
A Data-dependent Approach for High Dimensional (Robust) Wasserstein
Alignment

Hu Ding1, Wenjie Liu1, and Mingquan Ye2

1 University of Science and Technology of China
He Fei, Anhui, China

huding@ustc.edu.cn, lwj1217@mail.ustc.edu.cn
2 University of Illinois Chicago

Chicago, Illinois, USA
mye9@uic.edu

Abstract. Many real-world problems can be formulated as the alignment between two geometric patterns.
Previously, a great amount of research focus on the alignment of 2D or 3D patterns in the field of computer
vision. Recently, the alignment problem in high dimensions finds several novel applications in practice.
However, the research is still rather limited in the algorithmic aspect. To the best of our knowledge, most
existing approaches are just simple extensions of their counterparts for 2D and 3D cases, and often suffer
from the issues such as high computational complexities. In this paper, we propose an effective framework
to compress the high dimensional geometric patterns. Any existing alignment method can be applied to the
compressed geometric patterns and the time complexity can be significantly reduced. Our idea is inspired
by the observation that high dimensional data often has a low intrinsic dimension. Our framework is a
“data-dependent” approach that has the complexity depending on the intrinsic dimension of the input data.
Our experimental results reveal that running the alignment algorithm on compressed patterns can achieve
similar qualities, comparing with the results on the original patterns, but the runtimes (including the times
cost for compression) are substantially lower.

Keywords: Wasserstein distance, Procrustes analysis, doubling dimension, network alignment, unsu-
pervised cross-lingual learning, domain adaptation

1 Introduction

Given two geometric patterns, the problem of alignment is to find their appropriate spatial positions
so as to minimize the difference between them. In general, a geometric pattern is represented by a set
of (weighted) points in the space, and their difference is often measured by some objective function.
Geometric alignment finds many applications in the field of computer vision, such as image retrieval,
pattern recognition, fingerprint and facial shape alignment, etc [17,21,57]. For different applications, we
may have different constraints for the alignment, e.g., we can allow rigid transformations for fingerprint
alignment. In addition, the Wasserstein distance (which is also called “earth mover’s distance” in some
applications) [67] has been widely adopted for measuring the difference of patterns in computer vision,
where its major advantage over other measures is the robustness in practice [80]. Besides the computer
vision applications in 2D/3D, recent research shows that a number of high dimensional problems can
be solved through geometric alignments. We briefly introduce several interesting examples below.

– The research on natural language processing has revealed that different languages often share
similar structure at the word level [84]; in particular, the recent study on word semantics embedding
has also shown the existence of structural isomorphism across languages [1, 27, 58], and finds
that the Wasserstein distance can serve as a good distance for languages and documents [49, 85].
Zhang et al. [85] proposed to learn the transformation between different languages without any
cross-lingual supervision, and the problem is reduced to minimizing the Wasserstein distance via
finding the optimal geometric alignment in high dimensions. A number of improved algorithms that
use the Wasserstein distance to compute the alignment between languages have also been proposed
in recent years [6, 36].

ar
X

iv
:2

20
9.

02
90

5v
2

 [
cs

.C
V

]
 9

 J
ul

 2
02

3

– A Protein-Protein Interaction (PPI) network is a graph representing the interactions among pro-
teins. Given two PPI networks, finding their alignment is a fundamental bioinformatics problem
for understanding the correspondences between different species [56]. However, most existing
approaches require to solve the NP-hard subgraph isomorphism problem and often suffer from high
computational complexities. To resolve this issue, Liu et al. [54] recently applied the geometric
embedding techniques to develop a new framework based on geometric alignment in Euclidean
space.

– In supervised learning, our task usually is to learn the knowledge from a given labeled training
dataset. However, labeled data could be very limited in practice. We can generate the labels for an
unlabeled dataset by exploiting an existing annotated dataset, that is, transfer the knowledge from a
source domain to a target domain. The problem is called “domain adaptation” in the field of transfer
learning [65]. The problem has received a great amount of attention in the past years [12, 15].
Recently, Courty et al. [24] modeled the domain adaptation problem as a transportation problem of
minimizing the Wasserstein distance between the source and target domains in high dimensions.

Despite of the above studies in the practical areas, the research on the algorithmic aspect of high
dimensional alignment is still rather limited. We need to take into account of the high dimensionality
and large number of points of the geometric patterns simultaneously. In particular, as the developing of
data acquisition techniques, the data sizes also increase very fast. For example, due to the rapid progress
of high-throughput sequencing technologies, biological data are growing exponentially in recent
years [83]. So it is quite important to develop efficient algorithmic techniques for dealing with the high-
dimensional geometric alignment problem. Unfortunately, it has been shown that any constant factor
approximation for geometric alignment under rigid transformation with Wasserstein distance
takes at least nΩ(d) time in the worst case, where n is the maximum size of the two input patterns and
d is the dimensionality, unless SNP ⊂ DTIME(2o(n)) [29]. The reason why the alignment problem is
so hard is that it needs to compute the “transformation” and “matching” jointly for optimizing
the objective. Namely, the transformation and matching interact and influence each other during
the optimization procedure. Moreover, it is complicated to determine a rigid transformation in high
dimensional space. For instance, we can imagine that determining an appropriate rigid transformation
in Rd needs to fix at least d points in the space (so intuitively the complexity can be as large as

(
n
d

)
).

Therefore, it is natural to ask the question:

Is it possible to design low-complexity algorithm for high-dimensional geometric alignment under
some reasonable assumption?

To the best of our knowledge, we are the first to consider this problem from theoretical perspective.
Our idea is inspired by the observation that many real-world datasets often manifest low intrinsic
dimensions [11]. For example, human handwriting images can be well embedded to some low di-
mensional manifold though the Euclidean dimension can be very high. Following this observation,
we consider to exploit the widely used notion, “doubling dimension” [26, 39, 44, 48, 74], to deal with
the geometric alignment problem. The doubling dimension is particularly suitable to depict the data
having low intrinsic dimension. Our framework is a “data-dependent” approach where the complexity
depends on the doubling dimension of the input data. We prove that the given geometric patterns with
low doubling dimensions can be substantially compressed so as to save a large amount of running time
when computing the alignment. More importantly, our compression approach is an independent step,
and hence can serve as the preprocessing for different alignment methods. A preliminary version of this
work has appeared in [30].

Note: Independent of our work [30] published in 2019, Beugnot et al. [14] also considered the
speedup for computing Wasserstein distance and proposed a k-means++ based compression method
(which is somewhat similar to our k-center based method in Section 2). Nevertheless, there are several
significant differences between our work and [14]. First, we consider the alignment problem under
rigid transformation, where the work of [14] only considers the static version. Also, we extend our

2

method to fractional Wasserstein distance but it is unclear whether the theoretical analysis of [14] is
also available for the case with outliers.

The rest of the paper is organized as follows. We introduce several important definitions in Sec-
tion 1.1, and discuss some related works and our main idea in Section 1.2 and Section 1.3 respectively.
Then, we present our algorithm, analysis, and the time complexity in Section 2 and Section 3. Finally,
we study the practical performance of our proposed algorithm in Section 4.

1.1 Preliminaries

Before introducing the formal definition of geometric alignment, we need to define “Wasserstein
distance” and “rigid transformation” first. In general, the Wasserstein distance is used to measure the
difference between two distributions. In this paper, we consider the case that the distributions are
discrete point sets. Given two points p and q ∈ Rd, we use ||p− q|| to denote their Euclidean distance.

Definition 1 (Wasserstein distance W2
2 [80]). Let A = {a1, a2, · · · , an1} and B = {b1, b2, · · · , bn2}

be two sets of weighted points in Rd with nonnegative weights αi and βj for each ai ∈ A and bj ∈ B
respectively, and WA and WB be their respective total weights. The Wasserstein distance between A
and B is

W2
2 (A,B) =

1

min{WA,WB}
min
F

n1∑
i=1

n2∑
j=1

fij ||ai − bj ||2, (1)

where F = {fij} is a feasible flow from A to B, i.e., each fij ≥ 0,
∑n1

i=1 fij ≤ βj ,
∑n2

j=1 fij ≤ αi,
and

∑n1
i=1

∑n2
j=1 fij = min{WA,WB} (see Figure 1(a)).

Remark 1. (1) Usually we assume WA = WB = 1 for convenience, but in this paper we also consider
the “partial matching” (WA can be not equal to WB). (2) Intuitively, the Wasserstein distance can be
viewed as the minimum transportation cost between A and B, where the weights of A and B are the
“supplies” and “demands” respectively, and the cost of each edge connecting a pair of points from A to
B is their “ground distance”. In general, the “ground distance” can be defined in various forms, and
here we use the squared Euclidean distance due to its simplicity in practice.

𝑎𝑖 𝑏𝑗𝑓𝑖𝑗
𝑎𝑖

𝑏𝑗
𝑓𝑖𝑗

(a) Wasserstein distance

𝑎𝑖 𝑏𝑗𝑓𝑖𝑗
𝑎𝑖

𝑏𝑗
𝑓𝑖𝑗

(b) Rigid transformation (c) Fractional Wasserstein distance

Fig. 1: (a) The flows of the Wasserstein distance from A = {ai | 1 ≤ i ≤ n1} to B = {bj | 1 ≤ j ≤
n2}, where each fij is the flow from ai to bj . (b) To reduce the Wasserstein distance between (the fixed)
A and B, we find a rigid transformation for the pattern B that transforms it from the light blue point set
to the dark blue point set. (c) The left image has some missing parts (masked by the white patches)
and the right image has some noise. So it is more appropriate to compute the fractional Wasserstein
distance to match them partially.

In some scenarios, we may only want a “partial matching” between A and B (e.g., A or B may
contain some outliers, or a small pattern A only corresponds to a part of a large pattern B) [59]. See
Figure 1(c) for an example. For the applications in high dimensions, it is also natural to consider

3

the partial matching. For example, one language may contain some words that cannot find their
perfectly matched counterparts in the other language in the problem of cross-lingual alignment [85]
(this phenomenon is very common between Chinese and English). Therefore we introduce the fractional
Wasserstein distance below.

Definition 2 (fractional Wasserstein distance). Let λ ∈ [0, 1]. In Definition 1, if we replace the
constraint “

∑n1
i=1

∑n2
j=1 fij = min{WA,WB}” by “

∑n1
i=1

∑n2
j=1 fij = λ ·min{WA,WB}”, we call

the distance as the fractional Wasserstein distance and denote it as W2
2 (A,B, λ).

We consider the rigid transformation for alignment, because it is very natural to interpret in real
world and has already been widely used in the aforementioned applications.

Definition 3 (Rigid Transformation). Let P be a set of points in Rd. A rigid transformation T on P
is a transformation (i.e., rotation, translation, reflection, or their combination) which preserves the
pairwise distances of the points in P .

Definition 4 (Wasserstein Alignment). Given two weighted point sets A and B as described in
Definition 1, the problem of Wasserstein alignment between A and B under rigid transformation is to
determine a rigid transformation T for B so as to minimize the Wasserstein distance W2

2 (A, T (B)),
or W2

2 (A, T (B), λ) if we consider the fractional Wasserstein distance (see Figure 1(b)).

As previously mentioned, we use the doubling dimension to describe high dimensional data with low
intrinsic dimension. We denote a metric space by (X, dX) where dX is the distance function of the set
X . For instance, we can imagine that X is a set of points in a low dimensional manifold and dX is simply
the Euclidean distance. For any x ∈ X and r ≥ 0, we use Ball(x, r) = {p ∈ X | dX(x, p) ≤ r} to
denote the ball of radius r around x.

Definition 5 (Doubling Dimension [48, 74]). The doubling dimension of a metric space (X, dX) is
the smallest number ρ, such that for any x ∈ X and r ≥ 0, Ball(x, 2r) is always covered by the union
of at most 2ρ balls with radius r.

Remark 2. The doubling dimension describes the expansion rate of (X, dX); intuitively, we can
imagine a special case: a set of points are uniformly distributed inside a ρ-dimensional hypercube,
where its doubling dimension is O(ρ) but the Euclidean dimension can be very high. For a more general
case, a manifold in high dimensional Euclidean space may have a very low doubling dimension, as
many examples studied in machine learning [11]. Unfortunately, as shown in [50], such low doubling
dimensional metrics cannot always be embedded to low dimensional Euclidean spaces with low
distortion of Euclidean distance.

1.2 Related Works

Wasserstein distance. If building a bipartite graph, where the two columns of vertices correspond to
the points of A and B respectively and each edge connecting (ai, bj) has the weight ||ai − bj ||2, we
can see that computing the Wasserstein distance actually is a min-cost flow problem from A to B. A
number of minimum cost flow algorithms have been developed in the past decades [4, 33, 63, 64, 75].
Suppose n and m are the numbers of vertices and edges in the bipartite graph respectively, and U is
the maximum weight. Orlin [62] developed a strongly polynomial algorithm with the time complexity
O(n log n(m + n log n)). Lee and Sidford [52] proposed an algorithm that can solve the minimum
cost flow problem in O(n2.5poly(logU)) time. Very recently, Chen et al. [19] improved the time
complexity to be O(m1+o(1)). Sherman [72] provided a (1 + ϵ)-approximation algorithm based on
preconditioning, and the running time is O(n2+o(1)ϵ−2). Andoni et al. [9] further proposed a parallel
(1 + ϵ)-approximation algorithm that runs in 1

ϵ2
poly(logn) time using Õ(1

ϵ2
m) expected work.

4

In the community of machine learning, Cuturi [25] proposed a much faster “Sinkhorn Distance”
algorithm which yields an approximation for the Wasserstein distance. Following Cuturi’s work,
Altschuler et al. [5] provided an additive approximation 3 algorithm for computing Wasserstein distance
with the running time O(n2L3 log nϵ−3), where L is the maximum edge weight in the bipartite graph.
Recently, the problems of robust Wasserstein distance and unbalanced Wasserstein distance (e.g., allow
a small number of outliers) have attracted a lot of attention in the machine learning applications [18,59].

When we focus on the Wasserstein distance problem in Euclidean space Rd, a number of faster
algorithms have been proposed in computational geometry [3, 8, 16, 40, 70, 71, 77, 78]. Recently,
Agarwal et al. [2] improved the running time to be O

(
n3/2ϵ−dpoly(logU)poly(log n)

)
. Using the

idea of preconditioning [72], Khesin et al. [45] developed two randomized (1 + ϵ)-approximation
algorithms with the running times O(nϵ−O(d) log(M)O(d) log n) and O(nϵ−O(d) log(U)O(d) log n),
respectively (M is the aspect ratio of the given point sets). Fox and Lu [32] also presented a near-linear
time algorithm but their time bound is independent of M and U . Most of these algorithms rely on
the low-dimensional geometric techniques, and therefore their complexities are exponential in the
dimensionality d. Li [53] studied the problem of estimating the Wasserstein distance; his idea is a
generalization of the method of [40] that yields an O(ρ)-approximate estimate of the Wasserstein
distance, where ρ is the doubling dimension of the given data; but the approximation factor is relatively
large and the algorithm needs at least a quadratic preprocessing time. Recently Chen et al. [20] applied
the Quadtree to design a streaming Wasserstein distance algorithm in high dimensions, where the
approximation factor is Õ(log n). Ding et al. [28] considered the Wasserstein distance query problem
for quickly answering the question that whether the distance is lower or higher than a query number;
their algorithm is based on a hierarchical k-center clustering method in doubling metric.

Geometric alignment. Computing the geometric alignment of A and B is more challenging, since
we need to determine the rigid transformation and the Wasserstein flow simultaneously. Moreover,
due to the flexibility of rigid transformations, we cannot apply the Wasserstein distance embedding
techniques [7, 41] to resolve the challenges. For example, the embedding can only preserve the
Wasserstein distance between A and B; however, since there are infinite number of possible rigid
transformations T for B (note that we do not know T in advance), it is difficult to also preserve
the Wasserstein distance between A and T (B). In theory, Cabello et al. [16] presented a (2 + ϵ)-
approximation solution for the 2D case, and later Klein and Veltkamp [47] achieved an O(2d−1)-
approximation in Rd; Ding and Xu [29] proposed a PTAS for constant dimensional space. However,
these theoretical algorithms cannot be efficiently implemented when the dimensionality is not constant.
It was also mentioned in [29] that any constant factor approximation needs a time complexity at
least nΩ(d) based on some reasonable assumption in the theory of computational complexity, where
n = max{|A|, |B|}. That is, it is unlikely to obtain a (1 + ϵ)-approximation within a practical running
time, especially when n is very large. The recent works [43, 61] proposed a core-set based compression
approach to speed up the computation of alignment. However, their compression methods only work
for the case that d is small. We also refer the reader to the recent surveys [31, 60] for the detailed
introductions on coresets.

In practice, Cohen and Guibas [21] proposed an alternating minimization approach for computing
the geometric alignment of A and B. Several other approaches [22, 76] based on graph matching are
inappropriate to be extended for high dimensional alignment. In machine learning, a related topic is
called “manifold alignment” [38, 82]; however, it usually has different settings and applications, and
thus is out of the scope of this paper.

1.3 Overview of The Alignment Procedure

Because the approach of [21] is closely related to our proposed algorithm, we introduce it with more
details for the sake of completeness. Roughly speaking, their approach is similar to the Iterative Closest

3 The “additive approximation” means that the computed Wasserstein distance is at most OPT + ϵ, if OPT is the optimal
Wasserstein distance.

5

Point method (ICP) method [13], where in each iteration it alternatively updates the Wasserstein distance
flow and the rigid transformation. Thus it converges to some local optimum eventually. To update the
rigid transformation, we can apply the Orthogonal Procrustes (OP) analysis [69]. The original OP
analysis is only for unweighted point sets, and the weighted OP analysis was studied in the Wahba’s
problem [81]. But our problem with the Wasserstein distance flow is a special case of the weighted OP
analysis, and thus the complexity can be further reduced via a more careful analysis below.

Let A and B be the two sets of weighted points for alignment (as Definition 4). Suppose that the
Wasserstein distance flow F = {fij} is fixed and the rigid transformation is waiting to update in the
current stage. We imagine that there exist two new sets of weighted points

Â = ∪n1
i=1{a

1
i , a

2
i , · · · , a

n2
i }; (2)

B̂ = ∪n2
j=1{b

1
j , b

2
j , · · · , b

n1
j }, (3)

where each aji (resp., bij) has the weight fij and the same spatial position of ai (resp., bj). That is, each
ai (resp., bj) is decomposed into n2 (resp., n1) copies. First, we take a translation vector −→v such that
the weighted mean points of Â and B̂ +−→v coincide with each other (this can be easily derived, due
to the fact that the objective function uses squared distance [21]). Second, by using the weighted OP
analysis, we compute an orthogonal matrix R for B̂ +−→v to minimize its weighted L2

2 difference to Â.
For this purpose, we generate two d× (n1n2) matrices MA and MB as follows.

We use ai (resp., bj) to denote the corresponding d-dimensional column vector of ai (resp., bj).
Each point of Â (resp., B̂ +−→v) corresponds to an individual column of MA (resp., MB); for example,
a point aji ∈ Â (resp., bij +

−→v ∈ B̂ +−→v) corresponds to a column
√
fijai (resp.,

√
fij(bj +

−→v)) in
MA (resp., MB). Formally,

MA =
[√

f11a1,
√
f12a1, · · · ,

√
f1n2a1,

√
f21a2,

√
f22a2, · · · ,

√
f2n2a2,

· · · ,
√

fn11an1 ,
√
fn12an1 , · · · ,

√
fn1n2an1

]
; (4)

MB =
[√

f11(b1 +
−→v),

√
f12(b2 +

−→v), · · · ,
√
f1n2(bn2 +

−→v),√
f21(b1 +

−→v),
√
f22(b2 +

−→v), · · · ,
√
f2n2(bn2 +

−→v),

· · · ,
√

fn11(b1 +
−→v),

√
fn12(b2 +

−→v), · · · ,
√
fn1n2(bn2 +

−→v)
]
. (5)

Let the SVD of MA ×MT
B be UΣV T , and the optimal orthogonal matrix R should be UV T through

the OP analysis.
The above idea has a drawback that the matrices MA and MB are too large and thus the complexity

for computing the multiplication MA ×MT
B can be very high (which is O(n1n2d

2)). Actually we do
not need to really construct the large matrices MA and MB , since many of the columns are identical
(except for the scalar

√
fij). Instead, we can compute the multiplication MA × MT

B in O(n1n2d +
min{n1, n2}·d2) time. Note: Both the complexities “O(n1n2d

2)” and “O(n1n2d+min{n1, n2}·d2)”
can be slightly improved by using the faster rectangle matrix multiplication algorithms [51], but it
needs a somewhat complicated discussion on the relation of the values n1, n2, and d, and so it is out of
the scope of this paper.

Claim 1. The multiplication MA ×MT
B can be computed in O(n1n2d+min{n1, n2} · d2) time.

Proof. With a slight abuse of notations, we also use F to denote the n1 × n2 matrix of the Wasserstein
distance flow where each entry is fij ; also, “Fi,:” represents the i-th row of the matrix F . Given a vector
t, we use

√
t to denote the new vector with each entry being the square root of the corresponding one in

t. Also, we use diag(t) to denote the diagonal matrix where the i-th diagonal entry is the i-th entry of

6

t. For example, if t = [t1, t2, · · · , tn], then
√
t = [

√
t1,

√
t2, · · · ,

√
tn] and

diag(
√
t) =

√
t1, 0 , 0 , · · · , 0
0 ,

√
t2, 0 , · · · , 0

0 , 0 ,
√
t3, · · · , 0

· · · , · · · , · · ·
0 , 0 , 0 , · · · ,

√
tn

 .

Following the constructions of MA and MB with some simple calculation, we have

MA =
[√

f11a1,
√

f12a1, · · · ,
√

f1n2a1,
√

f21a2,
√
f22a2, · · · ,

√
f2n2a2,

· · · ,
√

fn11an1 ,
√
fn12an1 , · · · ,

√
fn1n2an1

]
=

[
a1

√
F1,:,a2

√
F2,:, · · · ,an1

√
Fn1,:

]
;

MB =
[√

f11(b1 +
−→v),

√
f12(b2 +

−→v), · · · ,
√

f1n2(bn2 +
−→v),√

f21(b1 +
−→v),

√
f22(b2 +

−→v), · · · ,
√
f2n2(bn2 +

−→v),

· · · ,
√
fn11(b1 +

−→v),
√

fn12(b2 +
−→v), · · · ,

√
fn1n2(bn2 +

−→v)
]

=
[
b1 +

−→v , · · · ,bn2 +
−→v

]
×
[
diag(

√
F1,:), diag(

√
F2,:), · · · , diag(

√
Fn1,:)

]
.

For simplicity, we let A =
[
a1, · · · ,an1

]
and B =

[
b1 +

−→v , · · · ,bn2 +
−→v
]
. Then,

MA ×MT
B =

n1∑
i=1

(
ai

√
Fi,:

)
×
(
diag(

√
Fi,:)BT

)
=

n1∑
i=1

aiFi,:BT = AFBT .

The sizes of A, F , and B are d×n1, n1×n2, and d×n2, respectively. So it is easy to see that computing
“AFBT ” takes O(n1n2d + min{n1, n2} · d2) time (e.g., if n1 ≥ n2, we compute AF first and then
compute (AF)× BT).

Therefore, the time complexity for obtaining the optimal R is O(n1n2d+min{n1, n2} · d2 + d3),
where the term “d3” comes from the computation of the SVD.

Proposition 1. Each iteration of the approach of [21] takes Γ (n1, n2, d) +O(n1n2d+min{n1, n2} ·
d2 + d3) time, where Γ (n1, n2, d) denotes the time complexity of the used Wasserstein distance
algorithm. In practice, we usually assume n1, n2 = O(n) with some n ≥ d, and then the complexity
can be simply written as Γ (n, d) +O(n2d).

The bottleneck is that the algorithm needs to repeatedly compute the Wasserstein distance and
transformation, especially when n and d are large (usually Γ (n, d) = Ω(n2d)). Based on the property
of low doubling dimension, we construct a pair of compressed point sets to replace the original A and
B, and run the same algorithm on the compressed data instead. As a consequence, the running time is
reduced significantly. Note that our compression step is independent of the approach [21]; actually, any
alignment method with the same objective function in Definition 4 can benefit from our compression
idea.

2 The Algorithm and Analysis

Our idea starts from the widely studied k-center clustering problem. Given an integer k ≥ 1 and a
point set P in some metric space, the k-center clustering is to partition P into k clusters and cover each
cluster by an individual ball, such that the maximum radius of the balls is minimized. Gonzalez [35]

7

presented an elegant 2-approximation algorithm, where the radius of each resulting ball (i.e., cluster) is
at most two times the optimum. Initially, it sets S = {c1} where c1 is an arbitrary point selected from P ;
then in each of the following k − 1 iterations, a new point who has the largest distance to S among the
points of P is added to S (we define the distance between a point q and S to be min{||q− p|| | p ∈ S}).
Let S = {c1, · · · , ck}, and then P is covered by the k balls Ball(c1, r), · · · , Ball(ck, r) with

r ≤ min{||ci − cj || | 1 ≤ i ̸= j ≤ k}. (6)

It is easy to prove that r is at most two times the optimal radius of the given instance.
Let P be a point set in Rd with the doubling dimension ρ. The diameter of P is denoted by ∆, i.e.,

∆ = max{||p− q|| | p, q ∈ P}. Then we have the following lemma.

Lemma 1. Given an integer k ≥ 1, if one runs the Gonzalez’s k-center clustering algorithm, the
obtained radii of the clusters are at most 2

k1/ρ
∆.

Proof. Let S be the set of k points obtained by the Gonzalez’s algorithm, and the obtained radius be r.
We also define the aspect ratio of S as the ratio of the maximum to the minimum pairwise distance in
S. Then, it is easy to see that the aspect ratio of S is at most ∆/r from (6). Now, we need the following
Claim 2 from [48, 74]. Actually, the claim can be obtained by recursively applying the definition of
doubling dimension.

Claim 2. Let (X, dX) be a metric space with the doubling dimension ρ, and Y ⊂ X . If the aspect
ratio of Y is upper bounded by some positive value α, then |Y | ≤ 2ρ⌈log2 α⌉.

Replacing X and Y by P and S respectively in the above claim, we have

|S| ≤ 2ρ⌈log2 ∆/r⌉ ≤ 2ρ(1+log2 ∆/r). (7)

Since |S| = k, (7) implies r ≤ 2
k1/ρ

∆.

Corollary 1. If we let k = (2ϵ)
ρ with some small ϵ > 0, the radius in Lemma 1 will be ϵ∆.

Our compression algorithm. Let A and B be the two given point sets in Definition 4, and we
assume their diameters are ∆A and ∆B respectively. Let ∆ = max{∆A, ∆B}. We also assume that
they both have the doubling dimension at most ρ. Our idea for compressing A and B is as follows.
As described in Lemma 1, we run the Gonzalez’s algorithm on A and B respectively. We denote by
SA = {cA1 , · · · , cAk } and SB = {cB1 , · · · , cBk } the obtained sets of k-cluster centers with k = (2ϵ)

ρ. For
each cluster center cAj (resp., cBj), we assign a weight that is equal to the total weight of the points in the
corresponding cluster. As a consequence, we obtain a new instance (SA, SB) for geometric alignment.
It is easy to know that the total weight of SA (resp., SB) is equal to WA (resp., WB). For the sake of
convenience, we name this compression method as KCENTER. The following theorem shows that one
can achieve an approximate solution for the instance (A,B) by solving the alignment of (SA, SB).

Theorem 1. Suppose ϵ > 0 is a small parameter in Corollary 1. Given any c ≥ 1, let T̃ be a rigid
transformation yielding c-approximation for minimizing W2

2

(
SA, T (SB)

)
in Definition 4. Then,

W2
2

(
A, T̃ (B)

)
≤ c(1 + 2ϵ)2 ·min

T
W2

2

(
A, T (B)

)
+ 2ϵ(c+ 1 + 2cϵ)(1 + 2ϵ)∆2

= c
(
1 +O(ϵ)

)
·min

T
W2

2

(
A, T (B)

)
+ 2ϵ

(
1 +O(ϵ)

)
(c+ 1)∆2. (8)

Proof. First, we denote by Topt the optimal rigid transformation achieving minT W2
2

(
A, T (B)

)
. Since

T̃ yields c-approximation for minimizing W2
2

(
SA, T (SB)

)
, we have

W2
2

(
SA, T̃ (SB)

)
≤ c ·min

T
W2

2

(
SA, T (SB)

)
≤ c · W2

2

(
SA, Topt(SB)

)
. (9)

8

Recall that each point cAj (resp., cBj) has the weight equal to the total weights of the points in the
corresponding cluster. For instance, if the cluster contains {aj(1), aj(2), · · · , aj(h)}, the weight of cAj
should be

∑h
l=1 αj(l); actually, we can view cAj as h overlapping points {a′j(1), a

′
j(2), · · · , a

′
j(h)} with

each a′j(l) having the weight αj(l). Therefore, for the sake of convenience, we use another representation
for SA and SB in our proof below:

SA = {a′1, · · · , a′n1
} and SB = {b′1, · · · , b′n2

}, (10)

where each a′j (resp., b′j) has the weight αj (resp., βj). Note that SA and SB only have k distinct
positions respectively in the space. Moreover, due to Corollary 1, we know that ||a′i − ai||, ||b′j − bj || ≤
ϵ∆ for any 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, and these bounds are invariant under any rigid transformation
in the space. Consequently, for any pair (i, j) and any rigid transformation T , we have

||ai − T (bj)||2

≤
(
||ai − a′i||+ ||a′i − T (b′j)||+ ||T (b′j)− T (bj)||

)2
≤

(
||a′i − T (b′j)||+ 2ϵ∆

)2
= ||a′i − T (b′j)||2 + 4ϵ∆||a′i − T (b′j)||+ 4ϵ2∆2

≤ ||a′i − T (b′j)||2 + 2ϵ
(
∆2 + ||a′i − T (b′j)||2

)
+ 4ϵ2∆2

= (1 + 2ϵ)||a′i − T (b′j)||2 + (2ϵ+ 4ϵ2)∆2 (11)

through the triangle inequality. Using exactly the same idea, we also have

||a′i − T (b′j)||2 ≤ (1 + 2ϵ)||ai − T (bj)||2 + (2ϵ+ 4ϵ2)∆2. (12)

Based on Definition 1, we denote by F̃ = {f̃ij} the induced flow of W2
2

(
SA, T̃ (SB)

)
(using the

representations (10) for SA and SB). Then (11) directly implies that

W2
2

(
A, T̃ (B)

)
≤ 1

min{WA,WB}

n1∑
i=1

n2∑
j=1

f̃ij ||ai − T̃ (bj)||2

≤ 1 + 2ϵ

min{WA,WB}

n1∑
i=1

n2∑
j=1

f̃ij ||a′i − T̃ (b′j)||2 + (2ϵ+ 4ϵ2)∆2

= (1 + 2ϵ)W2
2 (SA, T̃ (SB)) + (2ϵ+ 4ϵ2)∆2. (13)

By using the similar idea (replacing T̃ by Topt, and exchanging the roles of (A,B) and (SA, SB)), (12)
directly implies that

W2
2

(
SA, Topt(SB)

)
≤ (1 + 2ϵ)W2

2

(
A, Topt(B)

)
+ (2ϵ+ 4ϵ2)∆2. (14)

Combining (9), (13), and (14), we have

W2
2

(
A, T̃ (B)

)
≤ (1 + 2ϵ)W2

2

(
SA, T̃ (SB)

)
+ (2ϵ+ 4ϵ2)∆2

≤ (1 + 2ϵ) · c · W2
2

(
SA, Topt(SB)

)
+ (2ϵ+ 4ϵ2)∆2

≤ c(1 + 2ϵ)2 · W2
2

(
A, Topt(B)

)
+ 2ϵ(c+ 1 + 2cϵ)(1 + 2ϵ)∆2, (15)

and the proof is completed.

When ϵ is small enough, Theorem 1 shows that W2
2

(
A, T̃ (B)

)
≈ c · W2

2

(
A, Topt(B)

)
. That is, T̃ ,

the solution of (SA, SB), achieves roughly the same performance on (A,B). Consequently, we propose
the approximation algorithm for geometric alignment (see Algorithm 1). We would like to emphasize
that though we use the algorithm from [21] in Step 3, Theorem 1 is an independent result; that is, any
alignment method with the same objective function in Definition 4 can benefit from Theorem 1.

9

Algorithm 1 Geometric Alignment with KCENTER

Input: An instance (A,B) of the geometric alignment problem in Definition 4 with bounded doubling dimension ρ in Rd;
k ∈ Z+.

Output: A rigid transformation T of B and the Wasserstein distance flow between A and T (B).
1: Run the Gonzalez’s k-center clustering algorithm on A and B as described in Theorem 1, and obtain the sets of cluster

centers SA and SB respectively.
2: Apply the existing alignment algorithm, e.g., the algorithm of [21], on (SA, SB).
3: Obtain the rigid transformation T from Step 2, and compute the corresponding Wasserstein distance flow between A and

T (B).

2.1 Extension I: When k Is Not Given

As discussed in Corollary 1, the value k = (2/ϵ)ρ depends on the doubling dimension ρ, if we require
the compression error (i.e., the radius) to be no larger than ϵ∆. However, the exact doubling dimension
ρ usually is not easy to obtain [39]. So we consider another scenario. Let “ϵ∆” be the pre-specified
compression error bound, and we run the Gonzalez’s algorithm iteratively until the radius is reduced to
be no larger than the bound. The question is that

can our algorithm be aware when the stopping condition is reached?
We answer this question in the affirmative, where the only change is that the value of k is required

to be larger than (2/ϵ)ρ. In the worst case, k can be as large as (4/ϵ)ρ (so the value k is enlarged by a
factor 2ρ).

First, we need to estimate the diameter ∆. In practice we often avoid to compute the exact value
of ∆ since it takes at least quadratic complexity. Instead, we can simply take a point p and its farthest
point q from P ; let ∆̃ = ||p− q|| and then we know

1

2
∆ ≤ ∆̃ ≤ ∆. (16)

Then we have the following lemma (which is a counterpart of Lemma 1).

Lemma 2. Given a small parameter ϵ > 0, if one runs the Gonzalez’s k-center clustering algorithm
iteratively until the obtained radius is no larger than ϵ∆̃, the number of obtained clusters is at most
(4ϵ)

ρ.

Proof. Let S be the set of k points by Gonzalez’s algorithm, and the obtained radius be r ≤ ϵ∆̃. It is
easy to see that the aspect ratio of S is at most ∆/(ϵ∆̃) ≤ 2

ϵ (by (16)). From Claim 2, we have

|S| ≤ 2ρ⌈log2 2/ϵ⌉ ≤ 2ρ(1+log2 2/ϵ) = (4/ϵ)ρ. (17)

From Lemma 2, we just need to modify Step 1 of Algorithm 1 for the case that the doubling
dimension ρ is not given.

2.2 Extension II: k-means + k-center

In Theorem 1, we show that the Gonzalez’s k-center clustering algorithm can be used to compress input
data. So a natural question is that whether other clustering method, such as the widely used k-means
clustering, can be also applied to achieve this purpose. To answer this question, we need to revisit the
proof of Theorem 1. In k-center clustering, each obtained cluster has a sufficiently small radius, and
so we can obtain the inequalities (11) and (12). But if we run k-means instead, the obtained clusters
may have large radii and thus (11) and (12) can be violated. This observation inspires the following
compression method that combines k-center and k-means.

KCENTER+. In Step 1 of Algorithm 1, the obtained sets SA and SB are the corresponding ball
centers (each cluster is covered by a ball with radius ≤ ϵ∆ if k ≥ (2ϵ)

ρ). Actually we can further

10

improve the result locally. For each ball center, we can replace it by the mean point of the cluster.
Since our Wasserstein distance W2

2 (·, ·) is the sum of a set of weighted squared Euclidean distances,
the additive error bound “2ϵ(c+1+2cϵ)(1+2ϵ)∆2” in (8) can be reduced. For example, in the second
inequality of (11), the items “||ai − a′i||” and “||T (b′j)− T (bj)||” are just simply bounded by ϵ∆; but
if we take a more careful analysis, the formula (11) can be rewritten as follows:

||ai − T (bj)||2

≤
(
||ai − a′i||+ ||a′i − T (b′j)||+ ||T (b′j)− T (bj)||

)2
= ||a′i − T (b′j)||2 + 2(||ai − a′i||+ ||T (b′j)− T (bj)||)× ||a′i − T (b′j)||

+(||ai − a′i||+ ||T (b′j)− T (bj)||)2

≤ ||a′i − T (b′j)||2 + 4ϵ∆× ||a′i − T (b′j)||+ 2||ai − a′i||2 + 2||T (b′j)− T (bj)||2

≤ ||a′i − T (b′j)||2 + 2ϵ
(
∆2 + ||a′i − T (b′j)||2

)
+ 2||ai − a′i||2 + 2||T (b′j)− T (bj)||2

= (1 + 2ϵ)||a′i − T (b′j)||2 + 2ϵ∆2 + 2||ai − a′i||2 + 2||T (b′j)− T (bj)||2 . (18)

Comparing (18) with (11), we can see that the item “4ϵ2∆2” in the right-hand side bound is replaced
by “2||ai − a′i||2 + 2||T (b′j)− T (bj)||2”. Note that a′i and T (b′j) are actually the centers of the balls
that respectively cover ai and T (bj). So if we replace the ball centers by the means, the accumulated
additive errors in (13) and (14) can be further reduced (though this bound remains the same in the worst
case, e.g., all the points of the cluster locate uniformly on the sphere of the ball, and then ||ai − a′i|| and
||T (b′j)− T (bj)|| are always equal to ϵ∆).

Intuitively, we use k-center clustering first to bound the radius of each cluster, and then compute
the mean of each cluster to refine the result. We name this method as KCENTER+. In Section 4,
our experiments also verified the fact that KCENTER+ usually can achieve better performance than
KCENTER.

2.3 Extension III: Robust Alignment with Fractional Wasserstein Distance

We further consider the alignment problem with the fractional Wasserstein distance as Definition 2.
The first question is how to compute this new distance. Recall that the vanilla Wasserstein distance is
equivalent to computing the minimum cost maximum flow on the bipartite graph of A and B. When
we consider the fractional Wasserstein distance that allows 1− λ outliers, we can modify the bipartite
graph by adding two “dummy” points (see Figure 2 for an illustration). Then, we can directly apply any
off-the-shelf Wasserstein distance algorithms (e.g., the network simplex algorithm [4] or the Sinkhorn
distance algorithm [25]) to compute the fractional Wasserstein distance W2

2 (A,B, λ).

Algorithm 2 Fractional Wasserstein distance
Input: An instance (A,B) of the Wasserstein distance problem in Definition 2 with the fraction λ (0 < λ ≤ 1).
Output: The fractional Wasserstein distance W2

2 (A,B, λ) and the corresponding flows from A to B.
1: Set w0 = (1− λ)min {WA,WB}
2: Add the dummy points a0 and b0 to A and B, respectively; their weights are both w0. Denote the new point sets by Ã

and B̃, respectively.
3: Build the bipartite graph of Ã and B̃, and set the ground distance (edge cost) as Figure 2.
4: Apply the existing Wasserstein distance algorithm e.g., [4] or [25], to compute the optimal transport flow matrix and the

Wasserstein distance.

Lemma 3. The Algorithm 2 returns the optimal fractional Wasserstein distance flow of (A,B) with the
total flow being equal to λmin {WA,WB}. The time complexity is as same as the vanilla Wasserstein
distance algorithm [4] or [25]

11

𝒂𝟎
𝛽0 = 1 − λ 𝑚𝑖𝑛{𝑊𝐴,𝑊𝐵}

+∞

𝑎1

𝑎2

𝑏1

𝑏2

𝑏3
𝑎3

𝑏4

𝑚𝑖𝑛{𝑊𝐴,𝑊𝐵} 𝑚𝑖𝑛{𝑊𝐴,𝑊𝐵}

𝒃𝟎
𝛼0 = 1 − λ 𝑚𝑖𝑛{𝑊𝐴,𝑊𝐵}

Fig. 2: We add two dummy points a0 and b0, where their weights are both (1− λ) ·min{WA,WB}.
The point a0 connects all the bjs with the edge cost 0, and so does b0; the cost of the edge connecting
a0 and b0 is +∞. The total flow from the left to the right is min{WA,WB}+(1−λ) ·min{WA,WB}.
Intuitively, the dummy point a0 absorbs the (1 − λ) ·min{WA,WB} outlier flows from B, and the
dummy point b0 absorbs the (1− λ) ·min{WA,WB} outlier flows from A.

Proof. We denote the obtained flows as F = {fij | 0 ≤ i ≤ n1, 0 ≤ j ≤ n2}. First, we need to show
that f00 = 0. Otherwise, we can arbitrarily pick a non-zero flow, say fi0j0 , from F \{f00}, and perform
the following modification: let δ = min{f00, fi0j0}, and update

f00 −→ f00 − δ;

fi0j0 −→ fi0j0 − δ;

f0j0 −→ f0j0 + δ;

fi00 −→ fi00 + δ. (19)

From the edge costs in Figure 2 (the edge cost connecting a0 and b0 is ∞), we know that the total
transportation cost is reduced after the above modification. This is in contradiction with the optimality
of F . Also, since α0 = β0 = (1− λ) ·min{WA,WB}, together with f00 = 0, we have the total flows
from A to B that is

n1∑
i=1

n2∑
j=1

fij = λ ·min{WA,WB}. (20)

Now, we prove the optimality of the flows with respect to Definition 2. Suppose the flows F ′ =
{f ′

ij | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} yield the optimal fractional Wasserstein distance, i.e.,

n1∑
i=1

n2∑
j=1

f ′
ij ||ai − bj ||2 <

n1∑
i=1

n2∑
j=1

fij ||ai − bj ||2. (21)

We can easily augment F ′ to be a solution for (Ã, B̃) with the dummy points a0 and b0: F ′ −→
F ′ ∪ {f ′

00, f
′
0j , f

′
i0 | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}, where

f ′
00 = 0;

f ′
0j =

(1− λ) ·min{WA,WB}
WB − λ ·min{WA,WB}

(βj −
n1∑
i=1

f ′
ij);

f ′
i0 =

(1− λ) ·min{WA,WB}
WA − λ ·min{WA,WB}

(αi −
n2∑
j=1

f ′
ij). (22)

It is easy to verify that the augmented F ′ is a feasible flow set from Ã to B̃ with the total flows being
equal to min{WA,WB}+ (1− λ) ·min{WA,WB}. From the edge costs in Figure 2, together with

12

(21), we know that the augmented F ′ yields a lower transportation cost between Ã and B̃, which
is in contradiction with the optimality of F . Therefore, Algorithm 2 returns the optimal fractional
Wasserstein distance flow of (A,B). The time complexity is as same as the vanilla Wasserstein distance
algorithm [4] or [25], since we only add two more points to the input.

Using Algorithm 2, we can compute the partial alignment between A and B. We still use our
proposed Algorithm 1, where the only difference is that we need to apply Algorithm 2 to compute the
fractional Wasserstein distance between SA and T (SB) (resp., A and T (B)). Similar with Theorem 1,
we also have the following Theorem 2 for the partial alignment with any given parameter λ ∈ [0, 1].
The proof (which is very similar with that of Theorem 1) is placed in the appendix.

Theorem 2. Suppose ϵ > 0 is a small parameter in Corollary 1. Let λ ∈ [0, 1]. Given any c ≥ 1, let T̃
be a rigid transformation yielding c-approximation for minimizing W2

2

(
SA, T (SB), λ

)
in Definition 4.

Then,

W2
2

(
A, T̃ (B), λ

)
≤ c(1 + 2ϵ)2 ·min

T
W2

2

(
A, T (B), λ

)
+ 2ϵ(c+ 1 + 2cϵ)(1 + 2ϵ)∆2

= c
(
1 +O(ϵ)

)
·min

T
W2

2

(
A, T (B), λ

)
+ 2ϵ

(
1 +O(ϵ)

)
(c+ 1)∆2. (23)

3 The Time Complexity

We analyze the time complexity of Algorithm 1 and consider Step 1-3 separately. To simplify our
description, we use n to denote max{n1, n2}. In Step 2, we suppose that the iterative approach [21]
takes h ≥ 1 rounds.

Step 1. A straightforward implementation of the Gonzalez’s algorithm is selecting the k cluster
centers iteratively with the running time O(knd). Several faster implementations for the high dimen-
sional case with low doubling dimension have been studied before; their idea is to maintain some data
structures to reduce the amortized complexity of each iteration. We refer the reader to [39] for more
details. Also note that if we use KCENTER+, it only yields an extra O(nd) time since we just need to
scan the whole data in one-pass for computing the means.

Step 2. Since we run the algorithm [21] on the smaller instance (SA, SB) instead of (A,B), we
know that the complexity of Step 2 is O

(
h
(
Γ (k, d) + k2d+ kd2 + d3

))
by Proposition 1.

Step 3. We need to compute the transformed T (B) first and then the Wasserstein distance
W2

2 (A, T (B)). Note that the transformation T is not off-the-shelf, because it is the combination
of a sequence of rigid transformations from the iterative approach [21] in Step 2. Since it takes h rounds,
T should be the multiplication of h rigid transformations. We use (Rl,

−→v l) to denote the orthogonal
matrix and translation vector obtained in the l-th round for 1 ≤ l ≤ h. We can update B round by
round: starting from l = 1, update B to be RlB +−→v l in each round; the whole time complexity will
be O(hnd2). In fact, we have a more efficient way by computing T first before transforming B.

Lemma 4. Let (R,−→v) be the orthogonal matrix and translation vector of T . Then

R = Πλ
l=1Rl,

−→v = (Πλ
l=2Rl)

−→v 1 + (Πλ
l=3Rl)

−→v 2 + · · ·+Rλ
−→v λ−1 +

−→v λ, (24)

and T (B) can be obtained in O(hd3 + nd2) time.

Proof. The equations (24) can be easily verified by simple calculations and we only need to focus on
the time complexity. We can recursively compute the multiplications Πλ

l=iRl for i = h, h− 1, · · · , 1.
Consequently, the orthogonal matrix R and translation vector −→v can be obtained in O(hd3) time. In
addition, the complexity for computing T (B) = RB +−→v is O(nd2).

13

Lemma 4 provides a complexity significantly lower than the previous O(hnd2) (usually n is much
larger than d in practice). After obtaining T (B), we can compute W2

2 (A, T (B)) in Γ (n, d) time. Note
that the complexity Γ (n, d) usually is Ω(n2d), which dominates the complexity of Step 1 and the
second term nd2 in the complexity of Lemma 4. Overall, we have the following theorem for the total
runtime.

Theorem 3. Suppose n = max{n1, n2} ≥ d and the algorithm of [21] takes h ≥ 1 rounds. The
running time of Algorithm 1 is O

(
h
(
Γ (k, d) + k2d+ kd2 + d3

))
+ Γ (n, d), where k = (2ϵ)

ρ.

If we run the same number of rounds on the original instance (A,B) by the approach [21], the total
running time will be O

(
h
(
Γ (n, d) + n2d

))
by Proposition 1. When k ≪ n, Algorithm 1 achieves a

significant reduction on the running time.

4 Experiments

We consider three applications in our experiments: PPI network alignment, unsupervised bilingual
lexicon induction, and domain adaption. All the experimental results were obtained on a server
equipped with 2.4GHz Intel CPUs and 256GB main memory; the algorithms were implemented in
Matlab. For each instance, we run 20 trials and report the average results. Our code is publicly available
at https://github.com/lwjie595/RobustGeometricAlignment.

4.1 Datasets

(1) For PPI network alignment, we use the popular benchmark dataset NAPAbench [68] of PPI networks.
It consists of several different families of PPI networks generated from the real proteins. The duplication
mutation complementation (DMC) [79] and duplication with random mutation (DMR) model [73]
are two different node-duplication network growth models, while crystal growth (CG) model [46]
generates the networks by simulating the physics of growing protein crystals. We use 3 pairs of PPI
networks from these 3 models, where each network is a graph containing 3000 to 10000 nodes. In the
preprocessing step, we apply the popular node2vec technique [37] to represent each network by a group
of vectors in R50; following the approach of [54], we assign a unit weight to each vector.

(2) For unsupervised bilingual lexicon induction, we have 5 pairs of languages: Chinese-English
(zh-en), Spanish-English (es-en), Italian-English (it-en), Japanese-Chinese (ja-zh), and Turkish-English
(tr-en). Given the datasets from [85], each language has a vocabulary list containing 3000 to 13000
words; we also follow their preprocessing method that represents all the words by the vectors in R50

through the embedding technique [58]. Each vocabulary list is represented by a distribution in the space
where each vector has the weight equal to the corresponding frequency in the language.

(3) For domain adaption, we consider the Caltech-Office dataset from [34] that was widely studied
before. The Caltech-Office dataset contains 10 categories of images across 4 different domains: Amazon
(A), Caltech10 (C), DSLR (D), and Webcam (W). Each dataset contains 3000 to 7000 data items in
R800. We use “→” to denote the transform between two domains, e.g., “C→A” represents the transform
from Caltech10 to Amazon. Similar with the previous research on domain adaptation [23,34,42,66], we
use the labeled data in the source domain as the training data and use the k-Nearest Neighbor (k-NN)
method as the classifier to predict the labels in the target domain.

4.2 Algorithms for Testing

We use the alignment algorithm [21] (due to its simplicity and practicality) and consider the following
data compression methods for comparison.

– ORIGINAL: directly run the alignment algorithm on the original datasets without compression.

14

https://github.com/lwjie595/RobustGeometricAlignment

– KCENTER: our proposed method Algorithm 1, i.e., run the Gonzalez’s k-center algorithm to
compress the input data.

– KCENTER+: replace each ball center by the mean point of the cluster (see Section 2.2).
– KMEANS: replace the Gonzalez’s k-center algorithm by the k-means clustering algorithm [55] for

compression (the initialization is implemented by the k-means++ seeding [10]).
– RANDOM: sample k points uniformly at random from A and B separately, and each sampled point

of A (resp., B) has the weight WA
k (resp., WB

k).
– RANDOM+: sample k points uniformly at random from A and B separately; we assign each point

of A (resp., B) to its nearest sampled point; each sampled point of A (resp., B) has the weight
equal to the total weights of the points that assigned to it.

– STOCHASTICOPT: the stochastic gradient descent algorithm that uses the batches of subsamples
from the two input patterns to compute the optimal transportation and the orthogonal matrices for
rigid transformations [36].

4.3 Results

For each instance, we vary the compression rate γ = k
(n1+n2)/2

(recall that n1 and n2 are respectively
the numbers of points of A and B). We also consider the robust alignment with fractional Wasserstein
distance. We set the value λ ∈ [0.9, 1]. For PPI network alignment and unsupervised bilingual lexicon
induction, we evaluate the performance based on the obtained Wasserstein distance of two patterns and
the normalized running time over the time of ORIGINAL (e.g., if the normalize running time is 0.1,
it means the algorithm saves 90% runtime compared with ORIGINAL). The runtime of each method
includes the time for data compression, the time for alignment on the compressed data, and the time for
computing the final Wasserstein flow.

PPI network alignment. To see the trends of the algorithms, we first show the results of PPI
network alignment on the CG dataset in Figure 3. The compression rate γ ranges from 0.02 to 0.1.
Our KCENTER+ compression method can achieve the performance close to ORIGINAL, but it takes
significant lower runtimes comparing with other baselines (RANDOM is always the fastest one, since it
is just simple uniform sampling; but it always obtained the largest Wasserstein distance). The similar
results of the other two PPI datasets are shown in Figure 4 and Figure 5, respectively. The algorithms
also achieve the similar performances for the experiments on fractional Wasserstein distance, where the
results on the three PPI datasets are shown in Figure 6, Figure 7, and Figure 8, respectively. We vary the
fraction parameter λ from 0.9 to 1, and fix the compression rate γ to be 0.1. The experimental results
suggest that our proposed methods KCENTER and KCENTER+ also work well for fractional Wasserstein
distance. To see the influence from the dimension, we also conduct the following experiment on the CG
dataset. Previously, we set the dimension to be 50 through node2vec [37]; now we vary the dimension
from 50 to 300 by tuning the node2vec algorithm. We show the results of Wasserstein alignment and
fraction Wasserstein alignment in Figure 9 and Figure 10, respectively. The compression rate γ is
fixed to be 0.1, and the fraction value λ is fixed to be 0.9 for the experiment on fractional Wasserstein
distance. We can see that for different dimensions, KCENTER+ can achieve the performance close to
ORIGINAL but with much lower running time.

Unsupervised bilingual lexicon induction. The parameters γ and λ for unsupervised bilingual
lexicon induction are set to be as same as the experiments for PPI network alignment. We show the
results of Wasserstein alignment and fractional Wasserstein alignment on ES-EN in Figure 11 and
Figure 12 respectively. Similar with the experiments on PPI networks, our KCENTER+ compression
method can achieve the performance close to ORIGINAL. For the other three unsupervised bilingual
lexicon induction pairs, the similar experimental results are shown in Figure 13, Figure 14, Figure 15,
and Figure 16, respectively; the experimental results on fractional Wasserstein distance are shown in
Figure 17, Figure 18, Figure 19, and Figure 20, respectively.

Domain adaptation. The results of Wasserstein distance, normalized time and accuracy for different
compression rates are shown in Tables 1, 2, 3, respectively. We illustrate the best results with bold fonts

15

in the tables. We can see that KCENTER+ performs better than the other five baselines for most cases.
We also illustrate the results on fractional Wasserstein distance for domain adaption in Tables 4, 5, and
6, where their performances are similar to the results in Tables 1-3. We vary the value of λ from 0.9 to
1.0, and the compression rate γ is fixed to be 0.1.

Experimental conclusion. Overall, our proposed KCENTER+ usually outperforms the other
baselines and achieves the results close to ORIGINAL. Although KMEANS can also archive similar good
performance as KCENTER+, it takes significant higher runtimes than KCENTER+. Also, KCENTER+
often has a higher classification accuracy for domain adaption than the other baselines (except for
ORIGINAL).

5 Conclusion

In this paper, we propose a novel framework for compressing point sets in high dimensions, so as to
approximately preserve the quality for the Wasserstein alignment. This work is motivated by several
emerging applications in the fields of machine learning and bioinformatics. Our method utilizes the
property of low doubling dimension, and yields a significant speedup for the computation of alignment.
In the experiments, we show that the proposed compression approach can efficiently reduce the running
time to a great extent. In the future, it is interesting to consider the alignment problems for other
distances rather than the Wasserstein distance. It is also important to study several other issues of the
alignment problems, such as the robustness and parallel implementation.

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.25

0.3

0.35

0.4

0.45

0.5

0.55

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 3: The Wasserstein distance and normalized running time on CG for PPI network alignment.

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.9

0.95

1

1.05

1.1

1.15

1.2

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 11: The Wasserstein distance and normalized running time on ES-EN for bilingual lexicon induction.

16

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.2

0.205

0.21

0.215

0.22

0.225
W

a
s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.04

0.06

0.08

0.1

0.12

0.14

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 4: The Wasserstein distance and normalized running time on DMC for PPI network alignment.

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.26

0.28

0.3

0.32

0.34

0.36

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.04

0.06

0.08

0.1

0.12

0.14

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 5: The Wasserstein distance and normalized running time on DMR for PPI network alignment.

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.3

0.32

0.34

0.36

0.38

0.4

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.9 0.92 0.94 0.96 0.98 1

Fraction

0

0.05

0.1

0.15

0.2

0.25

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 6: The Wasserstein distance and normalized running time on CG for PPI network alignment with
different fraction λ.

17

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.18

0.185

0.19

0.195

0.2

0.205

0.21
W

a
s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.9 0.92 0.94 0.96 0.98 1

Fraction

0

0.05

0.1

0.15

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 7: The Wasserstein distance and normalized running time on DMC for PPI network alignment
with different fraction λ.

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.24

0.25

0.26

0.27

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 8: The Wasserstein distance and normalized running time on DMR for PPI network alignment
with different fraction λ.

50 100 150 200 250 300

Dimension

0.95

1

1.05

1.1

1.15

1.2

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

50 100 150 200 250 300

Dimension

0.05

0.1

0.15

0.2

0.25

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 9: The normalized Wasserstein distance and normalized running time (over ORIGNIAL) on CG for
PPI network alignment with different dimensions.

18

50 100 150 200 250 300

Dimension

0.95

1

1.05

1.1

1.15

1.2

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

50 100 150 200 250 300

Dimension

0.05

0.1

0.15

0.2

0.25

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 10: The normalized fractional Wasserstein distance and normalized running time (over ORIGNIAL)
on CG for PPI network alignment with different dimensions. The fraction λ is 0.9.

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.8

0.85

0.9

0.95

1

1.05

1.1

W
a
s
s
e
rs

te
in

 D
is

ta
n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.06

0.08

0.1

0.12

0.14

0.16

0.18
T

im
e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 12: The Wasserstein distance and normalized running time on ES-EN for bilingual lexicon induction
with different fraction λ.

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.8

0.85

0.9

0.95

1

1.05

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.04

0.06

0.08

0.1

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 13: The Wasserstein distance and normalized running time on IT-EN for bilingual lexicon induction.

19

0.02 0.04 0.06 0.08 0.1

Compression Rate

1.2

1.3

1.4

1.5
W

a
s
s
e
rs

te
in

 D
is

ta
n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 14: The Wasserstein distance and normalized running time on JA-ZH for bilingual lexicon induction.

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.95

1

1.05

1.1

1.15

1.2

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.04

0.06

0.08

0.1

0.12

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 15: The Wasserstein distance and normalized running time on TR-EN for bilingual lexicon induction.

0.02 0.04 0.06 0.08 0.1

Compression Rate

1.05

1.1

1.15

1.2

1.25

1.3

1.35

W
a

s
s
e

rs
te

in
 D

is
ta

n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.02 0.04 0.06 0.08 0.1

Compression Rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 16: The Wasserstein distance and normalized running time on ZH-EN for bilingual lexicon induction.

20

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.75

0.8

0.85

0.9

0.95

1

W
a
s
s
e
rs

te
in

 D
is

ta
n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.06

0.08

0.1

0.12

0.14

0.16

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 17: The Wasserstein distance and normalized running time on IT-EN for bilingual lexicon induction
with different fraction λ.

0.9 0.92 0.94 0.96 0.98 1

Fraction

1.15

1.2

1.25

1.3

1.35

1.4

1.45

W
a
s
s
e
rs

te
in

 D
is

ta
n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.05

0.1

0.15

0.2

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 18: The Wasserstein distance and normalized running time on JA-ZH for bilingual lexicon induction
with different fraction λ.

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.85

0.9

0.95

1

1.05

1.1

W
a
s
s
e
rs

te
in

 D
is

ta
n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.04

0.06

0.08

0.1

0.12

0.14

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 19: The Wasserstein distance and normalized running time on TR-EN for bilingual lexicon induction
with different fraction λ.

21

0.9 0.92 0.94 0.96 0.98 1

Fraction

1

1.05

1.1

1.15

1.2

1.25

W
a
s
s
e
rs

te
in

 D
is

ta
n
c
e

Original

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

0.9 0.92 0.94 0.96 0.98 1

Fraction

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
im

e

KCenter

KCenter+

KMeans

StochasticOpt

Random

Random+

Fig. 20: The Wasserstein distance and normalized running time on ZH-EN for bilingual lexicon induction
with different fraction λ.

Table 1: Wasserstein distance for DA with different compression level
Compression ORIGINAL KCENTER KCENTER+ KMEANS STOCHASTICOPT RANDOM RANDOM+

D→A

0.02 17.675 20.736 20.421 20.662 22.260 21.387 21.546
0.04 17.675 19.267 18.698 19.077 21.686 20.414 20.581
0.06 17.675 18.851 18.098 18.293 21.008 19.726 19.973
0.08 17.675 18.568 17.959 18.050 20.385 19.4 19.527
0.10 17.675 18.417 17.810 17.946 19.817 19.103 19.185

D→C

0.02 18.915 21.114 20.976 21.313 22.588 21.845 22.102
0.04 18.915 19.958 19.564 20.075 22.106 21.028 21.378
0.06 18.915 19.559 19.048 19.411 21.605 20.549 20.895
0.08 18.915 19.464 18.987 19.224 21.125 20.181 20.483
0.10 18.915 19.367 18.935 19.149 20.704 19.951 20.179

D→W

0.02 13.549 21.351 21.891 23.112 27.227 24.06 24.229
0.04 13.549 15.914 15.616 17.458 25.318 20.721 20.866
0.06 13.549 14.108 13.640 14.128 23.174 18.471 18.623
0.08 13.549 13.727 13.565 13.600 21.009 16.976 17.034
0.10 13.549 13.566 13.530 13.532 19.171 15.923 15.829

W→A

0.02 12.962 17.119 17.001 17.335 18.547 17.708 17.878
0.04 12.962 15.804 15.648 16.093 18.117 16.749 16.957
0.06 12.962 14.726 14.442 14.930 17.661 16.036 16.27
0.08 12.962 13.824 13.477 14.036 17.185 15.485 15.725
0.10 12.962 13.506 13.060 13.417 16.655 15.049 15.275

W→C

0.02 14.080 17.483 17.552 17.867 18.830 18.126 18.337
0.04 14.080 16.328 16.265 16.823 18.473 17.303 17.651
0.06 14.080 15.457 15.271 15.907 18.105 16.694 17.054
0.08 14.080 14.782 14.459 15.071 17.729 16.237 16.560
0.10 14.080 14.511 14.129 14.547 17.290 15.844 16.178

W→D

0.02 13.548 21.342 21.756 23.110 27.263 24.059 24.18
0.04 13.548 15.939 15.633 17.378 25.315 20.74 20.869
0.06 13.548 14.091 13.654 14.152 23.092 18.266 18.65
0.08 13.548 13.740 13.563 13.603 21.091 16.936 17.128
0.10 13.548 13.564 13.529 13.547 19.301 16.018 15.962

22

Table 2: The Normalized Time for DA with different compression level
Compression KCENTER KCENTER+ KMEANS STOCHASTICOPT RANDOM RANDOM+

D→A

0.02 0.142 0.145 0.241 0.134 0.13 0.133
0.04 0.151 0.151 0.261 0.138 0.142 0.14
0.06 0.159 0.156 0.294 0.141 0.138 0.145
0.08 0.162 0.169 0.293 0.150 0.147 0.15
0.10 0.171 0.173 0.309 0.156 0.15 0.155

D→C

0.02 0.140 0.140 0.242 0.126 0.127 0.126
0.04 0.146 0.147 0.283 0.133 0.137 0.128
0.06 0.154 0.153 0.328 0.140 0.133 0.14
0.08 0.160 0.161 0.320 0.144 0.138 0.145
0.10 0.167 0.169 0.337 0.149 0.144 0.148

D→W

0.02 0.184 0.177 0.235 0.189 0.183 0.186
0.04 0.206 0.184 0.255 0.191 0.193 0.196
0.06 0.218 0.214 0.269 0.199 0.201 0.197
0.08 0.221 0.224 0.309 0.212 0.203 0.207
0.10 0.232 0.230 0.317 0.218 0.214 0.216

W→A

0.02 0.144 0.146 0.251 0.134 0.133 0.131
0.04 0.151 0.152 0.268 0.139 0.137 0.142
0.06 0.159 0.157 0.295 0.145 0.143 0.146
0.08 0.164 0.169 0.312 0.153 0.147 0.153
0.10 0.172 0.174 0.318 0.159 0.154 0.158

W→C

0.02 0.145 0.146 0.262 0.129 0.13 0.13
0.04 0.148 0.150 0.299 0.135 0.133 0.134
0.06 0.158 0.155 0.318 0.138 0.137 0.144
0.08 0.168 0.165 0.336 0.148 0.142 0.145
0.10 0.171 0.172 0.342 0.152 0.145 0.155

W→D

0.02 0.195 0.191 0.248 0.195 0.194 0.197
0.04 0.211 0.196 0.266 0.204 0.211 0.209
0.06 0.220 0.220 0.293 0.210 0.211 0.209
0.08 0.231 0.232 0.317 0.222 0.215 0.224
0.10 0.243 0.242 0.344 0.233 0.226 0.23

23

Table 3: Accuracy for DA with different compression level
Compression ORIGINAL KCENTER KCENTER+ KMEANS STOCHASTICOPT RANDOM RANDOM+

D→A

0.02 0.779 0.803 0.792 0.785 0.785 0.79 0.783
0.04 0.779 0.788 0.776 0.779 0.780 0.778 0.775
0.06 0.779 0.782 0.800 0.775 0.770 0.789 0.766
0.08 0.779 0.771 0.787 0.774 0.767 0.778 0.765
0.10 0.779 0.771 0.795 0.775 0.765 0.783 0.763

D→C

0.02 0.748 0.728 0.736 0.776 0.753 0.754 0.728
0.04 0.748 0.699 0.736 0.771 0.769 0.757 0.722
0.06 0.748 0.723 0.752 0.760 0.762 0.747 0.734
0.08 0.748 0.711 0.756 0.763 0.756 0.742 0.732
0.10 0.748 0.727 0.741 0.756 0.750 0.746 0.731

D→W

0.02 0.927 0.768 0.788 0.786 0.735 0.8 0.79
0.04 0.927 0.859 0.857 0.807 0.750 0.82 0.816
0.06 0.927 0.890 0.892 0.864 0.779 0.853 0.844
0.08 0.927 0.925 0.922 0.896 0.775 0.87 0.869
0.10 0.927 0.922 0.928 0.914 0.785 0.862 0.868

W→A

0.02 0.678 0.612 0.659 0.649 0.609 0.634 0.589
0.04 0.678 0.622 0.660 0.653 0.643 0.63 0.61
0.06 0.678 0.627 0.660 0.660 0.649 0.64 0.62
0.08 0.678 0.668 0.683 0.664 0.643 0.644 0.626
0.10 0.678 0.661 0.692 0.668 0.653 0.656 0.629

W→C

0.02 0.600 0.530 0.541 0.588 0.538 0.563 0.536
0.04 0.600 0.544 0.566 0.598 0.551 0.57 0.517
0.06 0.600 0.563 0.600 0.607 0.569 0.582 0.538
0.08 0.600 0.563 0.593 0.600 0.568 0.579 0.546
0.10 0.600 0.572 0.599 0.602 0.579 0.587 0.544

W→D

0.02 0.911 0.642 0.779 0.749 0.571 0.664 0.641
0.04 0.911 0.771 0.832 0.810 0.644 0.753 0.737
0.06 0.911 0.853 0.856 0.848 0.662 0.794 0.783
0.08 0.911 0.909 0.899 0.894 0.708 0.819 0.822
0.10 0.911 0.907 0.911 0.901 0.726 0.835 0.838

24

Table 4: Wasserstein distance for DA with different fraction λ
ORIGINAL KCENTER KCENTER+ KMEANS STOCHASTICOPT RANDOM RANDOM+

D→A

λ = 1.0 17.671 18.416 17.817 17.943 19.824 19.111 19.191
λ = 0.98 17.492 18.293 17.690 17.798 19.652 18.936 19.045
λ = 0.96 17.394 18.189 17.546 17.633 19.534 18.749 18.845
λ = 0.94 17.293 18.046 17.416 17.496 19.349 18.613 18.744
λ = 0.92 17.139 17.921 17.308 17.340 19.15 18.435 18.588
λ = 0.90 16.972 17.761 17.142 17.176 19.081 18.258 18.477

D→C

λ = 1.0 18.911 19.353 18.943 19.146 20.711 19.954 20.187
λ = 0.98 18.829 19.272 18.883 18.995 20.534 19.775 20.077
λ = 0.96 18.726 19.182 18.746 18.860 20.35 19.599 19.913
λ = 0.94 18.553 19.052 18.611 18.713 20.22 19.422 19.806
λ = 0.92 18.426 18.917 18.471 18.555 20.027 19.24 19.647
λ = 0.90 18.276 18.766 18.323 18.416 19.886 19.111 19.516

D→W

λ = 1.0 13.555 13.554 13.531 13.536 19.239 15.999 15.919
λ = 0.98 13.209 13.313 13.198 13.254 18.831 15.731 15.799
λ = 0.96 12.999 13.061 12.984 12.965 18.726 15.39 15.325
λ = 0.94 12.670 12.807 12.678 12.650 18.304 14.955 14.907
λ = 0.92 12.380 12.505 12.364 12.351 18.127 14.525 14.795
λ = 0.90 12.037 12.175 12.045 12.016 17.91 14.243 14.463

W→A

λ = 1.0 12.960 13.523 13.063 13.413 16.657 15 15.225
λ = 0.98 12.815 13.379 12.903 13.252 16.51 14.846 15.074
λ = 0.96 12.675 13.225 12.746 13.093 16.329 14.669 14.939
λ = 0.94 12.502 13.059 12.600 12.922 16.267 14.518 14.759
λ = 0.92 12.364 12.923 12.453 12.818 16.141 14.309 14.638
λ = 0.90 12.227 12.776 12.310 12.663 15.962 14.22 14.51

W→C

λ = 1.0 14.079 14.508 14.131 14.548 17.329 15.849 16.187
λ = 0.98 13.923 14.372 13.985 14.400 17.123 15.695 16.028
λ = 0.96 13.821 14.235 13.850 14.229 16.989 15.472 15.899
λ = 0.94 13.682 14.087 13.720 14.116 16.889 15.312 15.756
λ = 0.92 13.525 13.960 13.583 13.985 16.715 15.154 15.655
λ = 0.90 13.375 13.822 13.447 13.861 16.593 15.023 15.504

W→D

λ = 1.0 13.554 13.540 13.525 13.527 19.164 15.986 15.864
λ = 0.98 13.217 13.291 13.197 13.239 18.971 15.807 15.609
λ = 0.96 12.998 13.052 12.984 12.962 18.595 15.349 15.286
λ = 0.94 12.670 12.807 12.681 12.672 18.216 15.011 15.032
λ = 0.92 12.380 12.501 12.363 12.341 18.143 14.667 14.786
λ = 0.90 12.037 12.175 12.043 12.030 17.909 14.33 14.391

25

Table 5: The Normalized Time for DA with different fraction λ
KCENTER KCENTER+ KMEANS STOCHASTICOPT RANDOM RANDOM+

D→A

λ = 1.0 0.171 0.175 0.299 0.156 0.154 0.156
λ = 0.98 0.137 0.140 0.248 0.128 0.124 0.126
λ = 0.96 0.138 0.140 0.238 0.128 0.124 0.126
λ = 0.94 0.135 0.137 0.242 0.128 0.122 0.125
λ = 0.92 0.143 0.145 0.248 0.131 0.129 0.13
λ = 0.90 0.137 0.138 0.236 0.129 0.121 0.127

D→C

λ = 1.0 0.166 0.164 0.329 0.156 0.144 0.149
λ = 0.98 0.137 0.137 0.255 0.131 0.12 0.123
λ = 0.96 0.130 0.131 0.242 0.123 0.115 0.117
λ = 0.94 0.130 0.130 0.239 0.123 0.113 0.116
λ = 0.92 0.133 0.139 0.256 0.130 0.119 0.122
λ = 0.90 0.140 0.139 0.262 0.133 0.124 0.128

D→W

λ = 1.0 0.234 0.245 0.337 0.225 0.219 0.225
λ = 0.98 0.275 0.274 0.374 0.256 0.256 0.259
λ = 0.96 0.192 0.197 0.263 0.181 0.178 0.179
λ = 0.94 0.184 0.183 0.248 0.173 0.168 0.172
λ = 0.92 0.184 0.181 0.255 0.173 0.167 0.174
λ = 0.90 0.181 0.180 0.254 0.177 0.173 0.175

W→A

λ = 1.0 0.188 0.191 0.346 0.172 0.169 0.172
λ = 0.98 0.144 0.148 0.265 0.136 0.132 0.135
λ = 0.96 0.145 0.146 0.253 0.132 0.128 0.133
λ = 0.94 0.151 0.156 0.260 0.140 0.137 0.141
λ = 0.92 0.150 0.153 0.263 0.139 0.136 0.14
λ = 0.90 0.145 0.148 0.263 0.136 0.131 0.136

W→C

λ = 1.0 0.168 0.169 0.334 0.147 0.144 0.148
λ = 0.98 0.125 0.127 0.238 0.112 0.109 0.114
λ = 0.96 0.125 0.127 0.238 0.112 0.11 0.112
λ = 0.94 0.134 0.137 0.251 0.117 0.115 0.119
λ = 0.92 0.128 0.131 0.237 0.114 0.11 0.115
λ = 0.90 0.127 0.129 0.242 0.112 0.111 0.116

W→D

λ = 1.0 0.221 0.220 0.329 0.208 0.197 0.206
λ = 0.98 0.165 0.162 0.236 0.154 0.147 0.153
λ = 0.96 0.168 0.169 0.237 0.154 0.152 0.153
λ = 0.94 0.166 0.165 0.232 0.153 0.152 0.153
λ = 0.92 0.161 0.167 0.232 0.151 0.147 0.15
λ = 0.90 0.169 0.167 0.244 0.160 0.154 0.159

26

Table 6: Accuracy for DA with different fraction λ
ORIGINAL KCENTER KCENTER+ KMEANS STOCHASTICOPT RANDOM RANDOM+

D→A

λ = 1.0 0.779 0.773 0.794 0.778 0.764 0.773 0.772
λ = 0.98 0.779 0.774 0.791 0.774 0.766 0.785 0.765
λ = 0.96 0.777 0.774 0.787 0.774 0.767 0.778 0.769
λ = 0.94 0.775 0.772 0.795 0.774 0.765 0.78 0.761
λ = 0.92 0.780 0.776 0.800 0.774 0.758 0.784 0.766
λ = 0.90 0.767 0.776 0.801 0.781 0.757 0.78 0.766

D→C

λ = 1.0 0.748 0.730 0.736 0.754 0.755 0.747 0.734
λ = 0.98 0.756 0.730 0.746 0.755 0.752 0.746 0.73
λ = 0.96 0.760 0.733 0.747 0.761 0.75 0.751 0.736
λ = 0.94 0.758 0.733 0.757 0.758 0.753 0.745 0.73
λ = 0.92 0.754 0.733 0.755 0.755 0.755 0.747 0.736
λ = 0.90 0.749 0.734 0.755 0.758 0.753 0.756 0.74

D→W

λ = 1.0 0.927 0.921 0.928 0.917 0.786 0.867 0.885
λ = 0.98 0.925 0.924 0.927 0.911 0.792 0.867 0.88
λ = 0.96 0.919 0.926 0.917 0.915 0.768 0.871 0.874
λ = 0.94 0.921 0.925 0.922 0.914 0.784 0.875 0.88
λ = 0.92 0.925 0.923 0.924 0.917 0.779 0.876 0.872
λ = 0.90 0.927 0.926 0.925 0.917 0.78 0.879 0.87

W→A

λ = 1.0 0.678 0.664 0.697 0.670 0.66 0.657 0.631
λ = 0.98 0.675 0.661 0.691 0.666 0.65 0.642 0.625
λ = 0.96 0.672 0.662 0.693 0.674 0.647 0.656 0.629
λ = 0.94 0.664 0.664 0.695 0.669 0.656 0.649 0.626
λ = 0.92 0.660 0.668 0.696 0.665 0.64 0.66 0.615
λ = 0.90 0.660 0.666 0.690 0.667 0.648 0.634 0.622

W→C

λ = 1.0 0.600 0.571 0.597 0.601 0.576 0.578 0.544
λ = 0.98 0.588 0.571 0.589 0.601 0.58 0.577 0.545
λ = 0.96 0.597 0.568 0.581 0.597 0.579 0.591 0.554
λ = 0.94 0.598 0.572 0.584 0.599 0.575 0.582 0.551
λ = 0.92 0.588 0.572 0.583 0.597 0.572 0.572 0.537
λ = 0.90 0.585 0.576 0.588 0.599 0.578 0.573 0.55

W→D

λ = 1.0 0.911 0.903 0.911 0.903 0.724 0.835 0.844
λ = 0.98 0.911 0.910 0.911 0.906 0.737 0.828 0.84
λ = 0.96 0.917 0.917 0.917 0.909 0.732 0.825 0.847
λ = 0.94 0.917 0.915 0.917 0.912 0.715 0.833 0.83
λ = 0.92 0.924 0.917 0.924 0.913 0.734 0.828 0.848
λ = 0.90 0.924 0.918 0.924 0.914 0.72 0.831 0.845

27

6 Acknowledgements

The research of this work was supported in part by National Key R&D program of China through grant
2021YFA1000900, the NSFC throught Grant 62272432, and the Provincial NSF of Anhui through
grant 2208085MF163. We also want to thank the anonymous reviewers for their helpful comments.

References

1. P. O. Aboagye, Y. Zheng, C. M. Yeh, J. Wang, W. Zhang, L. Wang, H. Yang, and J. M. Phillips. Normalization of
language embeddings for cross-lingual alignment. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

2. P. K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao. Faster algorithms for the geometric transportation
problem. In 33rd International Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia,
pages 7:1–7:16, 2017.

3. P. K. Agarwal and K. R. Varadarajan. A near-linear constant-factor approximation for euclidean bipartite matching?
In Proceedings of the 20th ACM Symposium on Computational Geometry, Brooklyn, New York, USA, June 8-11, 2004,
pages 247–252, 2004.

4. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and applications. Prentice Hall, 1993.
5. J. Altschuler, J. Weed, and P. Rigollet. Near-linear time approximation algorithms for optimal transport via sinkhorn

iteration. In Annual Conference on Neural Information Processing Systems, pages 1964–1974, 2017.
6. D. Alvarez-Melis and T. S. Jaakkola. Gromov-wasserstein alignment of word embedding spaces. In E. Riloff, D. Chiang,

J. Hockenmaier, and J. Tsujii, editors, Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 1881–1890. Association for Computational
Linguistics, 2018.

7. A. Andoni, K. Do Ba, P. Indyk, and D. Woodruff. Efficient sketches for earth-mover distance, with applications. In
Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages 324–330. IEEE, 2009.

8. A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for geometric graph problems. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583, 2014.

9. A. Andoni, C. Stein, and P. Zhong. Parallel approximate undirected shortest paths via low hop emulators. In
K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 322–335. ACM,
2020.

10. D. Arthur and S. Vassilvitskii. K-means++ the advantages of careful seeding. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 1027–1035, 2007.

11. M. Belkin. Problems of learning on manifolds. The University of Chicago, 2003.
12. S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning from different

domains. Machine Learning, 79(1-2):151–175, 2010.
13. P. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14(2):239–256, 1992.
14. G. Beugnot, A. Genevay, K. Greenewald, and J. Solomon. Improving approximate optimal transport distances using

quantization. In Uncertainty in artificial intelligence, pages 290–300. PMLR, 2021.
15. J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman. Learning bounds for domain adaptation. In Proc. of the

21st Annual Conference on Neural Information Processing Systems, pages 129–136, 2007.
16. S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote. Matching point sets with respect to the earth mover’s distance.

Computational Geometry, 39(2):118–133, 2008.
17. X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape regression. International Journal of Computer

Vision, 107(2):177–190, 2014.
18. L. Chapel, R. Flamary, H. Wu, C. Févotte, and G. Gasso. Unbalanced optimal transport through non-negative penalized

linear regression. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages 23270–23282, 2021.

19. L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S. Sachdeva. Maximum flow and minimum-cost flow in
almost-linear time. arXiv preprint arXiv:2203.00671, 2022.

20. X. Chen, R. Jayaram, A. Levi, and E. Waingarten. New streaming algorithms for high dimensional emd and mst. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 222–233, 2022.

21. S. Cohen and L. Guibas. The earth mover’s distance under transformation sets. In Proceedings of the 7th IEEE
International Conference on Computer Vision, page 1, 1999.

22. N. D. Cornea, M. F. Demirci, D. Silver, S. Dickinson, and P. Kantor. 3d object retrieval using many-to-many matching of
curve skeletons. In Shape Modeling and Applications, 2005 International Conference, pages 366–371. IEEE, 2005.

23. N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain adaptation. IEEE transactions on
pattern analysis and machine intelligence, 39(9):1853–1865, 2016.

28

24. N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain adaptation. IEEE Trans. Pattern
Anal. Mach. Intell., 39(9):1853–1865, 2017.

25. M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 2292–2300, 2013.

26. S. Dasgupta and K. Sinha. Randomized partition trees for exact nearest neighbor search. In Conference on Learning
Theory, pages 317–337, 2013.

27. S. Dev, S. Hassan, and J. M. Phillips. Closed form word embedding alignment. Knowl. Inf. Syst., 63(3):565–588, 2021.
28. H. Ding, T. Chen, F. Yang, and M. Wang. A data-dependent algorithm for querying earth mover’s distance with low

doubling dimensions. In C. Demeniconi and I. Davidson, editors, Proceedings of the 2021 SIAM International Conference
on Data Mining, SDM 2021, Virtual Event, April 29 - May 1, 2021, pages 630–638. SIAM, 2021.

29. H. Ding and J. Xu. FPTAS for minimizing the earth mover’s distance under rigid transformations and related problems.
Algorithmica, 78(3):741–770, 2017.

30. H. Ding and M. Ye. On geometric alignment in low doubling dimension. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1460–1467, 2019.

31. D. Feldman. Core-sets: An updated survey. WIREs Data Mining Knowl. Discov., 10(1), 2020.
32. K. Fox and J. Lu. A near-linear time approximation scheme for geometric transportation with arbitrary supplies and

spread. J. Comput. Geom., 13(1), 2022.
33. A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative cycles. J. ACM, 36(4):873–886,

1989.
34. B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In 2012 IEEE

conference on computer vision and pattern recognition, pages 2066–2073. IEEE, 2012.
35. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293–306,

1985.
36. E. Grave, A. Joulin, and Q. Berthet. Unsupervised alignment of embeddings with wasserstein procrustes. In The 22nd

International Conference on Artificial Intelligence and Statistics, pages 1880–1890. PMLR, 2019.
37. A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 855–864. ACM, 2016.
38. J. Ham, D. D. Lee, and L. K. Saul. Semisupervised alignment of manifolds. In AISTATS, pages 120–127, 2005.
39. S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM Journal

on Computing, 35(5):1148–1184, 2006.
40. P. Indyk. A near linear time constant factor approximation for euclidean bichromatic matching (cost). In Proceedings of

the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 39–42. Society for Industrial and Applied
Mathematics, 2007.

41. P. Indyk and N. Thaper. Fast color image retrieval via embeddings. In Workshop on Statistical and Computational
Theories of Vision (at ICCV), 2003.

42. K. Jin, C. Liu, and C. Xia. Two-sided wasserstein procrustes analysis. In IJCAI, pages 3515–3521, 2021.
43. I. Jubran, A. Maalouf, R. Kimmel, and D. Feldman. Provably approximated ICP. CoRR, abs/2101.03588, 2021.
44. D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics. In Proceedings of the thiry-fourth

annual ACM symposium on Theory of computing, pages 741–750. ACM, 2002.
45. A. B. Khesin, A. Nikolov, and D. Paramonov. Preconditioning for the geometric transportation problem. In 35th

International Symposium on Computational Geometry, pages 15:1–15:14, 2019.
46. W. K. Kim and E. M. Marcotte. Age-dependent evolution of the yeast protein interaction network suggests a limited role

of gene duplication and divergence. PLoS computational biology, 4(11):e1000232, 2008.
47. O. Klein and R. C. Veltkamp. Approximation algorithms for computing the earth mover’s distance under transformations.

In International Symposium on Algorithms and Computation, pages 1019–1028. Springer, 2005.
48. R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity search. In Proceedings of the fifteenth

annual ACM-SIAM symposium on Discrete algorithms, pages 798–807. Society for Industrial and Applied Mathematics,
2004.

49. M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger. From word embeddings to document distances. In International
Conference on Machine Learning, pages 957–966, 2015.

50. T. J. Laakso. Plane with a∞-weighted metric not bilipschitz embeddable to rn. Bulletin of the London Mathematical
Society, 34(6):667–676, 2002.

51. F. Le Gall. Faster algorithms for rectangular matrix multiplication. In 2012 IEEE 53rd annual symposium on foundations
of computer science, pages 514–523. IEEE, 2012.

52. Y. T. Lee and A. Sidford. Path finding methods for linear programming: Solving linear programs in õ(vrank) iterations
and faster algorithms for maximum flow. In 55th IEEE Annual Symposium on Foundations of Computer Science,, pages
424–433, 2014.

53. S. Li. On constant factor approximation for earth mover distance over doubling metrics. CoRR, abs/1002.4034, 2010.
54. Y. Liu, H. Ding, D. Chen, and J. Xu. Novel geometric approach for global alignment of PPI networks. In Proceedings of

the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., pages
31–37, 2017.

55. S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137, 1982.

29

56. N. Malod-Dognin, K. Ban, and N. Pržulj. Unified alignment of protein-protein interaction networks. Scientific Reports,
7(1):953, 2017.

57. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar. Handbook of fingerprint recognition. Springer Science & Business
Media, 2009.

58. T. Mikolov, Q. V. Le, and I. Sutskever. Exploiting similarities among languages for machine translation. arXiv preprint
arXiv:1309.4168, 2013.

59. D. Mukherjee, A. Guha, J. M. Solomon, Y. Sun, and M. Yurochkin. Outlier-robust optimal transport. In International
Conference on Machine Learning, pages 7850–7860. PMLR, 2021.

60. A. Munteanu and C. Schwiegelshohn. Coresets-methods and history: A theoreticians design pattern for approximation
and streaming algorithms. Künstliche Intell., 32(1):37–53, 2018.

61. S. Nasser, I. Jubran, and D. Feldman. Low-cost and faster tracking systems using core-sets for pose-estimation. CoRR,
abs/1511.09120, 2015.

62. J. B. Orlin. A faster strongly polynominal minimum cost flow algorithm. In Proc. of the 20th Annual ACM Symposium
on Theory of Computing, pages 377–387, 1988.

63. J. B. Orlin. A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming,
78(2):109–129, 1997.

64. J. B. Orlin, S. A. Plotkin, and É. Tardos. Polynomial dual network simplex algorithms. Mathematical programming,
60(1-3):255–276, 1993.

65. S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22(10):1345–1359, 2010.
66. M. Perrot, N. Courty, R. Flamary, and A. Habrard. Mapping estimation for discrete optimal transport. Advances in

Neural Information Processing Systems, 29, 2016.
67. Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis.,

40(2):99–121, 2000.
68. E. S. Sayed Mohammad and B.-J. Yoon. A network synthesis model for generating protein interaction network families.

PloS one, 7, August 2012.
69. P. H. Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):1–10, 1966.
70. R. Sharathkumar and P. K. Agarwal. Algorithms for the transportation problem in geometric settings. In Proceedings of

the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 306–317, 2012.

71. R. Sharathkumar and P. K. Agarwal. A near-linear time ϵ-approximation algorithm for geometric bipartite matching. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22,
2012, pages 385–394, 2012.

72. J. Sherman. Generalized preconditioning and undirected minimum-cost flow. In 28th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 772–780, 2017.

73. R. V. Solé, R. Pastor-Satorras, E. Smith, and T. B. Kepler. A model of large-scale proteome evolution. Advances in
Complex Systems, 5(01):43–54, 2002.

74. K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages 281–290, 2004.

75. É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3):247–256, 1985.
76. S. Todorovic and N. Ahuja. Region-based hierarchical image matching. International Journal of Computer Vision,

78(1):47–66, 2008.
77. P. M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18(6):1201–1225, 1989.
78. K. R. Varadarajan and P. K. Agarwal. Approximation algorithms for bipartite and non-bipartite matching in the plane.

In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January 1999, Baltimore,
Maryland, USA, pages 805–814, 1999.

79. A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani. Modeling of protein interaction networks. Complexus,
1(1):38–44, 2003.

80. C. Villani. Topics in optimal transportation. American Mathematical Society, 58, 2008.
81. G. Wahba. A least squares estimate of satellite attitude. SIAM review, 7(3):409–409, 1965.
82. C. Wang, P. Krafft, and S. Mahadevan. Manifold alignment, 2011.
83. Z. Yin, H. Lan, G. Tan, M. Lu, A. V. Vasilakos, and W. Liu. Computing platforms for big biological data analytics:

perspectives and challenges. Computational and structural biotechnology journal, 15:403–411, 2017.
84. H. Youn, L. Sutton, E. Smith, C. Moore, J. F. Wilkins, I. Maddieson, W. Croft, and T. Bhattacharya. On the universal

structure of human lexical semantics. Proceedings of the National Academy of Sciences, 113(7):1766–1771, 2016.
85. M. Zhang, Y. Liu, H. Luan, and M. Sun. Earth mover’s distance minimization for unsupervised bilingual lexicon

induction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017, pages 1934–1945, 2017.

30

A Proof of Theorem 2

Let Topt be the optimal rigid transformation with respect to minT W2
2

(
A, T (B), λ

)
. Since T̃ yields

c-approximation for minimizing W2
2

(
SA, T (SB), λ

)
, we have

W2
2

(
SA, T̃ (SB), λ

)
≤ c ·min

T
W2

2

(
SA, T (SB), λ

)
≤ c · W2

2

(
SA, Topt(SB), λ

)
. (25)

We denote the flow of W2
2

(
SA, T̃ (SB), λ

)
as F̃ s = {f̃s

ij} and the flow of W2
2

(
A, T̃ (B), λ

)
as F̃ =

{f̃ij}. Then we have

W2
2

(
A, T̃ (B), λ

)
=

1

λmin{WA,WB}
min
F̃

n1∑
i=1

n2∑
j=1

f̃ij ||ai − T̃ (bj)||2

≤ 1

λmin{WA,WB}

n1∑
i=1

n2∑
j=1

f̃s
ij ||ai − T̃ (bj)||2

≤︸︷︷︸
by (11)

1

λmin{WA,WB}

n1∑
i=1

n2∑
j=1

f̃s
ij

(
(1 + 2ϵ)||a′i − T̃ (b′j)||2 + (2ϵ+ 4ϵ2)∆2

)
=

(1 + 2ϵ)

λmin{WA,WB}

n1∑
i=1

n2∑
j=1

f̃s
ij(||a′i − T̃ (b′j)||2) + (2ϵ+ 4ϵ2)∆2

∑n1
i=1

∑n2
j=1 f̃

s
ij

λmin{WA,WB}

= (1 + 2ϵ)W2
2 (SA, T̃ (SB), λ) + (2ϵ+ 4ϵ2)∆2. (26)

By using the similar idea, we denote the flow of W2
2

(
SA, Topt(SB), λ

)
as F s = {fs

ij} and the flow of
W2

2

(
A, Topt(B), λ

)
as F = {fij}. Then we have

W2
2

(
SA, Topt(SB), λ

)
=

1

λmin{WA,WB}
min
F s

n1∑
i=1

n2∑
j=1

fs
ij ||a′i − Topt(b′j)||2

≤ 1

λmin{WA,WB}

n1∑
i=1

n2∑
j=1

fij ||a′i − Topt(b′j)||2

≤︸︷︷︸
by(12)

1 + 2ϵ

λmin{WA,WB}

n1∑
i=1

n2∑
j=1

(
fij ||ai − Topt(bj)||2 + (2ϵ+ 4ϵ2)∆2

)
= (1 + 2ϵ)W2

2

(
A, Topt(B), λ

)
+ (2ϵ+ 4ϵ2)∆2. (27)

Combining (25), (26), and (27), we have

W2
2

(
A, T̃ (B), λ

)
≤︸︷︷︸

by(26)

(1 + 2ϵ)W2
2

(
SA, T̃ (SB), λ

)
+ (2ϵ+ 4ϵ2)∆2

≤︸︷︷︸
by(25)

(1 + 2ϵ) · c · W2
2

(
SA, Topt(SB), λ

)
+ (2ϵ+ 4ϵ2)∆2

≤︸︷︷︸
by(27)

c(1 + 2ϵ) · ((1 + 2ϵ)W2
2

(
A, Topt(B), λ

)
+ (2ϵ+ 4ϵ2)∆2) + (2ϵ+ 4ϵ2)∆2

= c(1 + 2ϵ)2 · W2
2

(
A, Topt(B), λ

)
+ 2ϵ(c+ 1 + 2cϵ)(1 + 2ϵ)∆2, (28)

and the proof is completed.

31

	A Data-dependent Approach for High Dimensional (Robust) Wasserstein Alignment

