n and D even ,

bν = −Mν for ν = n̄+ 1, . . . n and D odd .

(4.81)

In this case the metric (4.74) takes the real multi-Kerr–Schild form

g = g̊ + 2

n∑
ν=n̄+1

Mνr
1−ε
ν

Uν
µνµν , (4.82)
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where the background metric g̊ and 1-forms µν and ε̂0 are given by (4.75) and
(4.76) in terms of real background coordinates

dψ̊j = dψj +
∑
ν

(r2
ν)n−1−j 2Mνr

1−ε
ν

XνX̊ν

drν . (4.83)

Clearly, for ν > n̄, 1-forms µν are real, and therefore also the background
metric g̊ is real.

The coordinates ψ̂j need more attention. One has to modify their definition
in such a way that in (4.79) the sum runs only over Wick rotated coordinates.

The case when only one coordinate, xn = ir, is Wick rotated covers the
Lorentzian signature. It demonstrates, that the black hole solution (with van-
ishing NUT charges) can be written in the standard Kerr–Schild form. The
four-dimensional case discussed in section 3.7 is an example of this case, as well
as the Kerr–Schild form of the Myers–Perry solution discussed in appendix E
(after some additional effort of identifying Myers–Perry and canonical coordi-
nates).

The opposite case of the multi-Kerr–Schild form of the metric, when all
xν coordinates are Wick-rotated, can be related to an analogous discussion in
Chen and Lu (2008), where all coordinates ψj have been Wick-rotated and
the multi-Kerr–Schild form has been obtained.

Finally, let us note that the principal tensor h is the same for the full
metric g as for the background metric g̊ and reads

h =
∑
ν

xν dxν ∧ µν . (4.84)

In other words, the vector variants of 1-forms µν and ε̂0 are the eigenvectors of
the principal tensor with eigenvalues −ixν and 0, respectively. They differ from
the eigenvectors mµ and ê0 discussed in section 2.8 just by normalization,

mν =
1√
2

√
Xν

Uν
µν , ê0 =

√
c

A(n)
ε̂0 . (4.85)

They correspond to principal null directions of the Weyl tensor (WANDs)
(Hamamoto et al 2007; Krtouš et al 2008; Mason and Taghavi-Chabert 2010;
Kubizňák 2008). The expressions (4.82) and (4.84) nicely demonstrate the
connection between the existence of the principal tensor and the form of the
corresponding Kerr–Schild structure. See also Ortaggio et al (2009) for a more
general discussion on higher-dimensional Kerr–Schild spacetimes, and Mon-
teiro et al (2014); Luna et al (2015) for a recent new twist on applications of
the Kerr–Schild form.
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5 Hidden symmetries of Kerr–NUT–(A)dS spacetimes

In the previous chapter the Kerr–NUT–(A)dS metric and its interpretation
were discussed. Let us consider now the symmetries of this geometry in more
detail. Namely, we shall show that, similar to its four-dimensional counterpart,
this metric admits the principal tensor. The latter generates the whole tower
of explicit and hidden symmetries. In fact, the geometry itself is uniquely
determined by the principal tensor. Let us begin exploring this remarkable
geometric construction.

5.1 Principal tensor

It was shown in Frolov and Kubizňák (2007); Kubizňák and Frolov (2007) that
the Kerr–NUT–(A)dS geometry (4.1) in any number of dimensions admits the
principal tensor. According to the definition given in chapter 2, this is a non-
degenerate closed conformal Killing–Yano 2-form h obeying

∇Xh = X ∧ ξ , ⇔ ∇ahbc = gab ξc − gac ξb , (5.1)

where ξ is given by

ξ =
1

D − 1
∇ · h ⇔ ξa =

1

D − 1
∇bhba . (5.2)

The non-degeneracy means that in D = 2n+ ε dimensions, h has a maximal
possible matrix rank 2n with n pairs of conjugate eigenvectors and associated
imaginary eigenvalues ±ixµ that are all functionally independent (and hence
also non-constant).

The principal tensor reads

h =

n∑
µ=1

xµ dxµ ∧
(n−1∑
k=0

A(k)
µ dψk

)
=
∑
µ

xµ e
µ ∧ êµ . (5.3)

The latter expression means that the frame (eµ, êµ) (and ê0 in odd dimen-
sions) introduced in the previous chapter, (4.7), is the special Darboux frame;
the eigenvalues xµ supplemented with the Killing coordinates ψk, are the
canonical coordinates.

Since the principal tensor h is closed, there exists a local potential b,

b =
1

2

n−1∑
k=0

A(k+1)dψk , (5.4)

such that h = db.
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It turns out that ξ, given by (5.2), is a Killing vector,13

ξ = ∂ψ0 =
∑
µ

(Xµ

Uµ

)1
2

êµ + ε
( c

A(n)

)1
2

ê0 . (5.5)

Since it will be used as a ‘seed’ for the constructions of other Killing vectors in
the Kerr–NUT–(A)dS spacetime, we call it a primary Killing vector. Thanks
to (5.2), the principal tensor h plays a role of a co-potential for the primary
Killing vector ξ.

5.2 Killing tower

As we have already revealed in chapter 2, from the principal tensor h one
can generate the whole tower of explicit and hidden symmetries of the Kerr–
NUT–(A)dS geometry. We call this set a Killing tower. In what follows we
shall review two methods for generating such a tower: a direct method of
construction (based on theorems of chapter 2) and the method of a generating
function.

Direct method of construction

The construction of the Killing tower goes as follows (Krtouš et al 2007a;
Frolov 2008; Frolov and Kubizňák 2008):

(i) By employing the theorem (2.86) of chapter 2, one can construct a tower
of closed conformal Killing–Yano tensors by taking various wedge prod-
ucts of the principal tensor h with itself (Krtouš et al 2007a). Since h is
a non-degenerate 2-form, this gives the following n+ 1 closed conformal
Killing–Yano forms h(j) of increasing rank 2j (j = 0, . . . , n):

h(j) =
1

j!
h∧j . (5.6)

Note that for j = 0 we have a trivial 0-form h(0) = 1. We also have
h(n) =

√
A(n) ε and h(n) =

√
A(n) ε · ê0 for even and odd dimensions, re-

spectively. Here, as earlier, ε is the Levi-Civita tensor.

13 Using the integrability relation (C.27), it is easy to show that

2(D − 2)∇(aξb) = hacR
c
b −Rac hcb .

Thus for the on-shell metric, when Rac = 2
D−2

Λgac, the vector ξ obeys the Killing equation.

The same conclusion remains also true for any off-shell Kerr–NUT–(A)dS metric. One way
to demonstrate this is to use the explicit form of the off-shell metric. However, it is also
possible to prove this result without referring to the metric, using only the properties of the
principal tensor. This proof is involved and we present it later, at the end of this chapter.
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(ii) As discussed after (2.65), the Hodge dual of a closed conformal Killing–

Yano 2j-form h(j) is a Killing–Yano (D−2j)-form, which we call f (j):

f (j) = ∗h(j) . (5.7)

In particular, this gives the Levi-Civita tensor f (0) = ε for j = 0. In even
dimensions one has f (n) =

√
A(n). In odd dimensions, f (n) =

√
A(n) ê0.

The vector version of f (n) has to be a Killing vector. Namely, we get

f (n) =
1√
c
∂ψn . (5.8)

(iii) Partial contractions of squares of Killing–Yano forms f (j) define the fol-
lowing rank-2 Killing tensors k(j), cf. (2.76),

kab(j) =
1

(D−2j−1)!
f (j)a

c1...cD−2j−1
f (j)bc1...cD−2j−1 . (5.9)

For j = 0, the Killing tensor reduces to the metric

kab(0) = gab . (5.10)

For odd dimensions the top Killing tensor is reducible, k(n) = A(n) ê0 ê0 =
c−1∂ψn∂ψn , whereas in even dimensions we define k(n) = 0.

(iv) Similarly, partial contractions of closed conformal Killing–Yano forms

h(j) give rank-2 conformal Killing tensors Q(j):

Qab(j) =
1

(2j−1)!
h(j)ac1...c2j−1

h(j)bc1...c2j−1 . (5.11)

We define Q(0) = 0, and introduce a simpler notation Q for the first
conformal Killing tensor:

Qab ≡ Qab(1) = hac h
bc . (5.12)

The conformal Killing tensors Q(j) contain essentially the same informa-
tion as the Killing tensors k(j). Namely, for all j = 1, . . . , n it holds

k(j) +Q(j) = A(j) g . (5.13)

where the scalar function A(j) can be expressed as

A(j) = h(j) • h(j) = f (j) • f (j) =
1

2j
Q(j)

n
n =

1

D−2j
k(j)

n
n . (5.14)

Here we used the scalar product (A.5). It turns out that functions A(j)

are exactly the symmetric polynomials (4.2) introduced earlier. The con-
formal Killing tensors and the Killing tensors are also related by

Qac(j) = hab h
c
d k

bd
(j−1) = Qab k

bc
(j−1) . (5.15)
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(v) We conclude our construction by defining the following vectors:

l(j) = k(j) · ξ . (5.16)

They turn out to be Killing vectors related to coordinates ψj , namely
l(j) = ∂ψj . Since l(j) are constructed using the primary Killing vector ξ,
we call them secondary Killing vectors. For j = 0 we have l(0) = ξ. Since
in even dimensions the top Killing tensor k(n) vanishes by definition,
we have l(n) = 0. On the other hand in odd dimensions the top Killing
vector is non-trivial and reads

l(n) =
√
cA(n) ê0 = ∂ψn . (5.17)

These Killing vectors can be generated from the Killing co-potentials
ω(j), e.g., Kastor et al (2009); Cvetic et al (2011),

l(j) =∇ · ω(j) , (5.18)

where

ω
(j)
ab =

1

D−2j−1
k(j)a

n hnb (5.19)

for j = 0, . . . , n − 1, and ω(n) = − 1
n!

√
c∗(b ∧ h∧(n−1)) in odd dimen-

sions. Note that, apart from ω(0), the Killing co-potentials are not closed,
dω(j) 6= 0.
Let us also mention the following useful relation:

h · l(j) =
1

2
dA(j+1) , (5.20)

which implies—through the Cartan identity and closeness of h—that the
principal tensor h is conserved along the vector fields l(j),

£l(j)h = 0 . (5.21)

All the ‘Killing objects’ in the tower are generated from a single object, the
principal tensor. As a result they form an abundant structure, with many spe-
cial algebraic and differential relations among them. In particular, the Killing
tensors k(j) and the Killing vectors l(j) commute in the sense of the Nijenhuis–
Schouten brackets:

[k(i),k(j)]NS = 0 , [k(i), l(j)]NS = 0 , [l(i), l(j)] = 0 . (5.22)

It means that the corresponding observables on the phase space

Kj = kab(j) pa pb , Lj = la(j) pa , (5.23)

are in involution, which is the key observation behind the complete integrabil-
ity of geodesic motion in Kerr–NUT–(A)dS spacetimes discussed in the next
section. Note also that since k(0) = g, the relations (5.22) directly imply that
k(j) and l(j) are Killing tensors and Killing vectors, respectively.
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Remark: For propagation of light, one can instead of the set {k(i), l(j)} use a different
set of Killing symmetries {Q(i), l(j)}, where each Killing tensor k(i) is replaced

by the corresponding conformal Killing tensors Q(i). By relation (5.13), Q(i)
differs from k(i) only by a term proportional to the metric. Consequently, the
two tensors give the same value of conserved quantities for null rays. Note
also that (5.13) can be used together with (5.22) to extract the commutation
relations of the objects in the new set. Namely, we find

[Q(i),Q(j)]
abc
NS = α

(a
(ij)

gbc) , [Q(i), l(j)]NS = 0 , [l(i), l(j)] = 0 . (5.24)

Here

α(ij) = [A(i), gA(j) − k(j)]NS + [gA(i) − k(i), A
(j)]NS , (5.25)

and we used that [A(i), l(j)]NS = −£l(j)A
(i) = 0 . To obtain observables in

the phase space one needs to multiply the objects, which enter (5.24), by null
vectors tangent to the null ray. As a result the Poisson bracket algebra of the
conserved quantities corresponding to (5.24) becomes trivial. This justifies the
complete integrability of null geodesic motion.

Some properties of the above constructed Killing tower are simpler to prove
than others. Namely, by theorems of chapter 2 we know that h(j), f (j), k(j)

andQ(j) are closed conformal Killing–Yano forms, Killing–Yano forms, Killing
tensors, and conformal Killing tensors, respectively. However, to show that l(j)
are Killing vectors (and in particular that ξ given by (5.2) is indeed a primary
Killing vector) and to demonstrate the commutation relations (5.22) poses a
more difficult task. Of course, one way to show these is a ‘brute force’ calcu-
lation, employing the explicit form of the Kerr–NUT–(A)dS metric and the
induced covariant derivative. However, it turns out that it is possible to prove
all these relations directly from the integrability conditions of the principal
tensor h, without referring to a particular form of the metric (Krtouš 2017).
We will sketch the corresponding line of reasoning in section 5.4.

Method of generating functions

There exists another (more compact) way for constructing the Killing tower
(Krtouš 2017). Namely, it is possible to define a β-dependent Killing tensor
k(β) and a β-dependent Killing vector l(β), both functions of a real parameter
β, such that the Killing tensors k(j) and the Killing vectors l(j) in the Killing
tower above emerge as coefficients of the β-expansion of k(β) and l(β), respec-
tively. This procedure is related to Krtouš et al (2007a); Houri et al (2008a),
where generating function for conserved observables is studied.

Starting with the conformal Killing tensorQ introduced in (5.12), we define
a β-dependent conformal Killing tensor

q(β) = g + β2Q , (5.26)

and a scalar function

A(β) =

√
Det q(β)

Det g
. (5.27)
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Using these definitions we introduce two more objects14

k(β) = A(β) q−1(β) , (5.28)

and
l(β) = k(β) · ξ . (5.29)

One can show that these functions generate the objects from the Killing tower

k(β) =
∑
j

β2j k(j) , (5.30)

l(β) =
∑
j

β2j l(j) . (5.31)

One also has
A(β) =

∑
j

β2j A(j) . (5.32)

Since for a fixed β, k(β) is a linear combination of Killing tensors, it is itself
a Killing tensor, and similarly l(β) is a Killing vector. The commutativity
relations (5.22) can be reformulated as a requirement that the Killing tensors
k(β) and the Killing vectors l(β) commute for different β:

[k(β1), k(β2) ]NS = 0 , [k(β1), l(β2) ]NS = 0 , [ l(β1), l(β2) ]NS = 0 .
(5.33)

Similar generating functions can also be constructed for the tower of closed
conformal Killing–Yano and Killing–Yano forms, respectively. However, since
such objects are of increasing rank, the corresponding generating functions are
inhomogeneous forms, i.e. a mixture of forms of various ranks. Concretely, one
can define h(β) as a wedge exponential of the principal tensor h,

h(β) = ˆexp(βh) ≡
∑
j

1

j!
βjh∧j , (5.34)

and f(β) as its Hodge dual,

f(β) = ∗h(β) . (5.35)

Since the definition (5.34) contains just a sum of wedge-powers of the prin-
cipal tensor, h(β) is a closed conformal Killing–Yano form, cf. (2.86). Its Hodge
dual f(β) then must be a Killing–Yano form. They satisfy the (closed con-
formal) Killing–Yano conditions (2.63) and (2.62) adapted to inhomogeneous
forms, namely

∇Xh(β) = X ∧ ξ(β) , ∇Xf(β) = X · κ(β) , (5.36)

where ξ(β) and κ(β) are β-dependent inhomogeneous forms satisfying

(D − π) ξ(β) =∇ · h(β) , π κ(β) =∇ ∧ f(β) , (5.37)

14 The inverse q−1 of a non-degenerate symmetric rank-2 tensor q is defined in a standard
way: q · q−1 = 1, or in components, qac(q−1)bc = δba .
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with π being the rank operator (A.16). Surprisingly, in this case they can be
written as

ξ(β) = β ξ ∧ h(β) , κ(β) = −β ξ · f(β) . (5.38)

The right-hand sides of (5.36) are thus algebraic expressions in ξ, h(β),
and f(β), which shows that all the non-trivial information about the covariant
derivative of h(β) and f(β) is hidden in the primary Killing vector ξ. Inspect-
ing the expansion of the wedge exponential in (5.34) (which is finite due to
fact that the rank of a form is bounded by the spacetime dimension) and tak-
ing into account the linearity of the Hodge dual in (5.35), we easily realize

that h(β) and f(β) are generating functions for h(j) and f (j), respectively. It
means that they satisfy relations similar to (5.30) and (5.31),

h(β) =
∑
j

βj h(j) , f(β) =
∑
j

βj f (j) . (5.39)

One could also establish relations analogous to (5.9) and (5.32). However, one
would have to properly define partial and total contractions for inhomogeneous
forms, which is possible, but will not be needed here.

Killing tower in a Darboux frame

The link between definitions (5.26)–(5.29) and expansions (5.30)–(5.32) can
be established by writing down all the quantities in the Darboux frame de-
termined by the principal tensor h. For that, it is sufficient to specify the
Darboux frame just in terms of the principal tensor, without refereing to its
explicit coordinate form (4.7). However, if one seeks the expressions in terms
of canonical coordinates, one can easily substitute relations (4.7) and (4.8).

As discussed in section 2.8, the canonical Darboux frame is determined by
the following two equations:

g =
∑
µ

(
eµeµ + êµêµ

)
+ ε ê0ê0 , (5.40)

h =
∑
µ

xµ e
µ ∧ êµ . (5.41)

We also know that in terms of the dual frame of vectors (eµ, êµ , ê0), the
principal tensor has eigenvalues ±ixµ, corresponding to the eigenvectorsmµ =
êµ + ieµ, and m̄µ = êµ − ieµ, namely15

h · (êµ ∓ ieµ) = ±ixµ (êµ ∓ ieµ) , (5.42)

in odd dimensions accompanied by an additional trivial eigenvalue:

h · ê0 = 0 . (5.43)

15 When speaking about eigenvectors of a rank-2 tensor h, we always assume a proper
adjustment of its indices (by using the metric) to form a linear operator hab.
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The principal tensor thus splits the tangent space into n 2-planes spanned on
pairs of vectors eµ, êµ and, in odd dimensions, one degenerate direction ê0.

Using the equations (5.40) and (5.41) we can now establish the follow-
ing results. First, the definition (5.6) yields the explicit form for the closed
conformal Killing–Yano tower:

h(j) =
∑

ν1,...,νj
ν1<···<νj

xν1
. . . xνj e

ν1 ∧ êν1 ∧ · · · ∧ eνj ∧ êνj . (5.44)

In particular, this gives

h(j) • h(j) =
∑

ν1,...,νj
ν1<···<νj

x2
ν1
. . . x2

νj = A(j) , (5.45)

establishing the first equality in (5.14). Next, calculating the partial traces
(5.11), we obtain

Q(j) =
∑
µ

x2
µA

(j−1)
µ

(
eµeµ + êµêµ

)
, (5.46)

and in particular

Q =
∑
µ

x2
µ

(
eµeµ + êµêµ

)
. (5.47)

To write down the tower of Killing–Yano forms f (j) we need to distinguish the
cases of even and odd dimensions. In even dimensions the Levi–Civita tensor
reads

ε = e1 ∧ ê1 ∧ · · · ∧ en ∧ ên , (5.48)

giving the following expression for the Hodge duals (5.7):

f (j) =
∑

xν1
. . . xνj e

µj+1 ∧ êµj+1 ∧ · · · ∧ eµn ∧ êµn , (5.49)

where the sum is over all splittings of indices 1, . . . , n into two disjoint ordered
sets ν1, . . . , νj and µj+1, . . . , µn. In odd dimensions the Levi–Civita tensor
contains also the degenerate direction

ε = ê0 ∧ e1 ∧ ê1 ∧ · · · ∧ en ∧ ên , (5.50)

giving

f (j) =
∑

xν1 . . . xνj eµj+1 ∧ êµj+1 ∧ · · · ∧ eµn ∧ êµn ∧ ê0 (5.51)

for the Killing–Yano tensors, where the sum has the same meaning as in even
dimensions. In both cases we immediately see that square-norms of f (j) are

f (j) • f (j) =
∑

ν1,...,νj
ν1<···<νj

x2
ν1
. . . x2

νj = A(j) , (5.52)
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which proves the second equality in (5.14). The partial trace (5.9) gives the
following expressions for the Killing tensors k(j):

k(j) =
∑
µ

A(j)
µ

(
eµeµ + êµêµ

)
+ εA(j) ê0ê0 . (5.53)

Using a simple identity A(j) = A
(j)
µ + x2

µA
(j−1)
µ , we obtain relation (5.13).

Finally, taking into account the extra information (5.5) and orthogonality
(5.41), we infer the following form of the Killing vectors (5.16):

l(j) =
∑
µ

A(j)
µ

(Xµ

Uµ

)1
2

êµ + εA(j)
( c

A(n)

)1
2

ê0 . (5.54)

The corresponding Killing co-potentials (5.19) take a very simple form (Cariglia
et al 2011a)

ω(j) =
1

D − 2j − 1

∑
µ

xµA
(j)
µ e

µ ∧ êµ . (5.55)

Note that the relationship between ω(j) and the principal tensor h, (5.41), is
‘formally analogous’ to the relationship between the Killing tensor k(j), (5.53),
and the metric g, (5.40).

Using the explicit form of the Darboux frame of the Kerr–NUT–(A)dS
spacetime (4.8), we can write the expressions for the Killing objects in terms
of canonical coordinates (xµ, ψk). It turns out that the expressions for the
(conformal) Killing tensors do not take a particularly nice form, they are of
the same order of complexity as expression (4.4) for the inverse metric. For
example,

k(j) =

n∑
µ=1

A(j)
µ

[
Xµ

Uµ
∂2
xµ +

Uµ
Xµ

( n−1+ε∑
k=0

(−x2
µ)n−1−k

Uµ
∂ψk

)2 ]
+ ε

A(j)

A(n)
∂2
ψn .

(5.56)
However, the expressions for Killing vectors simplify significantly,

l(j) = ∂ψj . (5.57)

Killing coordinates ψj are thus associated directly with the Killing vectors l(j)
defined through the contraction (5.16) of the Killing tensors with the primary
Killing vector.

Let us conclude this section by writing explicitly down the β-dependent
quantities. Definitions (5.26) and (5.27) give

q(β) =
∑
µ

(1 + β2x2
µ)
(
eµeµ + êµêµ

)
+ ε ê0ê0 , (5.58)

A(β) =
∏
ν

(1 + β2x2
ν) =

n∑
j=0

A(j) β2j , (5.59)
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which justifies the expansion (5.32). Since the conformal Killing tensor q(β)
is expressed in the diagonal form (5.58), we can easily substitute its inversion
into the definition (5.28) of k(β) to obtain

k(β) =

(∏
ν

(1 + β2x2
ν)

)(∑
µ

1

1 + β2x2
µ

(
eµeµ + êµêµ

)
+ ε ê0ê0

)
. (5.60)

Employing expansion (5.59), and similar expression for A
(j)
µ , we arrive at

k(β) =

n∑
j=0

(∑
µ

A(j)
µ

(
eµeµ + êµêµ

)
+ εA(j) ê0ê0

)
β2j , (5.61)

which is the expansion (5.30), cf. (5.53). With the help of (5.16), we also
immediately get the expansion (5.31) for the Killing vectors, which thanks to
(5.57) reads

l(β) =

n∑
j

β2j∂ψj . (5.62)

5.3 Uniqueness theorem

It is obvious from the above construction of the Killing tower that the princi-
pal tensor h determines uniquely a set of canonical coordinates. Namely, the
set of n functionally independent eigenvalues xµ is supplemented by a set of
n+ ε Killing coordinates ψj associated with the Killing vectors l(j). It is then
no such a wonder that the principal tensor uniquely defines the corresponding
geometry.16 This geometry has a local form of the off-shell Kerr–NUT–(A)dS
metric and is determined up to n arbitrary metric functions of a single variable,
Xµ = Xµ(xµ). It also possess a number of remarkable geometric properties.
Namely the following central theorem has been formulated in Krtouš et al
(2008), culminating the previous results from Houri et al (2007):

Uniqueness theorem: The most general geometry which admits a princi-
pal tensor can be locally written in the off-shell Kerr–NUT–(A)dS form (4.1).
When the Einstein equations are imposed, the geometry is given by the on-shell
Kerr–NUT–(A)dS metric described by the metric functions (4.16).

Moreover, this metric possesses the following properties:

Theorem: The off-shell Kerr–NUT–(A)dS metric is of the special type D of
higher-dimensional algebraic classification. The geodesic motion in this space-
time is completely integrable, and the Hamilton–Jacobi, Klein-Gordon, and

16 As we mentioned in section 2.8, we do not consider the exceptional null form of the
principal tensor which is possible for the Lorentzian signature. Such a case would lead, in
general, to its own special geometry.
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Dirac equations allow a separation of variables.

We refer to the literature (Houri et al 2008a, 2007; Krtouš et al 2008; Yasui
2008; Houri et al 2009; Yasui and Houri 2011; Krtouš 2017) for various versions
of the proof of the uniqueness theorem. The fact that the metric is of the type
D (Hamamoto et al 2007) of higher-dimensional algebraic classification (Coley
et al 2004; Ortaggio et al 2013; Pravda et al 2007) follows directly from study-
ing the integrability conditions of a non-degenerate conformal Killing–Yano
2-form (Mason and Taghavi-Chabert 2010). The separability and integrability
properties of the Kerr–NUT–(A)dS geometry will be demonstrated in the next
chapter.

Remark: Perhaps the ‘shortest route’ to the uniqueness theorem and the Kerr–NUT–
(A)dS metric is through the separability structure theory for the Hamilton–
Jacobi and Klein–Gordon equations, see section 2.3. Namely, the existence
of the principal tensor implies the existence of a Killing tower of symme-
tries, which in its turn implies the separability of the Hamilton–Jacobi and
Klein–Gordon equations. It then follows that one can use the canonical metric
constructed in Benenti and Francaviglia (1979) admitting such separability
structure. In the spirit of Carter’s derivation of the four-dimensional Kerr–
NUT–(A)dS metric (Carter 1968b), this then directly leads to the higher-
dimensional Kerr–NUT–(A)dS geometry (Houri et al 2008a, 2007; Yasui and
Houri 2011), see also Kolář and Krtouš (2016).

Since the existence of a principal tensor h uniquely determines the off-
shell Kerr–NUT–(A)dS geometry, when discussing the Killing tower one does
not need to strictly distinguish among the properties that follow from general
considerations with Killing–Yano tensors, the properties that follow from the
existence of a (general) Darboux basis, and the properties that use the explicit
form of the Darboux basis of the Kerr–NUT–(A)dS geometry. However, all the
properties of the Killing tower can be derived directly from the properties of
the principal tensor, without referring to the explicit form of the metric.

Let us finally note that when the non-degeneracy condition on the principal
tensor is relaxed, one obtains a broader class of geometries that has been
named the generalized Kerr–NUT–(A)dS geometry (Houri et al 2008b, 2009;
Oota and Yasui 2010). This class will be briefly reviewed in section 7.4.

5.4 Proof of commutation relations

By now we have established most of the properties of objects in the Killing
tower. However, we have not yet proved the commutation relations (5.22) or
(5.33). Since k(0) = g, these relations in particular imply that k(j) and l(j)
are Killing tensors and Killing vectors, respectively. The fact that k(j) are
Killing tensors follows directly from their construction. However, that l(j) are
Killing vectors we observed only using the identity (5.5) and its consequences
(5.57). In other words, we have used the explicit form (4.1) of the Kerr–NUT–
(A)dS metric. However, as mentioned above, it is possible to demonstrate the
commutativity (5.33) directly from the existence of the principal tensor and
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without any reference to canonical coordinates, proving in particular that l(j)
are Killing vectors. We give here a brief overview of such a procedure, for
details see Krtouš (2017).

Commutation relations

Using the fundamental property (5.1) of the principal tensor and definitions
(5.26), (5.27), and (5.28), one can express covariant derivatives of the con-
formal Killing tensor q(β), the function A(β), and the Killing tensor k(β) as
follows:

∇c qab = 2β2
(
gc(a hb)n + hc(a gb)n

)
ξn , (5.63)

∇aA = 2β2 ham k
mn ξn , (5.64)

∇ckab =
2β2

A

(
kab kcn hn

m + hmn k
n(a kb)c + km(a kb)n hn

c
)
ξm . (5.65)

To shorten the expressions, here and in the rest of this section we omit the
argument β; to distinguish two different values of β we write k1 = k(β1),
k2 = k(β2), and similarly for l1 and l2 (do not confuse with k(j) and l(k)).
In the following we shall also sometimes work with rank 2 tensors as with
matrices: denoting by A ·B the matrix multiplication and by the following
square bracket the commutator:

[A,B] ≡ A ·B −B ·A . (5.66)

The explicit form (2.4) of the Nijenhuis–Schouten brackets (5.33) in terms
of the covariant derivative reads[

k1, k2

]abc
NS

= 3
(
k
e(a
1 ∇ek

bc)
2 − ke(a2 ∇ek

bc)
1

)
, (5.67)[

k1, l2
]ab

NS
= 2 k

e(a
1 ∇el

b)
2 − le2∇ekab1 , (5.68)[

l1 , l2
]a

NS
= le1∇ela2 − le2∇ela1 . (5.69)

Upon substituting the definition (5.29) and the expression (5.65) to these
equations, the straightforward long calculation yields[

k1, k2

]abc
NS

= 0 , (5.70)[
k1, l2

]ab
NS

= kam1 (∇mξn) knb2 + kam2 (∇nξm) knb1 , (5.71)[
l1 , l2

]a
NS

=
(
kam1 (∇mξn) knb2 − kam2 (∇mξn) knb1

)
ξb . (5.72)

The Killing tensors k1 and k2 are diagonal in the same basis, cf. (5.53), so
they commute as linear operators, [k1,k2] = k1 · k2 − k2 · k1 = 0. If they also
commute with ∇ξ

[k,∇ξ]ab = kae (∇eξb)− (∇aξe) keb = 0 , (5.73)
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the last Nijenhuis–Schouten bracket (5.72) vanishes. The same is true for the
second bracket (5.71), if, additionally, ∇ξ is antisymmetric,

∇(aξb) = 0 , (5.74)

which is clearly the Killing vector condition for ξ.
To summarize, the proof of the Nijenhuis–Schouten commutativity (5.22)

reduces to proving the properties (5.73) and (5.74) for the primary Killing
vector ξ. It turns out, that both these conditions follow in a complicated way
from the integrability conditions for the principal tensor. We discus this in
more details in the next section.

Structure of the curvature

To complete the proof of the commutativity (5.22) we need first to discuss the
integrability conditions for the principal tensor and establish their implications
for the structure of the curvature tensor.

Applying the integrability relation (C.27) to the principal tensor h, we
obtain the following expression for the covariant derivative of ξ:

(D − 2)∇aξb = −Rac hcb +
1

2
hcdR

cd
ab , (5.75)

which upon symmetrization gives

2(D − 2)∇(aξb) = hacR
c
b −Rac hcb . (5.76)

The aim is to show that the right hand side vanishes, that is the principal
tensor always commutes with the Ricci tensor, and hence ξ is a primary Killing
vector. This is trivial if the spacetime satisfies the vacuum Einstein equations
with a cosmological constant, since the Ricci tensor is then proportional to
the metric. More generally we have the following construction.

Writing down the integrability condition (C.29) for the principal tensor h,
one obtains

(D−2)Rabe[c h
e
d] − hefRef [a

[c δ
b]
d] − 2R[a

e δ
b]
[c h

e
d] = 0 . (5.77)

This condition puts rather strong restrictions on the curvature. In order to
express them in a compact way, let as introduce shortcuts for tensors obtained
by various combinations of the principal tensor h, the Riemann tensor R and
the Ricci tensor Ric.

First, let us denote by hp the p-th matrix power of h,

hp ab = hac1h
c1
c2 · · ·hcp−1

b . (5.78)

Let us emphasize obvious, it is a different operation than the wedge power
used in the definition of h(j), (5.6). Next we define the tensor Rh(p) as the
contraction of hp with the Riemann tensor in the first two indices

Rh(p)
ab = hpcdR

cd
ab . (5.79)
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Similarly, we define the tensor Rich(p) as the contraction of hp with the Rie-
mann tensor in other pair of indices

Rich(p)
ab = hpcdR

c
a
d
b . (5.80)

The notation is motivated by the fact that for p = 0 we get just the Ricci
tensor, Rich(0) = Ric.

Rather non-trivial calculations (Krtouš 2017) show that the integrability
condition (5.77) implies that all contractions of the Riemann tensor with an
arbitrary power of h commute, in the sense of (5.66), with h itself,

[
Rh(p),h

]
= 0 ,

[
Rich(p),h

]
= 0 . (5.81)

Moreover, for odd p the tensors Rich(p) trivially vanish.

In particular, the commutativity (5.81) tells us that [ Ric,h ] = 0, which
guarantees that the right hand side of (5.76) vanishes, proving thus that ξ

is a Killing vector. Moreover, (5.81) also implies that all the tensors Rh(p)

and Rich(p) are diagonal in the Darboux frame. Indeed, the vectors of the
Darboux frame are eigenvectors of hp, which guarantees that the Ricci tensor
has to have the structure (4.11).

Taking a commutator of (5.75) with h, one obtains

(D−2)
[
∇ξ,h

]
=
[
h,Ric

]
· h+

1

2

[
Rh(1),h

]
. (5.82)

Employing the commutativity (5.81), we find that the covariant derivative∇ξ
of the primary Killing vector commutes with h,[

∇ξ,h
]
= 0 . (5.83)

However, the Killing tensor k(β) is defined as a function of Q, see definitions
(5.26) and (5.28), which is just Q = −h · h, cf. (5.12). Therefore, we also have[

∇ξ,k(β)
]

= 0 , (5.84)

which proves the condition (5.73).

Both conditions (5.73) and (5.74) thus follow from the integrability condi-
tion (5.77) for the principal tensor. That concludes the proof of the Nijenhuis–
Schouten commutativity (5.33), respectively (5.22).

In section 6.6 we will see that ξ can be used as a vector potential for a
special electromagnetic field which leads to an integrable motion of charged
particles. The result (5.83) thus shows, that its Maxwell tensor F = dξ = 2∇ξ
commutes with the principal tensor h and can also be skew-diagonalized in
the Darboux basis.
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5.5 Principal tensor as a symplectic structure

Motivation

In the construction of the Killing tower from the principal tensor we have
defined the Killing vectors l(j) by (5.16), or in terms of a generating function
by (5.29). We then claimed that we can associate Killing coordinates with
these Killing vectors and it turns out that those are exactly coordinates ψj
in the canonical metric (4.1), namely l(j) = ∂ψj . However, we also mentioned
that this last equality is not obvious and appears only after one reconstructs
the full form of the metric, employing the uniqueness theorem in section 5.3.

Indeed, immediately after the definition (5.16), it is not clear that one can
introduce the common Killing coordinates (ψ0, . . . , ψn−1), concentrating on
even dimensions, where each ψj would be constant along l(k) for k 6= j and
l(j) · dψj = 1. For that, it is sufficient to show that the Killing vectors Lie
commute, [

l(i), l(j)
]

= 0 , (5.85)

and that the Killing vectors leave coordinates xµ constant, l(j) · dxµ = 0.
The Lie commutativity (5.85) has been shown (in the terms of Nijenhuis–

Schouten brackets) in the previous section. However, this result can also be
established by a slightly different argument which possesses a beauty on its
own and to this argument we devote this section.

Symplectic structure on the spacetime

The principal tensor h is a closed non-degenerate 2-form on the configuration
space M . As such it defines a symplectic structure on this space for M even-
dimensional, and a contact structure on M in the case of odd dimensions.
To explore this idea, and since we have not introduced contact manifolds, let
us restrict to the case of even number of dimensions. (The discussion in odd
dimensions would proceed analogously.)

In even dimensions the principal tensor h thus plays a role of the symplectic
structure on the space M in the sense of the theory described in section B.1.
We can define its inverse h−1, which in the Darboux basis reads

h−1 =
∑
µ

x−1
µ (eµêµ − êµeµ) . (5.86)

For any function f on M , we can define the associated Hamiltonian vector
field Ξf as, cf. (B.3),

Ξf = h−1 · df . (5.87)

Note that we denoted this vector field in the D-dimensional spacetime M by
Ξ in order to distinguish it from a similar Hamiltonian vector field X on a
2D phase space. We introduce the Poisson bracket of two functions f and g
as follows

{f, g}PT = df · h−1 · dg , (5.88)
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where “PT” stands for the principal tensor generated Poisson bracket.

Remark: Let us stress that these operations are not related to analogous operations on
the relativistic particle phase space, which is realized as the cotangent space
T∗M , see section B.4. The Hamiltonian vector Ξf is an ordinary vector field
on M . The bracket (5.88) expects as arguments ordinary functions depending
just on the position in M . The dynamics of a relativistic particle is governed
by the Hamiltonian on the phase space T∗M and cannot be translated in a
straightforward way to the language of the symplectic geometry generated by
the principal tensor h.

Let us state a couple of observations. First, from the discussion of the
special Darboux frame (2.122) in section 2.8 it follows that êµ · dxν = 0, and
therefore

{xµ, xν}PT = 0 . (5.89)

As a consequence we see that the principal tensor Poisson bracket of any two
functions, which depend just on xµ coordinates, vanishes.

Next, the relations17 (5.20) actually mean that l(j) = −Ξ 1
2A

(j+1) . It moti-

vates us to introduce functions αj

αj =
1

2
A(j+1) , j = 0, 1, . . . , n− 1 , (5.90)

which can serve as coordinates instead of functions xµ. We thus have

{αi, αj}PT = 0 , (5.91)

and

l(j) = −Ξαj . (5.92)

As an immediate consequence we obtain

l(i) · dαj = {αi, αj}PT = 0 , (5.93)

cf. (B.6). Hence, the Killing vectors leave coordinates αj , as well as xµ, con-
stant. Similarly, using (B.8) we get[

l(αi), l(αj)
]

= −Ξ{αi,αj}PT
= 0 , (5.94)

which proves that the Killing vectors Lie commute.
One can thus expect that it is possible to introduce associated coordi-

nates ψj . This is actually provided by the Liouville’s procedure described in
section B.2. The coordinates αj commute with each other, (5.91), and the
Liouville’s procedure teaches us that they can thus be complemented into a

17 Let us mention that relations (5.20) follow from the relation (5.64), together with the
definition (5.29) and expansions (5.32) and (5.31). They can thus be deduced directly from
the properties of the principal tensor, without referring to canonical coordinates. Also, here

and below we use the relation dA(j+1) = 2
∑
µ xµA

(j)
µ dxµ, which follows from (D.12), for

example.
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canonical set of coordinates (α0, . . . , αn−1, ψ0, . . . , ψn−1) in which the sym-
plectic form h reads

h =
∑
j

dαj ∧ dψj . (5.95)

With the help of (B.12), it implies

l(j) = −Ξαj = ∂ψj , Ξψj = ∂αj . (5.96)

Killing vectors l(j) thus indeed define Killing coordinates ψj . As we al-
ready discussed in section 5.3, this observation is an important piece of the
uniqueness theorem. We established that the principal tensor defines canonical
coordinates. The uniqueness theorem additionally provides the explicit form
of the metric in these coordinates.

Let us conclude this section with some related observations. The symplectic
potential (5.4) for the principal tensor can be written as

b =
∑
j

αjdψj . (5.97)

Using the coordinates xµ instead of αj , see (5.90), one can rewrite the principal
tensor in the following form (5.3):

h =
∑
µ

xµdxµ ∧
(∑

j

A(j)
µ dψj

)
. (5.98)

We see that xµ and ψj are not canonically conjugate in the sense of the prin-
cipal tensor symplectic geometry. However, since α’s are functions of only x’s,
the coordinate vectors ∂ψj introduced in (5.96) coincide with coordinate vec-
tors ∂ψj of the coordinate set (xµ, ψj).

We could ask what are the coordinates canonically conjugate to xµ ≡ xµ.
It is easy to check that in terms of coordinates

πµ = xµ
∑
j

A(j)
µ ψj , (5.99)

a 1-form b̃ defined as

b̃ = −
∑
µ

πµdx
µ = −

∑
j

ψjdα
j , (5.100)

is also the symplectic potential for the principal tensor, h = db̃. It implies that

h =
∑
µ

dxµ ∧ dπµ , (5.101)

and (x1, . . . , xn, π1, . . . , πn) are canonical coordinates in the sense of the prin-
cipal tensor symplectic geometry.
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6 Particles and fields: Integrability and separability

In this chapter, we study particles and fields in the vicinity of higher-dimen-
sional rotating black holes. As can be expected their behavior reflects the rich
structure of hidden symmetries discussed in the previous chapter: the motion
of particles and light is completely integrable and the fundamental physical
equations allow separation of variables. Let us start our discussion with a brief
overview of the discovery of these unexpected properties.

The Kerr–NUT–(A)dS metric in four spacetime dimensions possesses a
number of remarkable properties related to hidden symmetries. In particular,
those discovered by Carter (1968a,b,c) include the complete integrability of
geodesic equations and the separability of the Hamilton–Jacobi and Klein–
Gordon equations. A natural question is whether and if so how far these results
can be extended to higher dimensions.

A first successful attempt on such a generalization, employing non-trivial
hidden symmetries, was made by Frolov and Stojković (2003b,a). In these
papers the authors generalized Carter’s approach to five-dimensional Myers–
Perry metrics with two rotation parameters, and demonstrated that the corre-
sponding Hamilton–Jacobi equation in the Myers–Perry coordinates allows a
complete separation of variables. This enabled to obtain an explicit expression
for the second-rank irreducible Killing tensor present in these spacetimes.18

These results were later generalized by Kunduri and Lucietti (2005) to the
case of a five-dimensional Kerr–(A)dS metric. Fields and quasinormal modes
in five-dimensional black holes are studied in Frolov and Stojković (2003b);
Cho et al (2012b, 2011). Page and collaborators (Vasudevan et al 2005a,b; Va-
sudevan and Stevens 2005) discovered that particle equations are completely
integrable and the Hamilton–Jacobi and Klein–Gordon equation are separa-
ble in the higher-dimensional Kerr–(A)dS spacetime, provided it has a spe-
cial property: its spin is restricted to two sets of equal rotation parameters.
A similar result was obtained slightly later for the higher-dimensional Kerr–
NUT–(A)dS spacetimes subject to the same restriction on rotation parameters
(Davis 2006; Chen et al 2006b). With this restriction the Kerr–NUT–(A)dS
metric becomes of cohomogeneity-two and possesses an enhanced symmetry
which ensures the corresponding integrability and separability properties.

Attempts to apply Carter’s method for general rotating black holes in six
and higher dimensions have met two obstacles. First, the explicit symmetries
of the Kerr–NUT–(A)dS metrics are, roughly speaking, sufficient to provide
only half of the required integrals of motion. This means, that already in
six dimensions one needs not one, but two independent Killing tensors, and

18 Let us note here that Carter’s method had been used to study higher-dimensional black
hole spacetimes prior to the works (Frolov and Stojković 2003b,a). For example, in Gib-
bons and Herdeiro (1999); Herdeiro (2000) the authors demonstrated the separability of
the Hamilton–Jacobi and Klein–Gordon equations for the five-dimensional so called BMPV
black hole (Breckenridge et al 1997). In this case, however, the corresponding Killing ten-
sor is reducible and the explicit symmetries of the spacetime are enough to guarantee the
obtained results.
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the number of required independent Killing tensors grows with the increasing
of number of spacetime dimensions. Second, more serious problem is that
the separation of variables in the Hamilton–Jacobi equation may exist only
in a very special coordinate system. However, how to choose the convenient
coordinates was of course unknown. In particular, the widely used Myers–
Perry coordinates have an unpleasant property of having a constraint (E.9),
which makes them inconvenient for separation of variables in more than five
dimensions.

The discovery of the principal tensor for the most general higher-dimen-
sional Kerr–NUT–(A)dS (Frolov and Kubizňák 2007; Kubizňák and Frolov
2007) spacetimes made it possible to solve both these problems. Namely,
the associated Killing tower contains a sufficient number of hidden symme-
tries complementing the isometries to make the geodesic motion integrable.
Moreover, the eigenvalues of the principal tensor together with the additional
Killing coordinates, give the geometrically preferred canonical coordinates in
the Kerr–NUT–(A)dS spacetime. It turns out that exactly in these coordi-
nates the Hamilton–Jacobi as well as the Klein–Gordon equations separate.
The following sections are devoted to a detailed discussion of these results.

6.1 Complete integrability of geodesic motion

The geodesic motion describing the dynamics of particles and the propagation
of light in the Kerr–NUT–(A)dS spacetimes is completely integrable. In this
section we prove this result, discuss how to obtain particles’ trajectories, and
how to introduce the action–angle variables for the corresponding dynamical
system.

Complete set of integrals of motion

We have learned in section 2.1 that the motion of a free relativistic particle can
be described as a dynamical system with the quadratic in momenta Hamilto-
nian (2.10). Turning to the Kerr–NUT–(A)dS spacetime, the towers of Killing
tensors (5.9) and Killing vectors (5.16) guarantee the existence of the following
D = 2n+ ε integrals of geodesic motion, n of which are quadratic in momenta
and n+ ε of which are linear in momenta:

Kj = kab(j) pa pb , j = 0, . . . n− 1 ,

Lj = la(j) pa , j = 0, . . . n− 1 + ε .
(6.1)

The observable K0 is, up to a trivial multiplicative constant, equivalent to the
Hamiltonian of the system

H =
1

2
gabpapb =

1

2
K0 . (6.2)
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Thanks to the commutation relations (5.22) all these observables are in invo-
lution (Page et al 2007; Krtouš et al 2007a,b; Houri et al 2008a):{

Ki,Kj

}
= 0 ,

{
Ki, Lj

}
= 0 ,

{
Li, Lj

}
= 0 , (6.3)

and in particular commute with the Hamiltonian. The motion of free particles
in the curved Kerr–NUT–(A)dS spacetime is thus complete integrable in the
Liouville sense, cf. section B.2.

For a particle with mass m the value of the constant K0 is −m2. As we
already explained, in the σ-parametrization, which we use, the above relations
remain valid in the limit m→ 0, that is for massless particles. As mentioned in
the remark after equation (5.23) in section 5.2, for a propagation of massless
particles one can use a different set of observables {K̃j , Lj}, where K̃j are
generated from the conformal Killing tensors Q(j),

K̃j = Qab(j) pa pb , j = 0, . . . n− 1 . (6.4)

The new observables are conserved and in involution, provided that the mo-
menta satisfy the zero-mass condition p2 = 0. Indeed, thanks to this con-
straint, the right-hand sides of commutation relations (5.24) vanish, which
implies the Poisson-bracket commutation of the observables in the new set.

Remark: It is interesting to note that the relations among the quadratic conserved
quantities Kj are highly symmetric. One could actually study a space with
the (inverse) metric given by the Killing tensor k(i), and all the tensors k(j)

would remain Killing tensors with respect to this new metric, e.g., Rietdijk
and van Holten (1996). This fact is precisely expressed by the first condition
(6.3), giving [k(i),k(j)]NS = 0 for the Nijenhuis–Schouten brackets among
these tensors. Similarly, all the vectors l(j) remain to be Killing vectors with
respect to the new metric. The geodesic motion in any of the spaces with the
metric given by k(i) is thus also complete integrable. However, in this context
one should emphasize that only the space with g = k(0) is the Kerr–NUT–
(A)dS spacetime. Spaces with the metric given by k(i), i > 0, neither possess
the principal tensor and the associated towers of Killing–Yano tensors, nor are
solutions of the vacuum Einstein equations. Moreover, although the geodesic
motion is integrable in these spaces, this is no longer true for the corresponding
fields; the symmetry among Killing tensors does not elevate to the symmetry
of the corresponding symmetry operators for the test fields in these spaces,
see section 6.3.

Particle trajectories

Substituting the coordinate expressions (5.56) and (5.57) into (6.1) gives the
following expressions for the integrals of motion in terms of momenta compo-
nents pxµ = p · ∂xµ and pψj = p · ∂ψj :

Kj =
∑
µ

A(j)
µ

(
Xµ

Uµ
p2
xµ +

Uµ
Xµ

(n−1+ε∑
k=0

(−x2
µ)n−1−k

Uµ
pψk

)2
)

+ ε
A(j)

cA(n)
p2
ψn ,

(6.5)

Lj = pψj . (6.6)
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These expressions can be ‘inverted’ and solved for the particle momenta.
Namely, summing equations (6.5) multiplied by (−x2

µ)n−1−j over values j =
0, . . . , n− 1 + ε, using the orthogonality relation (D.14), and some additional
manipulations, gives

pxµ = ±

√
XµK̃µ − L̃2

µ

Xµ
= ±

√
Xµ
Xµ

, (6.7)

pψj = Lj . (6.8)

Here we have introduced auxiliary functions

K̃µ =

n−1+ε∑
j=0

Kj(−x2
µ)n−1−j , (6.9)

L̃µ =

n−1+ε∑
j=0

Lj(−x2
µ)n−1−j , (6.10)

as well as their combination

Xµ = XµK̃µ − L̃2
µ . (6.11)

In odd dimensions we set Kn = L2
n/c. Functions K̃µ and L̃µ for different µ are

given by the same polynomial dependence and differ just by their argument,
K̃µ = K̃(xµ), L̃µ = L̃(xµ). The coefficients Kj and Lj in these polynomials
can be understood either as conserved observables on the phase space or as
numeric values of these observables, i.e., constants characterizing the motion.

It is remarkable that the expression (6.7) for pxµ depends only on one
variable xµ. This property stands behind the separability of the Hamilton–
Jacobi equation discussed in the next section. Signs ± in equations (6.7) are
independent for different µ and indicate that for a given value of xµ there exist
two possible values of momentum pxµ . We will return to this point below when
discussing a global structure of the level set L(K,L).

The trajectory of a particle can be found by solving the velocity equation,

ẋa =
∂H

∂pa
= gabpb . (6.12)

Employing the inverse metric (4.4), we obtain the expressions for the derivative
of xµ and ψj with respect to the inner time σ

ẋµ = ±
√
Xµ
Uµ

, (6.13)

ψ̇j =
∑
µ

(−x2
µ)n−1−j

Uµ

L̃µ
Xµ

, for j = 0, . . . , n− 1 ,

ψ̇n =
Ψn
cA(n)

−
∑
µ

1

x2
µUµ

L̃µ
Xµ

, for D odd .

(6.14)
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Since the expressions for velocities ẋµ are independent of the Killing coordi-
nates ψj , one can integrate the equations for xµ and ψj in two steps. Namely
after solving equations (6.13), finding xµ(σ), one substitutes these into equa-
tions (6.14) and integrates the Killing coordinates ψj .

However, Eqs. (6.13) for ẋµ are not decoupled since the factor Uµ mixes the
equations. In four dimensions, n = 2, these factors are, up to a sign, the same,
U1 = −U2 = Σ, cf. (3.8), and they can be eliminated by the time reparama-
trization, cf. (3.50). For general n such a trick is not possible. However, the
system can still be solved by an integration and algebraic operations. In four
dimensions such a procedure was demonstrated by Carter (1968a), in the fol-
lowing we generalize it to an arbitrary dimension.

First, we rewrite (6.13) as19

± (−x2
µ)n−1−j

2
√
Xµ

ẋµ =
(−x2

µ)n−1−j

2Uµ
, (6.15)

where the factor in front of ẋµ on the l.h.s. is a function of xµ only. Such a
function can be, in principle, integrated∫ xµ

x−
µ

(−x2
µ)n−1−j

2
√
Xµ

dxµ . (6.16)

The integral must be over an interval which belongs to the allowed range of the
coordinate xµ and where Xµ > 0. This condition is satisfied between turning
points x−µ and x+

µ , which are defined by Xµ = 0. It is natural to chose the
lower integration limit to be the smaller turning point x−µ . With this choice
we have also chosen the plus sign in (6.15).

Next, we introduce a set of functionsXj(x1, . . . , xn), j = 0, . . . , n− 1, given
by the sum of integrals (6.16):

Xj =
∑
µ

∫ xµ

x−
µ

(−x2
µ)n−1−j

2
√
Xµ

dxµ . (6.17)

In terms of these functions, the sum of equations (6.15) over µ gives

Ẋj =
1

2

∑
µ

(−x2
µ)n−1−j

Uµ
=

1

2
δj0 , (6.18)

where the last equality follows from (D.15). We can now integrate over the
time parameter σ, to get

X0 =
1

2
σ +X0

o =
1

2
σ + const. , j = 0 ,

Xj = Xj
o = const. , j = 1, . . . , n− 1 .

(6.19)

19 The factor 1/2 in these expressions is chosen for convenience, in order the final formulae
can be directly translated to the action–angle expressions below. In the following we also
assume the existence of turning points for the trajectories. This is automatically satisfied for
xµ describing the angle variables, and restricts the discussion to the bounded trajectories
regarding the radial coordinate.



Black holes, hidden symmetries, and complete integrability 113

Inverting ‘known’ relations (6.17) between X0, . . . , Xn−1 and x1, . . . , xn, one
obtains the time evolution of coordinates xµ(σ) parametrized by constants
Kj , Lj , and Xj

o . Substituting into equations (6.14) and integrating, one gets
the time evolution ψj(σ) of the Killing coordinates parametrized by the same
constants together with additional integration constants ψjo.

The procedure (6.15)–(6.19) may seem as an ad hoc manipulation. How-
ever, as we shall see below it is closely related to the Liouville construction for
complete integrable systems.

We demonstrated that as a result of the complete integrability of geodesic
equations in the higher-dimensional Kerr–NUT–(A)dS spacetimes, finding so-
lutions of these equations reduces to the calculation of special integrals. This
integral representation of the solution is useful for the study of general prop-
erties of particle and light motion in these metrics. However, it should be
emphasized that only in some special cases these integrals can be expressed
in terms of known elementary and special functions. Let us remind that in
four dimensions a similar problem can be solved in terms of elliptic integrals,
the properties of which are well known. The integrals describing particle and
light motion in higher dimensions contain square roots of the polynomials of
the order higher than four, and this power grows with the increasing number
of spacetime dimensions. Another complication is that the higher-dimensional
problem depends on a larger number of parameters. At present, the problem
of classification of higher-dimensional geodesics in Kerr–NUT–(A)dS metrics
is far from its complete solution. Here we give some references on the publi-
cations connected with this subject. The particle motion in five-dimensional
Kerr–(A)dS metrics was considered in Frolov and Stojković (2003a); Kagra-
manova and Reimers (2012); Diemer et al (2014); Delsate et al (2015). The pa-
pers Gooding and Frolov (2008); Papnoi et al (2014) discuss the shadow effect
for five-dimensional rotating black holes. Different aspects of geodesic motion
in the higher-dimensional black hole spacetimes were discussed in Hackmann
et al (2009); Enolski et al (2011).

Conjugate coordinates on the level set

Having proved that the geodesic motion is completely integrable, let us now
discuss the corresponding level sets (here) and the construction of the action–
angle variables (below). For simplicity, in this exposition (till end of section 6.1)
we restrict ourselves to the case of even dimensions, D = 2n.

Following the Liouville constructions, described in section B.2, let us ob-
tain a generating functionW (x, ψ;K,L), which allows us to change the original
phase space coordinates (xµ, ψj ; pxµ , pψj ) to new canonically conjugate coor-
dinates (Xj , Ψ j ;Kj , Lj), where Kj and Lj are the integrals of motion (6.1). It
is given by the integral (B.29), which now reads:

W (x, ψ;K,L) =

∫
c

(∑
µ

pxµ(xµ;K,L) dxµ +
∑
j

pψj (Lj) dψj

)
. (6.20)
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Here, the momenta pxµ and pψj are given by (6.7) and (6.8) as functions of
old positions and new momenta and we have used the fact that pxµ depends
only on xµ and pψj is given by Lj . If we substitute (6.7) and (6.8) explicitly
and use a curve c that starts at ψj = 0 and at turning values x−µ of variables
xµ, we obtain

W (x, ψ;K,L) =
∑
µ

∫ xµ

x−
µ

√
Xµ
Xµ

dxµ +
∑
j

Ljψj . (6.21)

As we shall see, this is precisely the separated Hamilton’s function (6.36) and
(6.38), for the Hamilton–Jacobi equation studied in the next section, recovering
the general relation W = S, (B.39).

The generating function W defines new coordinates Xj and Ψ j , that are
conjugate to observables Kj and Lj , as follows:

Xj =
∂W

∂Kj
=
∑
µ

∫ xµ

x−
µ

(−x2
µ)n−1−j

2
√
Xµ

dxµ ,

Ψ j =
∂W

∂Lj
= ψj +

∑
µ

∫ xµ

x−
µ

L̃µ
Xµ

(−x2
µ)n−1−j√
Xµ

dxµ .

(6.22)

Since the integrand in (6.21) vanishes at turning point x−µ , we could ignore
the derivative of the lower integral limit, despite the fact that x−µ depends on
Kj .

Clearly, Xj are exactly the integrals introduced in (6.17). However, Ψ j are
not the same as the original ψj . Canonical Poisson brackets read

{Xi,Kj} = δij , {Ψ i, Lj} = δij , (6.23)

all other being zero. Since the Hamiltonian is H = 1
2K0, the Hamilton equa-

tions for Xj and Ψ j are just Ẋj = 1
2δ
j
0, cf. (6.18), and Ψ̇ j = 0. All Xj and Ψ j

are thus constants except X0 = 1
2σ + const. Inverting the relations (6.22) to

xµ(X,Ψ) and ψj(X,Ψ) gives the trajectory of the particle.

Action–angle variables

Let us remind that for a completely integrable system with D degrees of free-
dom there exists D independent integrals of motion in involution Pi. We called
a level set a D-dimensional submanifold of the phase space LP , where these in-
tegrals have fixed values. According to general theory (Arnol’d 1989; Goldstein
et al 2002) if this level set is compact, it has a structure of multi-dimensional
torus with an affine structure, and one can introduce the so called action–angle
variables.
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Remark: The affine structure of the level set LP refers to the fact that coordinates Q,
on the level set, which are conjugate to P , are given uniquely up to a linear
transformation. In other words, if one uses a different combination of integrals
of motions P̄ , the corresponding conjugate coordinates Q̄ are related to Q on
the given level set by a linear transformation. Action of the Hamilton flow
associated with any of the conserved quantities is linear in the sense of affine
structure—all conserved quantities generate Abelian group of translations on
the level set. The torus structure of the level set must be compatible with the
affine structure. However, its existence can be understood only after taking
into account interpretation of the involved variables.

In the Kerr–NUT–(A)dS spacetime the conserved quantities are P = (K,L)
and the corresponding level set is L(K,L). As in the general case, this set is
a Lagrangian submanifold, where the momenta pa can be found as functions
of the coordinates (xµ, ψj) and conserved quantities, cf. equations (6.7) and
(6.8). We see that relations (6.7) are independent for each plane xµ–pxµ . In
each of these planes the condition (6.7) defines a closed curve which spans the
range (x−µ , x

+
µ ) between turning points x±µ for which Xµ = 0. The curve has

two branches over this interval, one with pxµ > 0, another with pxµ < 0.

The turning points x±µ should exist for angular coordinates xµ since the
ranges of these coordinates are bound. Situation can be different for the radial
coordinate r (Wick rotated xn). Depending on the values of conserved quan-
tities, one can have two turning points (bounded orbits), one turning point
(scattering trajectories), or no turning points (fall into a black hole). For sim-
plicity, here we discuss only the case where there are two turning points for
r. Thus, one has a full torus structure in the x-sector of the level set. The
torus structure in Killing coordinates ψj is also present. Condition (6.8) just
fixes the momenta to be constant, but leaves the angles unrestricted. However,
some linear combination of Killing angles ψj defines angular coordinates ϕµ,
which are periodic. In the maximally symmetric case or for the Myers–Perry
solution these coordinates are simply φµ discussed previously. In the periodic
coordinates we get the explicit torus structure. The only exception is the time
direction, for which one has an infinite range with a translation symmetry.

When the toroidal structure of the level set is identified, the angle variables
are those linear coordinates adjusted to the torus which have period 2π. The
canonically conjugate coordinates can be calculated as integrals

1

2π

∫
c

padx
a (6.24)

over a closed loop c circling the torus exactly once in the direction of the angle
variable. Similarly to discussion in section B.2, the integral does not depend
on a continuous deformation of the curve. One can thus deform these curves
either in such a way that they belong only to one of xµ–pxµ planes, which
defines the action variable Iµ conjugate to angle αµ, or, one can use such a
curve that only ϕµ changes, which defines the action variable Aµ conjugate to
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the angle variable ϕµ. Thus we have

Iµ =
1

π

∫ x+
µ

x−
µ

√
Xµ
Xµ

dxµ ,

Aµ =
1

2π

∫ 2π

0

∑
k

Lk
∂ψk
∂ϕµ

dϕµ =
∑
k

Lk
∂ψk
∂ϕµ

.

(6.25)

Here we have used that the integral over a loop in the xµ–pxµ plane is twice
the integral between the turning points, and that ∂ψk/∂ϕ

µ are constants.
These relations should be understood as relations between conserved quan-

tities (I, A) and (K,L). Indeed, the action variables just give a different label-
ing of the level sets L(K,L). These expressions can be, in principle, inverted,
and substituted into the generating function (6.21), defining thus a generating
function from original to the action-angle coordinates,

W (x, ψ; I, A) = W
(
x, ψ;K(I, A), L(I, A)

)
. (6.26)

The angle variables can now be obtained by taking derivatives of W with
respect to Iµ and Aµ,

αµ =
∂W

∂Iµ
=
∑
j

Xj ∂Kj

∂Iµ
,

Φµ =
∂W

∂Aµ
=
∑
j

Xj ∂Kj

∂Aµ
+
∑
j

Ψ j
∂Lj
∂Aµ

,

(6.27)

where we used (6.22). As expected, the angle variables (α,Φ) are just a linear
combination of (X,Ψ). The constant coefficients ∂Kj/∂Iµ and ∂Lj/∂Aµ can
be calculated as inverse matrices to ∂Iµ/∂Kj and ∂Aµ/∂Lj , and

∂Kj

∂Aµ
= −

∑
ν,k

∂Kj

∂Iν

∂Iν
∂Lk

∂Lk
∂Aµ

. (6.28)

The form of the inverse coefficients follows from (6.25),

∂Iµ
∂Kj

=
1

π

∫ x+
µ

x−
µ

(−x2
µ)n−1−j

2
√
Xµ

dxµ ,

∂Iµ
∂Lj

=
1

π

∫ x+
µ

x−
µ

L̃µ
Xµ

(−x2
µ)n−1−j√
Xµ

dxµ ,

∂Aµ
∂Lj

=
∂ψj
∂ϕµ

,

(6.29)

where, again, it is safe to ignore derivatives of integral limits x±µ .
To summarize, the action variables (I, A) are defined by (6.25). The con-

jugate angle variables (α,Φ) are related to (X,Ψ) by linear relations (6.27),
and (X,Ψ) are defined in (6.22). It should be mentioned that although in the
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definition of the action variable Iµ we used the loop circling the torus just
in xµ–pxµ plane, the conjugate angle variable αµ is not a function of just
one coordinate xµ, it depends on all coordinates (x1, . . . , xn). Similarly, in the
inverse relations, xµ depends on all angles αν . However, the coordinates xµ
are multiply-periodic functions of angle variables. When any angle αν changes
by period 2π, all xµ return to their original values, cf. general discussion in
Chapter 10 of Goldstein et al (2002).

6.2 Separation of variables in the Hamilton–Jacobi equation

As discussed in section B.3, the particle motion can also be described in terms
of the Hamilton–Jacobi equation. For an autonomous completely integrable
system one can write down not only the Hamilton–Jacobi equation (B.40)

H(x,dS) = const. , (6.30)

but also the Hamilton–Jacobi equations (B.42) for all conserved quantities.
The relativistic particle is an autonomous system (physical observables do

not depend explicitly on time parameter σ) and, as we have just seen, in the
Kerr–NUT–(A)dS spacetime it is complete integrable. The Hamilton–Jacobi
equations corresponding to the conserved quantities (6.1) read

dS · k(j) · dS ≡ kab(j)S,aS,b = Kj . (6.31)

l(j) · dS ≡ la(j)S,a = Lj , (6.32)

The spacetime gradient dS of the Hamilton–Jacobi function S(x;K,L) con-
tains information about partial derivatives with respect to spacetime coordi-
nates xµ, ψj of a spacetime point x

dS =
∑
µ

∂S

∂xµ
(x;K,L)dxµ +

∑
j

∂S

∂ψj
(x;K,L)dψj . (6.33)

Here K = (K0, . . . ,Kn−1) and L = (L0, . . . , Ln−1+ε) are constants labeling
values of conserved quantities Kj and Lj for the induced particle motion. Ex-
plicit forms of the Hamilton–Jacobi equations are obtained by using coordinate
expressions (5.56) and (5.57), giving

Kj =
∑
µ

A(j)
µ

(
Xµ

Uµ

( ∂S
∂xµ

)2

+
Uµ
Xµ

(n−1+ε∑
k=0

(−x2
µ)n−1−k

Uµ

∂S

∂ψj

)2
)

+ε
A(j)

cA(n)

( ∂S
∂ψn

)2

,

(6.34)

Lj =
∂S

∂ψj
. (6.35)

Since H = 1
2K0, cf. (6.2), we do not have to consider the Hamilton–Jacobi

equation (6.30) separately, it is part of the system (6.31)–(6.32). It also implies
that constant K0 is given by the mass of the particle, K0 = −m2.
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The symmetry structure of the Kerr–NUT–(A)dS spacetime has a remark-
able consequence. All the Hamilton–Jacobi equations (6.31) and (6.32) can be
solved using an additive separable ansatz

S =
∑
µ

Sµ +

n−1+ε∑
j=0

Lj ψj , (6.36)

where each Sµ ≡ Sµ(xµ) is a function of just one variable xµ (of course, Sµ
depends also on constants Kj and Lj).

Indeed, the linear dependence on the Killing coordinates ψj directly solves
equations (6.35). Separability in the xµ coordinate guarantees that ∂S

∂xµ
= S′µ.

Upon multiplying the equations (6.34) by (−x2
µ)n−1−j , and summing together,

using relations (D.14), gives the following equation for Sµ:

(S′µ)2 =
K̃µ

Xµ
− L̃2

µ

X2
µ

=
Xµ
X2
µ

, (6.37)

where the functions K̃µ, L̃µ, and Xµ are defined by (6.9)–(6.11). Each of
these functions, as well as the metric function Xµ, depend just on one vari-
able xµ. The equation (6.37) is thus an ordinary differential equation in a
single variable, which justifies the consistency of the ansatz (6.36). Finding
the Hamilton–Jacobi function S is thus equivalent to integrating the ordinary
differential equations (6.37), giving

Sµ =

∫ xµ

x−
µ

√
Xµ
Xµ

dxµ , (6.38)

where, similar to (6.16), we start the integration at the (smaller) turning point
x−µ , where Xµ = 0.

Remark: In section 2.3 we have mentioned that the separability of the Hamilton–Jacobi
equation can be characterized by the corresponding separability structure (Be-
nenti and Francaviglia 1979, 1980; Demianski and Francaviglia 1980; Kalnins
and Miller 1981). The off-shell Kerr–NUT–(A)dS geometry possesses (n+ ε)-
separability structure. Indeed, we can identify the ingredients of the first theo-
rem of section 2.3 as follows: in D = 2n+ ε dimensions, the Kerr–NUT–(A)dS
geometry has n + ε Killing vectors l(j), j = 0, . . . , n − 1 + ε, and n Killing
tensors k(j), j = 0, . . . , n − 1. (i) All these objects commute in the sense
of Nijenhuis–Schouten bracket, (5.22), and (ii) the Killing tensors have com-
mon eigenvectors ∂xµ which obviously Lie-bracket commute with the Killing
vectors l(j) = ∂ψj and which are orthogonal to the Killing vectors. All the
requirements of the theorem are thus satisfied and the result follows.

6.3 Separation of variables in the wave equation

The symmetry of the Kerr–NUT–(A)dS metric not only allows one to solve the
particle motion, but also provides separability of various test field equations.
In this section we demonstrate that the massive scalar field equation

(�−m2)φ = 0 (6.39)
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allows a complete separation of variables in the Kerr–NUT–(A)dS spacetime
(Frolov et al 2007). Here, as earlier, we defined the scalar wave operator as

� = gab∇a∇b . (6.40)

Remark: The box-operator in (6.40) is, in a sense, a first quantized version of
the Hamiltonian (6.2). Similarly, one could define a second-order operator
K = −∇akab∇b for any symmetric second-rank tensor k. This can be under-
stood as a ‘heuristic first quantization’ of a classical observable K = kabpapb,
using the rule p→ −i∇. Of course, when applying this rule one has to chose
a particular operator ordering. In our example we have chosen the symmet-
ric ordering. In principle, one could also use a different (from the Levi-Civita)
covariant derivative. However, all these alternative choices would lead to opera-
tors that differ in lower order of derivatives, which could be studied separately.

In the Kerr–NUT–(A)dS spacetime the tower of Killing tensors (5.9) and
Killing vectors (5.16) defines a tower of the following associated second-order
and first-order operators:

Kj = −∇akab(j)∇b , (6.41)

Lj = −i la(j)∇a , (6.42)

with the wave operator (6.40) equivalent to K0. It is then natural to ask about
the commutation properties of these operators, as an operator analogy to (6.3).
In general, it can be shown (Carter 1977; Kolář and Krtouš 2015) that two
second-order operators constructed from the corresponding tensors k1 and k2

commute in the highest-order in derivatives provided the Nijenhuis–Schouten
bracket of the two tensors vanishes, [k1,k2]NS = 0. However, to guarantee the
commutativity to all orders, some additional ‘anomalous conditions’ must be
satisfied, see Carter (1977); Kolář and Krtouš (2015).

Since in the Kerr–NUT–(A)dS spacetimes all the operators (6.41) and
(6.42) are generated by a single object, the principal tensor, it is not so sur-
prising that the anomalous conditions hold and all these operators mutually
commute (Sergyeyev and Krtouš 2008; Kolář and Krtouš 2015):[

Kk,Kl
]

= 0 ,
[
Kk,Ll

]
= 0 ,

[
Lk,Ll

]
= 0 . (6.43)

Commutativity can be also proved directly, by using the coordinate expressions
for these operators (Sergyeyev and Krtouš 2008):

Lj = −i ∂

∂ψj
, (6.44)

Kj =
∑
µ

A
(j)
µ

Uµ
K̃µ , (6.45)

where each K̃µ involves only one coordinate xµ and Killing coordinates ψj :

K̃µ = − ∂

∂xµ

[
Xµ

∂

∂xµ

]
− εXµ

xµ

∂

∂xµ

− 1

Xµ

[n−1+ε∑
k=0

(−x2
µ)n−1−k ∂

∂ψk

]2

− ε 1

cx2
µ

[
∂

∂ψn

]2

.

(6.46)
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The commutativity (6.43) implies that the operators Kj and Lj have com-
mon eigenfunctions φ,

Kjφ = Kjφ , Ljφ = Ljφ , (6.47)

which can be labeled by the eigenvalues Kj and Lj . These eigenfunctions can
be found by a separation of variables (Frolov et al 2007; Sergyeyev and Krtouš
2008). Namely, starting with the multiplicative separation ansatz

φ =
∏
µ

Rµ

n−1+ε∏
k=0

exp
(
iLkψk

)
, (6.48)

where each function Rµ depends only on one coordinate xµ, Rµ = Rµ(xµ), one
can show that equations (6.47) are equivalent to conditions

(XµR
′
µ)′ + ε

Xµ

xµ
R′µ +

Xµ
X2
µ

Rµ = 0 . (6.49)

These are ordinary differential equations for functions Rµ, which can be solved,
at least in principle. Here, functions Xµ are the same as before, defined by
(6.9)–(6.11).

Remark: The separability of the wave equation is again in an agreement with the theory
of separability structures mentioned in section 2.3. In the previous section
we have already shown that the Kerr–NUT–(A)dS geometry possesses (n +
ε)-separability structure. To fulfill the second theorem of section 2.3, which
guarantees the separability of the wave equation, one has to show that the
eigenvectors ∂xµ are eigenvectors of the Ricci tensor. However, the Ricci tensor
is diagonal in the special Darboux frame, (4.11), and vectors ∂xµ are just
rescaled vectors eµ, cf. (4.8). This justifies the separability of the Klein–Gordon
equation in off-shell Kerr–NUT–(A)dS spacetimes.

Let us finally note that the Hamilton–Jacobi equations discussed in the
previous section can be actually understood as a semiclassical approximation
to the wave-like equations (6.47). In such an approximation one looks for a
solution in the form

φ = A exp
( i
~
S
)
, (6.50)

which when plugged into equations (6.47) with each derivative weighted by ~,
and looking for the highest order in the limit ~→ 0, gives the Hamilton–Jacobi
equations (6.31)–(6.32) for S, cf. Frolov et al (2007); Sergyeyev and Krtouš
(2008).

Remark: When discussing the complete integrability of geodesic motion in the previous
section, we mentioned that the geodesic motion in spaces with the metric given
by any of the Killing tensors k(i) is also complete integrable. This property,
however, does not elevate to the corresponding wave equations. Namely, the
operators (6.41) given by the covariant derivative associated with the metric
k(i), i 6= 0, no longer mutually commute; the anomalous conditions needed for
the operator commutativity are satisfied only for the Levi-Civita derivative
associated with the Kerr–NUT–(A)dS metric. In particular, the Ricci tensors
associated with the metric given by higher (i > 0) Killing tensors are not
diagonal in the common frame of eigenvectors of all Killing tensors and the
separability structure does not obey the extra condition needed for the sepa-
ration of the Klein–Gordon field equation, see Kolář (2014); Kolář and Krtouš
(2015) for more details.
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6.4 Dirac equation

The solution of the massive Dirac equation in the Kerr–NUT–(A)dS space-
times can be found in a special (pre-factor) separated form and the problem is
transformed to a set of ordinary differential equations. Similar to the massive
scalar equation, this solution is obtained as a common eigenfunction of a set
of mutually commuting operators, one of which is the Dirac operator.

Overview of results

The study of Dirac fields in a curved spacetime has a long history. In 1973
Teukolsky rephrased the Dirac massless equation in Kerr spacetime in terms
of a scalar ‘fundamental equation’ which could be solved by a separation of
variables. However, such an approach does not work for the massive Dirac
equation and it is difficult to generalize it to higher dimensions. There is yet
another method which goes along the lines we used for the scalar wave equa-
tion: one can postulate the multiplicative ansatz for the solution of the Dirac
equation and obtain independent (but coupled) differential equations for each
component in this ansatz.

This approach dates back to the seminal paper of Chandrasekhar who
in 1976 separated and decoupled the Dirac equation in the Kerr background
(Chandrasekhar 1976), see section 3.5. A few years later, Carter and McLe-
naghan (1979) demonstrated that behind such a separability stands a first-
order operator commuting with the Dirac operator which is constructed from
the Killing–Yano 2-form of Penrose (1973). This discovery stimulated subse-
quent developments in the study of symmetry operators of the Dirac equation
in curved spacetime.

In particular, the most general first-order operator commuting with the
Dirac operator in four dimension was constructed by McLenaghan and Spindel
(1979). This work was later extended by Kamran and McLenaghan (1984b)
to R-commuting symmetry operators. Such operators map solutions of the
massless Dirac equation to other solutions and correspond to symmetries which
are conformal generalizations of Killing vectors and Killing–Yano tensors.

With recent developments in higher-dimensional gravity, the symmetry
operators of the Dirac operator started to be studied in spacetimes of an
arbitrary dimension and signature. The first-order symmetry operators of the
Dirac operator in a general curved spacetime has been identified by Benn and
Charlton (1997) and Benn and Kress (2004). The restriction to the operators
commuting with the Dirac operator has been studied in Cariglia et al (2011a).

The higher-dimensional Dirac equation has been also studied in specific
spacetimes. In the remarkable paper Oota and Yasui (2008) separated the
Dirac equation in the general off-shell Kerr–NUT–(A)dS spacetime, general-
izing the results (Chandrasekhar 1976; Carter and McLenaghan 1979) in four
dimensions. The result of Oota and Yasui (2008) has been reformulated in the
language of a tensorial separability and related to the existence of the commut-
ing set of operators in Wu (2008, 2009c); Cariglia et al (2011b), and generalized
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to the presence of a weak electromagnetic field in Cariglia et al (2013a). Even
more generally, separability of the torsion modified Dirac equation was demon-
strated in the presence of U(1) and torsion fluxes of the Kerr–Sen geometry
and its higher-dimensional generalizations (Houri et al 2010b) as well as in the
most general spherical black hole spacetime of minimal gauged supergravity
(Wu 2009a,b), see also Kubizňák et al (2009b); Houri et al (2010a). The Dirac
symmetry operators in the presence of arbitrary fluxes were studied in Acik
et al (2009); Kubizňák et al (2011).

Before we review the results for Kerr–NUT–(A)dS spacetimes, let us make
one more remark. Although the first-order symmetry operators are sufficient
to justify separability of the massless Dirac equation in the whole Plebanski–
Demianski class of metrics in four dimensions or separability of the massive
Dirac equation in Kerr–NUT–(A)dS spacetimes in all dimensions, they are not
enough to completely characterize all Dirac separable systems and one has to
consider higher-order symmetry operators, e.g., McLenaghan et al (2000). In
particular, there are known examples (Fels and Kamran 1990) where the Dirac
equation separates but the separability is related to an operator of the second-
order. It means that the theory of separability of the Dirac equation must
reach outside the realms of the so called factorizable systems (Miller 1988), as
such systems are fully characterized by first-order symmetry operators.

In the following we review the separability results for the Dirac equation in
the Kerr–NUT–(A)dS spacetime (Oota and Yasui 2008; Cariglia et al 2011a,b).
A short overview of Dirac spinors in a curved spacetime of an arbitrary di-
mension can be found in section F.1. In the same appendix, in section F.2, one
can also find a characterization of the first order operators that commute with
the Dirac operator. Using these general results, we show below that the gen-
eral off-shell Kerr–NUT–(A)dS spacetime admits a set of mutually commuting
first-order operators including the Dirac operator, whose common eigenfunc-
tions can be found in a tensorial R-separable form.

Representation of Dirac spinors in Kerr–NUT–(A)dS spacetimes

We want to study the Dirac operator and its symmetries in the Kerr–NUT–
(A)dS spacetime. For that we have to specify the representation of the gamma
matrices. As discussed in section F.1, the choice of representation is equiv-
alent to the choice of a frame ϑE in the Dirac bundle associated with the
orthonormal Darboux frame (4.8) in the tangent space TM in such a way
that components γaAB of the gamma matrices are constant and satisfy

γa γb + γb γa = 2 gabI . (6.51)

Following Oota and Yasui (2008), 2n-dimensional Dirac bundle can be cho-
sen as the tensor product of n two-dimensional bundles SM , i.e., DM = SnM .
We use Greek letters ε, ς, . . . for tensor indices in these 2-dimensional spaces
and values ε = ±1 (or just ±) to distinguish their components. In the Dirac
bundle, we choose a frame ϑE in a tensor product form:

ϑE = ϑε1...εn = ϑε1 ⊗ · · · ⊗ ϑεn , (6.52)
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where ϑ+ and ϑ− form a frame in the 2-dimensional spinor space S. With
such a choice we have a natural identification of Dirac indices E with the
multi-index {ε1, . . . , εn}.

A generic 2-dimensional spinor can thus be written as χ = χεϑε = χ+ϑ+ +

χ−ϑ−, with components being two complex numbers
(
χ+

χ−

)
. Similarly, the

Dirac spinors ψ ∈ DM can be written as ψ = ψε1...εnϑε1...εn with 2n compo-
nents ψε1...εn .

Before we specify the components of the gamma matrices in this frame,
let us introduce some auxiliary notations. Let I, ι, σ, and σ̂ be the unit and
respectively Pauli operators on SM with components

Iες =

(
1 0
0 1

)
, ιες =

(
1 0
0 −1

)
, σες =

(
0 1
1 0

)
, σ̂ες =

(
0 −i
i 0

)
. (6.53)

Next, for any linear operator α ∈ S1
1M we denote by α〈µ〉 ∈ D1

1M a linear
operator on the Dirac bundle

α〈µ〉 = I ⊗ · · · ⊗ I ⊗α⊗ I ⊗ · · · ⊗ I , (6.54)

with α on the µ-th place in the tensor product. Similarly, for mutually different
indices µ1, . . . , µj we define

α〈µ1...µj〉 = α〈µ1〉 · · ·α〈µj〉 , (6.55)

that means that α’s are on the positions µ1, . . . , µj in the product.
Equipped with this notation, we are now ready to write down the abstract

gamma matrices with respect to the frame (eµ, êµ , ê0) given by (4.8) in the
tangent space and ϑE given by (6.52) in the Dirac bundle:

γµ = ι〈1...µ−1〉 σ〈µ〉 , γµ̂ = ι〈1...µ−1〉 σ̂〈µ〉 , γ0 = ι〈1...n〉 . (6.56)

The odd gamma matrix γ0 is defined only in an odd dimension. It is straight-
forward to check that the matrices (6.56) satisfy the property (6.51).

In components, the action of these matrices on a spinor ψ = ψε1...εnϑε1...εN
is given as

(γµ ψ)ε1...εn =
(µ−1∏
ν=1

εν

)
ψε1...(−εµ)...εn ,

(γµ̂ ψ)ε1...εn = −iεµ
(µ−1∏
ν=1

εν

)
ψε1...(−εµ)...εn ,

(γ0 ψ)ε1...εn =
( n∏
ν=1

εν

)
ψε1...εn .

(6.57)

Finally, we also use a shorthand

γa1...ap = γ[a1 . . . γap] . (6.58)
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Dirac symmetry operators in Kerr–NUT–(A)dS spacetimes

The Kerr–NUT–(A)dS spacetime is equipped with the full tower of Killing–
Yano symmetry objects. As discussed in section F.2, such objects allow one
to define first-order operators that commute with the Dirac operator. In fact,
as we now demonstrate, it is possible to choose such a subset of Killing–Yano
symmetries that yields a full set of D first-order operators, one of which is the
Dirac operator D, that all mutually commute.

Namely, we can use n+ ε explicit symmetries described by Killing vec-
tors. Using (F.29), for each Killing vector l(j) we thus have the corresponding
operator Lj ,

Lj = Kl(j) = la(j)∇a +
1

4

(
∇[al

b]
(j)

)
γab , j = 0, 1, . . . , n+ ε . (6.59)

These operators can be complemented with n operators (F.30) constructed

from the even closed conformal Killing–Yano forms h(k),

Mk =Mh(k) =

=
1

(2k)!
γaa1...a2k h(k)

a1...a2k
∇a +

1

2(2k−1)!

D − 2k

D−2k+1

(
∇ch(k)

ca2...a2k

)
γa2...a2k ,

(6.60)

k = 0, 1, . . . , n. In particular, for k = 0 we get, as a special case, the Dirac
operator itself, D =M0. (See Appendix F for a more compact notation for
these operators.)

It turns out that the strong symmetry structure of the off-shell Kerr–
NUT–(A)dS spacetime is sufficient to guarantee that these operators mutually
commute (Cariglia et al 2011b):

[Li, Lj ] = 0 , [Mk,Ml] = 0 , [Lj ,Mk] = 0 . (6.61)

They thus have common spinorial eigenfunctions and one can hope that these
can be found in a separable form.

To demonstrate that, we first write down the operators in an explicit co-
ordinate form. The operators Lj are related to the explicit symmetry along
the Killing vectors l(j) = ∂ψj . They thus have the following simple coordinate
form:

Lj =
∂

∂ψj
. (6.62)

The coordinate form of Mk is much more complicated, and in particular one
needs to know the explicit form of the spin connection. This is listed in Ap-
pendix D.2. To illustrate the structure of Mk, we just write it down in an
even dimension, see Cariglia et al (2011b) for the results in odd dimensions
and their derivation. The even-dimensional Mk reads

Mj = ij
∑
µ

√
Xµ

Uµ
B(j)
µ

(
∂

∂xµ
+

X ′µ
4Xµ

+
1

2

∑
ν

ν 6=µ

1

xµ−ι〈µν〉xν

− i ι〈µ〉
Xµ

∑
k

(−x2
µ)N−1−k ∂

∂ψk

)
γµ ,

(6.63)
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where the matrices B
(k)
µ are ‘spinorial analogues’ of functions A

(j)
µ , cf. (4.2),

B(k)
µ =

∑
ν1,...,νk

ν1<···<νk, νi 6=µ

ι〈ν1〉xν1 · · · ι〈νk〉xνk . (6.64)

Tensorial R-separability of common eigenfunctions

Now we can formulate the desired result: the commuting symmetry operators
Lj and Mk have common spinorial eigenfunctions ψ

Ljψ = i Ljψ , (6.65)

Mkψ = Mkψ , (6.66)

which can be found in the tensorial R-separated form

ψ = R exp
(
i
∑
j Ljψj

) ⊗
ν

χν . (6.67)

Here, {χν} is an n-tuple of 2-dimensional spinors and R is the Clifford-valued
prefactor

R =
∏
κ,λ
κ<λ

(
xκ + ι〈κλ〉xλ

)− 1
2

. (6.68)

As a part of the separation ansatz we ask that χν depends only on the variable
xν , χν = χν(xν).

In terms of components, this reduces to the ansatz made in Oota and Yasui
(2008):

ψε1...εn = φε1...εn exp
(
i
∑
j Ljψj

)∏
ν

χενν . (6.69)

Here, φε1...εn is a diagonal element of the prefactor R,

φε1...εn =
∏
κ,λ
κ<λ

(
xκ + εκελxλ

)− 1
2

. (6.70)

Plugging the multiplicative ansatz (6.67) into equations (6.65) and (6.66),
one finds that they are satisfied if each of the two-dimensional spinors χµ
satisfies the ordinary differential equation in xµ which, in an even dimension,
reads[( d

dxν
+

X ′ν
4Xν

+
L̃ν
Xν
ι〈ν〉

)
σ〈ν〉 −

1√
|Xν |

(
−ι〈ν〉

)n−ν
M̃ν

]
χν = 0 . (6.71)

Here, the function L̃ν of a single variable xµ is again given by (6.10),

L̃µ =
∑
j

Lj(−x2
µ)n−1−j , (6.72)
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and, similarly, we introduced the spinorial function M̃µ

M̃ν =
∑
k

(−i)kMk (−ι〈ν〉xν)n−1−k . (6.73)

Taking the component ς = ± of the spinorial equation (6.71) we get( d

dxν
+

X ′ν
4Xν

− ς L̃ν
Xν

)
χ−ςν −

(
−ς
)n−ν√
|Xν |

M̃ ς
νχ

ς
ν = 0 , (6.74)

with
M̃ ς
ν =

∑
k

(−i)kMk (−ςxν)n−1−k . (6.75)

For each ν, these are two coupled ordinary differential equations for compo-
nents χ+

ν and χ−ν , which can be easily decoupled by substituting one into
another. In other words, the problem of solving the massive Dirac equation
in general Kerr–NUT–(a)dS spacetimes can be recast as a problem of solving
a number of decoupled ordinary differential equations for components of the
corresponding multi-dimensional spinor.

6.5 Tensor perturbations

The demonstrated separability of the Hamilton–Jacobi, Klein–Gordon, and
Dirac equations in the general higher-dimensional Kerr–NUT–(A)dS spacetime
created hopes that higher spin equations might also possess this property.
In particular, there were hopes that the electromagnetic and gravitational
perturbations can be solved by either a direct separation of the corresponding
field equations, or by their reduction to a master equation, which, in its turn,
is separable. In spite of many attempts, only partial results were obtained.
In this section we briefly discuss the tensor perturbations and return to the
electromagnetic fields in the next section.

The study of gravitational perturbations of black holes is key for under-
standing their stability, and is especially important in higher dimensions where
many black holes are expected to be unstable and may (as indicated in recent
numerical studies) branch to other black hole families, e.g., Choptuik et al
(2003); Lehner and Pretorius (2010); Dias et al (2009, 2010a,b, 2014); Figueras
et al (2016), or even result in a formation of naked singularities (Figueras et al
2017). The separability and decoupling of gravitational perturbations would
also significantly simplify the study of quasi-normal modes of these black holes
or the study of Hawking radiation.

The gravitational perturbations have been analytically studied for higher-
dimensional black holes with no rotation, e.g., Gibbons and Hartnoll (2002);
Kodama and Ishibashi (2003); Ishibashi and Kodama (2003), or for black
holes subject to restrictions on their rotation parameters, e.g., Kunduri et al
(2006); Kodama (2009); Murata and Soda (2008a,b); Kodama et al (2009,
2010); Oota and Yasui (2010); Murata (2011, 2013). Such black holes possess
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enhanced symmetries and are of a smaller co-homogeneity than the general
Kerr–NUT–(A)dS spacetime. This allows one to decompose the correspond-
ing perturbations into ‘tensor, vector and scalar’ parts that can be treated
separately, yielding the corresponding master equations, e.g., Kunduri et al
(2006).

By the time this review is written it is unknown whether there exists a
method which would allow one to separate and decouple gravitational pertur-
bations of the general Kerr—NUT–(A)dS spacetimes. For example, as shown
in papers by Durkee and Reall (2011a,b) this goal cannot be achieved by fol-
lowing the ‘Teukolsky path’, employing the higher-dimensional generalization
of Newman–Penrose or Geroch’s formalisms (Pravdová and Pravda 2008; Dur-
kee et al 2010) building on Coley et al (2004); Pravda et al (2004); Ortaggio
et al (2007).

To conclude this section, let us briefly comment on a partial success by Oota
and Yasui (2010), who demonstrated the separability of certain type of tensor
perturbations in generalized Kerr–NUT–(A)dS spacetimes. In our discussion of
the Kerr–NUT–(A)dS spacetimes we assumed that the principal tensor is non-
degenerate, that is, it has n functionally independent eigenvalues, that were
used as canonical coordinates. One obtains a more general class of metrics once
this assumption is violated. The corresponding metrics, called the generalized
Kerr–NUT–(A)dS solutions, were obtained in Houri et al (2009, 2008b), and
we will discuss them in more detail in chapter 7. Here we just describe some
of their properties that are required for the formulation of the results of Oota
and Yasui (2010). The generalized metric has N essential coordinates which
are non-constant eigenvalues of the principal tensor, |m| parameters which are
non-zero constant eigenvalues, and the degeneracy of a subspace responsible
for the vanishing eigenvalue is m0. The total number of spacetime dimensions
is thus D = 2N + 2|m|+m0. This space has a bundle structure. Its fiber is a
2n-dimensional Kerr–NUT–(A)dS metric. All other dimensions form the base
space. The tensor perturbations, analyzed in Oota and Yasui (2010), are those,
that do not perturb the fiber metric and keep the bundle structure. These
tensor perturbations admit the separation of variables and the corresponding
field equations reduce to a set of ordinary second-order differential equations.

6.6 Maxwell equations

The study of electromagnetic fields in general Kerr–NUT–(A)dS spacetimes
is a complicated task. In particular, the procedure leading to the Teukolsky
equation in four dimension (Teukolsky 1972, 1973) does not work in higher di-
mensions (Durkee and Reall 2011a,b). However, recently there was an impor-
tant breakthrough in the study of possible separability of higher-dimensional
Maxwell equations in the Kerr–NUT–(A)dS spacetimes. Namely, Lunin (2017)
succeeded to separate variables for some specially chosen polarization states
of the electromagnetic field in the Myers–Perry metrics with a cosmological
constant. In a general D-dimensional case, the number of polarizations of such
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a field is D − 2. Lunin proposed a special ansatz for the field describing two
special polarizations and demonstrated that it admits separation of variables.
He also demonstrated how such a solution relates to the solution obtained in
the Teukolsky formalism in four dimension. However, if one can obtain other
components by a similar ansatz is still under investigation.

In the rest of this section we discuss yet other interesting test electromag-
netic fields, namely fields aligned with the principal tensor. They include, for
example, the field of weakly charged and magnetized black holes. It turns out,
that they constitute the most general test electromagnetic field that preserves
the integrability properties of the Kerr–NUT–(A)dS geometry.

Wald’s trick: electromagnetic fields from isometries

The study of electromagnetic fields in the vicinity of (rotating) black holes
in four dimensions has interesting astrophysical applications and has been
investigated by many authors, see e.g., Wald (1974); King et al (1975); Bičák
and Dvořák (1977, 1976, 1980); Bičák and Janǐs (1985); Aliev and Galtsov
(1989); Penna (2014). There is also a number of exact solutions of the Einstein–
Maxwell system, ranging from the Kerr–Newman solution for the charged
black hole (Newman and Janis 1965; Newman et al 1965) to magnetized black
holes of Ernst (Ernst 1968, 1976). However, it is often possible to restrict the
description to a test field approximation assuming that the electromagnetic
field obeys the Maxwell equations but does not backreact on the geometry.

A particularly elegant way for describing the behavior of certain test elec-
tromagnetic fields near a rotating black hole is due to Wald (1974). The Wald
approach is based on the well known fact (Papapetrou 1966) that any Killing
vector field ξ obeys the following two equations:

∇aξa = 0 , �ξa +Rabξ
b = 0 . (6.76)

The first equation is an immediate consequence of the Killing equation (2.20),
whereas the latter follows from its integrability condition, cf. (C.16) for p = 1.
These two equations are to be compared with the wave equation supplemented
by the Lorenz gauge condition:

∇aAa = 0 , �Aa −RabAb = 0 , (6.77)

for the electromagnetic vector potential A. This means that in a vacuum
spacetime any Killing vector can serve as a vector potential for a test Maxwell
field,

A = e ξ , F = edξ , (6.78)

where the constant e governs the field strength. Therefore a special set of
test electromagnetic fields in the background of vacuum spacetimes can be
genarated simply by using the isometries of these spacetimes. In such a way
one can generate a weakly charged Kerr black hole, or immerse this black hole
in a ‘uniform magnetic field’ (Wald 1974).
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Of course, the same trick also works in higher dimensions. This fact was
used in Aliev and Frolov (2004) for a study of the gyromagnetic ratio of a
weakly charged five-dimensional rotating black hole in an external magnetic
field. This was later generalized to the Myers–Perry spacetimes (Aliev 2006).

In the presence of a cosmological constant Λ the Ricci tensor

Rab =
2

D − 2
Λgab (6.79)

does not vanish and the Killing vector ξ can no longer be used as a vector
potential for the test electromagnetic field. The situation improves when the
spacetime possesses a closed conformal Killing–Yano 2-form h (Frolov et al
2017). Namely, let ξ be a primary Killing vector,20 then the following ‘im-
proved’ electromagnetic field:

F = e
(
dξ +

4Λ

(D − 1)(D − 2)
h
)

(6.80)

satisfies the source-free Maxwell equations ∇ · F = 0.
As we mentioned earlier, in the Kerr–NUT–(A)dS spacetime in the canon-

ical coordinates, the components of the principal tensor hab do not depend
on the metric parameters. Thus, the operation (6.80) can be interpreted as a
subtraction from dξ a similar quantity, calculated for the corresponding (anti-
)de Sitter background metric. This prescription was used by Aliev (2007b,a)
for obtaining a weakly charged version of the Kerr–(A)dS black holes in all
dimensions. The weakly charged and magnetized black rings were studied in
Ortaggio and Pravda (2006); Ortaggio (2005).

Aligned electromagnetic fields

A wide class of test electromagnetic fields in the Kerr–NUT–(A)dS spacetimes
has been constructed in Krtouš (2007). These fields are aligned with the geom-
etry of the Kerr–NUT–(A)dS background: they are constant along the explicit
symmetries of the spacetime and their Maxwell tensor commutes with the
principal tensor. Concentrating again on even dimensions (see Krtouš (2007)
and Cariglia et al (2013a) for the detailed discussion) such a field can thus be
written as

F =
∑
µ

fµ e
µ ∧ êµ , (6.81)

where the components fµ = fµ(x1, . . . , xn) are independent of Killing direc-
tions ψj . Since the Maxwell tensor must be closed, dF = 0, it is locally gen-
erated by the vector potential A. The most general field with the structure

20 A similar construction does not work for the secondary Killing vectors. One could try
to use the Killing vector co-potentials (5.19) instead of the principal tensor as a correction

term. However, they are not closed, dω(j) 6= 0 for j > 0, and cannot thus play a role of the
correction to the electromagnetic field based on dl(j).
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(6.81) then corresponds to the vector potential given by21

A =
∑
µ

gµxµ
Uµ

√
Uµ
Xµ
êµ , (6.82)

where each function gµ = gµ(xµ) depends only on one variable xµ. In terms of
these function, the components fµ are

fµ =
gµ
Uµ

+
xµ g

′
µ

Uµ
+ 2xµ

∑
ν

ν 6=µ

1

Uν

xν gν − xµ gµ
x2
ν − x2

µ

. (6.83)

This electromagnetic field represents the off-shell complement of the off-
shell Kerr–NUT–(A)dS geometry. Its structure is sufficient to generalize most
of the symmetry properties of the geometry to the situation with a background
test electromagnetic field. However, the field (6.81) with components fµ given
by (6.83) does not necessary satisfy the source free Maxwell equations. The
corresponding current Ja = ∇bF ab is22

J = −2
∑
µ

∂

∂x2
µ

[∑
ν

x2
ν g
′
ν

Uν

] √
Xµ

Uµ
êµ . (6.84)

Imposing the vacuum Maxwell equations, J = 0, we find the on-shell field
for which the functions gµ integrate to

gµ = eµ +
1

xµ

n−1∑
k=0

c̃k x
2k
µ , (6.85)

with eµ and c̃k being constants. Moreover, it turns out that the second term
is a pure gauge and can be ignored. The on-shell aligned test electromagnetic
field can thus be written as

A =
∑
µ

eµxµ
Uµ

∑
k

A(k)
µ dψk . (6.86)

It is parameterized by n constants eµ, µ = 1, . . . , n, which correspond to an
electric charge and magnetic charges associated with rotations along different
directions. If we set all charges except one, say eν , to zero, the Maxwell tensor

F corresponds to the harmonic form G
(ν)
(2) found in Chen and Lu (2008), see

also Chow (2010).

21 Various expressions below contain rescaled 1-forms

√
Xµ
Uµ
eµ = dxµ and√

Uµ
Xµ
êµ =

∑
k A

(k)
µ dψk. They have even simpler form than 1-forms eµ and êµ them-

selves and they could be used as a natural frame. However, such a frame is not normalized
and we do not introduce it here explicitly, although, in some expressions we keep these
terms together.
22 Notice that in Krtouš (2007), the relations (2.20) and (2.21) for the source in even

dimensions have a wrong sign.
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Another special choice is obtained upon setting gµ = eXµ/xµ, with a con-
stant e characterizing the strength of the field. In this case the vector potential
(6.82) reduces to the primary Killing vector (5.2),

A = e ξ . (6.87)

The corresponding current reads J = 2(2n− 1)eλ ξ, where λ is the cosmolog-
ical constant parameter (4.19). Thus, for the vanishing cosmological constant
we recover the source-free electromagnetic field given by the Wald construction
(6.78).

One can also recover the ‘improved’ electromagnetic field (6.80) which is
source-free for the on-shell Kerr–NUT–(A)dS background with a non-vanishing
cosmological constant, i.e., when Xµ is given by (4.19). The second term in
(6.80) can be induced by adding the correction −eλ(−x2

µ)n to xµgµ = eXµ.
This cancels exactly the term with the highest power of xµ in Xµ. In fact,
all other even-power terms in Xµ give only a gauge trivial contribution to the
potential and do not contribute to the Maxwell tensor. The ‘improved’ field
(6.80) is thus solely given by the linear terms in functions Xµ, determining
the charges of the source-free aligned field as

eµ = −2ebµ . (6.88)

The vector potential of the ‘improved’ field reads

A = −2
∑
µ

bµxµ
Uµ

√
Uµ
Xµ
êµ . (6.89)

Motion of charged particles

Let us now investigate the motion of charged particles in the ‘weakly charged’
Kerr–NUT–(A)dS spacetimes penetrated by the aligned electromagnetic field
(6.82). A special case of the field (6.87) has been investigated in Frolov and
Krtouš (2011) and Cariglia et al (2013a).

The following results have been shown in Kolář and Krtouš (2016). The off-
shell aligned electromagnetic field (6.82) is the most general electromagnetic
field in the Kerr–NUT–(A)dS background for which the motion of charged
particles is integrable and the corresponding Hamilton–Jacobi equations for all
conserved quantities are separable. The charged generalization of the conserved
quantities (6.1) for the particle with a charge q are

Kj = kab(j) (pa − qAa) (pb − qAb) ,
Lj = la(j) pa .

(6.90)

The solution S of the Hamilton–Jacobi equations can be found again using
the separability ansatz (6.36), to obtain the following modified differential
equations (6.37) for the functions Sµ:

(S′µ)2 =
K̃µ

Xµ
− (L̃µ − qgµxµ)2

X2
µ

. (6.91)
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Weakly charged operators

Similarly, one can also study test scalar and Dirac fields in the weakly charged
Kerr–NUT–(A)dS spacetimes.

Let us start by considering a charged scalar field, characterized by the
charge q. Then the requirement of commutativity of the following charged
scalar operators:

Kj = −[∇a − iqAa] kab(j) [∇b − iqAb] ,
Lj = −i la(j)∇a ,

(6.92)

constructed from the Killing tensors and Killing vectors of the Kerr–NUT–
(A)dS spacetimes imposes severe conditions on the electromagnetic field (Kolář
and Krtouš 2016). These conditions are satisfied for the off-shell aligned elec-
tromagnetic field (6.82). The corresponding charged operators thus have com-
mon eigenfunctions which can be written in a separated form (6.48). The
differential equation for the functions Rµ in the charged modify to

(XµR
′
µ)′ +

(
K̃µ −

1

Xµ
((L̃µ − qgµxµ)2)

)
R′µ = 0 . (6.93)

Similarly, the symmetry operators of the Dirac operator can be generalized
to the charged case (Cariglia et al 2013a) and the common eigenfunctions can
be found in a tensorial separable form (6.67). The equations (6.71) for the
two-component spinor functions χµ again only modify by changing L̃µ →
L̃µ − qgµxµ.

On a backreaction of the aligned fields

As demonstrated above, the aligned electromagnetic field (6.82) extends nat-
urally most of the properties of Kerr–NUT–(A)dS spacetimes based on their
high symmetry to the charged case, albeit this electromagnetic field is only a
test field and does not modify the geometry itself. A natural question arises:
is it possible to backreact this electromagnetic field to obtain the full solution
of the Einstein–Maxwell system?

To answer this question, it is interesting to note that the expressions (6.81)
for the Maxwell tensor, (6.82) for the vector potential, and (6.84) for the
current do not contain a reference to the metric functions Xµ. Indeed, the
square roots of Xµ exactly compensate normalization factors included in the
frame elements. It gives a hope that the metric functions could be chosen such
that the geometry represents the gravitational back reaction of the aligned
electromagnetic field. Even the stress-energy tensor of the electromagnetic
field is diagonal in the Darboux frame (Krtouš 2007), and corresponds thus
to the structure of the Ricci tensor (4.11). Unfortunately, except for the case
of four dimensions, the diagonal elements of the Einstein equations do not
match and, therefore, the Einstein equations with the electromagnetic field as
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a source cannot be satisfied (Krtouš 2007) (see also Aliev and Frolov (2004)
for similar attempts).

Only in four dimensions the metric functions can be chosen so that the
Einstein equations are fulfilled. The geometry then describes the charged Kerr–
NUT–(A)dS spacetime (Carter 1968c; Plebański 1975). In higher dimensions,
though, this is no longer possible within the realms of pure Einstein–Maxwell
theory, see, however, Chong et al (2005a), and additional fields have to be
introduced, e.g., Chow (2010). In other words, the exact higher-dimensional
analogue of the Kerr–Newman solution (without additional fields) remains
elusive.
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7 Further developments

In this chapter, we review several scattered results in the literature that are
related to the existence of the principal tensor and its generalizations. Namely,
we discuss the construction of parallel–transported frames along timelike and
null geodesics, motion of classical spinning particles, and stationary config-
urations of strings and branes in the Kerr–NUT–(A)dS spacetimes. We then
move beyond the Kerr–NUT–(A)dS spacetimes. Namely, we discuss what hap-
pens when some of the eigenvalues of the principal tensor become degenerate,
which leads us to the generalized Kerr–NUT–AdS spacetimes. Some of these
new spacetimes can be obtained by taking certain singular limits of the Kerr–
NUT–(A)dS metric. The limiting procedure may preserve or even enhance the
symmetries of the original metric. Hidden symmetries of warped spaces and
the corresponding ‘lifting theorems’ are discussed next. We conclude this chap-
ter by studying the generalizations of Killing–Yano objects to spacetimes with
torsion and their applications to various supergravity backgrounds where the
torsion can be naturally identified with the 3-form flux present in the theory.

7.1 Parallel transport

In the previous chapters we have learned that the geodesic motion in general
Kerr–NUT–(A)dS spacetimes is completely integrable. In this section we show
that the existence of the principle tensor h even allows one to construct a whole
parallel-transported frame along these geodesics.

Such a frame provides a useful tool for studying the behavior of extended
objects in this geometry. For example, in the four-dimensional case it was
employed for the study of tidal forces acting on a moving body, for example
a star, in the background of a massive black hole, e.g., Luminet and Marck
(1985); Laguna et al (1993); Diener et al (1997); Ishii et al (2005). In quantum
physics the parallel transport of frames is an important technical element of the
point splitting method which is used for calculating the renormalized values of
local observables (such as vacuum expectation values of currents, stress-energy
tensor etc.) in a curved spacetime. Solving the parallel transport equations is
also useful when particles and fields with spin are considered, e.g., Christensen
(1978).

Parallel-transported frame along timelike geodesics

Consider a timelike geodesic γ in the Kerr–NUT–(A)dS spacetime and denote
by u its normalized velocity.23 Starting from the principal tensor h, we may

23 In this section we assume a Lorentzian signature of the metric. Moreover, to simplify
the formulas in this section we simply put the mass m of a particle equal one. With this
choice, m = 1, the inner time σ coincides with the proper time τ , and the momentum of
the particle pa is related to its velocity ua as follows pa = gabu

b. We denote by dot the
covariant derivative ∇u.
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define the following 2-form:

Fab = P caP
d
b hcd , (7.1)

where P ab = δab + uaub is the projector along the geodesic. Referring to the
discussion in section 2.5, we infer that the 2-form F is parallel-transported
along γ, cf. (2.84). This property was originally used in Page et al (2007) to
demonstrate the complete integrability of geodesic motion. Since F is parallel-
transported, so is any object constructed from F and the metric g. In particu-
lar, this is true for the invariants constructed from F , such as its eigenvalues.
As we shall see below, for a generic geodesic it is possible to extract from
F at least n − 1 nontrivial independent eigenvalues, which together with the
normalization of velocity, and other n + ε constants of motion due to Killing
vectors, imply complete integrability.

Remark: This idea was later formalized in Cariglia et al (2013b), where it was shown
that the 2-form Fab can be identified with the covariant Lax tensor (Rosquist
1994; Rosquist and Goliath 1998; Karlovini and Rosquist 1999; Baleanu and
Karasu 1999; Baleanu and Baskal 2000; Cariglia et al 2013b), whose covariant
conservation, Ḟab = 0, can be rewritten as the standard Lax pair equation
(Lax 1968)

L̇ = [L, M] , (7.2)

where L = [Fab], M =
[
∂H
∂pc

Γacb

]
, and H = 1

2
p2. Constants of motion are conse-

quently generated from the traces of matrix powers of L, Tr(Lj). If interested,
see Cariglia et al (2013b) for the construction of the corresponding Clifford
Lax tensor and generalizations to a charged particle motion.

One can do even more. Namely, it is possible to use the 2-form F to
explicitly construct a frame which is parallel-transported along the timelike
geodesic. To construct such a frame we use a method similar to the one de-
veloped by Marck for the four-dimensional Kerr metric (Marck 1983b). For
more details concerning the solution of the parallel transport equations in the
higher-dimensional Kerr–NUT–(A)dS spacetime see Connell et al (2008).

Let us denote F 2 = F ·F , or, in components, (F 2) ba = F c
a F

b
c , and consider

the following eigenvalue problem:

F 2 · v = −λ2 v . (7.3)

It is easy to check that the following properties are valid:

– F 2 · u = 0.
– If v obeys (7.3) then the vector v̄ = F · v obeys the same equation.
– One also has F · v̄ = −λ2 v.
– Eigenvectors vµ and vν of the operator F 2 with different eigenvalues λµ

and λν are orthogonal.
– Denote v̇ =∇uv. Then since F is parallel-transported, one has

F 2 · v̇ =∇u(F 2 · v) =∇u(−λ2 v) = −λ2 v̇ . (7.4)
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Let us denote by Vµ a subspace spanned by the vectors with the eigenvalue
λµ. Since the parallel-transported eigenvector remains to be an eigenvector cor-
responding to the same eigenvalue, c.f. (7.4), each subspace Vµ is independently
parallel-transported along the geodesic. These subspaces are enumerated by
index µ which takes values µ = 0, 1, . . . , p; we assume that V0 corresponds to
zero eigenvalue: λ0 = 0. We call Vµ a Darboux subspace of F (or eigenspace
of F 2). The tangent vector space T can thus be presented as a direct sum of
independently parallel-transported Darboux subspaces Vµ:

T = V0 ⊕ V1 ⊕ · · · ⊕ Vp . (7.5)

It can be shown that for a generic geodesic γ, the Darboux subspaces Vµ for µ 6=
0 are two-dimensional (Connell et al 2008). This fact is directly linked to the
non-degeneracy of the principal tensor h. The 2-form F is simply a projection
of h along a given geodesic. Since eigenspaces of h are non-degenerate and 2-
dimensional, so will be the eigenspaces of F , unless the direction determined
by the geodesic is ‘special’, see Connell et al (2008) for more details. Moreover,
one can show that in odd dimensions V0 is one-dimensional, spanned by u,
whereas V0 is two-dimensional in even dimensions, spanned by u and z, where

z = u · (∗h∧(n−1)) = ∗(F∧(n−1) ∧ u) . (7.6)

The vector z is orthogonal to u and, after it is normalized, completes the
orthonormal parallel-transported frame in V0. It is easy to check that the
number of Darboux subspaces p in the odd-dimensional spacetime is p = n,
while in even dimensions p = n− 1.

To construct a parallel-transported frame in a given two-dimensional Dar-
boux subspace Vµ>0 we proceed as follows. We choose a (not-necessarily par-
allel-transported) orthonormal basis spanning Vµ: {nµ, n̄µ}, and obtain a
parallel-transported frame in Vµ, {vµ, v̄µ}, by a τ -dependent rotation of this
orthonormal basis,

vµ = cosβµnµ − sinβµn̄µ , v̄µ = sinβµnµ + cosβµn̄µ , (7.7)

where the rotation angle βµ obeys

β̇µ = −nµ · ˙̄nµ = ṅµ · n̄µ . (7.8)

The dot, as earlier, denote a derivative with respect to the proper time τ . If at
the initial point τ = 0 bases {v, v̄} and {n, n̄} coincide, we have the following
condition for the above equations: βµ|τ=0 = 0 .

The whole construction of the parallel-transported frame in Kerr–NUT–
(A)dS spacetimes is schematically illustrated in figure 7.1. The procedure is
algorithmic and the actual calculation can be technically simplified by using
the so called velocity adapted basis. We refer the interested reader to Connell
et al (2008) for more details.
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Darboux spaces
(D odd)

ua

ua

Vm db/dt

ua  

ua  

Vµ 
dβ/dτ 

Darboux spaces 
 (D even) 

za  

za  V0 

V0 

Fig. 7.1 Parallel transport. The figure schematically displays the construction of a
parallel-transported frame along generic timelike geodesics in (left) odd dimensional and
(right) even-dimensional Kerr–NUT–(A)dS spacetimes. The colored 2-planes correspond to
orthogonal independently parallel-transported Darboux 2-planes Vµ.

Parallel transport along null geodesics

The described construction of parallel-transported frame does not straightfor-
wardly apply to null geodesics. In this section we show how to modify this
construction and to obtain a parallel-transported frame along null geodesics
in Kerr–NUT–(A)dS spacetimes, generalizing the results obtained by Marck
(1983a) for the four-dimensional Kerr metric. The section is based on Kubizňák
et al (2009a) to where we refer the reader for more details.

The parallel-transported frame along null geodesics has applications in
many physical situations. For example, it can be used for studying the polar-
ized radiation of photons and gravitons in the geometric optics approximation,
see, e.g., Stark and Connors (1977); Connors and Stark (1977); Connors et al
(1980) and references therein. It provides a technical tool for the derivation of
the equations for optical scalars (Pirani 1965; Frolov 1977) and plays the role
in the proof of the ‘peeling-off property’ of the gravitational radiation (Sachs
1961, 1962; Newman and Penrose 1962; Penrose 1965; Krtouš and Podolský
2004).

We start with the following observation. Let us consider an affine parame-
terized null geodesic γ, with a tangent vector l. We denote by dot the covariant
derivative ∇l. Then one has l̇ = 0. Let v be a parallel-transported vector along
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external direction 

n 

ma  

null plane 

l 

m 

l n 

V 

Projection operator: 

given by 

Fig. 7.2 Geometry of null geodesics. Left figure displays the geometry of the three
parallel-transported vectors l,n and m. Right figure demonstrates the action of the pro-
jection operator Pab which now projects to a space V that is orthogonal to both l and
n.

γ, v̇ = 0, and h be the principal tensor. Then, defining

wa = vchca + βla , (7.9)

we find

ẇ = v · ḣ+ β̇ l = v · (l ∧ ξ) + β̇ l = ξ (v · l) + l (β̇ − v · ξ) . (7.10)

Here we used the equation (2.108) for the principal tensor, with ξ being the
primary Killing vector associated with h. Hence, the vector w is parallel-
transported provided the following conditions are satisfied:

v · l = 0 , β̇ = v · ξ . (7.11)

This observation allows one to immediately construct two parallel-trans-
ported vectors, which we call m and n. Namely, m is obtained by taking v = l
in (7.9); the first condition in (7.11) is automatically satisfied and the second
condition gives β(l) = τ (l · ξ), since ξ is a Killing vector. Using next v = m
as a ‘seed’ in (7.9), we obtain the second vector n. The two vectors can be
normalized so that

n · l = −1 , n ·m = 0 , n · n = 0 . (7.12)

The vector n does not belong to a null plane of vectors orthogonal to l, and,
in this sense, it is ‘external’ to it, see figure 7.2. For this reason one cannot
use it as a new ‘seed’ in (7.9).

To generate additional parallel-transported vectors one proceeds as follows.
We denote

F̃ab = P caP
d
b hcd , Pab = gab + 2l(anb) . (7.13)

Here, P ab is a projector on a space orthogonal to both l and n directions

(see figure 7.2). The 2-form F̃ is parallel-transported along l. In particular,
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its eigenvalues are constant along the null rays and give the integrals of null
geodesic motion.

Similar to the timelike case we may now consider the Darboux subspaces
of F̃ . They are again independently parallel-transported. We denote by V0 the
Darboux subspace corresponding to the zero eigenvalue. Its dimension depends
on the dimension D of the spacetime. Namely,

for D odd : V0 is 3-dimensional and spanned by {l,m,n} ,
for D even : V0 is 4-dimensional and spanned by {l,m,n, z} , (7.14)

where as earlier z = l · (∗h∧(n−1)). These base vectors are parallel propagated
by construction.

The other Darboux subspaces (with non-zero eigenvalues) are generically
2-dimensional. To construct the parallel-transported vectors that span them
one can proceed as in the timelike case. Explicit expressions for the parallel
transported frame along a null geodesic in the Kerr–NUT–(A)dS spacetimes
can be found in Kubizňák et al (2009a).

Let us finally mention that the above construction does not work for the
special null geodesics that are the eigenvectors of the principal tensor. It turns
out that such directions describe the principal null directions, or WANDs
(Weyl aligned null directions). Such directions play an important role in many
physical situations, e.g., Coley et al (2004); Milson et al (2005); Coley (2008);
Ortaggio et al (2013). In Kerr–NUT–(A)dS spacetimes, these directions can
be explicitly written down and the parallel-transported frame can be obtained
by a set of local Lorentz transformations of the principal Darboux basis (Ku-
bizňák et al 2009a).

Remark: It was shown in Mason and Taghavi-Chabert (2010) that the eigenvectors
of a non-degenerate (not necessarily closed) conformal Killing–Yano 2-form
are principal null directions and the corresponding spacetime is of the special
algebraic type D. As we discussed in section 4.5, these special directions may
also play a role in the Kerr–Schild construction of solutions of the Einstein
equations.

7.2 Classical spinning particle

So far we have discussed the geodesic motion of point-like test particles as
well as the propagation of test fields (possibly with spin) in the curved Kerr–
NUT–(A)dS background. An interesting problem is to consider the motion
of particles with spin. There exist several proposals for describing spinning
particles in general relativity, ranging from the traditional approach due to
Papapetrou (1951); Corinaldesi and Papapetrou (1951), accompanied by a va-
riety of supplementary conditions, e.g., Semerák and Šrámek (2015); Semerák
(2015), to some more recent proposals e.g., Rempel and Freidel (2016).

In this section we concentrate on the spinning particle described by the
worldline supersymmetric extension of the ordinary relativistic point-particle
(Berezin and Marinov 1977; Casalbuoni 1976; Barrducci et al 1976; Brink
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et al 1976, 1977; Rietdijk and van Holten 1990; Gibbons et al 1993; Tanimoto
1995; Ahmedov and Aliev 2009b; Ngome et al 2010), where the spin degrees of
freedom are described by Grassmann (anticommuting) variables. Such a model
is physically very interesting as it provides a bridge between the semi-classical
Dirac’s theory of spin 1

2 fermions and the classical Papapetrou’s theory. Our
aim is to show that the existence of the principal tensor provides enough
symmetry to upgrade the integrals of geodesic motion to new bosonic integrals
of spinning particle motion that are functionally independent and in involution.
This opens a question of integrability of spinning particle motion in the Kerr–
NUT–(A)dS spacetimes.

Theory of classical spinning particles

Let us start by briefly describing our model of a classical spinning particle. To
describe a motion of the particle in D dimensions, we specify its worldline by
giving the coordinates dependence on the proper time τ : xa(τ) (a = 1, . . . , D).
The particle’s spin is given by the Lorentz vector of Grassmann-odd coordi-
nates θA(τ) (A = 1, . . . , D). We denote by A the vielbein index labeling an
orthonormal vielbein {eA} with components eaA. These components are used
to change coordinate indices to vielbain ones and vice-versa, va = vAeaA.

The motion of the spinning particle is governed by the following equations
of motion:

∇2xa

dτ2
= ẍa + Γ abc ẋ

bẋc =
i

2
RabABθ

AθBẋb , (7.15)

∇θA
dτ

= θ̇A + ωb
A
B ẋ

bθB = 0 . (7.16)

Here Γ abc and ωb
A
B are the Levi-Civita and spin connections, respectively, and

Rabcd is the Riemann tensor. The first equation is an analogue of the classical
general-relativistic Papapetrou’s equation. It generalizes the geodesic equation
for a point-like object to an extended object with spin. The latter equation
expresses the simple requirement that, in the absence of interactions other
than gravity, the spin vector is constant along the worldline of the particle.

The theory admits a Hamiltonian formulation, with the Hamiltonian H
given by

H =
1

2
ΠaΠb g

ab , Πa = pa −
i

2
ωaAB θ

AθB , (7.17)

where pa is the momentum canonically conjugate to xa. Velocity is related to
the momentum as

ẋa =
∂H

∂pa
= gabΠb = pa − i

2
ωaAB θ

AθB . (7.18)

The theory possesses a generic supercharge Q,

Q = θaΠa , (7.19)
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obeying
{H,Q} = 0 , {Q,Q} = −2iH . (7.20)

Here the super-Poisson brackets are defined as

{F,G} =
∂F

∂xa
∂G

∂pa
− ∂F

∂pa

∂G

∂xa
+ i(−1)aF

∂F

∂θA
∂G

∂θA
, (7.21)

and aF is the Grassmann parity of F . Equations of motion are accompanied
by two physical (gauge fixing) constraints

2H = −1 , Q = 0 , (7.22)

which state that τ is the proper time and the particle’s spin is spacelike.
An important role for the spinning particle in curved spacetime is played by

non-generic superinvariants which are quantities that super-Poisson commute
with the generic supercharge. More specifically, a superinvariant S is defined
by the equation

{Q,S} = 0 . (7.23)

The existence of solutions of this equation imposes nontrivial conditions on the
properties of the geometry. The geometry has to possess special symmetries
such as Killing vectors or Killing–Yano tensors, for example. It follows from
the Jacobi identity that any superinvariant is automatically a constant of
motion, {H,S} = 0. At the same time quantity {S, S} is a ‘new’ superinvariant
and a constant of motion (which may, or may not be equal to H). Hence,
superinvariants correspond to an enhanced worldline supersymmetry.

Linear in momentum superinvariants were studied in Gibbons et al (1993);
Tanimoto (1995), they are in one-to-one correspondence with Killing–Yano
tensors and take the following form:

Q = θA1 . . . θAp−1faA1...Ap−1
Πa −

i

(p+ 1)2
θA1 . . . θAp+1(df)A1...Ap+1

, (7.24)

for a Killing–Yano p-form f . The Kerr–NUT–(A)dS spacetimes admit n such
superinvariants, associated with the tower of Killing–Yano tensors (5.7). How-
ever, such superinvariants are (i) not ‘invertible’ for velocities (Kubizňák and
Cariglia 2012) and (ii) not in involution. In fact one can show that in even
dimensions, where such superinvariants are fermionic, their Poisson brackets
are not closed and generate an extended superalgebra (Ahmedov and Aliev
2009b).

Bosonic integrals of motion

It turns out that for the Kerr–NUT–(A)dS spacetimes one can construct D
functionally independent and mutually commuting bosonic integrals of motion
(Kubizňák and Cariglia 2012). Namely, in addition to (n+ε) bosonic linear in
momenta superinvariants (7.24) corresponding to the isometries l(j), (5.16):

Q(j) = la(j)Πa −
i

4
θAθB

(
dl(j)

)
AB

, (7.25)
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one can also construct the following n quadratic in momenta bosonic superin-
variants K(j), whose leading term contains no θ’s and is completely determined
by the Killing tensors k(j), (5.9):

K(j) = kab(j)ΠaΠb + La(j)Πa +M(j) , (7.26)

where

La(j) = θAθBL(j)AB
a, M(j) = θAθBθCθDM(j)ABCD ,

kab(j) =
1

(p− 1)!
f (j)ak2...kpf (j)b

k2...kp ,

L(j)ab
c = − 2ip

(p+ 1)!

(
f (j)

[a
k2...kp

(
df (j)

)
b]
c
k2...kp +

(
df (j)

)
abk2...kpf

(j)ck2...kp
)
,

M(j)abcd = − i
4
∇[aL(j)bcd] .

(7.27)

Here, f (j) is the Killing–Yano p-form (5.7) with p = D − 2j. In the absence
of spin, such quantities reduce to the quadratic integrals of geodesic motion,
responsible for its complete integrability.

In other words, the following quantities:

H,K(1), . . . ,K(n−1),Q(0), . . . ,Q(n−1+ε) , (7.28)

form a complete set of bosonic integrals of motion for the spinning particle in
Kerr–NUT–(A)dS spacetimes (Kubizňák and Cariglia 2012), which are func-
tionally independent and in involution,

{Q(i),Q(j)} = 0 , {Q(i),K(j)} = 0 , {K(i),K(j)} = 0 , (7.29)

making the ‘bosonic part’ of the spinning particle motion integrable.

Concluding remarks

Let us stress that the above results regard the bosonic sector and have not
dealt with the fermionic part of the motion, whose integrability would require a
separate analysis. For this reason, the question of complete integrability of the
whole (bosonic and fermionic) system of equations of motion of the spinning
particle remains open. However, there are reasons to expect that this system
might be fully integrable. Perhaps the most suggestive one is the observation
that the Dirac equation, that corresponds to the quantized system and can be
formally recovered by replacing θ’s with γ matrices and Π’s with the spinorial
derivative, admits a separation of variables in these spacetimes, see section 6.4.
To achieve such separation it is enough to use a set of D mutually-commuting
operators, as many as the Poisson commuting functions that have been found
for the motion of spinning particle.

Let us finally discuss some important differences between the supersym-
metric description presented in this section and the Papapetrou’s theory. For-
mally, the Papapetrou’s equations can be obtained by replacing −iθAθB with
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the spin tensor Sab. (It can be shown that the object −iθAθB satisfies the
correct Lie algebra of the Lorentz group under Poisson brackets.) After this
identification Eqs. (7.15) and (7.16) become Papapetrou’s equations with the
particular choice of supplementary condition:

∇2xa

dτ2
= −1

2
RabcdS

cdẋb ,
∇Sab
dτ

= 0 . (7.30)

Under such a transition, linear superinvariants (7.25) translate into the full
integrals of motion for Papapetrou’s equations (7.30). However, the quadratic
superinvariants (7.26) become only approximate integrals—valid to a linear
order in the spin tensor Sab. An interesting open question is whether such
broken integrals of motion originate the chaotic behavior of the spinning par-
ticle motion described by Papapetrou’s theory in black hole spacetimes, e.g.,
Suzuki and Maeda (1997); Semerák (1999); Semerák and Suková (2010, 2012);
Suková and Semerák (2013); Witzany et al (2015).

7.3 Stationary strings and branes

Dirac–Nambu–Goto action for extended objects

There are interesting cases when the principal tensor allows one to integrate
equations for some extended test objects, such as strings and branes. Such
objects play a fundamental role in string theory. At the same time cosmic
strings and domain walls are topological defects, which can be naturally cre-
ated during phase transitions in the early Universe, e.g., Vilenkin and Shellard
(2000); Polchinski (2004); Davis and Kibble (2005), and their interaction with
astrophysical black holes may result in interesting observational effects, e.g.,
Gregory et al (2013). Another motivation for studying these objects is con-
nected with the brane-world models. For example, the interaction of a bulk
black hole with a brane representing our world (Emparan et al 2000; Frolov
et al 2003, 2004b,a; Majumdar and Mukherjee 2005) can be used as a toy model
for the study of (Euclidean) topology change transitions (Frolov 2006), see also
Kobayashi et al (2007); Albash et al (2008); Hoyos-Badajoz et al (2007) for
the holographic interpretation of this phenomenon. This model demonstrates
interesting scaling and self-similarity properties during the phase transition
that are similar to what happens in the Choptuik critical collapse (Choptuik
1993).

In this section we study strings and branes in the higher-dimensional Kerr–
NUT–(A)dS spacetimes. A worldsheet of a p-brane is a (p + 1)-dimensional
submanifold of the D-dimensional spacetime with metric gab. We assume that
ζA, (A = 0, 1, . . . , p) are coordinates on the brane submanifold, and equations
xa = xa(ζA) define the embedding of the brane in the bulk spacetime. This
embedding induces the metric γAB on the brane

γAB =
∂xa

∂ζA
∂xa

∂ζB
gab . (7.31)
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In the ‘test field approximation’, that is when one neglects the effects connected
with the thickness and tension, the evolution of the p-brane is described by
the Dirac–Nambu–Goto action

I = −µ
∫
dp+1ζ

√
det(γAB) , (7.32)

where µ is the brane tension. The equations obtained by variation of this
action with respect to xa(ζ), which describe the brane motion, are non-linear
and in general it is very difficult to solve them (Stepanchuk and Tseytlin 2013).
However, there exists a remarkable exception, that of the stationary strings
and ξ-branes. In what follows we concentrate on the equations for these objects
in the the Kerr–NUT–(A)dS spacetimes. See Kozaki et al (2010, 2015) for a
detailed discussion of the motion of these objects restricted to the Minkowski
space.

Killing reduction of action for a stationary string

Following Kubizňák and Frolov (2008), we will first discuss stationary strings.
Consider a stationary spacetime and denote by ξ its Killing vector. A sta-
tionary string is a string whose worldsheet Σξ is aligned with this vector. In
other words, the surface Σξ is generated by a 1-parameter family of the Killing
trajectories (the integral lines of ξ).

A general formalism for studying a stationary spacetime, based on its folia-
tion by Killing trajectories, was developed by Geroch (1971). In this approach,
one considers a congruence S of all Killing orbits as a quotient space and in-
troduces the structure of the differential Riemannian manifold on it. A tensor

qab = gab − ξaξb/ξ2 . (7.33)

plays the role of the metric on S.
Let us introduce coordinates xa = (t, yi), so that the Killing vector ξ =

∂t, and yi are coordinates that are constant along the Killing trajectories
(coordinates in S). In these coordinates qibξ

b = 0, and so

q = qijdy
idyj . (7.34)

Thus one has
g = −F (dt+Aidy

i)2 + q , (7.35)

where F = gtt = −ξaξa and Ai = gti/gtt .
In this formalism, a stationary string is uniquely determined by a curve in

S. Choosing coordinates on the string worldsheet ζ0 = t and ζ1 = σ, the string
configuration is determined by yi = yi(σ), and the induced metric (7.31) reads

γ = γABdζ
AdζB = −F (dt+Adσ)2 + dl2 , (7.36)

where

dl2 = qdσ2 , A = Ai
dyi

dσ
, q = qij

dyi

dσ

dyj

dσ
. (7.37)
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The metric γ has the following determinant: det(γAB) = −Fq. The Dirac–
Nambu–Goto action (7.32) then reads

I = −∆tE , E = µ

∫ √
Fdl = µ

∫
dσ

√
Fqij

dyi

dσ

dyj

dσ
. (7.38)

Note that, in a stationary spacetime, the energy density of a string is pro-
portional to its proper length dl multiplied by the red-shift factor

√
F . The

problem of finding a stationary string configuration therefore reduces to solv-
ing a geodesic equation in the (D−1)-dimensional background with the metric

q̃ = q̃ijdy
idyj = F qijdy

idyj . (7.39)

Solving stationary string equations in Kerr–NUT–(A)dS spacetimes

Stationary strings in the four-dimensional Kerr spacetime were studied in
Frolov et al (1989); Carter and Frolov (1989). It was demonstrated that the
effective metric q̃ inherits symmetry properties of the Kerr metric and the sta-
tionary string equations are completely integrable. The same was found true in
Frolov and Stevens (2004) for the five-dimensional Myers–Perry spacetime. It
was shown in Kubizňák and Frolov (2008) that these results can be extended
to all higher dimensions. Namely, the equations for a stationary string in the
Kerr–NUT–(A)dS spacetime, that is a string aligned along the primary Killing
vector ξ = l(0), are completely integrable in all dimensions.

The integrability follows from the existence of a sufficient number of explicit
and hidden symmetries of the (D−1)-dimensional effective metric q̃, (7.39).
By construction this metric possesses (n − 1 + ε) Killing vectors, l(j) (j =
1, . . . , n − 1 + ε). Let us denote by c(k) natural projections of the Killing
tensors k(k) of the Kerr–NUT–(A)dS spacetime along the primary Killing
vector trajectories:

c(k) =

n∑
µ=1

A(k)
µ

[
Xµ

Uµ
∂2
xµ +

Uµ
Xµ

( n−1+ε∑
j=1

(−x2
µ)n−1−j

Uµ
∂ψj

)2 ]
+ ε

A(k)

A(n)
∂2
ψn .

(7.40)
Note that when compared to (5.56), the j = 0 direction ∂ψ0

is omitted. One
can check that these objects are Killing tensors for the induced (D − 1)-
dimensional metric q. Let us denote

k̃(k) = c(k) − F(k)q̃
−1 , (7.41)

where

F(k) =

n∑
µ=1

XµA
(k)
µ

Uµ
+ ε

cA(k)

A(n)
. (7.42)

Then it is possible to check that these (n− 1) objects k̃(k) (k = 1, . . . , n− 1)
are irreducible Killing tensors for the the metric q̃.
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The Killing tensors k̃(k), together with the metric q̃ and the Killing vec-
tors l(j) all mutually Nijenhuis–Schouten commute. Their existence therefore
implies a complete set of mutually commuting constants of geodesic trajec-
tories in the geometry q̃. Hence, the stationary string configurations in the
Kerr–NUT–(A)dS spacetimes are completely integrable.

Let us conclude with the following remarks: (i) Although stationary string
configurations in Kerr–NUT–(A)dS spacetimes are completely integrable, this
is not true for strings aligned along other (rotational) Killing directions; the
primary Killing vector is very special in this respect; (ii) A stationary string
near a five-dimensional charged Kerr-(A)dS black hole was discussed in Ahme-
dov and Aliev (2008); (iii) The presented formalism of Killing reduction of the
Dirac–Nambu–Goto action has been generalized to the case of spinning strings
in Ahmedov and Aliev (2009a); (iv) More recently, the notion of a stationary
string has been generalized to the so called self-similar strings in Igata et al
(2016).

ξ-branes

The notion of a stationary string readily generalizes to that of ξ-branes (Ku-
bizňák and Frolov 2008) which are p-branes formed by a 1-parametric family
of Killing surfaces. Suppose a D-dimensional spacetime admits p mutually
commuting Killing vectors ξ(M) (M = 1, . . . , p). According to the Frobenius
theorem the set of p commuting vectors defines a p-dimensional submanifold,
which has the property that vectors ξ(M) are tangent to it. We call such a
submanifold a Killing surface.

Similarly to Geroch formalism for one Killing vector, one can define a
quotient space S, determined by the action of the isometry group generated
by the Killing vectors ξ(N) on M . In other words, S is the space of Killing
surfaces. The spacetime metric g then splits into a part Ξ tangent to Killing
surfaces and a part q orthogonal to them

gab = qab +Ξab . (7.43)

The tangent part Ξ can be written as (Mansouri and Witten 1984)

Ξab =

p∑
M,N=1

Ξ−1MN ξ(M)a ξ(N)b , (7.44)

where ΞMN = ξa(M)ξ
b
(N)gab is a (p × p) matrix and Ξ−1MN is its inverse,

Ξ−1MNΞNK = δKM .

Let us introduce adjusted coordinates xa = (yi, ψM ) such that yi (i =
1, . . . , D − p) are constant along the Killing surfaces, and Killing coordinates
ψM (M = 1, . . . , p) are defined as ξ(M) = ∂ψM . Since qaψN = qabξ

b
(N) = 0, one

has q = qijdy
idyi. On other hand, vectors ∂yi are not, in general, orthogonal
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to the Killing surfaces. It means that ξ(M)a ≡ gabξ
b
(M) and Ξab have both

tangent and orthogonal components. In other words we have

g = qijdy
idyj +Ξabdx

adxb . (7.45)

The configuration of a ξ-brane is defined by giving functions yi = yi(σ).
Denoting by

q = qij
dyi

dσ

dyj

dσ
, (7.46)

the Dirac–Nambu–Goto action (7.32) then reduces to the following expression:

I = −V E , E = µ

∫ √
qFdσ , (7.47)

where V =
∫
dpψ and F = det(ΞMN ).

Thus after the dimensional reduction the problem of finding a configuration
of a ξ-brane reduces to a problem of solving a geodesic equation in the reduced
(D − p)-dimensional space with the effective metric

q̃ = F qijdy
idyj . (7.48)

In general, the integrability of ξ-branes is not obvious; see Kubizňák and
Frolov (2008) for a discussion of special integrable cases.

7.4 Generalized Kerr–NUT–(A)dS spacetimes

So far our discussion was mostly concentrated on Kerr–NUT–(A)dS space-
times. Such spacetimes represent a unique geometry admitting the principal
tensor which is a closed conformal Killing–Yano 2-form whose characteristic
feature is that it is non-degenerate. However, it is very constructive to relax
the last requirement and consider more general geometries that admit a pos-
sibly degenerate closed conformal Killing–Yano 2-form. Such geometries are
now well understood and are referred to as the generalized Kerr–NUT–(A)dS
spacetimes (Houri et al 2008b, 2009; Oota and Yasui 2010; Yasui and Houri
2011). These metrics describe a wide family of geometries, ranging from the
Kähler metrics, Sasaki–Einstein geometries, generalized Taub-NUT metrics,
or rotating black holes with some equal and/or some vanishing rotation pa-
rameters.

General form of the metric

The generalized Kerr–NUT–(A)dS spacetime possesses a bundle structure.
The fiber is the 2N -dimensional Kerr–NUT–(A)dS metric. The base B takes
a form of the product space B = M1×M2× . . .M I×M0, where the manifolds
M i are 2mi-dimensional Kähler manifolds with metrics gi and Kähler 2-forms
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ωi = dBi, and M0 is an ‘arbitrary’ manifold of dimension m0 and a metric
g0. This means that the total number of dimensions D decomposes as

D = 2N + 2|m|+m0 , |m| =
I∑
i=1

mi . (7.49)

The generalized Kerr–NUT–(A)dS metric takes the following form:

g =

N∑
µ=1

dx2
µ

Pµ(x)
+

N∑
µ=1

Pµ(x)
(N−1∑
k=0

A(k)
µ θk

)2

+

I∑
i=1

N∏
µ=1

(x2
µ − ξ2

i )gi +A(N)g0 ,

(7.50)
where

θk = dψk − 2

I∑
i=1

(−1)n−kξ
2(N−k)−1
i Bi ,

Pµ = Xµ(xµ)
[
xm0
µ

I∏
i=1

(x2
µ − ξ2

i )mi(−1)NUµ

]−1

.

(7.51)

The corresponding closed conformal Killing–Yano 2-form is degenerate and
reads

h =

N∑
µ=1

xµdxµ ∧
(N−1∑
k=1

A(k)
µ θk

)
+

I∑
i=1

ξi

N∏
µ=1

(x2
µ − ξ2

i )ωi . (7.52)

Here, the quantities A
(k)
µ , A(k) and Uµ are defined in terms of coordinates xµ

exactly in the same way as in the Kerr–NUT–(A)dS case, with n replaced by
N in the sums/products. Note also that besides the familiar coordinates xµ
and ψk, the generalized Kerr–NUT–(A)dS spacetimes also possess a number
of coordinates that implicitly characterize the base manifolds.

Coordinates xµ are the non-constant functionally independent eigenvalues
of h, whereas parameters ξi stand for the non-zero constant eigenvalues of h,
each having multiplicity mi that determines the dimension of Kähler manifolds
M i. The dimension m0 of the manifold M0 equals the multiplicity of the zero
value eigenvalue of h. For m0 = 1, the metric g0 can take a special form

A(N)g0 =
c

A(N)

( N∑
k=0

A(k)θk

)2

. (7.53)

Let us stress that the generalized Kerr–NUT–(A)dS metrics do not nec-
essarily admit the Killing tower of symmetries. The presence of a degenerate
closed conformal Killing–Yano tensor is not enough to generate this full tower
and much smaller subset of symmetries exists in these spacetimes. In particu-
lar, metrics gi are in general ‘arbitrary’ Kähler metrics without any additional
symmetries.

With a proper choice of the metric functions Xµ(xµ) and the base met-
rics, the generalized Kerr–NUT–(A)dS spacetimes become solutions of the
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Einstein equations. Namely, assuming that the base metrics g0 and gi are
Einstein spaces with cosmological constants λ0 and λi, respectively, the gen-
eralized Kerr–NUT–(A)dS metric solves the vacuum Einstein equations with
the cosmological constant, Ricab = λgab, provided the metric functions Xµ

take the following form:

Xµ = xµ

(
bµ +

∫
χ(xµ)xm0−2

µ

I∏
i=1

(x2
µ − ξ2

i )midxµ

)
, (7.54)

where

χ(x) =

N∑
i=−η

αix
2i , αn = −λ . (7.55)

Here bµ and αi are constant parameters. For convenience, we also introduced
a parameter η which takes a value η = 0 for a general g0 and η = 1 for the
special choice of g0 given by (7.53). The constants αi are constrained by the
requirement that λi are given by λi = (−1)N−1χ(ξi). Moreover, for η = 0 we
have α0 = (−1)N−1λ0, while for η = 1 one has

α0 = (−1)n−12c
I∑
i=1

mi

ξ2
i

, α−1 = (−1)N−12c . (7.56)

Concrete examples

The on-shell generalized Kerr–NUT–(A)dS metrics (7.50) describe a large fam-
ily of vacuum (with cosmological constant) geometries of mathematical and
physical interest. To obtain concrete examples one may simply specify the base
metrics and the parameters of the solution.

To illustrate, a subfamily of solutions with vanishing NUT charges, describ-
ing the Kerr-(A)dS black holes (Gibbons et al 2004, 2005) with partially equal
and some vanishing angular momenta, has been identified in Oota and Yasui
(2010). Namely, in odd dimensions the general-rotating Kerr-(A)dS spacetime
(Gibbons et al 2004, 2005) has an isometry R × U(1)n and corresponds to
identifying the base space with a product of the 2-dimensional Fubini–Study
metrics, B = CP1 × · · · × CP1. When some of the rotation parameters be-
come equal, the symmetry is enhanced and the dimension of the corresponding
Fubini–Study metric enlarges. In particular, equal spinning Kerr-(A)dS black
hole has B = CPn−1 and its symmetry is R×U(n), see Oota and Yasui (2010);
Yasui and Houri (2011) for more details.

Another example is that of ‘NUTty spacetimes’ describing twisted and/or
deformed black holes has been studied more recently in Krtouš et al (2016a).
Such black holes correspond to the even-dimensional ‘warped structure’ where
all the Kähler metrics gi identically vanish and the metric g0 becomes again
the Kerr–NUT–(A)dS spacetime. As discussed in Krtouš et al (2016a), these
solutions have a full Killing tower of symmetries.
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Special Riemannian manifolds

There is yet another, very effective, method for obtaining concrete examples of
generalized Kerr–NUT–(A)dS metrics: the method of taking special limits of
the original (possibly off-shell) Kerr–NUT–(A)dS spacetimes (4.1). Especially
interesting are the ‘singular limits’ where some of the originally functionally
independent eigenvalues of the principal tensor become equal, constant, or
vanish, or some of the original parameters of the Kerr–NUT–(A)dS metrics
take special values/coincide. In what follows we shall give several examples of
such limits that lead to interesting geometries.

As shown by Geroch (1969), limiting procedures of this kind are generally
non-unique. This is related to a well known ambiguity in constructing the
limiting spaces when some of the parameters limit to zero: there is always
a possibility to make a coordinate transformation depending on the chosen
parameters, before taking the limit. As we shall see on concrete examples
below, to escape the pathology and to achieve a well defined limit, one should
properly rescale both the metric parameters and the coordinates.

An important class of metrics that can be obtained by a certain scaling (su-
persymmetric) limit (Martelli and Sparks 2005; Chen et al 2006a; Hamamoto
et al 2007; Kubizňák 2009b) of the Kerr–NUT–(A)dS metrics (4.1) and be-
longs to the generalized spacetimes discussed in this section is that of special
Riemannian manifolds. In even dimensions, the corresponding limit is achieved
by setting

xµ → 1 + εxµ , (7.57)

followed by taking ε → 0, which effectively amounts to setting all the func-
tionally independent eigenvalues of the principal tensor equal to one. When
accompanied by an appropriate singular rescaling of Killing coordinates, see
Kubizňák (2009b), the principal tensor becomes completely degenerate and
yields the Kähler 2-form.

In this way one can obtain the (most general explicitly known) Kähler
metric gK, together with the associated Kähler potential B, and Kähler 2-
form ω = dB,

gK =

n∑
µ=1

[ ∆µ

Xµ(xµ)
dx2

µ +
Xµ(xµ)

∆µ

(n−1∑
j=0

σ(j)
µ dψj

)2]
,

B =

n−1∑
k=0

σ(k+1)dψk ,

(7.58)

where

∆µ =
∏
ν 6=µ

(xν − xµ) , σ(k)
µ =

∑
ν1<···<νk
νi 6=µ

xν1 . . . xνk , σ(k) =
∑

ν1<···<νk

xν1 . . . xνk .

(7.59)
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With the following choice of metric functions Xµ:

Xµ = −4

n+1∏
i=1

(αi − xµ)− 2bµ , (7.60)

where αi and bµ are free parameters, we recover the Einstein–Kähler manifold,
obeying

RicK = (2n+ 2)gK . (7.61)

The metric is identical to the Einstein–Kähler metric admitting the non-
degenerate Hamiltonian 2-form constructed in Apostolov et al (2006), or to
the metric constructed by the requirements of separability in Kolář and Krtouš
(2016). The Kähler manifold (7.58) is Ricci flat provided instead of (7.60) we
set Xµ = −4

∏n
i=1(αi− xµ)− 2bµ; see Chen et al (2006a) where such a metric

is derived by taking the BPS limit of the even-dimensional Kerr–NUT–(A)dS
spacetime.

Having obtained the Einstein–Kähler manifold (7.58), (7.60), one can ap-
ply the procedure (Gibbons et al 2003) to construct the most general known
Einstein–Sasaki space (Chen et al 2006a), constructed as a U(1) bundle over
the Einstein–Kähler base:

gES = gK + η η , (7.62)

where η = 2B+dψn is the Sasakian 1-form, and the new (2n+1)-dimensional
Einstein–Sasaki space obeys

RicES = 2ngES . (7.63)

By restricting the parameters in (7.60), one can obtain a complete and non-
singular manifold, see e.g., Yasui and Houri (2011) for an example.

Partially rotating deformed black holes

Another class of generalized Kerr–NUT–(A)dS metrics is obtained when one
tries to ‘switch off’ some of the rotation parameters of the canonical metric
(4.1). In the Lorentzian signature this yields partially rotating black holes
that are deformed by the presence of NUT charges. Similar to the special
Riemannian manifolds above, these metrics possess enough explicit and hid-
den symmetries, inherited from the original Kerr–NUT–(A)dS spacetime, to
guarantee the complete integrability of geodesic equations. In the following
we sketch the idea of the corresponding limit, generalizing the procedure per-
formed in Oota and Yasui (2010) for the case of vanishing NUT parameters.
The details of the construction can be found in Krtouš et al (2016a).

For simplicity let us concentrate on the even-dimensional case, D = 2n. We
start with the Kerr–NUT–(A)dS spacetime, (4.1), where n coordinates xµ are
eigenvalues of the principal tensor h, while other n coordinates, φk, are Killing
parameters. For the black hole case one of the coordinates, xn is identified
with the radial coordinate r, while the other n − 1 coordinates x1, . . . , xn−1

are ‘angle coordinates’. Besides the cosmological constant, the metric contains
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2n − 1 arbitrary parameters, describing the mass, n − 1 rotation parameters
aµ, and n− 1 NUT parameters. As we described in section 4.4, we assume the
following ordering of coordinates xµ and rotational parameters aµ:

−x1 < x1 < a1 < x2 < a2 < . . . < xn−1 < an−1 , (7.64)

cf. also figure 4.2. Lower bound −x1 has property that when a1 → 0 its value
also tends to 0.

It is obvious from this ordering that in the limit when the first p rotation
parameters {a1, . . . , ap} tend to zero, the first p angle coordinates, grasped
between them, must tend to zero as well. In other words, to preserve the
regularity of the metric one needs to, besides rescaling the rotation parameters,
also properly rescale the first p angle coordinates. As shown in Krtouš et al
(2016a) this can be consistently done.

As a result, the principal tensor h becomes degenerate and its matrix rank
becomes 2(n − p). The number of the rank-2 Killing tensors, generated from
h is reduced to n− p. At the same time, the limiting procedure generates new
additional hidden symmetries, which provide one with additional p quadratic
in momenta integrals of geodesic motion. The number of the first order in
momenta integrals of motion, associated with Killing vectors, remains the
same: n. Thus the total number of the integrals of motion, 2n, is sufficient to
guarantee complete integrability of geodesics in the limiting spacetime.

The resulting metric has one less parameter and is a special case of the
generalized Kerr–NUT–(A)dS metric with N = n− p, |m| = 0, and m0 = 2p.
It has a warped structure: both components in the warped product are lower-
dimensional Kerr–NUT–(A)dS metrics. We refer to Krtouš et al (2016a) for
more details and explicit formulas. A symmetry structure of warp product
metrics has been studied in Krtouš et al (2016b) and we will return to it in
the next section.

NUTty spacetimes and near horizon geometries

Final interesting limiting cases of the Kerr–NUT–(A)dS metric that we are
going to discuss in this section are those of NUTty spacetimes and near horizon
geometries. They can be obtained as follows. Consider a coordinate xµ. It
belongs to an interval given by the roots of the metric function, see sections 4.3
and 4.4. Now, we want to study a ‘double-root’ limit of this metric function. In
such a limit, the end points of the interval tend one to the other and the value
of the coordinate xµ, which is grasped between them, becomes in general a non-
vanishing constant. This implies the degeneracy of the principal tensor. Such
double-root limits generalize two interesting cases known from four dimensions:
the Taub–NUT limit and the near-horizon limit of the extremal Kerr black
hole. As earlier, the corresponding limiting procedure has to be accompanied
by a proper rescaling of coordinates.

It was shown in Kolář and Krtouš (2017), that when the double-root limit
is taken for all angular coordinates xµ, it leads to the ‘multiply-NUTty space-
time’, obtained by Mann and Stelea (2006, 2004).
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If the double-root limit is taken for the metric function governing the po-
sition of the horizons, it leads to the near-horizon limit of the extremal black
hole metrics, which is similar to the extreme Kerr throat geometry in four
dimensions (Bardeen and Horowitz 1999). This higher-dimensional limiting
spacetime geometry has enhanced symmetry, while some of the hidden sym-
metries of the original spacetime encoded by Killing tensors become reducible.

Remark: In the near horizon limit of an extremal Myers–Perry black hole in an arbi-
trary dimension the isometry group of the metric is enhanced to include the
conformal factor SO(2, 1). In particular, when all n parameters of the rotation
are equal this group is SO(2, 1)×U(n) (Galajinsky 2013). For the near horizon
extremal Myers–Perry metric one of the rank 2 Killing tensors decomposes into
a quadratic combination of the Killing vectors corresponding to the conformal
group, while the remaining ones are functionally independent (Chernyavsky
2014). Similar result is valid for the Kerr–NUT–(A)dS metric. Namely, for the
near horizon extremal Kerr–NUT–(A)dS geometry only one rank-2 Killing ten-
sor decomposes into a quadratic combination of the Killing vectors, which are
generators of conformal group, while the others are functionally independent
(Xu and Yue 2015).

Additional details and the discussion of various limiting geometries corre-
sponding to double root limits can be found in Kolář and Krtouš (2017).

7.5 Lifting theorems: hidden symmetries on a warped space

As we have seen in the previous chapters, the existence of hidden symmetries
imposes strong restrictions on the background geometry. Consequently, not
every geometry admits such symmetries. Even if the symmetries are present,
finding their explicit form, by solving the corresponding differential equations,
is a formidable task. For this reason, it is of extreme value to seek alternative
ways for finding such symmetries. In this section we proceed in this direction.
Namely, we study hidden symmetries on a warped space, formulating various
criteria under which the Killing–Yano and Killing tensors on the base space
can be lifted to symmetries of the full warped geometry. This decomposes a
task of finding such symmetries to a simpler problem (that of finding hidden
symmetries for a smaller seed metric) and opens a way towards extending the
applicability of hidden symmetries to more complicated spacetimes.

To illustrate this on a simple example, let us consider the rotating black
string in five dimensions whose metric can be written in the form g = ḡ+dz2,
where ḡ is the Kerr metric:

ḡ = −∆
ρ2

[
dt− a sin2 θdφ

]2
+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
adt− (r2 + a2)dφ

]2
,

∆ = r2 + a2 − 2mr , ρ2 = r2 + a2 cos2 θ .
(7.65)

As shown in chapter 3, the Kerr metric (7.65) admits a non-trivial Killing–
Yano 2-form (Penrose 1973)

f̄ = a cos θdr ∧
(
dt− a sin2θdφ

)
− r sin θdθ ∧

(
adt− (r2 + a2)dφ

)
. (7.66)
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One can show that f̄ immediately lifts to the Killing–Yano 2-form f = f̄ of
the black string in five dimensions.

More generally, following Krtouš et al (2016b), let us consider a warped
spaceM , realized as a direct productM = M̃×M̄ of two manifolds of arbitrary
dimensions D̃ and D̄, with the metric

g = g̃ + w̃2ḡ , (7.67)

where g̃ is called the base metric, ḡ is the seed metric, and w̃ is the warp
factor. The corresponding Levi-Civita tensor splits as ε = w̃D̄ε̃ ∧ ε̄ . Here we
assume that tilded objects Ã are non-trivial only in ‘tilded directions’ and de-
pend only on a position in M̃ , and similarly, barred objects Ā are non-trivial
only in ‘barred directions’ and depend on positions in M̄ . Then one can prove
the following lifting theorems for various hidden symmetries (Benn 2006; Ku-
bizňák 2009a; Krtouš et al 2016b).

Theorem: Let the seed metric ḡ of the warped geometry (7.67) admits a
Killing–Yano p-form f̄ and/or a closed conformal Killing–Yano q-form h̄.
Then the following forms:

f = w̃p+1f̄ , h = w̃q+1ε̃ ∧ h̄ , (7.68)

are the Killing–Yano p-form and/or the closed conformal Killing–Yano (D̃+q)-
form of the full warped geometry (7.67).

Theorem: If k̄ is a rank r Killing tensor of the metric ḡ, then

ka1...ar = k̄a1...ar (7.69)

is a Killing tensor of the full warped geometry g.

Theorem: Let f̃ be a Killing–Yano p-form of the seed metric g̃ and let the
warped factor w̃ satisfies d̃

(
w̃−(p+1)f̃

)
= 0 . Then

f = w̃D̄f̃ ∧ ε̄ (7.70)

is a Killing–Yano (D̄ + p)-form of the full metric (7.67). Similarly, let h̃ be
a closed conformal Killing–Yano q-form of g̃ and the the warp factor satisfies

∇̃ ·
(
w̃−(D̃+q+1)h̃

)
= 0 . Then

h = h̃ (7.71)

is a closed conformal Killing–Yano q-form of the metric (7.67).

Theorem: Let q̃ be a rank 2 conformal Killing tensor of the metric g̃ with its
symmetric derivative given by vector σ̃, ∇̃(aq̃bc) = g̃(abσ̃c), and the logarithmic
gradient λ̃ = w̃−1d̃w̃ of the warp factor satisfies σ̃ = 2 q̃ · λ̃. Then

qab = q̃ab (7.72)

is a conformal Killing tensor of the warped metric g and its symmetric deriva-
tive is given by vector σa = σ̃a.
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There exist a number of examples, e.g., Krtouš et al (2016b), where these
theorems can be applied and exploited for finding hidden symmetries of com-
plicated metrics. For example, a very non-trivial application happens for the
NUTty spacetimes (Krtouš et al 2016a,b) which inherit the full tower of hidden
symmetries lifted from their two off-shell Kerr–NUT–(A)dS bases g̃ and ḡ.

Let us finally mention that the lifting theorems presented in this section
are not the only possibility for lifting hidden symmetries to higher-dimensional
geometries. For example, a completely different approach, the so called Eisen-
hart lift, (Eisenhart 1928) was recently used to construct spacetimes with
higher-rank Killing tensors (Gibbons et al 2011) and subsequently applied to
more complicated situations, e.g., Cariglia (2012); Galajinsky (2012); Cariglia
(2012); Cariglia and Gibbons (2014); Cariglia et al (2014a,b); Cariglia (2014);
Cariglia and Galajinsky (2015); Galajinsky and Masterov (2016).

7.6 Generalized Killing–Yano tensors

Motivation

Till now we have discussed mainly vacuum solutions of the higher-dimensional
Einstein equations with or without the cosmological constant. However, we
already mentioned that, for example, in the four-dimensional case there exist
the charged versions of the Kerr–NUT–(A)dS metric which are solutions of
the Einstein–Maxwell equations and which also admit the Killing–Yano tensor
(see e.g., Keeler and Larsen (2012).) A natural question is how far can one
generalize the presented in this review theory of hidden symmetries to non-
vacuum solutions of the Einstein equations. For example, there are known
solutions, describing black holes with non-trivial gauge fields, such as those of
various supergravity theories which arise in low energy limits of string theory
compactifications. It is also well known that some of these solutions, that can
be thought of as generalizations of Kerr–NUT–(A)dS metrics, possess Killing
tensors (see, e.g., Emparan and Reall (2008) and references therein) and allow
separability of the Hamilton–Jacobi and Klein–Gordon equations (Chow 2010,
2016). In fact this is how some of these solutions were ‘constructed’.

In this section we demonstrate that the properties of such non-vacuum
black holes can be explained by the existence of a deeper structure associated
with the generalized Killing–Yano tensors.

Systematic derivation

The generalized Killing–Yano tensors can be systematically derived by study-
ing symmetry operators of the Dirac operator with fluxes (Houri et al 2010a;
Kubizňák et al 2011). The idea of the construction is as follows. In the back-
grounds of superstring or supergravity theories, the metric is often supple-
mented by other fields or fluxes which couple to the spinor field and modify
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the Dirac equation, which now reads

Dψ = 0 , D = γa∇a +
∑
p

1

p!
Ba1...apγ

a1 . . . γap . (7.73)

This includes the case of a massive Dirac operator, the Dirac operator mini-
mally coupled to a Maxwell field, the Dirac operator in the presence of torsion,
as well as more general operators.

The generalized Killing–Yano tensors are then in one-to-one correspon-
dence with the first-order symmetry operators of this modified Dirac operator
D. In the notations reviewed in appendix F, in analogy with section F.2 such
operators can be written as (Benn and Charlton 1997; Benn and Kress 2004;
Acik et al 2009; Houri et al 2010a; Kubizňák et al 2011)

L = ω ·∇+Ω , (7.74)

where ω and Ω are inhomogeneous forms to be determined. The requirement
that this operator is a symmetry operator ofD results in aB-dependent system
of differential equations for ω, called the generalized Killing–Yano system.
Once ω is known, Ω can also be determined, cf. (F.29).

In general, the generalized Killing–Yano system couples various homoge-
neous parts of inhomogeneous form ω, and these only decouple for a special
form of the flux B. In particular, this happens for B = iA− 1

4T , with a 1-form
A and a 3-form T , in which case the Killing–Yano system reduces to the tor-
sion generalization of the conformal Killing–Yano equation (7.79) below. We
refer to Kubizňák et al (2011) for more details.

Killing–Yano tensors in a spacetime with torsion

In what follows, let us focus on a specific ‘torsion generalization’ of Killing–
Yano tensors which finds its applications for a variety of supergravity black
hole solutions. We assume that the torsion is completely antisymmetric and
described by a 3-form T . It is related to the standard torsion tensor as T dab =

Tabcg
cd. Let us define a torsion connection ∇T acting on a vector field X as

∇Ta Xb = ∇aXb +
1

2
T bacX

c , (7.75)

where ∇ is the Levi-Civita (torsion-free) connection. Connection ∇T satisfies
the metricity condition, ∇Tg = 0, and has the same geodesics as ∇.

The connection (7.75) induces a connection acting on forms. Namely, let
Ψ be a p-form, then

∇T
XΨ =∇XΨ −

1

2

(
X · T

)
∧
1
Ψ , (7.76)
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using the contracted wedge product introduced in (F.8). One can then define
the following two operations:

dTΨ ≡∇T ∧ Ψ = dΨ − T ∧
1
Ψ , (7.77)

δTΨ ≡ −∇T · Ψ = δΨ − 1

2
T ∧

2
Ψ . (7.78)

A generalized conformal Killing–Yano (GCKY) tensor k is a p-form satis-
fying for any vector field X (Kubizňák et al 2009b)

∇TXk −
1

p+ 1
X · dTk +

1

D − p+ 1
X ∧ δTk = 0 . (7.79)

In analogy with the Killing–Yano tensors defined with respect to the Levi-
Civita connection, a GCKY tensor f obeying δTf = 0 is called a generalized
Killing–Yano (GKY) tensor, and a GCKY h obeying dTh = 0 is a generalized
closed conformal Killing–Yano (GCCKY) tensor.

Remark: Interestingly, the GKY tensors were first discussed from a mathematical point
of view in Yano and Bochner (1953) many years ago, and rediscovered more
recently in Rietdijk and van Holten (1996); Kubizňák et al (2009b) in the
framework of black hole physics. The GCKY generalization (7.79) has been
first discussed in Kubizňák et al (2009b)

.

The following properties, generalizing the properties of conformal Killing–
Yano tensors, have been shown in Kubizňák et al (2009b); Houri et al (2010b)
for the GCKY tensors:

1. A GCKY 1-form is identical to a conformal Killing 1-form.
2. The Hodge star ∗ maps GCKY p-forms to GCKY (D − p)-forms. In par-

ticular, the Hodge star of a GCCKY p-form is a GKY (D − p)-form and
vice versa.

3. GCCKY tensors form a (graded) algebra with respect to a wedge product,
i.e., when h1 and h2 is a GCCKY p-form and q-form, respectively, then
h3 = h1 ∧ h2 is a GCCKY (p+ q)-form.

4. Let k be a GCKY p-form for a metric g and a torsion 3-form T . Then,
k̃ = Ωp+1k is a GCKY p-form for the metric g̃ = Ω2g and the torsion
T̃ = Ω2T .

5. Let ξ be a conformal Killing vector, £ξg = 2fg, for some function f ,

and k a GCKY p-form with torsion T , obeying £ξT = 2fT . Then k̃ =
£ξk − (p+ 1)fk is a GCKY p-form with T .

6. Let h and k be two generalized (conformal) Killing–Yano tensors of rank
p. Then

Kab = h(a|c1...cp−1|kb)
c1...cp−1 (7.80)

is a (conformal) Killing tensor of rank 2.

The generalized Killing–Yano tensors naturally appear in black hole space-
times in supergravity theories, where the torsion may be identified with a
3-form field strength. For example, a non-degenerate GCCKY 2-form exists
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(Kubizňák et al 2009b) in the black hole spacetime of Chong et al (2005a),
which is a doubly spinning black hole solution of 5-dimensional minimal su-
pergarvity, described by the Lagrangian density

L = ∗(R+ Λ)− 1

2
F ∧ ∗F+

1

3
√

3
F ∧ F ∧A . (7.81)

In this case the torsion can be identified with the Maxwell field strength

T =
1√
3
∗F , (7.82)

and is, due to the Maxwell equations ‘harmonic’, δTT = 0,dTT = 0. The
GCCKY tensor guarantees separability of the Hamilton–Jacobi and Klein–
Gordon equations (Davis et al 2005), as well as the ‘torsion modified’ Dirac
equation (Wu 2009a,b) in this spacetime.

Another example (Houri et al 2010b) is provided by the Kerr–Sen black
hole (Sen 1992) and its higher-dimensional generalizations (Cvetic and Youm
1996; Chow 2010), which are solutions to the following action:

S =

∫
MD

eφ
√
D/2−1

(
∗R+

D − 2

2
∗dφ ∧ dφ− ∗F ∧ F − 1

2
∗H ∧H

)
, (7.83)

where F = dA and H = dB −A ∧ dA. The general multiply-spinning black
hole solution admits a non-degenerate GCCKY 2-form which, upon identifying
the torsion with the 3-form field strength

T = H , (7.84)

is responsible for complete integrability of geodesic motion and separability of
the scalar and Dirac equations.

The metrics admitting a non-degenerate GCCKY 2-form have been locally
classified in Houri et al (2012). In general such metrics admit a tower of Killing
tensors but no additional explicit symmetries. A subfamily of these metrics
provided a new class of Calabi–Yau with torsion metrics (Houri et al 2012), see
also Houri et al (2013) for the generalized Sasaki–Einstein metrics, and Hinoue
et al (2014) for a generalization of the Wahlquist metric. Further developments
on the GKY tensors can be found in Chow (2015, 2016). We also refer to the
wonderful review on applications of Killing–Yano tensors to string theory by
Chervonyi and Lunin (2015).

7.7 Final remarks

This Living Review was mainly devoted to two subjects: hidden symmetries
and higher-dimensional black holes. Black holes in higher dimensions find ap-
plications in many physical situations. They naturally appear in low energy
approximations of string theory, play an important role in brane-world scenar-
ios, as well as provide a window to the nature of gravitational theory in four
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and higher-dimensions. As we explained in this review, all higher-dimensional
Kerr–NUT–(A)dS black holes possess a set of explicit and hidden symmetries,
which is sufficient to guarantee complete integrability of geodesic equations
and separation of variables in physical field equations. The origin and seed of
all these symmetries is a single very special object, called the principal tensor.
This is a non-degenerate closed conformal Killing–Yano 2-form. The existence
of this object makes properties of higher-dimensional black holes very similar
to the properties of the four-dimensional Kerr metric.

During ten years that have passed since the discovery of the principal ten-
sor, there have been published many papers devoted to hidden symmetries
of higher-dimensional black holes. In the present review, we collected the ob-
tained results and provided the references to the main publications on this
subject. It should be mentioned that during the work on the review we also
obtained a number of new, yet unpublished, results that fill some loopholes
in the literature. For example, we discussed in detail the solution of geodesic
equations in terms of the action–angle variables, provided a direct proof of the
commutation relations of the objects in the Killing tower without using the
explicit form of the metric, studied a possibility of understanding the principal
tensor as a symplectic form on the spacetime, or systematically discussed the
meaning of coordinates and special cases of the Kerr–NUT–(A)dS metrics.

Let us mention several open problems that are immediately connected to
the results presented in this review. For example, we showed that the geodesic
equations in rotating black hole spacetimes are completely integrable in all
dimensions. This provides a highly non-trivial infinite set of completely inte-
grable dynamical systems. This might be of interest to researchers who study
(finite-dimensional) dynamical systems. In particular, we demonstrated how
the action-angle variables approach can be developed for studying the particle
and light motion. This opens an interesting possibility of applying the fun-
damental theorem of Kolmogorov–Arnold–Moses (Arnol’d 1989) to develop a
perturbation theory for slightly distorted geodesics in such spacetimes. An-
other interesting mathematical problem, waiting for its solution, is the study
of properties of the solutions of the ordinary differential equations which arise
in the separation of variables of the Klein–Gordon and other field equations
in the background of higher-dimensional black holes. In particular, it is im-
portant to describe properties of higher-dimensional spin-weighted spheroidal
harmonics (Berti et al 2006; Kanti and Pappas 2010; Cho et al 2012a; Brito
et al 2012; Kanti and Pappas 2012; Kanti and Winstanley 2015). These func-
tions are defined as solutions of the Sturm–Liouville eigenvalue problem for
the second-order ordinary differential equation with polynomial coefficients,
see section 6.3.

There is a number of interesting possible extensions of the presented in
this review subjects, which are still waiting for their study. These problems
include, for example, the classification and complete study of metrics obtained
from the Kerr–NUT–(A)dS metrics by different limiting procedures and, more
generally, a thorough study of the generalized Kerr–NUT–(A)dS solutions. It
would also be interesting to extend the applicability of hidden symmetries to
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non-empty and supersymmetric generalizations of the higher-dimensional Ein-
stein equations. More generally, the subject of hidden symmetries has many
interesting applications that go well beyond the realms of black hole physics.
It casts a new light on (integrable) dynamical systems, advances mathematical
techniques, provides new tools for constructing solutions of Einstein’s equa-
tions, is related to special Riemannian manifolds, symmetry operators, and the
Dirac theory. We refer to a beautiful review on hidden symmetries in classical
and quantum physics (Cariglia 2014).

We would like to conclude this review by the following remark. The prin-
cipal tensor, which exists in higher-dimensional black holes, provides us with
powerful tools that allow us to study these spacetimes. Why at all the Nature
‘decided’ to give us such a gift?
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A Notation and conventions

A.1 Tensor notation

We denote tensors, vectors and forms in bold, e.g., metric g, vector X, or
antisymmetric p-form ω. Their components are then gab, X

a, or ωa1...ap , re-
spectively. By dot · we denote a contraction of two tensors in adjacent indices.
For example, h ·X denotes 1-form with components hacX

c while X · h has
components Xchca.

We use the spacetime metric for implicit raising and lowering indices, Xa

are thus components of a vector and Xa = gacX
c are components of a cor-

responding 1-form. In the ‘index-free’ notation the difference is not so clear.
In the mathematical literature, it is custom to use special symbols ] and [ to
distinguish related objects: X[ is the 1-form associated with a vector X and
ω] is the vector associated with a 1-form ω. To simplify our notations we do
not use these symbols since the meaning is usually obvious from the context.

We use the signature (−++ · · ·+) for Lorentzian metrics and the sign con-
ventions of Misner et al (1973) for the curvature tensors. We use the Einstein
summation convention for generic coordinate and tensor indices on any space.
However, we do not employ this convention for indices connected with special
coordinate charts or vector frames (typically such indices do not run over the
whole dimension of space; see, for example, the Greek indices in Kerr–NUT–
(A)dS spacetime).

A.2 Exterior calculus

In the following we overview various operations with differential forms mainly
to fix sign and normalization conventions.

A p-form α is a completely antisymmetric tensor of rank (0, p). The exterior
product of a p-form α with a q-form β is denoted by ∧. Up to a normalization,
it is given by the antisymetrization of the tensor product

(α ∧ β)a1...apb1...bq =
(p+ q)!

p! q!
α[a1...ap βb1...bq ] . (A.1)

An insertion of a vector X into the first slot of a form α (the operation which
is in the literature often written as iXω) is denoted by X · ω, and given by

(X · α)a2...ap = Xaαaa2...ap . (A.2)

The two operations obey the following properties:

α ∧ β = (−1)pqβ ∧α , (A.3)

X · (α ∧ β) = (X ·α) ∧ β + (−1)pα ∧ (X · β) . (A.4)

Using the metric, we can also introduce the scalar product ω • σ of two p-
forms:

ω • σ =
1

p!
ωc1...cp σ

c1...cp . (A.5)
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A Hodge dual of a p-form α is a (D − p)-form ∗α, defined as

(∗α)ap+1...aD =
1

p!
αa1...ap εa1...apap+1...aD , (A.6)

where ε is the totally antisymmetric tensor. For an arbitrary p-form α and a
vector X, we have

∗ ∗α = εpα , εp = (−1)p(D−p)
det g

|det g| , (A.7)

∗(α ∧X) = X · (∗α) , ∗(α ·X) = X ∧ (∗α) , (A.8)

where α ·X = (−1)p−1X ·α.
The exterior derivative d maps p-forms to (p + 1)-forms. It is defined by

the following properties:

(i) d(α+ β) = dα+ dβ ,

(ii) d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ) ,

(iii) ddα = 0 ,

(iv) it maps a function f to its differential df .

(A.9)

The co-derivative δα of a p-form α is the dual operation to the exterior
derivative,

δα = (−1)pεp−1 ∗ d ∗α , (A.10)

with εp given by (A.7). The exterior derivative can be also expressed in terms
of the antisymmetric part of the metric covariant derivative

(dα)a0...ap = (p+ 1)∇[a0
αa1...ap] . (A.11)

Similarly, the co-derivative can be expressed using the covariant divergence,

(δα)a2...ap = −∇aαaa2...ap . (A.12)

These relations can also be written using the wedge and the dot operations

dα =∇ ∧α , δα = −∇ ·α . (A.13)

The duality relations (A.8) then read

∇ ∧ (∗α) = (−1)p−1 ∗ (∇ ·α) , ∇ · (∗α) = (−1)p ∗ (∇ ∧α) . (A.14)

We also use the inhomogeneous forms. In terms of its homogenous p-form
parts pα, an inhomogeneous form α is given by

α =

D∑
p=0

pα . (A.15)

The operations d and δ act naturally on such forms. In addition, we can
introduce rank (π) and parity (η) operators by:

πα =

D∑
p=0

p pα , ηα =

D∑
p=0

(−1)p pα . (A.16)
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B Phase space formalism and complete integrability

In this appendix, we briefly describe some general properties of Hamiltonian
systems, introduce integrals of motion, and discuss the notion of complete in-
tegrability and its relation to separability of the Hamilton–Jacobi equation.
We refer the reader to standard books on Hamiltonian dynamics and symplec-
tic geometry, for example Arnol’d (1989); Goldstein et al (2002), for further
exposure.

B.1 Symplectic geometry

In Hamiltonian mechanics, a dynamical system is described in terms of the
phase space whose geometric representation can be given in terms of the sym-
plectic geometry, which we now briefly review.

Symplectic structure

Let Γ be a 2N -dimensional manifold. A symplectic structure on Γ is a 2-form
Ω which is:

i) closed: dΩ = 0 ,

ii) non-degenerate: for any X, there exists Y such that Ω(X,Y ) 6= 0 .
(B.1)

The pair (Γ,Ω) is called a symplectic manifold. It describes a dynamical system
with N degrees of freedom.

Let zA, A = 1, . . . , 2N , be coordinates on Γ . Then, the components ΩAB
of the symplectic structure form an antisymmetric non-degenerate matrix.
We can define an inverse symplectic form Ω−1, with components ΩAB , by
relations

ΩACΩ
BC = δBA . (B.2)

The last relation can be briefly written as Ω ·Ω−1 = −I, where I is a unit
tensor with components δBA and the dot · indicates the contraction in adjacent
indices.

Note also that the very existence of a non-degenerate 2-form implies that Γ
has to be even-dimensional. At the same time the closeness ofΩ means that (at
least locally) there exists a 1-form symplectic potential θ, such that Ω = dθ.

Hamiltonian vector flow

A scalar function on Γ is called an observable. We focus on autonomous systems
whose observables do not explicitly depend on time. Given an observable F ,
the symplectic structure defines the corresponding Hamiltonian vector field
XF , given by

XF = Ω−1 · dF ⇔ XF ·Ω = dF , (B.3)

or, in components, XA
F = ΩABF,B .
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The Hamiltonian vector fields preserve the symplectic structure, £XFΩ = 0,
where £XF stands for the Lie derivative with respect a vector field XF . We
also have £XFΩ

−1 = 0. Employing the Leibnitz property for the Lie deriva-
tive, one can easily derive the Liouville’s theorem: The Hamiltonian vector field
XF preserves the phase space volume element Ω∧N induced by the symplectic
structure, £XFΩ

∧N = 0.

The integral curves of XF determine a map of the phase space into itself,
called a Hamiltonian flow. Parameterizing by parameter τ , the integral curves
γ(τ) with coordinates zA(τ) are given by

XF =
dγ

dτ
=
dzA

dτ
∂zA . (B.4)

Since the Hamiltonian flow preserves the symplectic structure, any observable
F induces a symplectomorphism of the phase space.

Poisson brackets

Given two observables F and G, the symplectic structure defines another ob-
servable, called the Poisson bracket {F,G}, given by

{F,G} = dF ·Ω−1 · dG = F,AΩ
AB G,B , (B.5)

or equivalently, using (B.3),

{F,G} = XG · dF = −XF · dG = XF ·Ω ·XG . (B.6)

The closeness of Ω implies that for any three functions F , G, and H on the
symplectic manifold, we get the Jacobi identity:

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0 . (B.7)

Observables thus form a Lie algebra with respect to the Poisson bracket. This
algebra is related to the Lie algebra of Hamiltonian vector fields by the relation

[XF ,XG] = −X{F,G} . (B.8)

Here [X,Y ] stands for the Lie bracket (commutator) of two vector fields X
and Y . We note that the relation (B.8) can be used to prove the Jacobi
identity for Poisson brackets (B.7) by rewriting it into the Jacobi identity for
the corresponding Lie brackets.
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Canonical coordinates

Until now we have not made any particular choice of coordinates. However, it
turns out that the symplectic structure allows one to identify a special class
of coordinates, in which most of the equations simplify significantly and take
a form familiar from the basic courses on theoretical mechanics. The existence
of such coordinates follows from the following:

Darboux theorem: Let Ω be a symplectic structure. Then in a vicinity of a
phase space point it is possible to choose coordinates (q1, . . . , qN , p1, . . . , pN ),
called the canonical coordinates, in which Ω and Ω−1 take the following
canonical forms:

Ω =

N∑
i=1

dqi ∧ dpi , Ω−1 =

N∑
i=1

(
∂qi ∂pi − ∂pi ∂qi

)
, (B.9)

and the corresponding symplectic potential reads

θ = −
N∑
i=1

pidq
i . (B.10)

The components of the symplectic structure and of its inverse thus are

zA =

(
qi

pi

)
, ΩAB =

(
0 δji
−δij 0

)
, ΩAB =

(
0 δij
−δji 0

)
. (B.11)

Using the canonical coordinates, the Hamiltonian vector field and the Pois-
son bracket take the familiar forms

XF =

N∑
i=1

(∂F
∂pi

∂qi −
∂F

∂qi
∂pi

)
, (B.12)

{F,G} =

N∑
i=1

(∂F
∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
. (B.13)

In particular, one has

{qi, pj} = δij . (B.14)

A choice of the canonical coordinates is not unique. There exist transfor-
mations to different canonical coordinates that preserve the canonical form of
the symplectic structure Ω. Such transformations are called canonical trans-
formations. In general, more than one canonical coordinate chart is required
to cover a complete symplectic manifold. A transition between such two charts
covering a vicinity of some point is given by a canonical transformation. The
complete set of canonical charts covering the symplectic manifold is called a
symplectic atlas. The Darboux theorem guarantees the existence of this atlas.
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Time evolution

The dynamics is specified by the Hamiltonian H, a given scalar function on the
phase space. Since we concentrate on autonomous systems, we assume that H
is time independent. The time evolution in the phase space is then determined
by the Hamiltonian flow corresponding to the Hamiltonian H. In other words,
the dynamical (phase-space) trajectories are integral curves of the Hamiltonian
vector field XH ,

XH =

N∑
i=1

(
q̇i∂qi + ṗi∂pi

)
. (B.15)

Comparing with (B.12), we arrive at the Hamilton canonical equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (B.16)

Here, for any observable F , Ḟ represents its time derivative, i.e., a derivative
along the dynamical trajectories:

Ḟ =
dF

dτ
= XH · dF = {F,H} . (B.17)

Integrals of motion

An observable F , which remains constant along the dynamical trajectories,
is called a conserved quantity or an integral/constant of motion. Clearly, it
commutes with the Hamiltonian H,

{F,H} = 0 . (B.18)

It follows from the Jacobi identity (B.7) that given two integrals of motion
F and G, their Poisson bracket, K = {F,G}, is also a (not necessarily non-
trivial) constant of motion. Two observables F and G are said to Poisson
commute provided their Poisson bracket vanishes, {F,G} = 0. Observables
that mutually Poisson commute are called in involution.

We have already seen that an observable induces a transformation of the
phase space, see (B.4). If observable F is a conserved quantity, this transfor-
mation commutes with the time evolution, [XF ,XH ] = 0, as follows from the
identity (B.8). Any trajectory in the phase space satisfying the equation of mo-
tion can thus be shifted using the transformation generated by F into another
trajectory satisfying the equation of motion. This means that the conserved
quantities generate symmetries of the time evolution of a dynamical system.
This relation is one-to-one: any symmetry of the time evolution is generated
by an integral of motion. We can formulate the following:

Theorem: Let Y preserves both the symplectic 2-form, £YΩ = 0, and the
Hamiltonian, £YH = 0. Then there exists an integral of motion I, such that
Y = XI .
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Remark: This theorem can be viewed as a phase space version of the famous Noether’s
theorem about the correspondence of continuous symmetries and conserved
quantities. The Noether’s theorem is usually formulated on a configuration
space and refers to the symmetries of the action. In the present version, we have
rather stated the correspondence between conserved quantities of a dynamical
system and symmetries of the time evolution on the phase space.

B.2 Complete integrability

Dynamical systems may admit more than one symmetry. An important situa-
tion occurs when these symmetries commute among each other. A system with
the maximal possible number of independent mutually commuting symmetries
is called completely integrable. The evolution of such systems is highly ‘or-
dered’ in the phase space: the trajectories remain in well-defined submanifolds
and can be found by a well-defined procedure. Global integrability and chaotic
motion are thus in some sense two opposite properties of dynamical systems.
In this comparison, the global complete integrability is rare and exceptional,
while the chaotic nature is generic. Although exceptionally rare, integrable
systems are solvable by analytic methods and play thus a very important role
in the study of dynamical systems.

Liouville’s integrability

In our application we are interested mainly in a regular ordered evolution
contingent on the complete integrability of the system. We focus on the lo-
cal aspects of integrability and will not discuss its global issues. Namely, we
concentrate on the local notion of complete Liouville integrability.

In its original sense, integrability means that a system of differential equa-
tions can be solved by ‘quadratures’, that is, its solution can be found in a finite
number of well-defined steps involving algebraic operations and integrations
of given functions. Thanks to this ‘prescription’, integrable systems are often
solvable by analytic methods and thus play a very important role in the study
of dynamical systems.

Nowadays, integrability of finite-dimensional dynamical systems is usually
characterized by the existence of conserved quantities:

Complete Liouville integrability: The dynamical system with N degrees
of freedom is completely (Liouville) integrable if it admits N functionally in-
dependent integrals of motion Pi that are in involution:

{Pi, H} = 0 , {Pi, Pj} = 0 , i, j = 1, . . . , N . (B.19)

Since the total number of independent integrals of motion in involution cannot
be larger than N , the Poisson-commutation of H with all Pi implies that the
Hamiltonian is function of P = (P1, . . . , PN ),

H = H(P ) . (B.20)
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Note also that for autonomous systems, the Hamiltonian H as well as the
conserved quantities Pi should not explicitly depend on the time parameter,
they are just functions on the phase space.

The relation between the existence of conserved quantities and the origi-
nal notion of integrability was established by Liouville (1855) who proved the
following theorem:

Liouville’s theorem: A solution of equations of motion of a completely in-
tegrable system can be obtained by quadratures, that is, by a finite number of
algebraic operations and integrations.

Level sets

Before we hint on how the solution by quadratures proceeds, we make a cou-
ple of related geometrical comments. First, we introduce the level set LΦ as
a subspace of the phase space Γ given by fixing the conserved quantities
P = (P1, . . . , PN ) to values Φ = (Φ1, . . . , ΦN ),

Pi = Φi , i = 1, . . . , N . (B.21)

The functional independence of observables Pi means that the gradients dPi
are linearly independent at each point of LΦ, which implies that each level set
LΦ is an N -dimensional submanifold of Γ .

The involution conditions {Pi, Pj} = 0 imply

XPj · dPi = 0 , (B.22)

which means that the Hamiltonian vectors XPj are tangent to the level set
LΦ and thus the level set is invariant under the Hamiltonian flows generated
by Pi. Since the Hamiltonian depends just on P , the dynamical trajectories
(orbits of XH) remain also in the level set LΦ.

Finally, the components of the symplectic structure Ω restricted to the
N -dimensional level set LΦ can be evaluated as Ωij = XPi ·Ω ·XPj . How-
ever, using (B.6) we find that they identically vanish on LΦ, i.e., Ω|LΦ = 0.
The N -dimensional submanifold of the 2N -dimensional symplectic space Γ on
which the restriction of the symplectic form vanishes is called a Lagrangian
submanifold. We have thus found that conserved quantities Pi define the foli-
ation of the phase space into Lagrangian submanifolds LΦ.

Liouville’s procedure

Let us now return back to the Liouville’s integrability theorem. The main
idea behind it is that one can use the N independent integrals of motion
P = (P1, . . . , PN ) as new momentum coordinates and supplement them with
N new canonically conjugate position coordinates Q = (Q1, . . . , QN ). Since
H = H(P ), the dynamical equations (B.16) become trivial

Q̇i =
∂H

∂Pi
(P ) , Ṗi = − ∂H

∂Qi
(P ) = 0 . (B.23)
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A solution to these equations is

Pi = const , Qi = ωiτ + const, (B.24)

where ‘frequencies’

ωi =
∂H

∂Pi
(P ) (B.25)

are constant along dynamical trajectories. To obtain the solution in original
coordinates (q, p), one has to substitute these trivial solutions back into rela-
tions between (q, p) and new coordinates (Q,P ).

The key problem of the Liouville procedure is thus finding new coordinates
Q which are canonically conjugate to the integrals of motion P . To define
these coordinates, we start by inverting the original expressions for integrals
of motion in terms of original canonical coordinates,

Pi = Pi(q, p) , (B.26)

with respect to the momenta,

pi = pi(q, P ) . (B.27)

A canonical transformation between the original coordinates (q, p) and new
coordinates (Q,P ) can be defined by using a generating function W (q, P )
obeying the following conditions:

pi(q, P ) =
∂W

∂qi
(q, P ) , Qi(q, P ) =

∂W

∂Pi
(q, P ) . (B.28)

The first condition is automatically satisfied by the following generating func-
tion:

W (q, P ) =

∫ q

q0

∑
i

pi(q̄, P ) dq̄i , (B.29)

where the integration is performed for fixed values of P and starts at an
arbitrary chosen origin q0 of coordinates q. The key observation is that this
integral does not depend on a path of integration, as follows from the fact that
P ’s are in involution.

The second equation in (B.28), with P given by (B.26), provides a desired
definition of coordinates Q. Indeed, relations (B.28) imply

dW =
∑
i

(
pi dq

i +Qi dPi
)
. (B.30)

Employing d2W = 0 and expression (B.9) for the symplectic structure in
canonical coordinates, one gets

Ω =
∑
i

dqi ∧ dpi =
∑
i

dQi ∧ dPi . (B.31)

This proves that (Q,P ) defined in this way are canonical coordinates, and
concludes the construction.
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Summarizing, the Liouville’s construction consists of: (i) inverting the re-
lations (B.26) for the conserved quantities to obtain (B.27) (algebraic opera-
tions) (ii) integrating the generating function (B.29) (a quadrature) (iii) defin-
ing the new canonical variables (Q,P ) by (B.28) and (B.26) (derivatives and
algebraic operations). A solution of the equations of motion is then concluded
by (iv) writing down the (in new coordinates trivial) solution (B.24) and by
(v) inverting the relations (B.28) and (B.26), which gives the solution in terms
of the original coordinates (possibly highly nontrivial algebraic operations).

Action-angle variables

It can be demonstrated that for a given foliation of the phase space into its
level sets, the coordinates Q on the level set are given uniquely up to an affine
transformation. The level sets thus possess an affine structure.

When the level set is compact and connected, the affine structure implies
that it is isomorfic to an N -dimensional torus (Arnol’d 1989). In such a case,
coordinatesQ can be linearly mixed to form cyclic coordinates α = (α1, . . . , αN )
on the torus, i.e., angle variables (with a period 2π) along main circles of the
torus. In order to complement these angles by canonically conjugate coordi-
nates, one needs to perform a transformation of momenta P into new conserved
quantities I = I(P ), which label the toroidal level sets in a slightly different
way. The so called action variables can be defined as integrals analogous to
(B.29), integrated along the main circles `i of the torus,

Ii(P ) =
1

2π

∫
`i

pi(q̄, P )dq̄i . (B.32)

Similarly to (B.29), the integrals are independent of continuous deformations
of the path of integration. They thus measure ‘invariant’ sizes of the toroidal
level set LP . Together, (α, I) form the canonical coordinates called the action–
angle variables (Arnol’d 1989).

B.3 Hamilton–Jacobi equation

Time-dependent case

An alternative method for solving the dynamical system is via the Hamilton–
Jacobi equation. This is a partial differential equation for the Hamilton’s prin-
cipal function S̄(q; τ), given by

∂S̄

∂τ
(q; τ) +H

(
q, p; τ

)∣∣∣
p= ∂S̄

∂q (q;τ)
= 0 , (B.33)

where, for a moment, we allowed the Hamiltonian H(q, p; τ) to depend ex-
plicitly on time τ . It turns out that solving this equation allows one to find a
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family of trajectories (q(τ), p(τ)) in the phase space Γ which satisfy the Hamil-
ton canonical equations (B.16). Such trajectories are given by identifying the
momenta with the derivatives of Hamilton’s principal function

pj(τ) =
∂S̄

∂qj
(
q(τ); τ

)
. (B.34)

Plugging these to equations (B.16) for the velocities:

q̇i(τ) =
∂H

∂pi

(
q(τ), p; τ

)∣∣∣
p= ∂S̄

∂q

(
q(τ);τ

) , (B.35)

one gets N coupled first-order differential equations for positions q(τ). Solu-
tions q(τ) of these equations together with the momenta p(τ) defined by (B.34)
give the trajectories which satisfy all the Hamilton canonical equations (B.16).

Autonomous systems

As in the previous discussion, let us now restrict our attention to the au-
tonomous systems for which the Hamiltonian does not depend explicitly on
time. In such a case, the time dependence of the Hamilton’s principal function
can be solved by the following ansatz:

S̄(q; τ) = S(q)− Eτ , (B.36)

where the function S is called the Hamilton’s characteristic function (Goldstein
et al 2002) and the constant E is an energy. Substituting this ansatz into the
Hamilton–Jacobi equation (B.33), it turns out that E coincides with the value
of the Hamiltonian, and clearly remains conserved along the trajectory. We
thus obtained the following time-independent Hamilton–Jacobi equation:

H(q, p)
∣∣
p= ∂S

∂q (q)
= E . (B.37)

Similarly to the time-dependent case, the function S(q) generates a family of
trajectories by

q̇i(τ) =
∂H

∂pi

(
q(τ), p

)∣∣∣
p= ∂S

∂q

(
q(τ)
) . (B.38)

As discussed below, different solutions S of (B.37) generate different families
of trajectories.

Connections to Liouville’s integrability

A solution S(q, Φ) of the time-independent Hamilton–Jacobi equation (B.37)
that depends on N independent constants Φ is called a complete integral. In
this definition, the notion of independence of the constants means that when
these constants are varied, they generate dynamical trajectories which fill up
the whole phase space.
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For completely integrable systems one can show that the generating func-
tion W (q, P ) defined in (B.29) solves the Hamilton–Jacobi equation in vari-
ables q, provided that the new momenta P are kept constant, equal to Φ. That
is, we have the following complete integral:

S(q, Φ) = W (q, Φ) (B.39)

which satisfies the time-independent Hamilton–Jacobi equation

H
(
q,
∂S

∂q
(q, Φ)

)
= E , (B.40)

where E is the value of the Hamiltonian given by the values of conserved
quantities P = Φ,

E = H(Φ) . (B.41)

The same complete integral S(q, Φ) also satisfies the analogous Hamilton–
Jacobi equations corresponding to other conserved quantities P :

Pi

(
q,
∂S

∂q
(q, Φ)

)
= Φi . (B.42)

In other words, the complete integral S(q, Φ) is a common solution of all the
Hamilton–Jacobi equations (B.40) and (B.42).

We have thus demonstrated that complete integrable systems always have
the complete integral of the time-independent Hamilton–Jacobi equation. In
fact, the opposite statement is also true: the existence of the complete integral
of the Hamilton–Jacobi equation is a sufficient condition for the system to be
completely integrable.

To prove the latter statement let us assume that the complete integral
S(q, Φ) exists. If so, it can be used as a generating function W (q, P ) = S(q, P )
for a canonical transformation (q, p) → (Q,P ), i.e., for the transformation
given implicitly by (B.28). One has to solve the left set of equations with re-
spect to new momenta P . Clearly, these are conserved quantities since they
corresponds to the constants that appear in the complete integral. Therefore,
observables P commute with the Hamiltonian and, since they have been gener-
ated by the canonical transformation as new momenta, they are in involution.
The system is hence completely integrable.

Finally, let us note that for every choice of constants Φ the Hamilton’s
characteristic function S(q, Φ) generates a different family of trajectories in
the space of coordinates q solving (B.38). When lifted to the phase space
through (B.34), the trajectories in such a family belong to the level set LΦ.
Varying values Φ, the trajectories fill up the whole phase space.
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Additive separability of the Hamilton–Jacobi equation

There exists a powerful method that turns out to be very useful for finding
integrable systems. It is the method of separation of variables in the Hamilton–
Jacobi equation, see e.g., Carter (1968a,b) for an application of this method
in the context of black hole physics.

Specifically, let us consider the time-independent Hamilton–Jacobi equa-
tion (B.37) and seek, in a given coordinate system, its solution in the form of
the following additive separation ansatz:

S(q) =

N∑
i=1

Si(q
i) , (B.43)

where each function Si depends only on the corresponding coordinate qi. The
ansatz is consistent if its substitution into the Hamilton–Jacobi equation leads
to N independent ordinary differential equations for functions Si. If these
functions are labeled by N independent constants (which also determine E),
we have found a complete integral and the system is completely integrable.

Let us stress, however, that whether or not the separation ansatz works
depends on the choice of coordinates and for a given dynamical system there
is no general prescription for how to seek the convenient coordinates. For
this reason, the route from separability of the Hamilton–Jacobi equation to
complete integrability, although often fruitful, is more or less a route of trial
and error.

Let us assume that the complete integral S(q, Φ) can be written in the
separated form (B.43). Taking into account that components of the momentum
are given by derivatives of Hamilton’s characteristic function with respect to
q’s (B.34), the additive separation ansatz requires that

pi = S′i(q
i, Φ) .

In other words, the i-th component of the momentum has to depend only on
one coordinate qi and not on the remaining coordinates qj , j 6= i. Since the
constants Φ can be understood as values of the integrals of motions P , we
actually require that

pi = pi(q
i, P ) , (B.44)

that is, each relation (B.27) for momentum pi depends only on one variable
qi. This is a sufficient and necessary condition for the additive separation of
variables in the Hamilton–Jacobi equation (B.40) using the ansatz (B.43).

Solving (B.44) with respect to P , the Hamilton’s characteristic function S
in the form (B.43) also satisfies all the Hamilton–Jacobi equations (B.42).

As we demonstrate in section 2.3, very explicit conditions for separability
of the Hamilton–Jacobi equation can be formulated for geodesic motion in a
curved spacetime. This is described by a theory of separability structures, and
will be exploited in chapter 6 for the study of geodesics in higher-dimensional
black hole spacetimes, generalizing the classic works of Carter (1968a,b) on
geodesic motion around four-dimensional black holes.
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B.4 Covariant formalism on a cotangent bundle

Dynamical systems are most commonly formulated in terms of the motion on
a configuration space M . As described in section 2.1, the phase space Γ is the
cotangent bundle over the configuration space. It has natural symplectic struc-
ture (2.1) and each coordinates xa on the configuration space generate canoni-
cal coordinates (xa, pa) on the phase space. We can thus apply all the formalism
discussed in the previous sections, simply replacing (qi, pi)→ (xa, pa).

The Poisson brackets and other quantities on the cotangent space can be
written in a more covariant way by using the covariant derivative induced from
the configuration space. Given a torsion-free covariant derivative∇ on M , one
can define the following tensorial quantities: (i) covariant partial derivative
∇F
∂x with respect to position x and (ii) momentum partial derivative ∂F

∂p with

respect to momentum of the observable F (x,p). It corresponds to splitting a
phase-space tangent vector X into its position and momentum parts,

X = u · ∇
∂x

+ f · ∂
∂p

, (B.45)

see appendix of Cariglia et al (2013a) for more details. The covariant partial
derivative essentially ‘covariantly ignores’ the momentum variable. In partic-
ular, the partial derivatives of a monomial observable (2.2) read

∇aF
∂x

= (∇af c1...cr ) pc1 . . . pcr ,
∂F

∂pa
= rfac2...crpc2 . . . pcr . (B.46)

With such a machinery, the Poisson bracket can be written as

{F,G} =
∇aF
∂x

∂G

∂pa
− ∂F

∂pa

∇aG
∂x

. (B.47)

Employing this, one can easily derive the expression (2.4) for the Nijenhuis–
Schouten bracket. In particular, on readily gets the expression (2.26):

{K,H} =
∇aK
∂x

∂H

∂pa
− ∂K

∂pa

∇aH
∂x

= (∇a0ka1...as) pa0pa1 . . . pas , (B.48)

where we employed rules (B.46) and that for the Hamiltonian (2.10) one has
∇H
∂x = 0 and ∂H

∂pa
= gabpb.
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C Integrability conditions for conformal Killing–Yano forms

C.1 Laplace operator and conformal Killing–Yano forms

A particular consequence of the integrability conditions for the conformal
Killing–Yano forms is that the action of the Laplace operator on such ob-
jects takes a special form. Since this can be shown in a rather elegant way, we
start with the discussion of the Laplace operators.

Laplace operators and Weitzenböck identity

Let us first list some well-known definitions and identities. For antisymmetric
forms one can introduce two Laplace-like operators. The de Rham–Laplace
operator ∆ω is defined using the exterior derivative and the divergence:

∆ω = −∇ ∧ (∇ · ω)−∇ · (∇ ∧ ω) , (C.1)

while the Bochner–Laplace operator is just a contraction with the second co-
variant derivative:

∇2ω =∇ ·∇ω . (C.2)

The two operators differ by terms that are linear in curvature. The so called
Weitzenböck identity reads

∆ω = −∇2ω +Wω , (C.3)

where the Weitzenböck operator W acts on a p-form as

(Wω)a1a2...ap = pRc[a1
ωca2...ap] −

p(p− 1)

2
Rcd[a1a2

ωcd...ap] . (C.4)

Action of Laplace operators on conformal Killing–Yano forms

Let us start with a general conformal Killing–Yano form ω obeying the confor-
mal Killing–Yano condition (2.61). Tearing off the vector X, it can be written
in a form, which respects the duality between the dot and wedge operations,

∇ω =
1

p+ 1
g · (∇ ∧ ω) +

1

D − p+ 1
g ∧ (∇ · ω) . (C.5)

Here we have slightly abused the notation in the second term by understanding
that only the second index of the metric participates in the wedge operation
(since g is symmetric, it could not be otherwise, anyway). By applying ∇· to
(C.5), we obtain the Bochner–Laplace operator,

∇2ω =
1

p+ 1
∇ · (∇ ∧ ω) +

1

D − p+ 1
∇ ∧ (∇ · ω) . (C.6)

Comparing (C.6) with the definition of the de Rham–Laplace operator (C.1),

−∆ω =∇ · (∇ ∧ ω) +∇ ∧ (∇ · ω) (C.7)



Black holes, hidden symmetries, and complete integrability 177

and employing the Weitzenböck identity (C.3) we obtain the relation for the
Weitzenböck operator

−Wω =
p

p+ 1
∇ · (∇ ∧ ω) +

D − p
D − p+ 1

∇ ∧ (∇ · ω) . (C.8)

The above relations simplify for Killing–Yano and closed conformal Killing–
Yano forms since in these cases only one of the terms on the right-hand side
survives. Indeed, for a Killing–Yano p-form f we have ∇ · f = 0. When we
use this in (C.6), (C.7), and (C.8), we obtain

∆f = −(p+ 1)∇2f = −∇ · (∇ ∧ f) =
p+ 1

p
Wf . (C.9)

Similarly, for a closed conformal Killing–Yano p-form h we have ∇ ∧ h = 0,
and

∆h = −(D − p+ 1)∇2h = −∇ ∧ (∇ · h) =
D − p+ 1

D − p Wh . (C.10)

In both cases we see that the action of Laplace operators is given by the
algebraic Weitzenböck operator which involves only the curvature. The same
restrictions can be obtained directly from the integrability conditions as we
will see below, cf. (C.16) and (C.25).

C.2 Integrability conditions

As we already mentioned, the conformal Killing–Yano equation (2.61) is over-
determined (Dunajski 2008). The existence of the conformal Killing–Yano
forms imposes severe restrictions on the geometry. These are called in gen-
eral the integrability conditions. They have been studied from the very be-
ginnings of the study of Killing–Yano objects (Yano 1952; Yano and Bochner
1953; Tachibana and Kashiwada 1969) till recent works (Houri and Yasui 2015;
Batista 2015). (See also Houri et al (2017) for a recent progress on integrability
conditions for the Killing tensors.) We give here the review of the integrabil-
ity conditions for Killing–Yano equation and closed conformal Killing–Yano
equation.

The basic common restriction is that the second covariant derivative of
such a form can be expressed in terms of the curvature and the form itself.
It allows one to derive an algebraic condition for solutions of the given equa-
tion expressed in terms of the curvature. From these conditions one can derive
particular consequences which play a role of necessary integrability condi-
tions. Examples of these are the expressions for the Laplace operator and the
Weitzenböck operator encountered above.
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Preliminaries

The Ricci identity for an antisymmetric p-form ω reads

∇a∇b ωc1c2...cp −∇b∇a ωc1c2...cp = −pRabe[c1ω|e|c2...cp] . (C.11)

For the purpose of the proofs below, let us write explicitly the consequences
of the Leibniz rule (A.4) for a p-form ω and a form σ of rank 1 and 2,

(p+ 1)σ[aωc1c2...cp] = σaωc1c2...cp − p σ[c1ω|a|c2...cp] , (C.12)

(p+ 2)σ[ac0ωc1c2...cp] = 2σa[c0ωc1c2...cp] + p σ[c0c1ω|a|c2...cp] . (C.13)

Killing–Yano forms

The Killing–Yano condition

∇afa1...ap = ∇[afa1...ap] (C.14)

is rather restrictive. It implies that the second derivatives of Killing–Yano
forms are algebraically related to the form itself. Namely, any Killing–Yano
p-form f satisfies

∇a∇bfc1c2...cp = −(p+ 1)Ra[b
e
c1 f|e|c2...cp] =

p+ 1

2
Rea[bc1 f

e
c2...cp] . (C.15)

Contracting in indices a and b, one obtains the Bochner–Laplace operator
acting on the Killing–Yano form f ,

−∇2fc1c2...cp = Re[c1 f
e
c2...cp] −

p−1

2
Rde[c1c2 f

de
...cp] . (C.16)

On the right-hand side we can recognize the action of the Weitzenböck oper-
ator. We thus showed −∇2f = 1

pWf , cf. (C.9). We will return to this fact at
the end of this section.

Let us prove now the relations (C.15). The second equality follows from the
cyclic property of the Riemann tensor (the first Bianchi identity). The proof
of the first equality starts with a trivial property of the exterior derivative
ddf = 0. Rewriting it using the covariant derivative and the identity (C.12),
we obtain

(p+ 2)∇[a∇bfc1c2...cp] = ∇a∇bfc1...cp − (p+ 1)∇[b∇|a|fc1...cp] = 0 , (C.17)

where we used that ∇afc1...cp is antisymmetric in all indices, cf. (C.14). Em-
ploying the Ricci identities (C.11) to the second term we find

− p∇a∇bfc1c2...cp − (p+ 1)pRa[b
e
c1f|e|c2...cp] = 0 , (C.18)

which proves (C.15).
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The existence of a Killing–Yano form is a non-trivial property of the ge-
ometry. It requires a consistency of the curvature with the Killing–Yano form,
which can be written as

Re[a[c1
b] f|e|c2c3...cp] +Re[c1

[a
c2 f|e|

b]
c3...cp] = 0 . (C.19)

Using the cyclic property of the Riemann tensor in both terms it can also be
written as

Rabe[c1 f|e|c2c3...cp] +Re[a[c1c2 f|e|
b]
c3...cp] = 0 . (C.20)

The integrability condition (C.19) can be obtained by applying the expansion
(C.13) to the right-hand side of (C.15), taking antisymmetrization of both
sides in indices a and b, and using the Ricci identity (C.11) to the left-hand side.
The cyclic property of the Riemann tensor is needed to reshuffle appropriately
the indices.

Taking the contraction of these identities in indices b and c1 one can get
another necessary condition between the curvature and the Killing–Yano form,

Re
a fec2c3...cp−Re[c2 faec3...cp] =

p− 2

2

(
Rde

a
[c2 f

de
c3...cp]−Rde[c2c3 fade...cp]

)
.

(C.21)
With the help of (C.13) this can be also re-arranged to the form

pRec1 f
e
c2...cp −

p(p−1)

2
Rdec1[c2 f

de
...cp] =

= pRe[c1 f
e
c2...cp] −

p(p−1)

2
Rde[c1c2 f

de
...cp] .

(C.22)

The right-hand side is actually the action Wf of the Weitzenböck operator
(C.4) on the Killing–Yano form.

Closed conformal Killing–Yano forms

Let us now turn to the closed conformal Killing–Yano forms. Similar to the
Killing–Yano equation, the associated condition

∇aha1...ap = pga[a1
ξa2...ap] , ξa2...ap =

1

D − p+ 1
∇chca2...ap , (C.23)

is also restrictive. The second covariant derivative of the closed conformal
Killing–Yano form can be expressed using the curvature and the form itself:

∇a∇bhc1c2...cp = − p

D − p
(
Rae δ

b
[c1
hec2...cp] +

p− 1

2
Rde

a
[c1 δ

b
c2 h

de
...cp]

)
.

(C.24)
Taking the contraction in indices a and b, one gets the expression for the
Bochner–Laplace operator of the closed conformal Killing–Yano form

−∇2hc1c2...cp =
1

D − p
(
pRe[c1 h

e
c2...cp] −

p(p−1)

2
Rde[c1c2 h

de
...cp]

)
. (C.25)
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Here, we can again identify the action of the Weitzenböck operator, thus
−∇2h = 1

D−pWh.

The proof of (C.24) starts by applying the Ricci identity (C.11) to h upon
which the use of the closed conformal Killing–Yano condition gives

Rabe[c1 h
e
c2...cp] + gb[c1∇|a|ξc2...cp] − ga[c1∇|b|ξc2...cp] = 0 . (C.26)

Contracting in indices b and c1, and using repeatedly (C.12) and the cyclic
property of the Riemann tensor, one can express the covariant derivative of ξ:

∇aξc2...cp =
1

D − p
(
−Rea hec2...cp +

p− 1

2
Rdea[c2 h

de
...cp]

)
. (C.27)

Substituting (C.27) into the covariant derivative of the closed conformal Killing–
Yano condition (C.23)

∇a∇bhc1...cp = p δb[c1∇
aξc2...cp] , (C.28)

we obtain the desired expression (C.24) for the second derivative of the closed
conformal Killing–Yano form.

Substituting (C.27) into (C.26), a bit of work leads to another necessary
consistency condition between the curvature and the closed conformal Killing–
Yano form

2R[a
e δ

b]
[c1
hec2...cp] − (D − p)Rabe[c1 hec2...cp] + (p− 1)Rde

[a
[c1 δ

b]
c2 h

de
...cp = 0 .

(C.29)
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D Kerr–NUT–(A)dS metric related quantities

D.1 Properties of metric functions

In chapter 4 we have introduced the auxiliary functions A(k) of variables x2
µ,

and the analogous polynomials A(k) of parameters a2
µ. They can be defined

using the generating functions J(a2) and J (x2) as follows24

J(a2) =
∏
ν

(x2
ν − a2) =

n∑
k=0

A(k)(−a2)n−k , (D.1)

J (x2) =
∏
ν

(a2
ν − x2) =

n∑
k=0

A(k)(−x2)n−k . (D.2)

These definitions imply

A(k) =
∑

µ1,...,µk
µ1<···<µk

x2
µ1
. . . x2

µk
, (D.3)

A(k) =
∑

µ1,...,µk
µ1<···<µk

a2
µ1
. . . a2

µk
. (D.4)

Similarly, we define the functions Jµ(a2), A
(j)
µ , Jµ(x2), and A(j)

µ , which skip
the µ-th variables xµ and aµ as follows

Jµ(a2) =
∏
ν

ν 6=µ

(x2
ν − a2) =

∑
k

A(k)
µ (−a2)n−1−k , (D.5)

Jµ(x2) =
∏
ν

ν 6=µ

(a2
ν − x2) =

∑
k

A(k)
µ (−x2)n−1−k , (D.6)

with

A(k)
µ =

∑
ν1,...,νk
ν1<···<νk
νi 6=µ

x2
ν1
. . . x2

νk
, (D.7)

A(k)
µ =

∑
ν1,...,νk
ν1<···<νk
νi 6=µ

a2
ν1
. . . a2

νk
. (D.8)

These functions satisfy

J(x2
µ) = 0 , J (a2

µ) = 0 ,

Jµ(x2
ν) = 0 , Jµ(a2

ν) = 0 , for ν 6= µ .
(D.9)

24 Let us remind that, if not indicated otherwise, the sums (and products) run over ‘stan-
dard’ ranges of indices: ∑

µ

≡
n∑
µ=1

,
∑
k

≡
n−1∑
k=0

.
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Finally, we define

Uµ = Jµ(x2
µ) =

∏
ν

ν 6=µ

(x2
ν − x2

µ) , (D.10)

Uµ = Jµ(a2
µ) =

∏
ν

ν 6=µ

(a2
ν − a2

µ) . (D.11)

The polynomials A(k) and A
(k)
µ satisfy the following identities:

A(k) = A(k)
µ + x2

µA
(k−1)
µ , (D.12)

∑
k

A(k)
µ

(−x2
ν)n−1−k

Uν
= δνµ , (D.13)

∑
µ

A(k)
µ

(−x2
µ)n−1−l

Uµ
= δkl , (D.14)

∑
µ

A(k)
µ

(−x2
µ)n

Uµ
= −A(k+1) , (D.15)

∑
µ

A
(k)
µ

x2
µUµ

=
A(k)

A(n)
, (D.16)

∑
µ

A(k)
µ = (n− k)A(k) , (D.17)

∑
k

(n− k)A(k) (−x2
ν)n−1−k

Uν
= 1 , (D.18)∑

k=0,...,n

A(k)(−x2
ν)n−k = 0 , (D.19)

∑
l=0,...,k

A(l)(−x2
ν)k−l = A(k)

µ . (D.20)

Analogous identities hold also for the complementary polynomials A(k) and

A(k)
µ .

For the functions J(a2) and J (x2) we can write∏
µ

J(a2
ν) = (−1)n

∏
ν

J (x2
µ) ,

∏
µ

µ6=κ

Jκ(a2
ν) = (−1)n−1

∏
ν

ν 6=κ

Jκ(x2
µ) .

(D.21)

These functions satisfy important orthogonality relations∑
α

Jν(a2
α)

Uα
Jα(x2

µ)

Uµ
= δµν , (D.22)
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∑
α

Jµ(a2
α)Jν(a2

α)

J(a2
α)Uα

= − Uµ
J (x2

µ)
δµν , (D.23)

∑
µ

Jµ(a2
α)Jµ(a2

β)
J (x2

µ)

Uµ
= −J(a2

α)Uαδαβ . (D.24)

D.2 Spin connection

In this section we present the spin connection for the Kerr–NUT–(A)dS space-
times written in the frame (4.7). In even dimension the only non-zero connec-
tion coefficients with respect to the frame (eµ, êµ) are:

ωµµν = −ωµνµ =

√
Xν

Uν

xν
x2
ν − x2

µ

, ωµµ̂ν̂ = −ωµν̂µ̂ =

√
Xν

Uν

xµ
x2
ν − x2

µ

,

ωµ̂µ̂ν = −ωµ̂νµ̂ =

√
Xν

Uν

xν
x2
ν − x2

µ

, ωµ̂ν̂µ = −ωµ̂µν̂ =

√
Xν

Uν

xµ
x2
ν − x2

µ

,

ωµ̂νν̂ = −ωµ̂ν̂ν =

√
Xµ

Uµ

xν
x2
ν − x2

µ

,

ωµ̂µ̂µ = −ωµ̂µµ̂ =
1

2

√
Xµ

Uµ

X ′µ
Xµ

+

√
Xµ

Uµ

∑
ν

ν 6=µ

xµ
x2
ν − x2

µ

.

Here, indices µ and ν are different. In odd dimension the same spin coefficients
apply, plus the following extra terms:

ωµµ̂0̂ = −ωµ0̂µ̂ = −
√

c

A(n)

1

xµ
, ωµ̂µ0̂ = −ωµ̂0̂µ =

√
c

A(n)

1

xµ
,

ω0̂µ0̂ = −ω0̂0̂µ = −
√
Xµ

Uµ

1

xµ
, ω0̂µ̂µ = −ω0̂µµ̂ = −

√
c

A(n)

1

xµ
.

(D.25)
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E Myers–Perry metric

In section 4.4 we have recovered the higher-dimensional rotating black hole
metric of (Myers and Perry 1986) as a subcase of the Kerr–NUT–(A)dS metric
of (Chen et al 2006a). In this appendix we give a short overview of the Myers–
Perry metric in its original coordinates and its related Kerr–Schild form.

E.1 Tangherlini solution

The simplest higher-dimensional solution of the Einstein equations describing
a static spherically symmetric black hole in a D-dimensional asymptotically
flat spacetime is the Tangherlini metric (Tangherlini 1963)

g = −Fdt2 +
1

F
dr2 + r2dω2

D−2 , (E.1)

where dω2
D−2 is a metric on a unit (D − 2)-dimensional sphere, and

F = 1−
(

2M

r

)D−3

. (E.2)

The constant M is related to the physical mass of the spacetime. The corre-
sponding relation can be found by either calculating the asymptotic integrals
or by comparing the metric at far distance to the gravitational field of a static
source in the Newtonian theory. Either procedure yields the following physical
mass M:

M =
(D − 2)ωD−2

8π
M , (E.3)

where ωd is the area of a unit d-dimensional sphere

ωd =
2πd+ 1

2

Γ (d+ 1
2 )
. (E.4)

E.2 Myers–Perry solution

Angular momentum in higher dimensions

If a stationary higher-dimensional black hole rotates, its metric becomes more
complicated. A higher-dimensional generalization of the Kerr metric was ob-
tained by Myers and Perry (1986). To get a feeling for the properties of the
Myers–Perry solution, let us first consider a flat spacetime in

D = 2m+ 2− ε (E.5)

number of spacetime dimensions, with ε = 0 for even and ε = 1 for odd
dimensions. Obviously, the number of spatial dimensions is 2m+1−ε and the
space contains m mutually orthogonal spatial 2-planes, see figure E.1
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( , ) planek kx y 

1 1( , ) planex y 

( , ) planem mx y 

axis (for = 0)z 

0

Fig. E.1 2-planes of rotation. A schematic illustration ofmmutually orthogonal 2-planes
in a spatial section of the flat D-dimensional spacetime, D = 2m+ 2− ε.

The global angular momentum of matter is characterized by an antisym-
metric matrix Jij , where i and j are spatial indices. It is well known that such
a tensor can be transformed to a special canonical form, by performing rigid
spatial rotations. The corresponding matrix contains m 2-dimensional block
matrices at its diagonal, while other components vanish. These 2-dimensional
block matrices have the form (

0 Ji
−Ji 0

)
, (E.6)

where Ji are the ‘components’ of the angular momentum.

Myers–Perry form of the metric

The Myers–Perry spacetime describes a stationary vacuum isolated rotating
black hole in a D-dimensional asymptotically flat spacetime (Myers and Perry
1986). Since the metric is stationary and asymptotically flat, one can expect
it to be described by m + 1 parameters: the mass M and m independent
components of the angular momentum Ji, related to the rotation parameters
ai in each of the rotation 2-planes.

The Myers–Perry metric reads

g =− dt2 +
Udr2

V−2M
+

2M

U

(
dt+

m∑
i=1

aiµ
2
idφi

)2

+

m∑
i=1

(r2 + a2
i )(dµ

2
i + µ2

idφ
2
i ) + (1− ε)r2dµ2

0 ,

(E.7)
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where

V =
1

r1+ε

m∏
i=1

(r2 + a2
i ) , U = V

(
1−

m∑
i=1

a2
iµ

2
i

r2 + a2
i

)
. (E.8)

We call coordinates (t, r, µi, φj), i = ε, . . . ,m, j = 1, . . . ,m the Myers–Perry
coordinates. They are not all independent, namely coordinates µi obey a con-
straint

m∑
i=ε

µ2
i = 1 . (E.9)

The metric admits m+1 Killing vectors. The vector ξ(t) = ∂t is a generator
of time translations, while ξ(j) = ∂φj generate rotations in m independent 2-
planes. The coordinates µi (including µ0 in even dimensions) are direction
cosines with respect to these planes and have the range 0 ≤ µi ≤ 1. The angle
coordinates φj take values −π ≤ φj ≤ π (Myers 2011). In D = 4 dimensions,
the metric reduces to the Kerr spacetime, (3.1).

Basic properties

As expected, the metric contains m + 1 parameters: M and ai. These pa-
rameters are related to the physical mass M and the angular momentum
components Ji, i = 1, . . . ,m as follows

M =
(D − 2)ωD−2

8π
M , Ji =

2

D − 2
Mai , (E.10)

where ωd is again the area of a unit d-dimensional sphere (E.4).

A surface where ξ2
(t) = 0 is called a surface of infinite redshift or an ergo-

surface. The equation of this surface is

U − 2M = 0 . (E.11)

We denote

η = ξ(t) +

m∑
i=1

Ωi ξ(i) , Ωi =
ai

r2
+ + a2

i

. (E.12)

Then the surface

V − 2M = 0 , (E.13)

located at r = r+ where the Killing vector η becomes null, is a Killing horizon,
and coincides with the position of the event horizon. The domain between the
event horizon and the ergosurface is an ergosphere. The parameters Ωj are
components of the angular velocity of the black hole. Similar to the angular
momentum, the angular velocity has m independent components, correspond-
ing to the same number of 2-planes of rotation.
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We also get the following expressions for the surface gravity κ and the
horizon area A

κ =

m∑
i=1

r+

a2
i + r2

+

− 2ε−1

r+
, (E.14)

A =
ωD−2

rε+

m∏
i=1

(a2
i + r2

+) . (E.15)

This yields the following higher-dimensional first law of black hole mechanics:

δM =
κ

2π

δA
4

+

m∑
i=1

ΩiδJi (E.16)

for the Myers–Perry black hole (Myers and Perry 1986). See Altamirano et al
(2014) for interesting thermodynamic phase transitions these black holes can
demonstrate.

It turns out that 5D rotating black holes are quite similar to the Kerr
metric, see, e.g., Bernardi de Freitas et al (2015). However, in dimensions D ≥
6 there are important differences. For D ≥ 6 and fixed black hole mass there
exist solutions with arbitrary large angular momentum. Such black holes are
called ultra-spinning. However such ultra-spinning black holes are dynamically
unstable (Emparan and Myers 2003; Dias et al 2010a,b; Figueras et al 2017).
Further discussion of the properties of the Myers–Perry metric can be found
in reviews by Emparan and Reall (2008) and Myers (2011). Metrics obtained
by an analytical continuation of the Myers–Perry and their properties are
discussed in Dowker et al (1995).

It was shown in Frolov and Kubizňák (2007) that the Myers–Perry metric
admits a principal tensor. It can be generated from a 1-form potential b,

b =
1

2

[(
r2 +

m∑
i=1

a2
iµ

2
i

)
dt+

m∑
i=1

aiµ
2
i (r

2 + a2
i )dφi

]
, (E.17)

and reads

h =

m∑
i=1

aiµidµi ∧
[
aidt+ (r2 + a2

i )dφi

]
+ rdr ∧

(
dt+

m∑
i=1

aiµ
2
idφi

)
. (E.18)

This tensor generates the Killing tower of symmetries, discussed in a more
general case in chapter 5.

The flat space limit: M = 0

When the mass parameter in the Myers–Perry metric vanishes, M = 0, the
metric simplifies to

g = −dt2 + dr2 +

m∑
i=1

[
(r2+a2

i )(dµ
2
i + µ2

i dφ
2
i )−

a2
iµ

2
i

r2+a2
i

dr2
]

+ (1−ε)r2dµ2
0 .

(E.19)
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Although not obvious from this expression, the metric is flat. An explicit trans-
formation to the Cartesian coordinates (xi, yi) (and z in even dimensions)
reads25

xi = µi

√
r2 + a2

i cosφi , yi = µi

√
r2 + a2

i sinφi , z = µ0r , (E.20)

upon which one recovers the standard Minkowski metric in D dimensions, c.f.
also (E.29)–(E.31) in the next section. The constraint (E.9) now relates r to
the Cartesian coordinates.

The spacetime (E.19) is invariant under the action of a cyclic group of
m-dimensional torus. The Killing vector ξ(i) vanishes when µi = 0, that is at
the center xi = yi = 0 of the (xi, yi) plane. Relations (E.20) show that this is a
regular (D− 2)-dimensional geodesic submanifold, called i-th axis of rotation.
This conclusion remains valid for the Myers–Perry metric (E.7). Taking φi’s to
be periodic coordinates with period 2π makes this metric axisymmetric. The
integral lines for each of the Killing vectors ξ(i) are closed cycles.

E.3 Kerr–Schild form

Similar to the Kerr metric, the Myers–Perry metric can be written in the Kerr–
Schild form (Myers and Perry 1986) that is intrinsically related to the special
algebraic type of the Weyl tensor (Ortaggio et al 2009) and the existence of
hidden symmetries. It will also allow us to easily understand the flat space
limit of the principal tensor h.

To obtain the Kerr–Schild form of the metric, let us start with the trans-
formation

dt = dτ − 2M

V − 2M
dr , dφj = dϕj +

V

V − 2M

aj
r2 + a2

j

dr , (E.21)

which transforms the metric element (E.7) into the ‘Eddington-like’ form. We
further introduce the Kerr–Schild coordinates in analogy with (E.20) above25

xi = µi

√
r2+a2

i cos
(
ϕi− arctan

ai
r

)
,

yi = µi

√
r2+a2

i sin
(
ϕi− arctan

ai
r

)
, z = µ0r ,

(E.22)

where i runs from 1 to m and the last coordinate z is introduced only in an
even number of spacetime dimensions. The inverse transformation reads

µ2
i =

x2
i + y2

i

r2 + a2
i

, ϕi = arctan
ai
r

+ arctan
yi
xi
, µ0 =

z

r
. (E.23)

25 Coordinates xi introduced here are not directly related to coordinates xν used in the
main text. For relation of µ’s to xν ’s see (4.58) in chapter 4.
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These relations imply

µidµi =
xidxi + yidyi

r2 + a2
i

− (x2
i + y2

i )rdr

(r2 + a2
i )

2
,

dϕi =
xidyi − yidxi

x2
i + y2

i

− aidr

r2 + a2
i

.

(E.24)

The constraint (E.9) defines coordinate r in terms of (xi, yi, z)
26

m∑
i=1

x2
i + y2

i

r2 + a2
i

+ (1−ε)z
2

r2
= 1 . (E.25)

Differentiating this expression we find

∂xir =
rxi

F (r2 + a2
i )
, ∂yir =

ryi
F (r2 + a2

i )
, ∂zr = (1−ε) z

Fr
, (E.26)

F =
U

V
= 1−

m∑
i=1

a2
i (x

2
i + y2

i )

(r2 + a2
i )

2
= r2

m∑
i=1

x2
i + y2

i

(r2 + a2
i )

2
+ (1−ε)z

2

r2
, (E.27)

and therefore

dr =
r

F

m∑
i=1

xidxi + yidyi
r2 + a2

i

+ (1−ε)zdz
Fr

. (E.28)

Using these relations we find that the metric (E.7) takes the Kerr–Schild form

g = η +H l l , (E.29)

where η is the flat metric, H is a scalar function linear in M , and l is a null
vector (with respect to both g and η), given by:

η = −dτ2 +

m∑
i=1

(dx2
i + dy2

i ) + (1−ε)dz2 , H =
2M

U
, (E.30)

l = dτ +

m∑
i=1

r(xidxi + yidyi) + ai(xidyi − yidxi)
r2 + a2

i

+ (1−ε)zdz
r

. (E.31)

The principal tensor (E.18) reads

h =

m∑
i=1

[
(xidxi + yidyi) ∧ dτ + aidxi ∧ dyi

]
+ (1−ε)zdz ∧ dτ . (E.32)

Written in the form (E.29), it is now straightforward to take the flat space
limit,M → 0. We recover the standard Minkowski metric η, while the principal
tensor is still given by (E.32). Note that it has exactly the same structure as
for the Kerr metric, (3.94), only now it ‘spreads through’ m rotation 2-planes.

26 In the original paper Myers and Perry (1986) the authors derive the Myers–Perry form
(E.7) of the metric from the Kerr–Schild ansatz (E.29). We are now going backwards.
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E.4 Special spinning black holes

The group of isometries of a general multiply-spinning Myers–Perry solution is
R×U(1)m. If p rotation parameters are equal and non-vanishing, the subgroup
U(1)p for the corresponding rotation planes is enhanced to a non-Abelian
group U(p). If p rotation parameters vanish the corresponding subgroup U(1)p

is enhanced and becomes SO(2p+ 1− ε) (Emparan and Reall 2008).
An interesting special case happens for the odd-dimensional Myers–Perry

metric with all equal angular momenta, ai = a for all i. The enhanced symme-
try group of such a spacetime is R× U(n), where R denotes time translations.
In this case the metric depends only on one essential coordinates, r. The con-
stant r surface is a homogeneous space. One says, that such a spacetime is of
cohomogeneity-127.

Another interesting case is a black hole with a single rotation parame-
ter. These black holes are sometimes called simply rotating. The symmetry of
the solution is R× U(1)× SO(D − 3), where R denotes time translations and
U(1) corresponds to the 2-plane with a single rotation. The spacetime is of
cohomogeneity-2. The (D−2)-dimensional sections where r and θ are constant
are homogeneous.

27 The cohomogeneity of a D-dimensional spacetime is p if there exist a group of symmetry
acting on the spacetime with orbits having dimensionality D − p.
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F Spinors in curved space

In this appendix we give a short overview of the Dirac theory in a curved
space. After discussing the general properties of Dirac spinors, we describe the
most general linear symmetry operators that commute with the Dirac oper-
ator. We conclude by introducing the special Killing–Yano forms and discuss
their relationship to twistor and Killing spinors. For a more thorough expo-
sure to the subject, we refer the interested reader to the books by Benn and
Tucker (1987); Cartan (1981); Cnops (2002); Lawson and Michelsohn (1990)
or the discussion in papers Benn and Charlton (1997); Benn and Kress (2004);
Cariglia et al (2011a,b); Trautman (2008); Semmelmann (2003); Houri et al
(2012).

F.1 Dirac spinors

Clifford objects

The Dirac spinors can be understood as a vector bundle DM over the space-
time manifold M . The fibers of it serve as representation spaces of the Clifford
algebra. The irreducible representation of the Clifford algebra in D = 2n + ε
dimensions is realized on a 2n-dimensional space, the fibers DxM thus have
the dimension 2n. If necessary, we shall use capital Latin indices A,B, . . . to
indicate components of the Dirac spinors, but usually we omit the spinorial
indices.28

The Clifford algebra is realized as operators on the Dirac bundle. It is
generated by the abstract gamma matrices, i.e., by tensors γ with components
γaAB which satisfy

γa γb + γb γa = 2 gabI . (F.1)

Here, I is the identity matrix and the implicit matrix multiplication is assumed.
A general element of the Clifford algebra is a linear combination of products
of gamma matrices with all spacetime indices contracted. Using the property
(F.1), one can always eliminate symmetric products of gamma matrices and a
general element of the Clifford algebra can be represented as

/ω =
∑
p

1

p!
pωa1...apγ

a1...ap , (F.2)

where
γa1...ap = γ[a1 . . . γap] (F.3)

28 We follow a common practice of omitting spinor indices even when writing components.
A spinor ψ has components ψA which we collect to the ‘column’ ψ. Similarly, a Clifford
object /ω has components /ωAB , which we collect to the matrix /ω, (F.2). In other words,
/ω ∈ D1

1 M is a tensorial object, and /ω is a shorthand for its components. The gamma
matrices γa are shorthands for γaAB , components of the abstract generators of the Clifford
algebra γ ∈ T1

0 ⊗ D1
1 M . We also assume the implicit matrix multiplication denoted by

juxtaposition of spinor matrices.
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and pωa1...ap are components of antisymmetric p-forms pω. In other words,
the Clifford objects are in one-to-one correspondence with inhomogeneous an-
tisymmetric forms

ω =
∑
p

pω , (F.4)

through an isomorphisms γ∗,

γ∗ : ω ∈ ΛM ↔ /ω ∈ D1
1M . (F.5)

This isomorphism induces also a new multiplication “◦” on the exterior
algebra ΛM , the so called Clifford multiplication, which corresponds to the
matrix multiplication in D1

1M ,

γ∗ : α ◦ β ↔ /α /β . (F.6)

It can be shown (Benn and Tucker 1987) that for homogeneous forms α ∈
ΛpM and β ∈ ΛqM , p ≤ q, the Clifford product reads

α ◦ β =

p∑
m=0

(−1)m(p−m+1) + [m/2]

m!
α ∧
m
β , (F.7)

where α ∧
m
β is m-times contracted wedge product introduced in Houri et al

(2010a),

(α ∧
m
β)a1...ap−mb1...bq−m =

(p+ q − 2m)!

(p−m)!(q −m)!
αc1...cm[a1...ap−mβ

c1...cm
b1...bq−m] .

(F.8)
In particular, for a 1-form α and a general p-form ω one obtains

α ◦ ω = α ∧ ω +α · ω ,
ω ◦α = (−1)p (α ∧ ω −α · ω) .

(F.9)

These relations in terms of gamma matrices (cf. (F.3)) read

γa γa1...ap = γaa1...ap + p ga[a1γa2...ap] ,

γa1...ap γa = (−1)p
(
γaa1...ap − p ga[a1γa2...ap]

)
.

(F.10)

We shall also work with inhomogeneous forms (F.4) and employ the oper-
ators π and η introduced in section A.2 by (A.16). We say that an inhomoge-
neous form ω is even if ηω = ω and it is odd if ηω = −ω.
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Invariant products on the spinor space

The universality of the Clifford algebra and the irreducibility of its spinor rep-
resentation generated by abstract gamma matrices (F.1) imply that the spinor
space possesses two natural products (Trautman 2008; Lawson and Michelsohn
1990; Benn and Tucker 1987): the Dirac scalar product 〈ψ,ϕ〉 (antilinear in
the first and linear in the second argument) and the real product (ψ,ϕ) (linear
in both arguments). The first is related to the (antilinear) Dirac conjuga-
tion ˜ : DM → D∗M and the second to the (antilinear) charge conjugation
c : DM → DM as

〈ψ,ϕ〉 = ψ̃A ϕ
A , (F.11)

(ψc,ϕ) = 〈ψ,ϕ〉 . (F.12)

The symmetry properties, positivity and relations to the abstract gamma ma-
trices of these products depend on dimensionality and signature. In general
one has

〈γψ,ϕ〉 = εA〈ψ,γϕ〉 , γ̃ = εA γ , (F.13)

(γψ,ϕ) = εB(ψ,γϕ) , γc = εC γ , (F.14)

and

〈ψ,ϕ〉 = 〈ϕ,ψ〉∗ , (ψ,ϕ) = σB (ϕ,ψ) , ψcc = σCψ , (F.15)

where all ε’s and σ’s are just signs.

Remark: These products are related to the intertwiners between different representa-
tions of the Clifford algebra on the spinor spaces. Following the notation of
Trautman (2008) (where one can understand Trautman’s representation ρ as
our map γ∗ generated by abstract gamma matrices γ), one can introduce three

intertwiners AK̄L, BKL, and CK̄L. BKL relates the representation on DM

and D∗M , while CK̄L relates the representation on DM and D̄M , and

AK̄L = B̄K̄N̄C
N̄
L . (F.16)

Here ¯ : DM ↔ D̄M is the conjugation between the spinor space and its
conjugate.
The products and conjugations (F.11) and (F.12) are then defined as follows:

〈ψ,ϕ〉 = ψ̄K̄ AK̄L ϕ
L , ψ̃K = ψ̄N̄AN̄K , (F.17)

(ψ,ϕ) = ψK BLK ϕL , ψcK = C̄KN̄ ψ̄N̄ . (F.18)

These imply relations

γ̃ = Aγ̄A−1 , γc = C̄γ̄C̄
−1

, ψcc = C̄Cψ . (F.19)

Using these definitions and relations one can read out ε’s and σ’s signs from
the properties (6)–(11) of Trautman (2008).
The products and the conjugations are fixed by the spinor representation up
to a freedom of one complex number at each spacetime point, see discussion
in Trautman (2008). We assume that this freedom is fixed and the products
are chosen as a part of the definition of the spinor bundle.
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Covariant derivative

The metric covariant derivative on the tangent space can be extended to
spinors. It satisfies

∇γ = 0 , (F.20)

and the invariant products are covariantly constant, i.e.,

∇〈ψ,ϕ〉 = 〈∇ψ,ϕ〉+ 〈ψ,∇ϕ〉 ,
∇(ψ,ϕ) = (∇ψ,ϕ) + (ψ,∇ϕ) .

(F.21)

These conditions fix the extension of the covariant derivative on spinors unique-
ly, see Trautman (2008).

Choosing a frame ea in the tangent space and a frame ϑA in the spinor
space, such that the components γaAB are constant,29 the covariant derivative
on spinors and Clifford objects writes as

∇aψ = ∂aψ +
1

4
ωabc γ

b γc ψ , (F.22)

∇a /ω = ∂a/ω +
[ 1

4
ωabc γ

b γc, /ω
]
, (F.23)

with the standard spin coefficients ωa
b
c given by

∇aeb = ωa
c
b ec , (F.24)

and [ /σ, /ω ] = /σ /ω − /ω /σ being the commutator. If one introduces 1-forms of
the curvature as ωbc = eaωa

b
c, these satisfy the Cartan equations

dea + ωab ∧ eb = 0 . (F.25)

Here ea is the frame of 1-forms dual to ea.

Dirac operator

The Dirac operator operator on spinors is defined by Dψ = /∇ψ, that is,

Dψ = γa∇aψ . (F.26)

When applied on a Clifford object /ω, its action D /ω = /∇/ω can be translated
to the action on the corresponding antisymmetric form ω. We denote it by the
same symbol D. Taking into account the definition of the Clifford multiplica-
tion (F.6) and its relation to the wedge and the dot operations (F.9), we can
write the Dirac operator on the exterior algebra ΛM as

Dω =∇ ◦ ω =∇ ∧ ω +∇ · ω . (F.27)

29 This choice is usually done by choosing an orthonormal frame ea in tangent space (but in
the context of Lorentzian geometry a choice of a null frame is also common) and by specifying
a particular form of the components of the gamma matrices γaAB . Different realizations
of the gamma matrices which can be found in the literature can thus be understood as a
different choice of the frame ϑA associated with the spacetime frame ea. See (6.52) for a
particular choice of the frame ϑA in the Kerr–NUT–(A)dS spacetime.
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F.2 Symmetry operators of the Dirac operator

For solving the Dirac equation and for a discussion of its properties it is useful
to know the symmetry operators of the Dirac operator, and in particular those
that commute with D. A general first-order symmetry operator S satisfying
DS = RD for some R has been constructed in Benn and Charlton (1997);
Benn and Kress (2004). It is in one-to-one correspondence with conformal
Killing–Yano tensors. Based on this result it is possible to characterize the
operators that commute with D—they are related to the Killing–Yano and
closed conformal Killing–Yano forms (Cariglia et al 2011a).

First-order operators that commute with the Dirac operator

Using the exterior algebra representation, the most general first-order operator
S that commutes with the Dirac operator, [D,S] = 0, takes the following form:

S = Kf +Mh , (F.28)

Kf = f ·∇ +
(π − 1

2π
∇ ∧ f

)
, (F.29)

Mh = h ∧∇ +
(D − π − 1

2(D − π)
∇ · h

)
, (F.30)

where f is an (in general inhomogeneous) odd Killing–Yano form and h is an
(inhomogeneous) even closed conformal Killing–Yano form.

Remark: To illuminate the condense notation for the operators, we write explicitly the
action of the operators Kf and Mh on a form ω in the case when f and h is
a homogeneous odd p-form and a homogeneous even q-form, respectively,

Kf ω = [f ·∇] ◦ ω +
p

2(p+ 1)
(∇ ∧ f) ◦ ω , (F.31)

Mh ω = [h ∧∇] ◦ ω +
D − q

2(D − q + 1)
(∇ · h) ◦ ω . (F.32)

The derivatives [f ·∇] and [h ∧∇] enter into the Clifford multiplication as
forms with indices [−f · ∇]a2...ap = fa2...ap

a∇a = faa2...ap∇a (p odd) and
[h ∧∇]a0a1...aq = (q + 1)h[a1...aq∇a0] (q even).

Writing these operators directly on the Dirac bundle, one gets

Kf =
∑
p odd

[ 1

(p−1)!
γa1...ap−1 pfaa1...ap−1

∇a +
p

2(p+1)!
γa1...ap+1 pκa1...ap+1

]
,

(F.33)

Mh =
∑
p even

[ 1

p !
γaa1...ap pha1...ap∇a +

D − p
2(p−1)!

γa1...ap−1 pξa1...ap−1

]
. (F.34)
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Here, the inhomogeneous forms are written as

f =
∑
p odd

pf , h =
∑
p even

ph , (F.35)

where p-forms pf are odd Killing–Yano tensors, and ph are even closed con-
formal Killing–Yano tensors, and satisfy

∇a pfa1...ap = pκaa1...ap ,
pκa0a1...ap = ∇[a0

pfa1...ap] , (F.36)

∇a pha1...ap = p ga[a1

pξa2...ap] ,
pξa2...ap =

1

D − p+ 1
∇c phca2...ap . (F.37)

To summarize, the operators commuting with the Dirac operator are in one-
to-one correspondence with odd Killing–Yano forms and even closed conformal
Killing–Yano forms.

Killing–Yano bracket

The conditions when the above operators also commute among each other have
been studied in Cariglia et al (2011a). Having two operators S1, S2 of the type
(F.29) or (F.30), their commutator is of the first-order only if the corresponding
Killing–Yano and closed conformal Killing–Yano forms satisfy certain algebraic
conditions. Provided these conditions are satisfied, the commutator [S1,S2] is
again an operator that commutes with the Dirac operator and thus it has
the form (F.28). This fact can be exploited to define a new operation on the
Killing–Yano and closed conformal Killing–Yano tensors, called the Killing–
Yano bracket (Cariglia et al 2011a).

To illustrate the action of Killing–Yano brackets, let us consider two odd
Killing–Yano forms κ and λ. The Killing–Yano bracket is defined by the re-
quirement that

[Kκ, Kλ] = K[κ,λ]KY
, (F.38)

which is true provided the following necessary algebraic conditions are satis-
fied: ∑

k=1,...

(−1)k

(2k − 1)!
κ ∧

2k
λ = 0 , (F.39)

in which case the bracket can be explicitly written as (Cariglia et al 2011a)

[κ,λ]KY =
1

π
∇ ·

∑
k=0,...

(−1)k

(2k + 1)!
(πκ) ∧

2k
(πλ) . (F.40)

In particular, for homogeneous forms of rank p and q, respectively, the consis-
tency conditions splits into a set of conditions

κ ∧
2k
λ = 0 for k = 1, 2, . . . , (F.41)



Black holes, hidden symmetries, and complete integrability 197

and the Killing–Yano bracket simplifies to

[κ,λ]KY =
p q

p+ q − 1
∇ · (κ ∧ λ) . (F.42)

As discussed in the main text, the algebraic conditions (F.41) (and the analo-
gous conditions for the closed conformal–Killing–Yano tensors) are automati-
cally satisfied for the Killing–Yano tower of hidden symmetries generated from
the principal tensor of the Kerr–NUT–(A)dS geometry.

F.3 Killing–Yano tensors and Killing spinors

In this section we review the connections between Killing–Yano tensors and
various Killing spinors, based on works of Semmelmann (2003), Cariglia (2004),
and Houri et al (2012).

Conformal Killing spinors

To motivate the definition of conformal Killing spinors, let us recall that in
section 2.4 we have introduced conformal Killing–Yano forms as those anni-
hilated by the twistor operator (2.49) whose definition is based on splitting
the space T∗⊗ΛM into the subspaces given by the projector A+ C and the
projector T , cf. (2.45). The covariant derivative∇ω of an antisymmetric form
ω can be thus split into the antisymmetric plus divergence parts and the part
given by the twistor operator. If the twistor operator Tω yields zero, ω is the
conformal Killing–Yano form.

Similarly, a 1-form spinor α ∈ T∗⊗DM can be split into the parts given
by the projector B and the projector T ,

(Bα)a =
1

D
γaγ

nαn , (F.43)

(T α)a = αa −
1

D
γaγ

nαn . (F.44)

Obviously, B and T are complementary projectors as can be seen by using
γaBαa = γaαa and γaT αa = 0. Applying these projectors on the covariant
derivative ∇ψ, one gets

∇ψ = B∇ψ + T∇ψ =
1

D
γDψ + Tψ , (F.45)

where the (spinorial) twistor operator Tψ reads

Taψ = T ∇aψ = ∇aψ −
1

D
γaDψ . (F.46)

Spinors for which the twistor operator vanishes are called twistor spinors or
conformal Killing spinors. They satisfy

∇ψ =
1

D
γDψ . (F.47)
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Relation between conformal Killing spinors and conformal Killing–Yano
tensors

There is a natural connection between the twistor spinors and the conformal
Killing–Yano tensors:

Theorem: Let ψ1 and ψ2 be two twistor spinors. Then the following p-forms,
defined using the invariant product (F.11) for any p = 0, . . . , D:

ωa1...ap = 〈ψ1, γa1...apψ2〉 , (F.48)

are the conformal Killing–Yano tensors.

To prove the theorem, we compute the covariant derivative∇ω. Employing
(F.21), (F.20) with (F.3) and the assumption that ψ1 and ψ2 satisfy (F.47),
we obtain

∇aωa1...ap = 〈∇aψ1, γa1...apψ2〉+ 〈ψ1, γa1...ap∇aψ2〉

=
1

D
〈γaDψ1, γa1...apψ2〉+

1

D
〈ψ1, γa1...apγaDψ2〉

(F.49)

Applying (F.13) in the first term and using (F.10), we get

∇aωa1...ap =
1

D

(
εA〈Dψ1, γaa1...apψ2〉+ (−1)p〈ψ1, γaa1...apDψ2〉

)
+
p

D
ga[a1

(
εA〈Dψ1, γa2...ap]ψ2〉 − (−1)p〈ψ1, γa2...ap]Dψ2〉

)
.

(F.50)

Clearly, the derivative ∇ω has the form (2.53) and ω is thus a conformal
Killing–Yano form.

Recalling (2.54), we can also read out

(∇∧ ω)aa1...ap =
p+ 1

D

(
εA〈Dψ1, γaa1...apψ2〉+ (−1)p〈ψ1, γaa1...apDψ2〉

)
,

(∇ · ω)a2...ap =
D−p+1

D

(
εA〈Dψ1, γa2...apψ2〉 − (−1)p〈ψ1, γa2...apDψ2〉

)
.

(F.51)

Killing spinors

We call a spinor ψ obeying

∇ψ =
µ

D
γ ψ (F.52)

for some µ ∈ C a Killing spinor.
If a spinor ψ is both the twistor spinor and the Killing spinor, it follows

that it satisfies the massive Dirac equation

Dψ = µψ . (F.53)

The relation is symmetric, any two of the conditions (F.47), (F.52), and (F.53)
imply the third.
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Special conformal Killing–Yano tensors

Let as define a special Killing–Yano tensor ω to be a p-form which obeys

∇Xω =
1

p+ 1
X · (∇ ∧ ω) , ∇X(∇ ∧ ω) = cX ∧ ω , (F.54)

for any vector field X and some constant c. Obviously, the special Killing–
Yano tensors are subclass of Killing–Yano tensors. They have been introduced
by Tachibana and Yu (1970) and exploited by Semmelmann (2003).

Substituting Killing–Yano equation into the second condition of (F.54), we
obtain

∇a∇a0ωa1...ap = c ga[a0
ωa1...ap] . (F.55)

Using (F.54) we also find that ω is an eigenform of the de Rham–Laplace
operator defined in (C.1), ∆ω = −∇ ∧ (∇ · ω)−∇ · (∇ ∧ ω),

∆ω = −c(D − p)ω . (F.56)

Moreover, when ω is an odd-rank special Killing–Yano tensor, so is

ω ∧ (∇ ∧ ω)∧k , (F.57)

for any k = 0, 1, . . . .
Similarly, one can define a special closed conformal Killing–Yano tensor ω

to be a p-form obeying

∇Xω =
1

D−p+1
X ∧ (∇ · ω) , ∇X(∇ · ω) = cX · ω , (F.58)

for any vector field X and some constant c.
Again, such ω is an eigenform of the de Rham–Laplace operator,

∆ω = −cpω . (F.59)

Relation between Killing spinors and special Killing–Yano tensors

Similar to twistor spinors, the Killing spinors also generate conformal Killing–
Yano forms:

Theorem: Let ψ1 and ψ2 be two Killing spinors,

∇ψ1 =
µ1

D
γ ψ1 , ∇ψ2 =

µ2

D
γ ψ2 . (F.60)

Then the following p-forms:

ω(p)
a1...ap = 〈ψ1, γa1...apψ2〉 , (F.61)

p = 0, . . . , D, are conformal Killing–Yano forms.
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The same reasoning as in (F.49) and (F.50), just using (F.60) instead
(F.47), yields

∇aω(p)
a1...ap =

1

D

(
εAµ1 + (−1)pµ2

)
〈ψ1, γaa1...apψ2〉

+
p

D

(
εAµ1 − (−1)pµ2

)
ga[a1

〈ψ1, γa2...ap]ψ2〉

=
µ

(p)
+

D
ω(p+1)
aa1...ap +

µ
(p)
−
D

pga[a1
ω

(p−1)
a2...ap] ,

(F.62)

i.e.,

∇Xω(p) =
µ

(p)
+

D
X · ω(p+1) +

µ
(p)
−
D

X ∧ ω(p−1) , (F.63)

where we have set
µ

(p)
± = εAµ̄1 ± (−1)pµ2 . (F.64)

We see that the derivative∇ω(p) has the form (2.59) and ω is thus a conformal
Killing–Yano form, which concludes the proof of the theorem.

From (2.60) we obtain

∇ ∧ ω(p) = (p+ 1)
µ

(p)
+

D
ω(p+1) ,

∇ · ω(p) = (D − p+ 1)
µ

(p)
−
D

ω(p−1) .

(F.65)

Taking the covariant derivative of these expressions while applying (F.63) and

µ
(p)
± = µ

(p+1)
∓ = µ

(p−1)
∓ , we obtain

∇X(∇ ∧ ω(p)) =
p+ 1

D2
µ

(p)
+ µ

(p)
− X · ω(p+2) +

p+ 1

D2
(µ

(p)
+ )2X ∧ ω(p) ,

∇X(∇ · ω(p)) =
D−p+1

D2
µ

(p)
− µ

(p)
+ X ∧ ω(p−2) +

D−p+1

D2
(µ

(p)
− )2X · ω(p) .

(F.66)
Inspecting (F.65) and (F.66), we can formulate:

Theorem: Under assumptions of the previous theorem we recognize two special
cases:

µ
(p)
− = 0 ⇒ ω(p) is a special Killing–Yano tensor with

c =
p+ 1

D
(µ

(p)
+ )2 , (F.67)

µ
(p)
+ = 0 ⇒ ω(p) is a special closed conformal Killing–Yano tensor with

c =
D−p+1

D
(µ

(p)
− )2 . (F.68)

If we assume µ1 = µ2 = µ, the conditions µ
(p)
± = 0 require that µ must be

either real or imaginary, depending on the dimension, signature, and order p,
cf. (F.64).
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Let us finally note that all the results of this section can be straightfor-
wardly generalized to the case of a covariant derivative with torsion. The
torsion generalized twistor/Killing spinors, which find applications in various
supergravity theories, are then related to the torsion generalized conformal
Killing–Yano tensors discussed in section 7.6. We refer the interested reader
to appendix A in Houri et al (2012) for more details.
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Appels M, Gregory R, Kubizňák D (2017) Black Hole Thermodynamics with Conical De-
fects. ArXiv e-prints 1702.00490

Araneda B (2016) Symmetry operators and decoupled equations for linear fields on black
hole spacetimes. ArXiv e-prints 1610.00736

Arnol’d VI (1989) Mathematical methods of classical mechanics. Springer, New York, DOI
10.1007/978-1-4757-2063-1

Astorino M (2017) Thermodynamics of Regular Accelerating Black Holes. Phys Rev D
95:064,007, DOI 10.1103/PhysRevD.95.064007, 1612.04387

Baleanu D, Baskal S (2000) Geometrization of the Lax pair tensors. Mod Phys Lett 15:1503,
DOI 10.1142/S0217732300001924, gr-qc/0104011

Baleanu D, Karasu AK (1999) Lax tensors, killing tensors and geometric duality. Mod Phys
Lett A14:2597, DOI 10.1142/S0217732399002716, gr-qc/0004024

Bardeen JM (1973) Timelike and null geodesics in the Kerr metric. In: C DeWitt and B S
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