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Shape-preserving average frequency response curves using rational 
polynomials: A case study on human stapes vibration measurements 
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A B S T R A C T   

The vibration of the human middle ear shows sharp variations in the amplitude and phase over the audible frequency range. Measurements often differ between 
subjects, and it is difficult to determine the average response of the human middle ear. However, such an average response curve is of great value in detecting 
pathological ears. Simply averaging the amplitude and phase for each frequency results in a “washed-out” view due to differences in the locations of the maxima and 
minima of the curves. Therefore, a method is required to consider each individual curve’s shape in the average. 

This paper discusses a novel method based on frequency-response transfer functions. Each of the individual measurements is fitted with a rational polynomial. The 
average frequency response is determined by a weighted averaging of the individual curves’ numerator and denominator polynomial coefficients. Such an average 
preserves the shape of the individual curves. The method is applied to vibrational data of the human stapes. As expected from the literature, two resonance fre
quencies at 1.14 ± 0.13 kHz and 3.61 ± 0.43 kHz were found. A comparison with other methods is made to discuss the method’s advantages and disadvantages.   

1. Introduction 

To investigate the behavior of the middle ear under incident sound, 
the velocity response of the ossicles is often measured. Using methods 
such as Laser Doppler Vibrometry (LDV), the vibration amplitude and 
phase due to incident sound can be recorded. As responses differ be
tween individuals, average response curves must be computed from the 
LDV data to obtain a generic middle ear response (ME). Ideally, these 
average response curves can then be used to detect pathological ears. 
Moreover, computer simulations of the ME rely on these data to validate 
the accuracy of the models [3]. However, there is no well-defined 
method for considering the variations between individuals to compute 
such average response curves. 

Response curves of the ME of individuals show similar characteris
tics. For example, we show in Fig. 1 human stapes footplate response 
curves measured using LDV by Niklasson et al. [8]. Fig. 1A shows the 
velocity amplitude of each of the six footplates measured in Ref. [8]. 
Fig. 1B shows the corresponding phase of the motion. It can be observed 
that each curve, shown in gray, responds similarly to sound. At low 
frequencies, the velocity amplitude increases gradually and reaches a 
resonance around 1 kHz. The velocity remains constant up to fre
quencies of 3 kHz, but then sharply increases again. Above 5 kHz, all six 
samples show a rapid decrease in velocity amplitude. The velocity phase 
shows a similar behavior (Fig. 1B). In all samples, the input sound 
pressure wave leads by 0.25 cycles at low frequencies. A slight drop in 

the phase is seen when the first resonance around 1 kHz is reached. 
When the second resonance between 3 and 4 kHz is reached, the indi
vidual curves show a sharp change in the phase of about − 0.5 cycles. 
The experimental procedure used in Ref. [8] had a partially intact ear 
canal. Therefore, two resonances are present in the data. The first 
resonance around 1 kHz is that of the hinging motion of the middle ear 
ossicles [2,5,8], and the second resonance around 3 kHz is that of the ear 
canal [6,8,9]. 

Fig. 1 illustrates why the traditional average of the velocity curves is 
a poor predictor of the generic response of the footplate. The solid black 
line represents the average curve of the experimental data in Fig. 1. Due 
to the differences in the location of the resonance peaks on the frequency 
axes, the amplitude response of the individual curves is ‘washed-out’ in 
the average. Similarly, the sharp phase jump between 3 and 4 kHz of the 
individual curves is lost when taking the average on each frequency. 

Gladiné and Dirckx [4] developed a semi-automatic landmark 
assignment (SLA) method to compute shape-preserving average 
response curves. SLA attempts to align the LDV curves before averaging. 
However, shifting the curves does not allow aligning all resonance 
peaks, since the distance between the peaks in one curve on the fre
quency axis can differ between measurements. Therefore, a warping 
function was defined to rescale the data along the frequency axis. First, 
the authors defined so-called landmarks on the individual curves (e.g., at 
resonance peaks). Then, the average location of the landmarks on the 
frequency axis for all measurements was determined. Finally, the 
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individual landmarks were shifted to the mean location, and the 
response curve in-between the landmarks was deformed using the 
warping function. While SLA gave good results, the authors of [4] dis
cussed some drawbacks. First, the number of features needs to be cho
sen, which requires knowledge of the expected behavior of the response 
curves. Secondly, the data is used piecewise over the frequency axis, and 
the intervals and the amount of datapoints between measurements 
needs to be the same. A final remark is that all curves contribute equally 
to the average. The authors of [4] manually removed one of the curves to 
account for a measurement that deviated significantly from the other 
five measurements. Therefore, it would be valuable to develop a method 
which does not require a priori knowledge of the behavior of the 
response curve (the locations of the landmarks), and achieves curve 
alignment with fewer degrees of freedom to minimize the effect of 
measurement noise on the results. 

This paper presents a method to determine the average response 
curve of frequency response data, which preserves the shape of the in
dividual measurement curves. The procedure is based on frequency 
response fitting (FR-fit), and the theory of transfer functions is used. 
Transfer functions describe the behavior of oscillating systems using 
rational polynomials (see Materials and Methods). An automated way to 
choose the best order of the polynomials during the data fitting is pre
sented. It is shown that no a priori knowledge of the system’s behavior is 
required, and that the method allows identification of the location of the 

resonance peaks on the frequency axis. The stapes velocity data of 
Niklasson et al. [8] is used as a real-life illustrative example. Still, the 
FR-fit method is general, and any vibrating system can be analyzed using 
the method presented here. Additionally, we compare our FR-fit method 
with the results of the SLA approach of Gladiné and Dirckx [4] (see 
Discussion). 

2. Materials and methods 

2.1. Describing frequency-response data using rational polynomials 

As seen in Fig. 1, the velocity response of the stapes is complicated 
and highly frequency dependent. When systems such as the linear har
monic oscillator are studied analytically, the solutions to the equation of 
motion can often be written as a rational polynomial [1]. The motion’s 
amplitude and phase are then computed for each frequency via a ratio of 
two polynomials. This function is often called the transfer function of the 
system. Mathematically, the system’s transfer function H(a, b, s) can be 
expressed as 

H(a, b, s)=

∑nz

i=0
aisi

∑np

j=0
bjsj

(1) 

In Eq. (1), the vector a holds all the coefficients ai of the numerator 
with order nz. The order nz determines the number of zeros in the 
polynomial of the numerator. Similarly, the order np determines the 
number of zeros in the denominator. The coefficients bj are grouped in 
the vector b. Since zeros in the denominator increase the response 
amplitude, these zeros are called poles. For the present paper, the poles’ 
locations provide insight into the locations of increased stapes velocity 
and will define the peaks in Fig. 1. The value of s in Eq. (1) is the input 
frequency. However, transfer functions are computed in analytic prob
lems via a Fourier (or Laplace) transform of the original differential 
equation [1]. Therefore, we do not use the original frequency f as the 
function input, but the frequency expressed in radians per second ω =

2πf . Moreover, the data are transformed to the complex domain, so the 
final relation becomes s = iω, with i the imaginairy unit. Since s is 
complex, the value of H(a, b, s) is also complex. The amplitude of 
H(a, b, s) provides the velocity amplitude, and the phase angle provides 
the phase of the motion. 

2.2. Curve fitting procedure and determining average frequency response 

Each of the six stapes velocity curves of Niklasson et al. (2018) given 
in Fig. 1 will be denoted by the complex value hk(s) in what follows. In 
brief, our FR-fit method consists out of the following steps:  

1. For each measurement hk(s), compute the response curve H(ak, bk, s)
by minimizing the squared difference of hk(s) and H(ak, bk, s). This 
solution depends on the initial choice of nz and np. 

2. Next, compute the average response curve H̃(ã, b̃, s) using the indi
vidual curve coefficients ak and bk.  

3. Then, compute the deviation of the average curve H̃(ã, b̃, s) from the 
individual curves. In this way, the goodness of fit of the average 
curve with the entire dataset is known.  

4. Repeat steps 1–3 for different choices of nz and np. Higher nz and np 
allow to model more complicated behavior, but may lead to over- 
fitting and will be more susceptible to noise in the data.  

5. Finally, choose the best result of step 4. The optimal choice of np 

determines the number of poles and thus the number of resonance 
peaks. From the locations of the poles H̃(ã, b̃, s) on the frequency 
axes, the system’s resonant frequencies can be determined. 

In step 1, the MatLab command ‘tfest’ was used to determine the 

Fig. 1. A) Stapes velocity amplitude at different frequencies of sound measured 
by Niklasson et al. [8]. Gray lines denote individual measurements. The black 
curve shows the average stapes response computed by averaging the velocities 
for each frequency. A “washed-out” view of the stapes response is seen, which 
does not represent the behavior of the individual curves. B) The corresponding 
phase of the stapes velocity. Similarly, the average smooths out the sharp phase 
gradients and does not accurately represent the stapes motion. 
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function H(ak, bk, s) for each dataset hk(s). This command minimizes the 
squared difference of the measurement data hk(s) and the estimated 
response function H(ak,bk, s). Since Eq. (1) is non-linear in the terms ak 
and bk, an iterative algorithm was used to determine the best possible 
solution. We refer to the MatLab documentation of ‘tfest’ [7] for more 
details on the exact fitting algorithm. 

In step 2, the average response H̃(ã, b̃, s) needs to be computed based 
on the H(ak, bk, s) curves. To achieve this goal, the following computa
tions were performed 

ã=

1
6

∑6

i=1
wiai

1
6

∑6

i=1
wi

; b̃ =

1
6

∑6

i=1
wibi

1
6

∑6

i=1
wi

(2)  

H̃(ã, b̃, s) : =

∑nz

i=0
ãisi

∑np

j=0
b̃jsj

(3) 

Eq. (2) determines the average coefficients ã and b̃ by weighted 
averaging over the individual polynomial coefficients ak and bk. Then, 
Eq. (3) defines the new average response curve as the rational poly
nomial with coefficients ã and b̃. The weights wi are computed as fol
lows. First, we compute the roots (poles) of the bk polynomial for each 
dataset. Next, we compute the distance of the poles to the median pole 
location of all curves. Using the median allows for a robust estimation of 
the true pole location, since the number of curves is often limited. 
Finally, we take the inverse of the distances as our weights wi, so curves 
with large distances to the median poles contribute less to the average 
curve. 

Step 3 determines the goodness of the fit with the current choice of nz 
and np. Hence, a measure of the error φk(s) between the average curve 
and the individual curves is required. While it is possible to use the 
squared difference of the H (ak, bk, s) and hk(s) as in Step 1, we found 
better results by using 

φk(s)=
⃒
⃒
⃒
⃒log10

(
hk⋅h∗

k

H⋅H∗

)⃒
⃒
⃒
⃒ (4) 

The asterisk in Eq. (4) denotes the complex conjugate. By comparing 
the logarithm of the squared amplitudes in Eq. (4), the high- and low- 
frequency ranges also contribute meaningfully to the error measure 
φk(s). When a linear scale is used, the large amplitude of the resonance 
peaks causes the contribution of the low and high frequencies to be 
negligible. When a range of nz and np values are computed, the lowest 
value of φk(s) gives the optimal combination of poles and zeros to 
describe the current dataset. 

3. Results 

Using Eq. (4) and steps 1–5 outlined previously, it was found that the 
best combination of nz and np was {4,4} for the current dataset. Thus, the 
order of the numerator and denominator were the same and of order 4. 
In general, the number of poles would then be four. However, the 
polynomial coefficients of H(ak,bk,s), and of the average curve H̃(ã, b̃,s), 
are real-valued and not complex-valued. Therefore, the poles of the in
dividual curves H(ak, bk, s) will be either real or appear in complex- 
valued pairs. It was found that for all of the six H(ak, bk, s) response 
curves, the poles appeared in two complex conjugate pairs. Therefore, 
there were only two unique poles on the frequency axis. 

Fig. 2 shows a boxplot to inspect the distribution of the two pole 
frequencies for all of the six curves. Since the two poles differ in fre
quency, we standardized the frequency values. Standardization was 
performed by subtracting the median pole frequency from each of the 
two sets of poles and dividing by the median absolute deviation. 

Standardization accounts for differences in the spread of the pole fre
quencies due to the larger frequency value of the second pole. 

In Fig. 2, each measurement is shown via a gray circle. It can be seen 
that the variation on the first pole is more prominent than on the second 
pole. For the first pole, measurement 5 produces the largest estimation 
of the pole frequency, while measurement 3 results in the smallest fre
quency estimation. For the second pole, measurement 6 results in the 
largest frequency estimation. Measurement 5 results in the smallest 
estimation of the second pole frequency. Measurement 5 produced the 
most spread for both poles on the results in Fig. 2. Gladiné and Dirckx 
[4] argued that measurement 5 may be an outlier based on similar ob
servations and manually removed it from it their computations. In the 
method presented here, such manual intervention is not required. The 
weights wi of data 5 will be small due to the large distance to the median 
pole value. 

In Fig. 3, the results of our FR-fit approach are visualized. Fig. 3A 
shows the amplitude, and Fig. 3B shows the phase. Two curves are 
shown using our FR-fit approach. The first curve (in red with right- 
pointing triangles) was computed by setting all wi weights to a value 
of one, i.e., with all data contributing equally. The second curve (in 
green with left-pointing triangles) used the automatically computed 
weighted average as outlined above. Additionally, we show the exper
imental data of Niklasson et al. [8] (solid gray lines) and the results of 
the SLA method [4] (blue curve with square markers). The black curve 
with circular markers denotes the regular average computed per fre
quency value. The two vertical dashed lines show the median pole lo
cations. The median pole values found were 1.14 ± 0.13 kHz and 3.61 

± 0.43 kHz, respectively. The coefficients of the weighted curve are 
given in the appendix in Table. 1 for researchers wishing to replicate our 
results. 

4. Discussion 

Fig. 3 shows the proposed steps of Sec. 3.2 lead to an accurate 
description of the average stapes response. It was found that the com
bination nz = np = 4 resulted in the lowest error via Eq. (4). This led to 
the identification of two unique poles. The presence of two poles is 

Fig. 2. Boxplot of the two unique poles found by fitting the six H(ak, bk, s)
curves. The frequency values of the two poles were standardized to account for 
scaling effects due to the higher value of the second pole on the frequency axis. 
The (blue) box contains the 25th to 50th percentile of the data. The (red) line 
inside the box denotes the median value of the pole, which is zero due to the 
standardization. Each individual measurement is shown via a gray circle and 
numbered accordingly. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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expected from the literature, since both the middle ear resonance [2,5,8] 
and the ear canal resonance [6,8,9] should be present in the data. The 
median pole values found were 1.14 ± 0.13 kHz and 3.61 ± 0.43 kHz, 
respectively. When the weighting wi of Eq. (2) was omitted, the resulting 
FR-fit (with right-pointing triangles) gave poles at slightly higher fre
quencies than with the weighting (green with left-pointing triangles). 
The clearest effect is that the weighted curve has a larger amplitude at 
the second pole location, which almost coincides with the result of the 
SLA method at that frequency. 

Compared to SLA, our FR-fit method has some important advantages. 
In Ref. [4], it was argued that curve 5 was an outlier. However, SLA 
needs to define an average landmark location to determine the shift of 
each of the measurement curves. Therefore, one needs to select the 
curves used in the average before an additional curve can be compared. 
This approach assumes that curve 5 is an outlier to omit it from the 
average. Our method does not have this drawback. Since we first 
determine the poles of each curve, see Fig. 2, we can look at the indi
vidual pole locations on the frequency axis. By using the distance of the 
poles of the data to the median pole frequency value, curves with large 
deviations contribute little to the average response curve. A second 
related advantage is that our method immediately identifies the poles of 
the response curve. When computer models of the middle ear are built, 
the resonance location often changes via changing the model parame
ters, such as the stiffness. The pole locations are immediately returned 
using FR-fit, while SLA would still require some additional steps to es
timate the pole locations. 

One consequence of our method is that it has a smoothing effect. 
Compared to SLA, the degrees of freedom of our method are much lower. 
We used ten polynomial coefficients in total, and primarily the five 
denominator coefficients determine the resonance behavior. SLA used 
100 equally spaced frequency intervals with a cubic spline interpolation, 
which resulted in 102 degrees of freedom. Note that this is the major 

difference between the method presented here and SLA. Our method 
uses all velocity data over the frequencies measured to determine the 
transfer function. I.e., no resampling and subdivision over the frequency 
axis are required. The result is expressed on a polynomial basis, 
requiring the ten polynomial coefficients (see appendix). SLA requires 
the data to be resampled and subdivided over the frequency range, 
which may introduce interpolation artifacts. The result of SLA is 
expressed on a cubic piecewise basis, which is more complicated to 
share and implement for other users. 

SLA may be more advantageous than the present method depending 
on the application. If large amplitude or phase variations are expected 
on a small portion of the frequency axis, the order of the polynomials in 
the FR-fit would need to be high, which lowers the numerical stability. 
SLA would not suffer from a poorer fit, since it uses the original data 
curves to align it to form the average. However, SLA may have difficulty 
assigning the landmarks before the curves are aligned. If the response 
changes slowly along the frequency axis (as in Fig. 3 up to 6 kHz) FR-fit 
can better smooth out minor local variations and provide a clear over
view of the average system response. Compared with the classical 
average (Fig. 3, black-dotted curve), both SLA and FR-fit provide a better 
description of the average system response. 

5. Conclusion 

This paper presented a novel method to determine the average fre
quency response curve with preservation of response characteristics of 
individual experimentally acquired curves. We used rational poly
nomials to perform a weighted frequency response curve fit (FR-fit) on 
human stapes velocity data. An order of four in both the numerator and 
denominator polynomials gave the best FR-fit results, which was ex
pected from the literature. The two unique poles (zeros of the denomi
nator polynomial) directly identified the two resonance locations for 

Fig. 3. A) Stapes velocity amplitude in dB SPL. B) 
Velocity phase in cycles. The experimental data of 
Niklasson et al. [8] is shown in solid gray. Our fre
quency response fit (FR-fit) with fixed weights of one 
is shown in red with right-pointing triangles. The 
weighted FR-fit curve is shown in green with 
left-pointing triangles. The blue line with square 
markers denotes the SLA curve of Gladiné and Dirckx 
[3]. The black curve with circular markers denotes 
the arithmetic average per frequency value. The two 
vertical dashed lines show the median pole locations 
of 1.14 ± 0.13 kHz and 3.61 ± 0.43 kHz, respec
tively. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web 
version of this article.)   
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each of the six individual curves. 
The average curve was determined from the individual measured 

curves by weighted averaging individual FR-fit polynomial coefficients. 
It was found that the stapes vibration showed two resonance peaks at 
1.14 ± 0.13 kHz and 3.61 ± 0.43 kHz. Compared to the classical 
average, our method provides a more realistic description of the general 
population’s generic average frequency response of the footplate. 
Compared to other methods, FR-fit does not require a priori knowledge 
of the locations of the peaks in the data and is fully automatic. However, 
a smoothing effect is present and rapid variations in velocity may be 
missed using FR-fit. 
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Appendix. Polynomial coefficients  

Table 1 
Polynomial coefficients of the numerator and denominator of the weighted FR curve presented in Fig. 3.   

ã0 ã1 ã2 ã3 ã4 

Coefficient numerator − 8.0680E10 3.2784E9 − 2.4723E4 − 2.6184 1.2108E-4  
b̃0 b̃1 b̃2 b̃3 b̃4 

Coefficient denominator 9.5834E15 1.2666E12 2.0010E8 3.1061E3 0.3329  
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