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Abstract—Studying networked systems in a variety of domains,
including biology, social science and internet of things, has recently
received a surge of attention. For a networked system, there are
usually multiple types of interactions between its components,
and such interaction type information is crucial since it always
associated with important features. However, some interaction
types which actually exist in the network may not be observed
in the metadata collected in practice. This paper proposes an
approach aiming to detect previously undiscovered interaction
types (PUITs) in networked systems. The first step in our proposed
PUIT detection approach is to answer the following fundamental
question: is it possible to effectively detect PUITs without utilizing
metadata other than the existing incomplete interaction type
information and the connection information of the system? Here,
we first propose a temporal network model which can be used
to mimic any real network and then discover that some special
networks which fit the model shall a common topological property.
Supported by this discovery, we finally develop a PUIT detection
method for networks which fit the proposed model. Both analytical
and numerical results show this detection method is more effective
than the baseline method, demonstrating that effectively detecting
PUITs in networks is achievable. More studies on PUIT detection
are of significance and in great need since this approach should
be as essential as the previously undiscovered node type detection
which has gained great success in the field of biology.

Index Terms—Networked systems, previously undiscovered
interaction type, interaction type detection.

I. INTRODUCTION

NETWORKED systems, ordinarily modeled as networks,
in a broad range of fields, including biology [1]–[3],

the study of human behavior [4]–[6] and the field of internet
of things [7]–[10], usually involve multiple interaction types
between components leading them to exhibit heterogeneous
structures [11]–[13]. An example is the spreading network of
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COVID-19 which is composed as follows: (1) initialize the
virus spreading network (VSN) G as an empty network without
nodes and edges; (2) if an infected person vi infects another
one vj , then add nodes vi and vj to G and connect vi and vj
with a directed edge vi → vj (if the node to add already exists
then do nothing). As COVID-19 mutates very frequently and
has a lot of variants [14], the collected VSN should be a joint
spreading network of COVID-19 and its variants. Marking
these viruses with different labels, we can find each directed
edge in the spreading network owns a label-set. Specifically,
if node vi passes virus Cs to node vj , then assign a label
Cs to edge vi → vj . Note that node vi could be infected by
multiple species of viruses and is able to spread these viruses
to others simultaneously. Consequently, each directed edge in
the spreading network should be attached with at least one
label. In other words, each edge could have multiple interaction
types at the same time, and multiple interaction types exist in
such VSN.

However, for a given networked system, it is usually the
case that our knowledge on the system is limited to its
connection information between components and the collected
incomplete interaction type information. On one hand, the
situation that only incomplete interaction type information
is available implies that there exist previously undiscovered
interaction types (PUITs) in the system. For instance, in a
VSN whose edge labels refer to virus species, the complete
interaction type information of the network should be hardly
to be gained, since the resource and time costs for large-scale
RNA sequencing is extremely high. This fact implies that
there could exist previously unknown variants of COVID-19
hidden in the VSN. On the other hand, besides the collected
interaction type information, what information we can utilize
to detect PUITs most of the time is limited to the connection
information between components. These two observations
motivate us to propose a PUIT detection problem for networked
systems: find out the connections between components that own
PUITs merely by the connection information and the collected
incomplete interaction type information. Solving this problem
is of great benefit. For example, these techniques would help
the World Health Organization (WHO) and countries to speed
up the discovering of new virus variants and reduce the large-
scale RNA sequencing costs. However, we realize that the
proposed problem is an unsolved detection problem since all
the existing results related to this problem as far as we know
cannot give it a solution.

We first map the proposed PUIT problem in networked
systems to an edge label detection problem in complex networks
which have been studied for years [15]–[25]. Inspired by the
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example on VSNs introduced above, for a networked system
with multiple interaction types, we can employ an edge label to
represent an interaction type and a nonempty label-set to depict
what interaction types an edge has. Thus, the PUIT detection
problem can be interpreted as a previously undiscovered edge
label (PUEL) detection problem. Specifically, we formulate
the proposed PUEL (PUIT) detection problem as follows. Let
G = (V, E , L) be a network where V and E denote the set
of its nodes and the set of its edges, respectively. Notation L
stands for a mapping which maps each edge to the nonempty
label-set associated with the edge. For convenience, we call L
the complete edge label information of G. Additionally, for an
edge e, we call L(e) e’s complete label-set. Let C = ∪e∈EL(e).
Obviously, C consists of all the labels that can be observed
in G. Assume that G’s complete edge label information L is
unavailable and the currently obtained edge label information
of G is denoted by L′. Similarly, L′ can be modeled as a
mapping by which each edge e in E is mapped to a subset of
L(e). Generally speaking, some edges can be found without
label annotated in the collected data. That is to say, L′ can map
an edge to an empty set. We say L′ is incomplete if there is
an edge e such that L′(e) & L(e). Let C′ = ∪e∈EL

′(e) be the
set consisting of all the known edge labels. If C′ ̸= C, we say
there exist PUELs in the network, and the task of the PUEL
detection is to find out the edges whose complete label-sets
have nonempty intersections with the PUEL set C \ C1.

Now, we explain why existing results are not fit for our
proposed problem. Existing research on interaction type (edge
label) detection [15]–[19], such as the sign prediction [20]–
[25], aims to predict what observed labels an unannotated or
incompletely annotated edge has. Thus, current methods are
unable to annotate edges with labels that have not appeared
in the networked system before. As a result, these methods
can neither answer whether there are PUELs in the system nor
suggest inspecting which edges in the networked system has
the greatest chance to discover PUELs. Consequently, we lack
methods for detecting PUELs other than the random guessing
method, which refers to the baseline method in this paper.

Besides the fact that all the existing results on label detection
are helpless, we are facing another fact which aggravates
the difficulty of solving the problem. For a PUEL we know
neither what physical meaning and features it has nor the
relationships between it and other already observed labels,
making the existing yet incomplete edge label information
useless in solving the problem. These barriers lead us to ask a
fundamental question: is the proposed PUEL detection problem
solvable by non-trivial methods (methods other than random
guessing)?

To answer the question, this paper leverages the system’s con-
nection information to develop a non-trivial and effective PUEL
detection method for networks generated by a generic generat-
ing network model. Specifically, we first propose a temporal
network model called the degradation-evolution network model.
Initializing the model with some settings, the model outputs an
instance sequence (G(t1),G(t1 + 1), · · · ,G(0), · · · ,G(t2))
where t1 < 0 < t2. For an instance G(t′), we call another
instance G(t′′) the evolved (degraded) version of G(t′) if
t′′ > t′ (t′′ < t′). We use G(+∞) (G(−∞)) to denote

G(t)’s ultimately evolved (degraded) version. Then, studying
the ultimately evolved and degraded versions of an arbitrary
network, we discover that the two special networks own a
particular topological property. This discovery enables us
to develop a PUEL detection method which has perfect
(accuracy of 100%) detection performance in networks which
are ultimately evolved or degraded. For instance G(t) which is
generated by the model and not ultimately evolved or degraded,
the proposed method has various performance for detecting
PUELs in G(t) as t varies. Finally, to evaluate the performance
of the proposed method, we apply it to a number of synthetic
networks generated by the model, and find that the method’s
average accuracy is markedly higher than the average accuracy
of random guessing. This result answers the question introduced
above: there are non-trivial methods for detecting PUEL in
networks.

We briefly summarize the paper’s contributions as follows.
1. A novel detection approach — detecting previously undis-

covered interaction types in networked systems purely
from the connection information and the incomplete
interaction type information— is proposed which is of
practice important but remains unsolved.

2. We introduce a universal network model — degradation-
evolution network model — to which an arbitrary real-
world directed network can be mapped.

3. We discover an important relationship between network
topology and its interaction types (see Section III for
details).

4. Based on this discovery, we derive an effective detection
method for the unsolved PUEL detection problem.

To sum up, the proposed PUEL detection approach is not only
useful but also achievable, and we believe the PUEL detection
is as essential and promising as the previously undiscovered
node type detection which has gained great success in the filed
of biology [1]–[3].

The rest of this paper is organized as follows. In Section II,
we introduce the degradation-evolution network model in detail.
In Section III, we present our discovery on the topological
property of networks which fit the proposed network model.
In Section IV, we introduce a non-trivial PUEL detection
method and a variant version which better fit a special scheme.
In Section IV, we introduce several metrics to evaluate the
performance of the methods proposed in Section IV. In
Section VI, experimental results are exhibited. The last section
concludes the whole paper.

II. DEGRADATION-EVOLUTION NETWORK MODEL

Let t be the time and G be a network. We use t < 0,
t = 0 and t > 0 to denote the past, the present and the
future, respectively. At present (i.e. t = 0), we initialize G =
G(0) to be an arbitrary network with n nodes and m edges
with labels in C, where C = {C1, C2, · · · , Ch} represents
all the labels that can be observed in the whole course of
G’s mutation process. Let G(t) = (V(t), E(t), L(t)) be a
temporal network with V(t) = {v1, v2, · · · , vn}, for time t =
−∞, · · · ,−1, 0, 1, · · · ,+∞. For an edge vi → vj in G(t),
we employ notation C(i, j, t) to denote the label-set associated
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TABLE I
FREQUENTLY-USED NOTATIONS IN THIS PAPER.

Notation Interpretation
(Basic notations and functions)
t System time
vi Node with index i
vi → vj Directed edge from vi to vj
⌈e⌉src The source node of edge e
⌈e⌉tar The target node of edge e
χE(i, j) χE(i, j) = 1 if vi → vj ∈ E; otherwise χE(i, j) = 0
G (resp. G(t)) Network/system (resp. network/system at time t)
V (resp. V(t)) The set of nodes in G (resp. G(t))
E (resp. E(t)) The set of edges in G (resp. G(t))
(r,G)-follower Node vi is vj ’s (r,G)-follower if the length of the

shortest simple path from vi to vj in G is r
L′(e) The currently obtained edge label-set of edge e
L(e) The complete edge label-set of edge e
C All the labels that can be observed in G
(Basic notations used in the degradation-evolution network model)
Gl(t) The l-th layer of G(t)
Vl(t) The set of nodes in Gl(t)
El(t) The set of edges in Gl(t)
C(i, j, t) The label-set associated with the ordered node-pair

(vi, vj) at t
Ai,l Node vi’s l-attractiveness
Amax,l Amax,l = maxvi∈V Ai,j

Pl(i, t) Node vi’s potential energy with respect to the l-th
layer of G at t

P (i, t) Node vi’s potential energy at t
P (G, t) The system G’s potential energy at t
∆(E) The Delta-property of edge-set E
(Basic notations used in the PUEL detection scheme in sections IV and V)
G A network with two edge labels
C1 The already-observed edge label in G
C2 The previously-undiscovered edge label in G
E1 The set consists of all the edges with label C1 in G
E1 All the edges that are observed with C1

E1-D-Top The proposed PUEL detection algorithm based on E1

n1-D-Top The PUEL detection algorithm based on a random
subset with n1 elements in E1

ω(G |E1) The Precision of algorithm E1-D-Top
λ(G |E1) The AUC of algorithm E1-D-Top
ωn1 (G) The Precision of algorithm n1-D-Top
λn1 (G) The AUC of algorithm n1-D-Top

with it. As introduced before, every edge in networks should
be annotated at least one label. Therefore, there exists an edge
from vi to vj at time t if and only if C(i, j, t) ̸= ∅.

Regarding the subnetwork consisting of all the edges with
the same label Cs and all the nodes involved in G(t) as
the s-th layer of network G(t), we can divide G into h
different layers. Specifically, we denote the l-th layer of
G(t) as Gl(t) = (Vl(t), El(t)) (see Fig. 1a). Inspired by the
attractiveness model [26], we assume: (1) for l ∈ {1, 2, · · · , h},
every node vi in G(t) is equipped with an attractiveness
Ai,l ≥ 0, called vi’s l-attractiveness or attractiveness associated
with layer Gl(t) (see Fig. 1a); (2) different nodes should have
distinct nonzero attractiveness associated with the same layer
of the network; (3) in each layer of the system, a node always
intends to connect to nodes with high attractiveness associated
with this layer, and it is able to rewire its out-edges in the
layer to better fulfill this intention.

For node vi we define its potential energy with respect to
the l-th layer at time t to be

Pl(i, t) =

n∑
j=1

(Amax,l −Aj,l)χEl(t)(i, j), (1)
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Fig. 1. An illustration of the degradation-evolution network model. In a, we
initialize network G at time t = 0 as a network consisting of 4 nodes and
3 directed edges. Each node is assigned with a pair of 1-attractiveness (att.)
and 2-att. The three edges are tagged by two kinds of labels (i.e. C1 and C2).
In b, network G(0) degrades into G(−1) as its PE increases from 2 to 3.
Specifically, a randomly selected node, i.e. the node with index 1, increases
its potential energy (PE) by rewiring its out-edges in layer G1(0), making
the network’s PE increase. In c, network G(0) evolves into G(1) as its PE
decreases from 2 to 1. Specifically, node with index 1 rewires its out-edges
in layer G2(0) making P2(1, 1) < P2(1, 0) and P (G, 1) < P (G, 0).

where Amax,l = maxvi∈V Ai,l and χEl(t)(i, j) = 1 if vi →
vj ∈ El(t); otherwise χEl(t)(i, j) = 0. We employ Pl(i, t) to
describe how eagerly node vi is willing to rewire its out-edges
in Gl(t) to connect to nodes with higher l-attractiveness at time
t (see Fig. 1a). Further, we define vi’s potential energy and the
system’s potential energy at time t to be P (i, t) =

∑h
l=1 Pl(i, t)

and P (G, t) =
∑n

i=1 P (i, t), respectively. A node’s higher
potential energy means the stronger desire for this node to
rewire its out-edges, and the higher potential energy of a system
indicates a more structurally unstable state of this system.

Inspired by existing rewiring processes [27]–[31], we intro-
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duce an evolution process: at each time t > 0, a node rewires
some of its out-edges in a layer of G(t) and then time t
increases by 1, such that P (G, t+1) ≤ P (G, t) (see Fig. 1c).
In addition, we assume that there also exists a degradation
process. That is, at each time t < 0, a node rewires some of
its out-edges in a layer of G(t) and then time t decreases by
1, such that P (G, t− 1) ≥ P (G, t) (see Fig. 1b).

We validate our network model from two aspects. On one
hand, we show that the proposed model is generic, that is,
this model is able to mimic an arbitrary network. Given a
networked system G′ = (V ′, E ′, L′), let V ′ = {v1, v2, · · · , vn},
C′ = {C1, C2, · · · , Cs} be the set composed of all the label
appeared in G′ and Ai,w = iw be node vi’s w-th attractiveness,
for i = 1, 2, · · · , n and w = 1, 2, · · · , s. Obviously, different
nodes have distinct attractiveness associated with the same
layer. Recalling the initialization of the proposed network
model, we can use G′, and {Ai,w}1≤i≤n,1≤w≤s to initialize
the degradation-evolution network model. Assume the output
is {G(t)}−∞<t<+∞. Then, one must have G′ = G(0).
This fact shows that any network with multiple edge labels
can be always regarded as an instance generated by the
proposed network model. On the other hand, we show that
the evolution/degradation process is observed extensively in
nature, that is, the dynamic mechanism of the network model
is reasonable. We exemplify the evolution process with citation
networks. In a citation network, a directed edge from paper vi
to paper vj implies that vi needs information on some topics,
denoted by C1, C2, · · · , Cs, provided by vj . Then we can
use a label-set {C1, C2, · · · , Cs} to represent edge vi → vj .
For each h = 1, 2, · · · , s, there are a lot of papers which
can provide information on topic Ch throughout the citation
network. But the information on topic Ch provided by different
papers is demanded by vi in different degrees. Such demand
degree can be modeled as the h-attractiveness. Before a paper
gets published, its authors can improve the references to better
support their results. Specifically, for each topic Ch, the authors
always try to collect papers they need the most. The degree
how vi’s authors are willing to improve the references to better
meet their demand can be modeled as the potential energy
of vi, and the improvement process of vi’s references can
be modeled as the decreasing process of the degree. Similar
mechanisms can be also observed in online social networks
like Twitter.com, internet networks, etc.

III. TOPOLOGICAL PROPERTY

In the rest of this paper, we always let G(t) be a network
observed at t with V(t) and E(t) denoting its nodes and edges.
Let E ⊆ E(t) be a non-empty edge-set. We use notation
⌈E ⌉src (⌈E ⌉tar) to denote the set consisting of all the source
(target) nodes of edges in E. We say vi is a (2,G(t))-follower
of vj in G(t) if the length of the shortest simple path (a simple
path is a path without repeated nodes) from vi to vj in G(t) is
2. Assume that different nodes have different l-attractiveness
for any l ∈ {1, 2, · · · , h}. Then we obtain the following lemma
(see its proof in Appendix A).

Lemma 1. Let E be an arbitrary nonempty subset of E(t).
At time |t| = +∞, if all the edges in E lie in the same

layer, then there always exists a node in ⌈E ⌉tar having no
(2,G(t))-follower in ⌈E ⌉src.

We say E ⊆ E(t) has the Delta-property, denoted by
∆(E) = 1, if δ(E) = ∅, where δ(E) can be obtained by
implementing the following procedures: (1) select a node v
from ⌈E ⌉tar which has no (2,G(t))-follower in ⌈E ⌉src; (2)
remove all the edges whose target node is v from E; (3)
repeat (1)-(2) until no more removal is possible; and (4) set
the remaining edge-set to be δ(E). In addition, we define
∆(E) = 0, if δ(E) ̸= ∅. Then we have the following results
(see derivations in Appendices B and C).

Lemma 2. Implementing the removal operations on E intro-
duced above, we obtain {E1, E2, · · · , Es} and δ(E), where
Ei denotes the edge-set removed from E in the i-th removal
operation, for i = 1, 2, · · · , s. Let δ(E) = Es+1. Then we
have: (1) Ei ̸= ∅, for i = 1, 2, · · · , s; (2) Ei ∩ Ej = ∅, for
1 ≤ i < j ≤ s + 1; (3) ∪s+1

i=1Ei = E; (4) if δ(E) ̸= ∅, then
|δ(E)| ≥ 2.

Lemma 3. Let E be a non-empty subset of E(t). Let δ(1)(E)
and δ(2)(E) be two subsets of E obtained by implementing the
removal procedures introduced above. Then we have δ(1)(E) =
δ(2)(E).

Lemma 3 shows that mapping ∆ is well-defined. Further,
we obtain our main theoretical result (see its proof in Appendix
D).

Theorem 1. When t = ±∞, for an edge-set E ⊆ E(t) if
∆(E) = 0, then none of the edges in E can have a label in
common.

The above theorem shows that when a network is ultimately
evolved or degraded, its multilayer structure must follow a
special topological property. Specifically, we can apply this
result to judge whether these edges can share common labels.
In the following, we show how to utilize this result to detect
PUELs.

IV. PUEL DETECTION METHOD

Based on Theorem 1, we derive a method to tackle the
PUEL detection problem. Let |t| = +∞. Assume that only
partial edges are found with labels in G(t). Specifically, let
C(t) = {Ct1 , Ct2 , · · · , Cts} denote all the edge label observed
at time t, s = s(t) be an integer, and Etl ∈ Etl(t) consist
of all the edges which are observed with label Ctl at time t,
for 1 ≤ l ≤ s(t). If C ∈ C is an edge label with C ̸∈ C(t),
then we call C is PUEL at time t. Let e denote an edge in
E(t) satisfying that ∆({e, etl}) = 0 for any etl ∈ Etl and
l ∈ {1, 2, · · · , s(t)}. Then, according to Theorem 1, we have
e must own a PUEL. Assembling all of such edges, we obtain
an edge-set E′ in which every edge has at least one new label.
Our theory shows that this detection method’s accuracy for
|t| = +∞ is perfect (100%). For |t| < +∞, the accuracy of
this detection method is case-dependent.

In the rest of this paper, we focus on one of the most
straightforward cases of our main problem. Let G = (V, E)
be a network, C1 be an already-observed edge label, E1 be
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the set consisting of all the edges in G carrying label C1,
and E1 ⊆ E1 be an edge-set consisting of n1 edges with
label C1. Our goal is to find out a small number of edges
with PUELs based on E1 and G’s topology. To solve this
problem, we assign each edge e in E a score ∇(e|E1) with
∇(e|E1) = |{e′ ∈ E1|∆({e, e′}) = 0}|. Then take the edges
with the largest nonzero scores as the algorithm’s output. We
use notation E1-D-Top and E∗

1 to denote the corresponding
algorithm and its output, respectively. Note that for any edge
e, ∇(e|E1) is an integer and ∇(e|E1) ≤ |E1| = n1. Thus,
for small n1, such as n1 = 1, 2, 3, the difference between
edges’ scores is small, which could impair the performance of
our method. For small n1, we further require that the score
of every edge in the output of E1-D-Top should be n1 (i.e,
∇(e|E1) = n1 for e ∈ E∗

1 ).

V. PERFORMANCE EVALUATION

Two standard metrics are used to quantify the accuracy of
detection algorithms: Precision [32] and area under the receiver
operating characteristic curve (AUC) [33]. Assume that in an
output edge-set E∗

1 consisting of n2 edges, there are n′ edges
are right (i.e. there are n′ edges are with PUELs), then the
Precision of this algorithm is n′/n2. Here, we use ω(G|E1) to
denote the Precision of algorithm E1-D-Top. Higher Precision
means higher detection accuracy. Note that for a given edge-
set E1 ⊆ E1 with |E1| = n1, the performance of algorithm
E1-D-Top is closely related to the probability that an arbitrary
edge with label C2 gets a larger score than another arbitrary
edge with label C1, which can be quantified by AUC [33].
To measure the AUC, denoted by λ(G|E1), we can make N
independent comparisons: at each time, we randomly pick an
edge with PUELs and an edge without PUELs to compare their
scores. If there are N ′ times the edge with undiscovered labels
obtaining a higher score and N ′′ times they have the same score,
then the AUC value is λ(G|E1) = (N ′ + 0.5N ′′)/N [34]. If
all the scores are generated from an independent and identical
distribution, the AUC value should be about 0.5. Therefore,
the degree to which the value exceeds 0.5 indicates how much
better the algorithm performs than random guessing.

In this paper, we only consider networks with small numbers
of nodes and small numbers of edges, because we can run
through all possible combinations of edges without PUELs and
edges with PUELs to measure the AUC of the network in this
scenario.

We are interested in our method’s accuracy in detection
PUELs in G, when we are given an edge-set consisting of n1

edges arbitrarily picked from E1. We use notation n1-D-Top to
represent algorithm E1-D-Top, where E1 is an arbitrary subset
of E1 with n1 elements. We denote ωn1(G) and λn1(G) as
the Precision and the AUC of n1-D-Top, respectively. Then
we obtain

ωn1
(G) =

1(|E1|
n1

) ∑
E1⊆E1,|E1|=n1

ω(G|E1) (2)

and
λn1

(G) =
1(|E1|
n1

) ∑
E1⊆E1,|E1|=n1

λ(G|E1), (3)

where
(|E1|
n1

)
= |E1|!/[n1!(|E1| − n1)!] is a combination.

For a network G = G(t) whose structure varies over time,
we are concerned about the accuracy of the proposed algorithms
applied to G at present (t = 0) and curious about both what
happened to their performance in the past (t < 0) and what
their performances will become in the future (t > 0). Let G be
some network generated by our proposed degradation-evolution
model. Denoting the present time as t = 0, we can rewrite
G as G(0) without loss of generality. By our degradation-
evolution model, we obtain a family of networks {G(t)}+∞

−∞,
which depicts the whole course of G’s mutation process. To
study the overall performance of the detection methods, we
introduce another parameter ν, which is given by ν = ν(t) =
[P (G, t)−Pmin(G)]/[Pmax(G)−Pmin(G)], where Pmax(G)
and Pmin(G) denote the supremum and infimum of P (G, t),
respectively. Parameter ν ranges from 0 to 1 and describes
the evolution degree of G: the more nearly ν approaches to 0,
the more stable the structure of the network is. Then we can
rewrite {G(t)}+∞

−∞ as {G[ν]}ν∈[0,1] and G = G[ν0], where
ν0 = ν(0). Then the average Precision over time (ω̄n1(G))
and the average AUC over time (λ̄n1

(G)) of n1-D-Top applied
to G can be calculated by

ω̄n1(G) =

∫ 1

0

ωn1(G[ν])f(ν)dν (4)

and

λ̄n1(G) =

∫ 1

0

λn1(G[ν])f(ν)dν (5)

respectively, where f(ν) refers to the probability density
function of ν. In this paper, we assume that a random network’s
potential energy follows a uniform distribution. Thus, we must
have ν subjects to a uniform distribution as well.

We study the performance of n1-D-Top applied to randomly
generated networks by the degradation-evolution model. Let θ
denote the initialization settings of the degradation-evolution
model. For a given θ and a given ν ∈ [0, 1], the Precision and
AUC of n1-D-Top applied to a random network G = G[ν]
which is generated by the proposed model under a specific
configuration given by θ, are represented by ωn1,θ(ν) and
λn1,θ(ν), and can be calculated by

ωn1,θ(ν) =
1

M

M∑
i=1

ωn1(Gi) (6)

and

λn1,θ(ν) =
1

M

M∑
i=1

λn1
(Gi) (7)

where Gi is a random network generated by the degradation-
evolution model with specific parameters θ and admitting
Gi = Gi[ν], for i = 1, 2, · · · ,M . Finally, the Precision and
AUC of n1-D-Top applied to a randomly generated network
by the model with a specific parameter setting θ, can be
represented as

ωn1,θ =

∫ 1

0

ωn1,θ(ν)f(ν)dν (8)

and

λn1,θ =

∫ 1

0

λn1,θ(ν)f(ν)dν. (9)
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Fig. 2. The accuracy of n1-D-Top as functions of ν in detecting rare previously
unobserved labels (small n1). The parameter settings are as follows: n = 20,
m = 100, α = 0.1 and n1 ∈ {1, 2, 3}. RG represents the random guessing.
Each result is averaged by over 100 independent implementations.

It follows from Eqs. (4)–(9) that

ωn1,θ =
1

M

M∑
i=1

ω̄n1
(Gi) (10)

and

λn1,θ =
1

M

M∑
i=1

λ̄n1
(Gi) (11)

where Gi is a network randomly generated by the model with a
specific parameter setting θ, for i = 1, 2, · · · ,M . By Eqs. (2)–
(7), (10) and (11), we can readily investigate the Precision and
AUC of n1-D-Top applied to synthetic networks in practice.

VI. EXPERIMENTAL RESULTS

Let G = (V, E , L) with V = {v1, v2, · · · , vn} and |E| = m
be a network generated by the degradation-evolution model
under the following configurations: (1) there are totally two
edge labels, C1 and C2, which can be observed in G; (2)
label C1 is the already-observed label and C2 is the previously
undiscovered one; (3) every edge has a unique edge label,
and the percentage of edges with undiscovered label C2 is
α; and (4) node vi’s 1-attractiveness Ai,1 is n − i and 2-
attractiveness Ai,2 is i−1, for i = 1, 2, · · · , n. Let θ represent
these configurations. By the degradation-evolution network
model, we obtain a family of networks {G(t)}+∞

−∞. For any
t, every edge in G(t) has a unique edge label. According
to the rewiring procedures introduced before, we have G(t)
always consists of n nodes and m edges. In the following,
we investigate the Precision and AUC of n1-D-Top applied to
G(t), for −∞ < t < +∞. Note that the random guessing has
a Precision of α and an AUC of 0.5 in this case.

We study the performance of n1-D-Top with small n1 in
detecting rare unobserved labels. Figure 1 plots the Precision
and the AUC of 1-D-Top, 2-D-Top and 3-D-Top as functions
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Fig. 3. The accuracy of n1-D-Top as functions of ν in detecting rare previously
unobserved labels (large n1). The parameter settings are as follows: n = 20,
m = 100, α = 0.1 and n1 ∈ {−3,−2,−1,−0}. RG represents the random
guessing. Each result is averaged by over 100 independent implementations.

of ν when α = 0.1. From Figure 2a, we find that when ν ∈
{0, 1} (i.e. |t| = +∞), the algorithms always gain the perfect
Precision (100%), which is consistent with our theoretical
results. When ν is in the middle of the interval [0, 1] (for
instance, ν ∈ [0.2, 0.8]), the Precision of each algorithm is
stable, while ν approaches to 0 or 1, the Precision will increase
sharply. From Figure 2b, we find that the average Precision of
1-D-Top, 2-D-Top and 3-D-Top (i.e. ω1,θ, ω2,θ and ω3,θ) are
0.2480, 0.2997 and 0.3308, respectively. We conclude that 1-
D-Top, 2-D-Top and 3-D-Top are valid and effective, since they
all outperform random guessing, and improve the Precision
of random guessing (10%) by 148.0%, 199.7% and 230.8%,
respectively. Moreover, as shown in Figure 2b that the Precision
of n1-D-Top increases as n1 increases, showing that detection
based on more edges with observed labels would get better
performance. From Figure 2c and Figure 2d, we see that the
average AUC of 1-D-Top, 2-D-Top and 3-D-Top (i.e. λ1,θ , λ2,θ

and λ3,θ) are close to 0.5 showing that n1-D-Top has a poor
performance in AUC when n1 is small, which is consistent
with our previous judgment (see Section IV).

We consider the performance of n1-D-Top with large n1

in detecting rare unobserved labels. We use notation −n1-
D-Top to represent (m1 − n1)-D-Top, where m1 denote the
total number of edges with label C1. For example, −0-D-
Top refers to the proposed detection method based on all the
edges with C1. Figure 3 plots the Precision and the AUC
of −n1-D-Top as functions of ν in the case of α = 0.1 for
n1 ∈ {0, 1, 2, 3}. From Figures 3a and 3c, we find the four
detection algorithms have almost the same accuracy, indicating
that they have almost achieved the upper bound of the proposed
method’s performance. Figures 3b and 3d demonstrate that
the proposed method can improve the Precision and AUC of
random guessing by ≥ 300% and ≥ 31%, respectively.
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Fig. 4. The average accuracy of n1-D-Top as functions of α in detecting
previously unobserved labels. The parameter settings are as follows: n = 20,
m = 100, α ∈ {0.1, 0.2, · · · , 0.5} and n1 ∈ {−0, 1, 2}. RG represents
the random guessing. Each result is averaged by over 100 independent
implementations.

When the unobserved label is not rare, we show the
performance of n1-D-Top in Figure 4. As shown above,
1-D-Top and −0-D-Top are the algorithms with the worst
performance and best performance, and their performance
outlines the feasible region of the accuracy of the proposed
method. It can be seen from Figures 4a and 4c that as the
rarity of the unobserved label (α) increases, the Precision of
our method also increases linearly, while the AUC usually
holds steady. Interestingly, from Figure 4b, we find that the
rarer the unobserved label is, the more largely our method
improves the Precision of random guessing.

VII. CONCLUSIONS

In this paper, we propose a PUEL detection approach aiming
to find out a small set of edges with previously undiscovered
edge labels. This approach is of significance since its solutions
would benefit researchers in mining new features of a wide
range of datasets, for instance, to discover new variants of
COVID-19. Although tremendous effort has been put into
interaction type detection, the PUIT detection still remains
unsolved. In this paper, we strive to take a first step to overcome
the proposed unsolved problem by answering the following
fundamental question: is there any effective detection method
other than the random guessing method? Our idea is to find
out some networks in which non-trivial detection method
exists. Specifically, we propose a temporal directed network
model and develop an effective detection method for synthetic
networks generated by the model. We focus on one of the
most straightforward cases of the target problem: detecting
the unobserved label in networks in which there is an already-
observed label and an previously undiscovered one. Applying
our method to detect the PUEL in a number of small synthetic
networks, we find that our detection method is effective and
has much better performance than the baseline method.

In this paper, we study a universal network model which
can be used to mimic a wide range of real-world directed
networks, and derive a universal PUEL detection method under
this network model along an unconventional manner. Thus,
the obtained method can be directly applied to any real-world
directed networks. But the performance in practice may be not
as good as in our simulation results since the more general
the method is, the less effective for a given scheme may be.
For a given real-world system, we can modify the network
model to fully capture the features of the system, and then
derive a much more effective method along the same line
adopted in this paper. However, the main purpose of this paper
is to give an answer to the fundamental question theoretically:
whether the proposed PUEL detection problem is solvable by
non-trivial methods (methods other than random guessing). So
the performance of the proposed method is enough for our
goal. We leave the research on methods for detecting PUELs in
real-world systems such as virus spreading networks, citation
networks, sales networks, and so on, as open problems which
are also our future works.

APPENDIX A: PROOF OF LEMMA 1

In the limit t → +∞ (resp. −∞), we have

P (G, t) = Pmax(G) (resp. Pmin(G)), (12)

where G = G(t), Pmax(G) and Pmin(G) denote the
supremum and infimum of P (G, t), respectively. Assume that
all the edges in E lie in Gl(t). Note that all the nodes
in ⌈E ⌉tar have different l-attractiveness. Without loss of
generality, let v1 (resp. v2) denote the node with the largest
(resp. smallest) l-attractiveness in ⌈E ⌉tar. In the following,
we prove that v1 (resp. v2) has no (2,G(t))-follower in
⌈E ⌉src when t = +∞ (resp. t = −∞) by contradiction.
Assume vj ∈ ⌈E ⌉src is a (2,G(t))-follower of v1 (resp.
v2). Obviously, we have vj ̸→ v1 (resp. vj ̸→ v2). By
vj ∈ ⌈E ⌉src, there is vk ∈ ⌈E ⌉tar such that k ̸= 1 (resp.
k ̸= 2) and vj → vk ∈ E. Then we have Cl ∈ C(j, k, t) and
Ak,l < A1,l (resp. Ak,l > A2,l). In Gl(t), change vj → vk
to vj → v1 and let t increase (resp. decrease) by 1. By
Eq. (1), we have Pl(j, t + 1) − Pl(j, t) = A1,l − Ak,l > 0
(resp. Pl(j, t − 1) − Pl(j, t) = A2,l − Ak,l < 0) Then one
has P (G, t) < Pmax(G) (resp. P (G, t) > Pmin(G)) which
contradicts Eq. (12). Finally, we conclude that there always
exists a node in ⌈E ⌉tar having no (2,G(t))-follower in
⌈E ⌉src when t = +∞ (resp. t = −∞).

APPENDIX B: PROOF OF LEMMA 2

We have E1, E2, · · · , En are pairwise disjoint non-empty
subsets of E, and δ(E) is the remaining set. Then, we have
∪n+1
i=1 Ei = E. We show that |δ(E)| ̸= 1 by the reverse

proving. Assume |δ(E)| = 1. Without loss of generality, we
assume δ(E) = {v1 → v2}. Then ⌈δ(E)⌉src = {v1} and
⌈δ(E)⌉tar = {v2}. Note that v2 has no (2,G)-follower in
⌈δ(E)⌉src. According to the removal operations, v1 → v2
can be removed. Thus, we have |δ(E)| ̸= 1. In the following,
we construct a network G = (V, E) and a set E ⊆ E with
|δ(E)| = 2. Let V = {v1, v2, v3, v4} and E = {v1 → v2, v1 →
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v3, v3 → v1, v3 → v4}. Let E = {v1 → v2, v3 → v4}. We
have ⌈E⌉src = {v1, v3} and ⌈E⌉tar = {v2, v4}. Note that v1
is a (2,G)-follower of v4 and v3 is a (2,G)-follower of v2.
According to the removal operations, we have δ(E) = E and
|δ(E)| = |E| = 2. To sum up, we have if δ(E) ̸= ∅, then
|δ(E)| ≥ 2.

APPENDIX C: PROOF OF LEMMA 3

Let G = G(t), k ∈ {1, 2, · · · , s} and E
(1)
k denote the

set consisting of all the edges removed from E in the k-th
removal operation, and δ(1)(E) be the remaining set. According
to Lemma 2 (3), we have

δ(1)(E) ∪ (∪s
k=1E

(1)
k ) = E. (13)

Case 1: |δ(2)(E)| > 0. First, we prove δ(2)(E) ⊆ δ(1)(E)
by contradiction. Assume δ(2)(E) ̸⊆ δ(1)(E). It follows Eq.
(13) that δ(2)(E) ∩ (∪s

k=1E
(1)
k ) ̸= ∅. Let l be the smallest

integer, such that δ(2)(E) ∩ E
(1)
l ̸= ∅. Then we have

δ(2)(E) ⊆ δ(1)(E) ∪ (∪s
k=1E

(1)
k )

and

⌈δ(2)(E)⌉src ⊆ ⌈δ(1)(E) ∪ (∪s
k=lE

(1)
k )⌉src. (14)

Let vi → vj ∈ δ(2)(E) ∩ E
(1)
l . Note that vj ∈ ⌈δ(2)(E)⌉tar.

According to the definition of Delta-property, we have vj has
at least one (2,G)-follower in ⌈δ(2)(E)⌉src. By Eq. (14) we
have vj has (2,G)-followers in ⌈δ(1)(E)∪(∪s

k=lE
(1)
k )⌉src. By

vj ∈ ⌈E(1)
l ⌉tar, we know that vj is removed in the l-th removal

operation. Then according to the removal procedures (1)-(2) of
the Delta-property, we have vj should have no (2,G)-follower
in ⌈δ(1)(E)∪ (∪s

t=lE
(1)
t )⌉src. This leads to conflict. Therefore,

δ(2)(E) ⊆ δ(1)(E). Note that |δ(1)(E)| ≥ |δ(2)(E)| > 0. Then,
we obtain δ(1)(E) ⊆ δ(2)(E) in the same way. Consequently,
we have δ(1)(E) = δ(2)(E).

Case 2: |δ(2)(E)| = 0. We prove |δ(1)(E)| = 0 by
contradiction. Assume |δ(1)(E)| > 0. According to Case 1,
we have δ(1)(E) ⊆ δ(2)(E). Thus, |δ(2)(E)| ≥ |δ(1)(E)| >
0, which contradicts the assumption that |δ(2)(E)| = 0.
Consequently, we have |δ(1)(E)| = 0. Finally, we obtain
δ(1)(E) = δ(2)(E) = ∅.

APPENDIX D: PROOF OF THEOREM 1

Let G = G(t) and |t| = +∞. We prove Theorem 1 by
showing that if all the edges in E share a common label, then
∆(E) = 1. Let E(0) = E. According to Lemma 1, there
exists a node vi1 in ⌈E(0) ⌉tar which has no (2,G)-follower
in ⌈E(0) ⌉src. Let E(1) = E(0) \ {e ∈ E(0)|vi1 = ⌈e⌉tar}.
Obviously, all the edges in E(1) lie in the same layer of G.
Then by Lemma 1 again, we obtain vi2 in ⌈E(1) ⌉tar which
has no (2,G)-follower in ⌈E(1) ⌉src. Let E(2) = E(1)\{e ∈
E(1)|vi2 = ⌈e⌉tar}. Repeat this removal operation on E until
all the edges in E are removed. Finally, we have δ(E) = ∅
and ∆(E) = 1.
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