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Abstract: Continuous-time quantum walks may be ex-
ploited to enhance spatial search, i.e., for finding a marked
element in a database structured as a complex network.
However, in practical implementations, the environmen-
tal noise has detrimental effects, and a question arises
on whether noise engineering may be helpful in miti-
gating those effects on the performance of the quan-
tum algorithm. Here we study whether time-correlated
noise inducing non-Markovianity may represent a re-
source for quantum search. In particular, we consider
quantum search on a star graph, which has been proven
to be optimal in the noiseless case, and analyze the effects
of independent random telegraph noise (RTN) disturbing
each link of the graph. Upon exploiting an exact code
for the noisy dynamics, we evaluate the quantum non-
Markovianity of the evolution, and show that it cannot
be considered as a resource for this algorithm, since its
presence is correlated with lower probabilities of success
of the search.

1 Introduction
There is a close connection between quantum metrologi-
cal precision bounds and quantum computation speed-up
limits, e.g. the search time in a database [1]. In turn,
the interest in quantum computation relies on its ability
to outperform standard classical computation in solving
some peculiar tasks. Among these is the problem of find-
ing a certain element with a given property in a disordered
database of N items. Grover’s quantum algorithm [2] re-
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trieves the specified target at time of order T = O(
√
N)

instead of the classical T = O(N). Moreover, this quan-
tum speed-up has been proven to be optimal [3]. Quan-
tum spatial search [4] is the generalization of this problem
to a database characterized by a complex structure, i.e.,
a database whose elements are distributed in space and
connected by links according to a certain topology. Such
a database can be described by a graph.

Different methods of solving the problem of quan-
tum spatial search have been proposed [4–8]. Here we fo-
cus on the algorithm based on continuous-time quantum
walks (CTQWs) [9], introduced by Childs and Goldstone
[5], that can achieve the optimal speed-up T = O(

√
N)

on certain topologies, such as the complete graph or the
hypercube. Many other graphs are suitable for quantum
spatial search using this algorithm: For instance, the star
graph was recently proven to be optimal [10]. However,
despite a great theoretical effort in characterizing the net-
works that are suitable for the search and to find more
efficient versions of the algorithm, only few studies ad-
dress the effects of noise on quantum spatial search via
CTQWs.

The presence of broken links in complex networks has
been investigated in [11], and it has been shown that the
coupling of the system to a thermal bath may improve the
performance of the algorithm affected by static disorder
[12]. Changing the complex structure of the graph after a
time interval τ , i.e., creating random temporal networks,
can lead to a dynamical topology suitable for search as
well [13], while the first study of a fully-dynamical de-
scription of the noise has been recently presented [10], in
particular introducing classical random telegraph noise
(RTN) affecting the hopping rate of the links of the net-
work. The effect of RTN on the dynamics of quantum
systems has been widely studied in the literature, being
a typical model for noise affecting solid state devices [14–
16] and used as a building block of 1/f noise [17, 18].
Many works have focused on one- or two-qubit systems
[14, 19–21], with studies of its effect on CTQWs appearing
in recent literature [22–25].

A key concept in the field of open quantum sys-
tems is non-Markovianity. Depending on different points
of view, it expresses the divisibility of the quantum map
describing the evolution of the system [26] or the back-
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flow of quantum information going from the environment
to the system [27]. A crucial point in the study of non-
Markovianity relies on understanding when its presence
is a resource, i.e., when non-Markovianity enhances the
results of the particular task we want to achieve using the
quantum system. Quantum non-Markovianity was proven
to be a resource in different scenarios for quantum infor-
mation processing [28, 29], teleportation [30], computa-
tion [31], metrology [32]. Systems affected by RTN can
exhibit either Markovian and non-Markovian quantum
dynamics, depending on the parameters and on the type
of interaction with the environment [20, 24, 33]: the lat-
ter has been shown to allow for recoherence effects in
qubit systems [33], while it induces localization in quan-
tum walks on lattices [22, 24].

In this paper, we address the role of quantum non-
Markovianity in the computational task of quantum spa-
tial search. We answer the questions: is non-Markovianity
a resource for quantum spatial search via CTQW? Does
its presence improve the performance of the algorithm?

As a matter of fact, the dynamics of the CTQW on
graphs subject to dynamical noise is obtained by Monte-
carlo simulation of the noise [10]. However, the study of
non-Markovianity requires higher precision and numeri-
cal stability, therefore in this paper we employ a numer-
ically exact technique to obtain the state of the walker
at a generic time t. This technique, valid for any system
subject to classical dynamical noise, was first proposed in
[34] and specifically used to study the dynamics of small
quantum systems, such as one or two qubits perturbed by
random telegraph noise [16, 20]. Here, we develop a fast
code that allows us to scale up the technique to larger
quantum systems. We discuss the general technique in
Sec. 4, while the code we used to implement it is avail-
able on GitHub [35].

The paper is structured as follows: in Sec. 2 we review
the quantum spatial search algorithm based on CTQW
and we discuss the noise model. In Sec. 3 we review
the concept of quantum non-Markovianity and introduce
the measures we employ to study the noisy evolution. In
Sec. 4 we present the analytical method we have used to
calculate the evolution of the quantum walk subject to
dynamical noise. In Sec. 5 we discuss the results, while
Sec. 6 closes the paper with some concluding remarks.

2 Noisy quantum spatial search
We model our structured database as a given graph G

composed of N nodes, and we want to find the marked

element w, called target node. Any graph is characterized
by an adjacency matrix A, whose elements are defined as

Aij =

{
1 if nodes i, j connected
0 otherwise.

(1)

We want to run a CTQW on this graph in order to
find w. The Hilbert space of the walker is H = span{|j〉}
with j = 1, . . . , N , where |j〉 is the single-particle local-
ized state associated to the node j. According to the orig-
inal definition [9], the Hamiltonian of the walk is propor-
tional to the Laplacian matrix of the graph L, defined as
L = D − A, where D is the degree matrix, a diagonal
matrix such that Djj is the number of links connected
to node j. To perform the spatial search, we add to the
original Hamiltonian a projector onto the target node, in
order to localize the walker there. Therefore, the Hamil-
tonian of the algorithm reads

H = γL+Hw = γL− |w〉〈w| , (2)

where Hw = − |w〉〈w| is called oracle Hamiltonian, γ is a
suitable coupling constant and L is the Laplacian matrix
associated to G.

The initial state of the quantum walk is the fully
delocalized state |s〉:

|s〉 = 1√
N

N∑
j=1
|j〉 , (3)

and the state at time t reads

|ψ(t)〉 = e−iHt |s〉 . (4)

If, at time t, we measure the walker in the node basis, the
probability of obtaining the target node is given by p(t) =
|〈w|ψ(t)〉|2. We assume that we can choose to measure at
the time T for which the above probability is maximal,
and we define the success probability of the algorithm as

psucc = |〈w|ψ(T )〉|2 (5)

We want to maximize psucc keeping T as short as possible.
The algorithm is optimal on the given graph G if there
exists a time T = O(

√
N) and a suitable constant γ for

which the probability of success is close to 1.
We now describe how to introduce dynamical noise on

the algorithm, following the approach of [10]: a pictorial
representation of the model is shown in Fig. 1. We insert
independent random telegraph noise (RTN) perturbing
the hopping rate of each link of the graph, where the RTN
is a classical dynamical noise that can assume only two
values, say g(t) = ±1, and the probability of switching
value n times in a time t follows the Poisson distribution

pµ(n, t) = e−µt
(µt)n

n! , (6)
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where µ is called switching rate.
Therefore, RTN describes a stationary stochastic pro-

cess with autocorrelation function

〈g(τ)g(0)〉 = e−2µ|τ |, (7)

corresponding to a Lorentzian spectrum.
CTQWs affected by RTN have been studied in the

recent past for one-dimensional lattices [22–24], and for
quantum spatial search on graphs [10]. Here we consider
independent random telegraph noise perturbing each link
of the complex network with the same switching rate
µ, and we accordingly modify the Laplacian matrix in
Eq. (2) as follows.

The noise is described by the N × N matrix g(t),
where N is the number of nodes in the graph and gjk(t)
is the stochastic process describing the noise on the link
connecting j to k. The matrix g(t) is thus symmetric,
zero-diagonal and has only l independent entries, where l
is the number of links in the graph. Keeping in mind that
the noise realizations on different links are uncorrelated,
we have the following autocorrelation function, for the
non-zero elements of g(t)

〈gjk(τ)gj′k′(0)〉 = e−2µ|τ |(δjj′δkk′ + δjk′δkj′) . (8)

The noisy Laplacian L(g)(t) thus reads

L
(g)
jk (t) =


−
[
1 + νgjk(t)

]
if (j, k) connected

Djk + ν
∑N
i=1 gik(t) if j = k

0 otherwise
(9)

where ν ∈ [0, 1] is the relative noise strength, assumed
to be the same for all the links. The Hamiltonian of the
noisy walk, replacing the one in Eq. (2), is now a function
of the stochastic process g(t) and reads

H(g)(t) = γL(g)(t)− |w〉〈w| . (10)

Using the language of open quantum systems, we de-
scribe the state of the system at time t as a density matrix
ρ(t). Starting from the initial state ρ0 = |s〉〈s|,

ρ(t) = 〈U [g(t)]ρ0U
†[g(t)]〉{g(t)}, (11)

where 〈. . .〉{g(t)} denotes the average over all possible re-
alizations of the stochastic process g(t), while U [g(t)] is
the unitary evolution operator that drives the evolution
associated to a particular realization of the noise, given
by

U [g(t)] = T exp
{
−i
∫ t

0
dsH(g)(s)

}
, (12)

where T is the time-ordering operator.

Fig. 1. Pictorial representation of the model described in Section
2: the links between the nodes of a graph (in this work, we focus
on the star graph) are affected by independent sources of RTN,
all characterized by the same switching rate µ and noise strength
ν. The red node corresponds to the marked node in the Hamilto-
nian, |w〉.

Equation (11) describes a quantum map sending a
density matrix into a density matrix. Considering the ini-
tial time t0 = 0, for each time t we denote such a map as
E(t, 0), defined as

E(t, 0)ρ0 = ρ(t). (13)

3 Measures of non-Markovianity
Extending the concept of non-Markovianity for stochastic
processes to the quantum world is not trivial, since the
classical definition of Markovianity is based on probability
distributions evaluated at different times, while in quan-
tum mechanics measuring the state of the system affects
it, thus it is not meaningful anymore to define a general
quantity like quantum non-Markovianity using classical
objects such as probability distributions [26, 36].

A very well-known class of master equations, i.e., evo-
lution equations for quantum states, is the one written
in the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [37, 38]. The quantum maps described by the
GKSL master equation (or, more generally, its time-
local generalization) are said to be Markovian because of
their divisibility property [26]: if, considering also time-
inhomogeneous processes, E(t2, t1) is the quantum map
generating the evolution of a quantum state from t1 to
t2, and if this evolution follows the GKSL master equa-
tion, then the quantum map is divisible in the sense that

E(t3, t1) = E(t3, t2)E(t2, t1) ∀ t1 < t2 < t3. (14)



4 M. A. C. Rossi et al., Non-Markovianity is not a resource for quantum spatial search...

This property can be seen as a sort of quantum ana-
logue of the Chapman-Kolmogorov equation character-
izing a Markovian stochastic process. Furthermore, the
GKSL master equation is obtained by imposing some ap-
proximations upon the coupling between system and en-
vironment [39]. In particular, weak coupling, Born ap-
proximation, and fast decay of the environment’s correla-
tion functions (compared to the typical time-scale of the
evolution of the quantum state) are required. These con-
ditions can be seen as reflecting a memoryless evolution
of the system, thus strengthening the idea of “quantum
Markovianity” of the quantum map. We refer the reader
to a standard textbook for a more rigorous explanation
of the GKSL master equation [39].

Further definitions of quantum non-Markovianity
have been proposed and used. In particular, a really com-
mon definition is the one based on the backflow of quan-
tum information between system and environment [27].
The choice of a definition rather than another one de-
pends on the specific purposes for which we want to eval-
uate quantum non-Markovianity. The main results and
proposals on the topic are reviewed in [26, 36, 40]. More-
over, it is known that different definitions follow a hi-
erarchy, i.e., some classes of definitions are contained in
other ones; this aspect, first discovered in [41], has been
deeply investigated in a very recent paper [42]. In addi-
tion to the detection of quantum non-Markovianity of a
quantum process, we would like to quantify the amount of
non-Markovianity of a quantum map. Various measures
of non-Markovianity have been introduced in the litera-
ture to achieve this goal. In what follows we explore two
measures of quantum non-Markovianity that we will use
in our work, chosen for their significance in the literature
and the possibility to compute them with the problem at
hand.

3.1 Divisibility measure

The first measure we analyze is strictly related to the
definition of non-Markovianity based on the divisibility
of the quantum map. We will employ a variation of the
one proposed in [43], which has already been used in [22]
for quantum walks on lattices.

Suppose that E is the quantum map describing the
evolution of a quantum state starting at t = 0, and sup-
pose to take ρ0 as the initial state. We evaluate the quan-
tity

Γ(τ, τ1) = D(E(τ, 0)ρ0, E(τ, τ1)E(τ1, 0)ρ0), (15)

where 0 ≤ τ1 ≤ τ , and D is the trace distance between
two states, defined as:

D(ρ1, ρ2) = 1
2 |ρ1 − ρ2|, (16)

with |A| = Tr
√
A†A for a square matrix A.

Obviously, in the case of time-homogeneous pro-
cesses, E(τ, τ1) = E(τ − τ1). Eq. (15) is basically eval-
uating how distant the final state obtained through the
complete evolution is, compared to the one for which the
evolution has been stopped and restarted at a certain time
t1; it is thus detecting how E deviates from divisibility.
Γ(τ, τ1) is clearly zero for any τ and τ1 if E is described
with a master equation in the GKSL form.

In order to get a number quantifying the deviation
from divisibility, one takes the maximal deviation from
the property of divisible quantum map, i.e., the maximum
over all τ and τ1 up to infinity. Therefore, the measure of
non-Markovianity that we employ is

NM = max
τ,τ1

Γ(τ, τ1). (17)

It is evident that Eq. (17) does not define a measure
of the non-Markovianity of the quantum map, but only
of the evolution of a particular initial state. Indeed, in
[43] the trace distance in Eq. (15) is replaced with a dis-
tance in the quantum maps space. However, in the case
at hand the initial state of the system is fixed by the pre-
scription of the spatial search algorithm, thus Eq. (17) is
both easier to calculate and appropriate for our purposes.

3.2 BLP measure

Probably the most famous measure of non-Markovianity
is the BLP measure [27], based on the backflow of quan-
tum information between system and environment.

The trace distance between two states is contractive
under the action of a quantum channel, i.e. a completely
positive and trace preserving map [44]. It is straight-
forward to prove [27] that, if E is a divisible quantum
map Eq. (14), then the trace distance of two evolved
states (with initial state ρ1(0) and ρ2(0)) is monotoni-
cally decreasing in time: namely, if ρ1(t) = E(t, 0)ρ1(0)
and ρ2(t) = E(t, 0)ρ2(0),

D(ρ1(t+τ), ρ2(t+τ)) ≤ D(ρ1(t), ρ2(t)) ∀ t, τ > 0. (18)

This may not be true anymore if the dynamics is non-
Markovian. Therefore, let us define the quantity

σ(t, ρ1,2(0)) = d

dt
D(ρ1(t), ρ2(t)). (19)
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If σ(t, ρ1,2(0)) is positive for certain time intervals, then
the quantum map is non-Markovian and, in particular,
during those time intervals we are observing a backflow
of quantum information. Indeed, the trace distance ex-
presses our ability to distinguish the states ρ1 and ρ2
[44], therefore when it increases we are acquiring more
quantum information about the two states.

The BLP measure is defined by integrating over all
the time intervals in which we are gaining quantum infor-
mation, i.e., in which Eq. (19) is positive, and then taking
the maximum upon all the possible pairs of initial states:

NBLP(E) = max
(ρ1(0),ρ2(0))

∫
σ>0

dt σ(t, ρ1,2(0)). (20)

Following the hierarchy of non-Markovianity mea-
sures, there are some dynamical maps for which the
BLP measure is zero, despite being non-Markovian with
respect to the divisibility definition [26]. Nonetheless,
Eq. (20) is a true measure of non-Markovianity of a quan-
tum map (and not only of a specific evolution), and it
provides the quantifier of a useful resource (the backflow
of information).

Due to the maximization upon all the possible ini-
tial states, the evaluation of Eq. (20) is, in general,
a formidable task, only slightly mitigated by the fact,
proven in [45], that the states of the optimal pair must
lie on the boundary of the space of the density matrices
and must be orthogonal. Given the problem at hand, we
choose to fix ρ1(0) as the initial state of the spatial search
algorithm, and we optimize over the state ρ2(0) only.

4 Analytical solution of the noisy
dynamics

The solution of Eq. (11) is usually computed numeri-
cally, because of the cumbersome expression that arises
in Eq. (12) and of the huge number of possible realiza-
tions of the noise. Exact analytical solutions are possible
only in certain cases in which the Hamiltonian commutes
with itself at different times, such as in the case of pure
dephasing of qubits [22].

Joynt et al. have proposed an exact method of solv-
ing the dynamics of a quantum system coupled to a
classical environment modeled as a Markovian stochastic
process, and particularly effective for RTN [16, 34]. The
method allows for analytical results only for a single qubit
[16], while it requires numerical matrix diagonalization for
higher dimensions, [20]. The strengths of this method are
that it gives exact results up to machine-precision, and

it avoids fluctuations typical of Montecarlo simulations:
the drawback, however, is the exponential complexity in
terms of the number of noise fluctuators.

We have implemented the method in Julia [46], with
particular emphasis on optimization for the problem at
hand: the code is available on GitHub [35]. Based on this
code we are able to solve the dynamics of a CTQW sub-
ject to dynamical noise for graphs with up to N = 10
links. While this number is still quite small, it allows for
gaining intuition on the effects of noise on the spatial
search algorithm and the relation to non-Markovianity.

In this section, we briefly explain how to obtain the
exact dynamics of the system with the method introduced
in [34], leaving the full explanation and proof to the orig-
inal paper. Suppose to have a Nq-dimensional quantum
state, described at time t by the Nq ×Nq density matrix
ρ(t), and a classical system made of Nc states, represent-
ing the possible values of the noise. For example, if the
classical noise is a single fluctuator, Nc = 2; if it consists
of N independent RTN sources, Nc = 2N .

We start at t = 0 with ρ(0) and the classical prob-
ability distribution P(0), describing the initial state of
the stochastic process associated to the classical noise.
The Hamiltonian of the quantum system is H[g(t)], i.e.,
a function of the stochastic process describing the noise.
At every time instant, to every particular configuration of
the noise, which we label with the index c ∈ {1, . . . , Nc},
corresponds a particular form of the Hamiltonian Hc.

Since we assume a Markovian classical environment,
the probability of the different states is described by the
master equation

dP(t)
dt

= VP(t), (21)

where the element Vc,c′ of the matrix V dictates the
transition rates between the states c and c′ of the environ-
ment. Notice that V is time-independent if the stochastic
process describing the environment is homogeneous, as is
the case in this work. In the case of a single RTN with a
switching rate µ, we have that Nc = 2 and

Vµ =
(
−µ µ

µ −µ

)
. (22)

For a collection ofN independent fluctuators, the ma-
trix V becomes

V =
N∑
i=1

V(i)
µ , V(i)

µ = I⊗i−1
2 ⊗Vµ ⊗ I⊗N−i2 . (23)

We need to represent the density matrix as a vector,
and we do so by employing the generalized Bloch vector
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Fig. 2. Γ(τ, τ1) as a function of τ and 0 ≤ τ1 ≤ τ , for several values of switching rate µ and noise strength ν = 1, in logarithmic
scale. The plots are for the spatial search dynamics on the star graph with N = 7 and central target node. The red cross marks the
maximum value, i.e., the measure NM. We can observe that slow strong noise (deleterious for the algorithm) leads to a higher value of
non-Markovianity.

n(t), a vector of dimension N2
q −1, with real components

ni(t) =
√
Nq

2 Trλiρ(t), (24)

where λj are the generators of SU(Nq), and they are
Nq ×Nq matrices chosen to satisfy

Trλj = 0, λ†j = λj , Tr(λjλk) = 2δjk. (25)

We can go back to the density matrix ρ(t) from the Bloch
vector n(t) by means of the equation

ρ(t) = 1
Nq

INq
+
√
Nq

N2
q−1∑
j=1

nj(t)λj

 , (26)

where INq
denotes the identity in the Hilbert space of the

quantum system.
The action of a unitary operator U onto the density

matrix ρ(t) is translated into the multiplication of the
Bloch vector n(t) by a transfer matrix T defined as

Tij = 1
2 Tr

[
λiUλjU

†]. (27)

Consider now a short time interval ∆t in which the
environment is in a fixed state c; during ∆t, the unitary
evolution is generated by the Hamiltonian Hc: Uc(∆t) =
exp[−iHc∆t]. The corresponding transfer matrix Tc is
generated by the matrix

Gc = i lim
∆t→0

Tc − INq

∆t = i

2

Nq∑
i,j=1

Tr ([λi, λj ]Hc) . (28)

In their paper [34], Joynt et al. introduced the quasi-
Hamiltonian matrix

Hq = iV⊗ IN2
q−1 +

Nc⊕
i=c

Gc, (29)

where the second term is a direct sum of all the gener-
ators defined in (28), and showed that the dynamics of
the system, averaged all the possible realizations of the
stochastic process describing the noise (as defined in Eq.
(12)), is given by

n(t) = 〈1|exp(−iHqt)|p0〉 · n(0). (30)

In Eq. (30), |p0〉 and |1〉 are vectors belonging to the
space of the classical configurations: |1〉 is a vector with
all components set to 1, while |p0〉 ≡ P(0) is the initial
probability distribution of the configurations of the noise.
In the case at hand, where we assume stationary noise,
all the configurations are equally probable and so

|p0〉 = 1
Nc
|1〉 . (31)

The expression 〈1|A|p0〉 where A is a Nc(N2
q − 1)×

Nc(N2
q − 1) matrix, denotes a partial inner product in

the space of classical configurations: the result is a (N2
q −

1) × (N2
q − 1) matrix acting on the Bloch vector of the

quantum system.
Now let us focus on the study of continuous-time

noisy quantum walk on the star graph. If N is the num-
ber of nodes in the graph, there are N − 1 links and thus
N − 1 independent RTN sources: the number of possible
states of the noise is Nc = 2N−1. The number of real
parameters of the quantum system is N2 − 1, and hence
the number of rows of the matrix Hq is 2N−1(N2 − 1),
growing more than exponentially with N .

Evaluation of (30) thus looks like a formidable task,
considering that matrix exponentiation is a costly func-
tion. However, the matrices V and QE are largely
sparse, with the number of nonzero elements growing sub-
exponentially with N : this allows us to resort to various
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numerical techniques that ease the computational cost of
(30). While the matrix exponential of a sparse matrix is
dense, and thus its evaluation is still extremely costly, its
action on a vector v can be evaluated just in terms of
matrix-vector product operations [47, 48].

By using the above techniques, we can evaluate a sin-
gle exact dynamics for multiple time instants for N = 10
within seconds on a laptop. However, due to the expo-
nential scaling of the dimensions of Hq, we cannot reach
values of N much higher than that, so this excludes, for
example, the study of complete graphs of more than 6-7
nodes. Nevertheless, this method allows us to gain insight
into the dynamics of quantum walks affected by RTN
on small graphs. Further optimizations of the algorithm,
using techniques of matrix compression and distributed
computation, may allow to reach even higher dimensions.

5 Results
Both measures of non-Markovianity, defined in Eq. (17)
and Eq. (20), are highly sensitive to numerical errors in
the evaluation of the dynamics of the quantum walk,
meaning that small fluctuations can lead to completely
wrong results (see the discussion in [22]). Hence, the need
to employ the exact method presented in Sec. 4, instead of
the Montecarlo simulation used in [10]. Due to the numer-
ical complexity of the above method, we are restricted to
a small number of RTN sources. For this reason, we here
consider quantum spatial search on the star graph with
central node as target, proven to be optimal in [10], where
it is also shown that the random telegraph noise with fast
switching rate µ has almost no effects on the probability
of success of the search, while decreasing µ leads to worse
and worse results, proving that semi-static noise jeopar-
dizes the performance of the algorithm. Obviously, higher
noise strength ν implies lower success probability.

In this section we investigate if the presence of non-
Markovianity is a resource for quantum spatial search,
i.e if it correlates with better performance of the noisy
algorithm. To do so, we employ both the measures of
non-Markovianity presented in Sec. 3.

5.1 Non-Markovianity of the evolution
according to the divisibility measure

Considering the dynamics of the algorithm on a star
graph with N = 7 nodes and central node as target, we
have calculated Γ(τ, τ1) as defined in Eq. (15), for the

10−2 10−1 100 101

µ

0.0

0.1

0.2

0.3

0.4

N
M

ν = 0.2

ν = 0.5

ν = 0.9

ν = 1.0

Fig. 3. Divisibility measure of non-Markovianity NM for the evo-
lution of the initial state |s〉〈s| through the noisy algorithm of
quantum spatial search, as a function of the switching rate µ, for
several values of the noise strength ν. Non-Markovianity increases
with the strength of the noise and decreases with the switching
rate: strong, slow noise, which is the most detrimental, shows the
greatest memory effects.

map defined in Eq. (11), considering the starting state
of the algorithm ρ(0) = |s〉〈s|. The maximum of Γ(τ, τ1)
appears for finite τ and τ1 because the dynamics has the
maximally mixed state as fixed point (as can be easily
checked from Eq. (11)). The actual values for τ and τ1
vary with the parameters of the dynamics, but accurate
analysis has shown that, for N ≤ 10, we can restrict to
the region τ, τ1 ≤ 25.

The results for Γ(τ, τ1) are depicted in Fig. 2, for sev-
eral values of µ and ν. Fig. 3 shows the value of the mea-
sure NM, obtained after taking the maximum of all the
values of Γ(τ, τ1) in Fig. 2. Apart from a slight bend from
ν = 0.9 to ν = 1 for µ = 0.01, we obtain higher values of
NM for slower and stronger random telegraph noise, lead-
ing to bad performance of the algorithm. Therefore, us-
ing such measure of non-Markovianity and in this specific
case, the presence of non-Markovianity is correlated with
inefficient quantum spatial search. In Fig. 4 we show the
success probability of the spatial search algorithm psucc
as a function of the non-Markovianity measure NM of the
dynamics, for the same values of µ and ν of Fig. 3. At
fixed noise strength, the success probability increases as
the non-Markovianity decreases. However, no clear corre-
lation between NM and psucc may be seen.

5.2 Non-Markovianity of the evolution
according to the BLP measure

To strengthen our results, we calculate the BLP mea-
sure of Eq. (20) as a second indicator of quantum non-
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Fig. 4. Success probability of the spatial search algorithm psucc as
a function of the non-Markovianity measure NM of the dynamics,
for the same values of µ and ν of Fig. 3. At fixed noise strength,
the success probability increases as the non-Markovianity de-
creases; however, there is no clear correlation between NM and
psucc.

Markovianity, again for the algorithm on a star graph
with N = 7 and central node as target. The optimization
over all the possible initial states ρ1(0) and ρ2(0) is dif-
ficult to compute efficiently, but for our purposes we just
need to study the non-Markovianity of the evolution of
the CTQW, therefore we have kept fixed one of the two
states, say ρ1(0), as the initial state |s〉〈s|, and we have
optimized the measure only over all the possible ρ2(0).

Numerical investigation showed that, keeping ρ1(0) =
|s〉〈s|, we obtain the maximum in Eq. (20) by choosing as
ρ2(0) the eigenstate |r〉 of the Laplacian of the star graph,
defined as:

|r〉 = −(N − 1) |1〉+
N∑
k=2

|k〉 , (32)

whereN is the number of nodes in the graph and {|k〉}Nk=1
is the node basis.

The results for the BLP measure are shown in Fig. 5,
and they perfectly confirm the correlation between pres-
ence of non-Markovianity in the evolution and lower suc-
cess probability of quantum spatial search.

Notice that this is one of the cases in which the di-
visibility measure proves to be“higher” in the hierarchy
of quantum non-Markovianity [42]. Indeed, the divisibil-
ity measure detects the presence of non-Markovianity, al-
though small, for µ = 10 and µ = 1, while the BLP
measure does not.

10−2 10−1 100 101

µ

0

1

2

3

N
B

L
P

ν = 0.2

ν = 0.5

ν = 0.9

ν = 1.0

Fig. 5. BLP measure of non-Markovianity for the evolution of the
initial state |s〉〈s| through the noisy algorithm of quantum spatial
search, versus the switching rate µ, for various values of the noise
strength ν. In computing the value of the BLP, we have consid-
ered as initial pair |s〉〈s| and |r〉〈r|, as defined in Eq. (32). The
presence of information backflow between system and environ-
ment is correlated with slow strong noise, i.e., with poorer per-
formance of the algorithm. The stronger the noise the higher the
non-Markovianity of the map. The measure is basically zero for
switching rates above µ ' 1, but the map is still non-Markovian,
according to the divisibility measure NM.

5.3 Dependence on the size of the graph

The analysis above focused on the star graph with a cen-
tral target node and N = 7. Here we address the depen-
dence of non-Markovianity on the size of the graph, by
studying the two measures for different values of N , up
to N = 10, so that the dynamics can be still evaluated
with the exact method.

We found that the two quantities NM and NBLP have
a very similar behavior as functions of N , and we show
the former in Fig. 6, for different values of the switching
rate and for the maximum noise strength (ν = 1). We
see that the non-Markovianity decreases with N for fast
noise, while it is inappreciably increasing for slow noise.

While the computational complexity does not allow
us to explore higher values of N , we can expect non-
Markovianity to maintain the same trend. This correlates
with the dependence of psucc on N , which is slightly de-
creasing for strong, slow noise, and increasing for fast
noise, as shown in [10], further confirming the link be-
tween non-Markovianity and poorer performance of the
algorithm.
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Fig. 6. Non-Markovianity measure NM as a function of the size N
of the graph for different values of the switching rate µ, for noise
strength ν = 1.0. The non-Markovianity measure slightly depends
on N (notice that the y axis is in logarithmic scale), with NM

decreasing for fast noise, and basically constant for slow noise. A
qualitatively identical plot could be made for the BLP measure
NBLP.

6 Concluding remarks
In this paper we have addressed spatial search imple-
mented by CTQW on a star graph and in the presence
of RTN affecting the links between the nodes. In partic-
ular, we have discussed the role of non-Markovianity of
the quantum dynamical map of the walker in determining
the performance of the algorithm.

In order to address the above problem, we have devel-
oped fast and optimized code, not based on Montecarlo
generation of stochastic trajectories, to achieve a numeri-
cally exact solution of the dynamics of the walker. Avoid-
ing stochasticity allows one to increase the accuracy of
the result and to reduce fluctuations, a key requirement
for evaluating most quantifiers of non-Markovianity. The
code is available online and can be applied to a general
quantum system affected by any number of RTN sources.

Our results show that, unlike many other scenarios
in which non-Markovianity can be seen as a resource for
various quantum information tasks, in the case at hand
spatial search performs better when the noise is fast, i.e.,
Markovian, as opposed to slow noise, which induces a
non-Markovian dynamics and is detrimental for the al-
gorithm. A possible intuitive explanation of the results
above lies in the fact that the typical recoherence effect
due to the non-Markovianity of the quantum map, hap-
pens on timescales that are much larger than the typical
running time of the algorithm. Notice also that there ex-
ists different physical platforms in which state-of-the-art
experiments are available with a considerable dynamical

control, and where this phenomena may be, in principle,
demonstrated.

It is still unknown whether these conclusions are spe-
cific to the particular statistics of the RTN, or if they
are valid in a more general sense. Also, the topology
of the graph might play a role in the interplay between
memory effects and the localization of the walker in the
target node. Further investigation should hence address
other graphs layouts, as well as other types of classical
or quantum noise that induce non-Markovian dynamics,
and their effect on the quantum spatial search algorithm.
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