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RESEARCH ARTICLE

Translational Physiology
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lipopolysaccharide challenge: possible implications for acute-on-chronic liver
failure
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Abstract

Patients with acute-on-chronic liver failure (ACLF) are at risk of developing acute hepatic decompensation and organ failures
with an unraveled complex mechanism. An altered immune response toward insults in cirrhotic compared with healthy livers
may contribute to the ACLF development. Therefore, we aim to investigate the differences in inflammatory responses between
cirrhotic and healthy livers using human precision-cut liver slices (PCLSs) upon the lipopolysaccharide (LPS) challenge. PCLSs
prepared from livers of patients with cirrhosis or healthy donors of liver transplantation were incubated ex vivo with or without
LPS for up to 48 h. Viability test, qRT-PCR, and multiplex cytokine assay were performed. Regulation of the LPS receptors during
incubation or with LPS challenge differed between healthy versus cirrhotic PCLSs. LPS upregulated TLR-2 in healthy PCLSs
solely (P < 0.01). Culturing for 48 h induced a stronger inflammatory response in the cirrhotic than healthy PCLS. Upon LPS stim-
ulation, cirrhotic PCLSs secreted more proinflammatory cytokines (IL-8, IL-6, TNF-a, eotaxin, and VEGF) significantly and less anti-
inflammatory cytokine (IL-1ra) than those of healthy. In summary, cirrhotic PCLSs released more proinflammatory and less anti-
inflammatory cytokines after LPS stimuli than healthy, leading to dysregulated inflammatory response. These events could possi-
bly resemble the liver immune response in ACLF.

NEW & NOTEWORTHY Precision-cut liver slices (PCLSs) model provides a unique platform to investigate the different immune
responses of healthy versus cirrhotic livers in humans. Our data show that cirrhotic PCLSs exhibit excessive inflammatory
response accompanied by a lower anti-inflammatory cytokine release in response to LPS; a better understanding of this altera-
tion may guide the novel therapeutic approaches to mitigate the excessive inflammation during the onset of acute-on-chronic
liver failure.

acute-on-chronic liver failure; cirrhosis; human liver; lipopolysaccharide; precision-cut liver slices

INTRODUCTION

Acute-on-chronic liver failure (ACLF) is a syndrome
caused by infectious or noninfectious insults upon a preex-
isting chronic liver disease. It is characterized by acute he-
patic decompensation and a high short-term mortality rate
(death within 28 days after hospitalization), often accompa-
nied by failing organ(s) (1–3). Currently, there is no standard
treatment for ACLF except for organ support and treatment
of associated complications, such as antimicrobial treatment

or hemorrhage management. Liver transplantation is a pos-
sibility, however, organ shortage and high contraindication
rate in the patients with ACLF often hamper this treatment
opportunity (2). Therefore, more insight into the pathology
of ACLF is needed to develop new treatment strategies,
including pharmacological ones.

The pathophysiology of ACLF is largely unknown. Up to
40% of ACLF cases have no traceable trigger (2). In other
cases, the most common triggers of ACLF are infection
and alcoholic hepatitis (4, 5). During infection, pathogen-
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associated molecular patterns (PAMPs), such as lipopoly-
saccharide (LPS), from bacterial infections activate the
pattern recognition receptors (PRRs) of the liver innate
immune system, causing and exaggerating hepatic inflam-
mation (6). In alcoholic hepatitis, PAMPs of the gut micro-
biota reaches the liver through systemic circulation as well
as damage-associated molecular patterns (DAMPs) derived
from necrotic hepatocytes would exacerbate the liver inflam-
mation through activation of the PRRs (6, 7). Accordingly,
dysregulated systemic inflammation during infection or alco-
holic hepatitis possibly drives the progression of ACLF and
correlates positively to the severity and poor outcome of the
syndrome (8).

Liver is a frontline immunological organ that counter-
poises pro- and anti-inflammation, balancing the resistance
and tolerance to the stimulus (9). The overall aim of ACLF
treatment is to prevent further damage to the liver during
the acute phase and thereby create a prosperous environ-
ment for regeneration of the liver to its original cirrhotic
state. Thus, studying the different responses between the cir-
rhotic versus healthy liver toward stimuli would provide use-
ful information on the pathology of ACLF. So far, there is no
study comparing the inflammatory response of cirrhotic ver-
sus healthy human liver toward an acute LPS challenge at
the tissue level.

Basic experimental research in the laboratory on the mo-
lecular mechanism of ACLF often relies on animal models or
in vitro experiments that utilizes often single-cell cultures
isolated from healthy individuals or patients with diseases
(10–13). Specifically, acute insults (induced by D-galactosa-
mine combined with LPS or bacterial infection) upon
chronic liver injury (induced by carbon tetrachloride injec-
tion or bile duct ligation) is the main strategy to develop
ACLF in these animals (10–13). However, these studies nor-
mally use healthy rodents that might not fully represent the
complex situation in patients with cirrhosis. In addition, the
extrapolation of data from animal to human is not always
reliable.

Cell culture studies showed that LPS-treated monocytes or
peripheral blood mononuclear cells derived from patients
with cirrhosis secreted more TNF-a, IL-1b, IL-6, and IL-8
than that of healthy controls (14–16). Furthermore, patients
with cirrhosis with bacterial infections showed excessive
production of TNF-a and IL-6 in the serum, which is posi-
tively associated with organ failures and mortality (14).
Unfortunately, none of these studies showed the different
responses of healthy versus cirrhotic liver to the LPS stimuli
at an organ level.

Precision-cut liver slices (PCLSs) are a unique ex vivo
model to investigate LPS-induced inflammation using
fresh metabolizing tissue from rodents or humans, as pre-
viously reported (17–20). Using PCLS from patients with
cirrhosis would be the closest to the clinical situation of
actual human subjects and challenging these slices with
LPS might be a valuable new model to mimic liver inflam-
mation during ACLF situations. Thus, the current study
aimed to investigate the differences between healthy ver-
sus cirrhotic livers in response to an LPS challenge using
healthy and cirrhotic human PCLS, providing additional
insights for future mechanistic studies with regard to
ACLF treatment.

MATERIALS AND METHODS

Ethical Consideration and Obtaining of Human Liver
Tissue

The use of human tissue was approved by the Medical
Ethical Committee of the University Medical Center
Groningen (UMCG), according to Dutch legislation and
the Code of Conduct for dealing responsibly with human
tissue in the context of health research (www.federa.org),
refraining the need of written consent for “further use” of
coded-anonymous human tissue. The procedures were
carried out in accordance with the experimental proto-
cols approved by the Medical Ethical Committee of the
UMCG. Surgical excess material of donor livers was char-
acterized as clinically healthy liver (n = 7). Explanted cir-
rhotic liver of clinically diagnosed patients with end-
stage liver disease undergoing liver transplantation was
characterized as cirrhotic liver (n = 6). Patient demo-
graphics are shown in Supplemental Table S1.

Preparation of the Precision-Cut Liver Slices

Precision-cut human liver slices were prepared as previ-
ously described (21). In brief, surgically excess human liver
was obtained and cylindrical cores were made using a 6-mm
biopsy punch and preserved in ice-cold University of
Wisconsin (UW) tissue preservation solution (DuPont Critical
Care, Waukegan, IL) until slicing. Krebs-Henseleit buffer was
supplemented with 25 mM D-glucose (Merck, Darmstadt,
Germany), 25 mM NaHCO3 (Merck), and 10 mM 4-(2-hydrox-
yethyl) piperazine-1-ethanesulfonic acid (MP Biomedicals,
Aurora, OH), saturated with carbogen (95% O2 and 5% CO2),
and used as slicing solution. The size of the PCLSs was
adjusted by the wet weight (4–5 mg) to a thickness of around
250 mm.

Incubation of the Precision-Cut Liver Slices

Before incubation, the PCLSs were collected as 0-h sam-
ples. Precision-cut human liver slices were incubated as pre-
viously described (21). William’s E medium with GlutaMAX
(Life Technologies, Carlsbad) 2.75 g/mL D-glucose monohy-
drate (Merck, Darmstadt, Germany), 50 mg/mL gentamicin
(Invitrogen, Paisley, UK) was prepared as 1.3 mL/well in 12-
well plates, preheated and oxygenized in the incubator at
37�C with a continuous 5% CO2–80% O2 supply for at least 30
min before plating the PCLSs. The PCLSs were incubated
individually for 1 h as preincubation in the culture medium.
After preincubation, slices were changed to preheated and
oxygenized fresh medium or medium supplemented with 5
mg/mL (5,000 EU/mL) ultrapure LPS from Escherichia coli
O111:B4 (InvivoGen, Toulouse, France) and the medium was
refreshed at 24 h. Slices were further incubated with or with-
out LPS until 48 h and collected for further analysis. Three
slices were incubated for each condition.

Assessment of Viability of the Precision-Cut Liver Slices

After incubation, slices were collected individually in a
1.5-mL Eppendorf safe-lock tube with minibeads and 1 mL
sonification solution, snap frozen in liquid nitrogen, and
stored at �80�C until analysis. ATP content of each slice was
determined using ATP bioluminescence assay kit class II
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(Roche Diagnostics, Mannheim, Germany) according to the
manufacturer’s instruction and as described previously (21).

Quantitative Real-Time Polymerase Chain Reaction

After incubation, the triplicate slices were collected in a
1.5-mL Eppendorf safe-lock tube with minibeads, snap-fro-
zen in liquid nitrogen, and stored at �80�C until analysis
(0-h samples were collected before incubation). Total RNA
was extracted using FavorPrep tissue total RNA minikit
(FAVORGEN Biotech Corp, Vienna, Austria), according to the
manufacturer’s instruction. Concentration and purity of the
RNA were determined using Synergy HT (Biotek, Swindon,
UK) at wavelength of 260/280, a value between 1.9 and 2.1 was
considered of good quality of RNA and stored at �80�C. cDNA
was reverse transcripted from 1 mg total RNA using Reverse
Transcription Kit (Promega, Leiden, the Netherlands) at 22�C
for 10 min, 42�C for 15 min, 95�C for 5 min, and stored at
�20�C. Gene expression level was assessed by quantitative
real-time polymerase chain reaction in ViiA 7 Real-Time PCR
Systemwith a FastStart Universal SYBR GreenMaster (ROX) or
FastStart Universal Probe Master (ROX) (Roche Diagnostics,
Mannheim, Germany) plus primer pairs (Supplemental Table
S2). The experimental condition of SYBR and Taqman mix is
shown in Supplemental Tables S3 and S4. Relative expression
values were expressed as percentages compared with house-
keeping genes (100%): glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) (Taqman) and 18S (SYBR).

Bio-Plex Pro Human Inflammation Assay and ELISA

Culture medium was pooled together from three wells of
the same treatment, and stored at�80�C for further analysis.
Cytokines in the culture medium were tested with Bio-Plex
Pro Human Cytokine Grp I panel (27-Plex) according to the
manufacturer’s protocol (Bio-Rad, Winninglaan, Belgium).
The culture medium was centrifuged at 13,000 rpm for 5
min, the supernatant was diluted four times with new cul-
ture medium before the test. MAGPIX multiplexing instru-
ment (Luminex, Austin, TX) was used to detect the mean
fluorescent intensity (MFI) of each sample. The Concentration
of cytokines was calculated from the respective standard
curve. Concentration of high mobility group protein 1
(HMGB1) was measured using the Human HMGB1/HMG-1
ELISA Kit (Colorimetric, Novus Biologicals) according to the
manufacturer’s protocol. The concentration (pg/mL) of the
cytokine or HMGB1 was normalized with the respective pro-
tein content of the slice (mg).

Morphology

Slices were fixed in 4% buffered formalin for 24 h, trans-
ferred to 70% ethanol, dehydrated, embedded in paraffin,
and sectioned (4 mm). Hematoxylin and eosin (H&E) or Sirius
red staining was performed after deparaffinizing and rehyd-
rating the sections.

Statistical Analysis

The data were shown as means ± SE. The difference
between healthy versus cirrhotic was compared using
Mann–Whitney test; difference within the healthy or cir-
rhotic groups (with or without LPS treatment) was compared
using Kruskal–Wallis test followed by Dunn’s multiple

comparisons test with GraphPad Prism v. 6.0. A P value of
<0.05 was considered to be significant.

RESULTS

Viability and Morphology of the Human PCLS

To evaluate the viability of the slices during incubation or
treatment, we assessed the ATP content of the slices. During
48 h of incubation, both healthy and cirrhotic human PCLSs
remained viable (Fig. 1,A andB), and LPS did not significantly
influence the viability of the healthy and cirrhotic PCLS (Fig.
1C). During 48-h incubation, the morphology of the healthy
PCLSs showed intact hepatocytes and the presence of other
nonparenchymal cells across the slice tissuewith their natural
context preserved and no signs of cell death; morphology of
cirrhotic PCLSs maintained the same as before incubation
(Fig. 1D). LPS did not significantly impair the morphology of
both healthy and cirrhotic PCLS comparedwith the respective
control (Supplemental Figs. S1 and S2).

Expression and Regulation of LPS Receptors in the
Human PCLS

We continued to test the gene expression of a variety of
LPS receptors and coreceptors using qRT-PCR, aiming to
confirm the presence of this response system in the PCLS
incubations. For this, Toll-like receptor-4 (TLR-4), the major
receptor for LPS, coreceptors such as lymphocyte antigen 96
(MD-2), CD180 (RP105), lymphocyte antigen 86 (MD-1), CD14,
and TLR-2 were tested. Before incubation (0 h), RP105 and
MD-1 were significantly higher expressed in freshly prepared
cirrhotic than healthy PCLSs (Fig. 2A, Supplemental Fig.
S3A). During incubation, TLR-4 and MD-2 gene expression
was markedly augmented in both healthy and cirrhotic PCLS
at 48 h. Moreover, CD14, RP105, and MD-1 were significantly
induced only in healthy at 24 h and 48 h, whereas TLR-2was
upregulated only in cirrhotic at 48 h (Fig. 2B). After LPS
treatment, TLR-4 and MD-1 were downregulated in both
healthy (TLR-4 at 24 h and MD-1 at 24 h and 48 h) and cir-
rhotic (TLR-4 at 48 h and MD-1 at 24 h and 48 h) PCLSs,
whereas TLR-2 was strikingly upregulated solely in healthy
PCLS at both 24 h and 48 h (P < 0.01); MD-2, however, was
slightly downregulated in the cirrhotic PCLSs only at 48 h
(P < 0.05). CD14 was not differently expressed between the
healthy versus cirrhotic PCLSs at baseline, not influenced by
LPS challenge, but was elevated during incubation at 24 h
solely in the healthy PCLSs. Interestingly, RP105 was regu-
lated in the opposite directions by LPS: down in healthy and
up in cirrhotic PCLS at 24 h. (Fig. 2C). Taken together, the ba-
sal expression levels differed between healthy and cirrhotic
PCLSs; all receptors are present and dynamically and differ-
ently regulated in the ex vivo PCLS system during incubation
and after the LPS challenge (Fig. 2D).

Inflammatory Response in the Human PCLS before and
during Incubation

We next examined the impact of incubation on the inflam-
matory response of the PCLSs by qRT-PCR or Bio-Plex assay.
Before incubation, among the tested genes, only IL-8mRNA of
cirrhotic PCLSs was relatively higher than that of healthy
PCLSs (Fig. 3A, Supplemental Fig. S3B). During incubation,
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there was a spontaneous onset of inflammatory response in
both healthy and cirrhotic PCLSs, indicated by mRNA upregu-
lation of the proinflammatory genes IL-8, IL-6, IL-1b , and
TNF-a, among which IL-8 (24 h and 48 h), IL-6 (24 h), and IL-
1b (24 h) were upregulated to a higher level in cirrhotic PCLSs
than in healthy (Fig. 3B). Of note, although the actual value is
higher in cirrhotic PCLSs, the fold change compared with the
respective 0 h did not significantly differ between cirrhotic ver-
sus healthy during 24 h or 48 h incubation, except for IL-1b ,
which appeared to be higher in cirrhotic PCLSs at 24 h (Fig. 3,
C and D). Moreover, at the protein level, IL-8, IFN-c, IL-15,
VEGF, MCP-1, and IL-4 were secreted from cirrhotic PCLSs in a
significantly higher level when compared with those of healthy
PCLSs at 24 h (Fig. 4). Taken together, these data show that
spontaneous inflammatory response is stronger in the cirrhotic
PCLSs than in healthy ones during incubation.

Inflammatory Response in the Human Precision-Cut
Liver Slices after LPS Challenge

To further explore the altered immune response of cir-
rhotic PCLSs compared with healthy ones, we challenged the
PCLSs with LPS and examined the inflammatory markers on
gene and protein levels. At the gene expression level, LPS up-
regulated IL-8, IL-6, and IL-1b mRNA expression both in

healthy and cirrhotic PCLSs at 24 h and 48 h (except for IL-6
which is only at 24 h in cirrhotic) (Fig. 5A); as expected,
higher levels of IL-8 and IL-6 were observed in cirrhotic
PCLSs after LPS treatment at 24 h (Fig. 5A). In contrast, LPS-
induced fold change of IL-1b gene expression was lower in
cirrhotic PCLSs than in healthy (Fig. 5, B and C).

Next, we investigated whether LPS induced inflamma-
tory response on protein level with Bio-Plex assay.
Cirrhotic PCLSs secreted higher amounts of proinflamma-
tory cytokines (IL-8, IL-6, and VEGF at 24 h; TNF-a and
eotaxin at 48 h) when compared with healthy PCLSs (Fig.
6A). However, cirrhotic PCLSs secreted lower levels of
MIP-1b (48 h) and IL-1ra (anti-inflammatory cytokine, at 24
h and 48 h) than the healthy (Fig. 6B). In accordance with
the gene expression results, although the actual concentra-
tions of cytokines in the supernatants of cirrhotic PCLSs were
higher, the relative increment of inflammatory cytokines (IL-
2, IL-4, IL-15, eotaxin, IFN-c, and MCP-1 at 24 h; IL-4 and
eotaxin at 48 h) by LPS was lower in cirrhotic than healthy
PCLSs (Fig. 7, Supplemental Table S5). In addition, other cyto-
kines that did not differ between cirrhotic and healthy with
LPS treatment were listed in Supplemental Fig. S4.
Collectively, cirrhotic PCLSs secreted more proinflammatory
and less IL-1ra (anti-inflammatory cytokine) than the healthy
ones.

Figure 1. Viability and morphology of human healthy and cirrhotic precision-cut liver slices (PCLSs). Viability of healthy and cirrhotic PCLSs before incuba-
tion (ATP/protein ratio) (A); during 48-h incubation (relative increase compared with the respective 0 h) (B); and with or without the treatment of LPS (rela-
tive increase compared with the respective 24 h or 48 h) (C). Data are means ± SE; healthy: n = 5, cirrhotic: n = 4. ��P < 0.01, ���P < 0.001. D:
morphology of human healthy and cirrhotic precision-cut liver slices, H&E staining of PCLSs after incubation for 48 h with or without LPS (5 mg/mL) treat-
ment. Representative images of healthy: n = 3; cirrhotic: n = 3 livers. Scale bars: 100 mM. H&E, hematoxylin and eosin; LPS, lipopolysaccharide.
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DISCUSSION

An altered immune response of cirrhotic liver compared
with the healthy livers is reported to contribute to the pa-
thology of ACLF (3). This alteration has never been assessed
at a tissue level in the human liver. In this study, we pre-
pared human precision-cut liver slices from cirrhotic and
healthy livers to study the onset of inflammation during 48 h
of culture with or without LPS challenge. We show for the
first time at the tissue level of human livers that, cirrhotic
versus healthy liver exhibits distinct immune responses to-
ward incubation and LPS challenge, which might provide
valuable information for understanding the pathology as
well as for developing new treatment strategies of ACLF.

Our pervious data showed that LPS ranging from 0 to 100
mg/mL produced NOx in a concentration-dependent way. To
assess the different phenomena of LPS stimulation, the high-
est concentration of LPS (100 mg/mL) was used in all initial
experiments (19). 100 mg/mL LPS produced 256 nmol NOx at
24 h (assuming that 1 g of liver contains 100 million hepato-
cytes); the liver slices stimulated with LPS produce an
adequate amount of cytokines, which resulted in a similar
induction of iNOS as was found in hepatocytes stimulated

with LPS and a cytokine mix. Therefore, this preparation
seems to be an appropriate in vitro liver system that can
mimic the cytokine release of the liver in vivo (19).

The mean LPS activity in serum was 63.0±37.4 pg/mL in
incident advanced liver disease (hospitalization, cancer, or
death related to liver disease) (Ref. 22). In a case of acute-on-
chronic hepatitis B liver failure, the peak phase LPS level is
0.09 EU/mL (23). Plasma LPS levels in patients with sepsis
could reach as high as 5.1 ng/mL, with a median value of 300
pg/mL, 25%–75% interquartile range (110–726 pg/mL), and
the means (±SD) value was 581 ±49 pg/mL (24). Sepsis is a
trigger for ACLF development, so in ACLF, the LPS concen-
tration could reach as high as nanogram level in plasma (25).
In a recent study, a primary cell culture model from ACLF,
the researchers used 100 ng/mL to stimulate the immune
cells (26). In addition, the LPS concentrations reported in the
literature regarding patients with ACLF are from peripheral
circulation (plasma), which might be lower than the actual
concentration of LPS entering the liver via a portal vein in
real-life ACLF (27). The LPS concentration used in this study
would be simplification and modeling of this PAMP chal-
lenge. Thus, to assess the full phenomena of LPS stimula-
tion, 5 mg/mLwas used.

Healthy Cirrhotic
0.0000

0.0005

0.0010

0.0015

0.0020

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

 (%
)

TLR-4

0h 24h 48h 0h 24h 48h
0

1

2

3

4

5

TLR-4

Fo
ld

 c
ha

ng
e

**
**

- + - + - + - +
0.0

0.5

1.0

1.5
TLR-4

Fo
ld

 c
ha

ng
e ** **

LPS
48h24h48h24h

Healthy Cirrhotic
0.00000

0.00005

0.00010

0.00015

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

 (%
)

MD-2

Healthy Cirrhotic
0.0000

0.0002

0.0004

0.0006

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

 (%
)

RP105

*

Healthy Cirrhotic
0.0000

0.0002

0.0004

0.0006

0.0008

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

 (%
)

MD-1
*

Healthy Cirrhotic
0.000

0.005

0.010

0.015

0.020

0.025

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

 (%
)

CD14

Regulated during incubation

Regulated by LPS

Higher before incubation

Only in healthy Only in cirrhotic

- RP105, MD-1

RP105, MD-1,CD14 TLR-2

TLR-2 MD-2

In both

TLR-4, MD-2

N.A.

TLR-4, MD-1, RP105

A   Before incubation (0h)

B   During incubation

C   Effect of LPS

Healthy Cirrhotic

D   Summary table

upregulated
downregulated

- + - + - + - +
0.0

0.5

1.0

1.5

2.0
MD-2

Fo
ld

 c
ha

ng
e

*

LPS
48h24h48h24h

- + - + - + - +
0

1

2

3
CD14

Fo
ld

 c
ha

ng
e

LPS
48h24h48h24h

- + - + - + - +
0.0

0.5

1.0

1.5

2.0

2.5
RP105

Fo
ld

 c
ha

ng
e

**

**

LPS
48h24h48h24h

- + - + - + - +
0.0

0.5

1.0

1.5
MD-1

Fo
ld

 c
ha

ng
e

** ** ** **

LPS
48h24h48h24h

0h 24h 48h 0h 24h 48h
0

5

10

15

20

25

MD-2

Fo
ld

 c
ha

ng
e

**

**

0h 24h 48h 0h 24h 48h
0

2

4

6

RP105

Fo
ld

 c
ha

ng
e *

**

0h 24h 48h 0h 24h 48h
0

1

2

3

4

5

MD-1

Fo
ld

 c
ha

ng
e

**

0h 24h 48h 0h 24h 48h
0

2

4

6

CD14

Fo
ld

 c
ha

ng
e

**

Healthy Cirrhotic
0.0000

0.0005

0.0010

0.0015

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

 (%
)

TLR-2

- + - + - + - +
0

2

4

6

8

10
TLR-2

Fo
ld

 c
ha

ng
e

** **

LPS
48h24h48h24h

0h 24h 48h 0h 24h 48h
0

2

4

6

8

10

TLR-2

Fo
ld

 c
ha

ng
e

**

Figure 2. Expression of LPS receptors in human healthy and cirrhotic precision-cut liver slices (PCLSs). Gene expression of the LPS receptors Toll-like re-
ceptor 4 (TLR-4), lymphocyte antigen 96 (MD-2), CD180 (RP105), lymphocyte antigen 86 (MD-1), CD14, and Toll-like receptor 2 (TLR-2). A: before incuba-
tion, relative expression values were expressed as percentage compared with housekeeping gene (100%); B: during incubation; C: with or without the
treatment of LPS. B, C: fold change of the gene expression compared with the respective control (2-DDCt). D: summary table of differently expressed LPS
receptors. Data are presented as the means ± SE; healthy: n = 5, cirrhotic: n = 3–5. �P< 0.05 and ��P< 0.01. LPS, lipopolysaccharide.
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The expression of some of the LPS (co)receptors at baseline,
during incubation, and with LPS challenge differed between
cirrhotic versus healthy PCLSs. In detail, TLR-4 and MD-2
were not differently expressed at baseline, similarly upregu-
lated during incubation and downregulated by LPS in healthy
and cirrhotic PCLSs. The innate immune system is activated
by LPS through TLR-4 and its coreceptors (28). TLR-4 is asso-
ciated with secreted MD-2 proteins that recognize LPS to
dimerize the TLR-4/MD-2 complexes, initiating the cytoplas-
mic signaling (29). In line with our data, a previous study
showed that LPS downregulates tlr-4 mRNA expression tran-
siently and severely decreased the surface expression of Tlr-4
protein in the mouse macrophage cell line (RAW264.7) within
24 h, which was in parallel with reduced Il-6 and Il-12 secre-
tion (30). In addition, reduced TLR-4 and MD-2 mRNA
expression was associated with low responsiveness to LPS in
human intestinal epithelial cells (31). In our study, LPS down-
regulated the TLR-4 (in both healthy and cirrhotic PCLSs) and
MD-2 (in cirrhotic PCLS) mRNA, showing that both types of
livers have the capacity to control the LPS response through
regulation of the TLR-4/MD-2 complex.

In healthy PCLSs, TLR-2 was markedly induced by LPS,
whereas in cirrhotic PCLSs, TLR-2 was expressed, but not
influenced by LPS challenge. TLR-2 is the major receptor for
lipopeptides and peptidoglycan (32). However, the exact role
of TLR-2 in sensing LPS is not fully understood, the current
hypothesis is that TLR-2 might act as a signal transductor of
TLR-4 signaling or as an independent LPS receptor (32). In
an in vitro study using hepatocytes in monoculture, LPS
alone was not enough to induce TLR-2 transcription, but IL-
1b and TNF-a promoted TLR-2 transcription (33). In our
study, LPS stimulated the production of IL-1b and TNF-a,
which might explain the upregulation of TLR-2 observed in
PCLSs following LPS treatment. In addition, Vodovotz et al.
(33) in their study hypothesized that multiple cell types (e.g.,
Kupffer cells and hepatocytes) are involved in the mecha-
nism of TLR-2 transcription as a response to LPS. The multi-
cellular nature of the PCLS model lends further credence to
the theory that TLR-2 regulation is orchestrated by different
cell types. A study in primary human alveolar macrophages
showed that LPS treatment for 24 h elevated both mRNA
and protein of TLR-2; they proved that full-length TLR-2
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containing extracellular vesicles released by cells under anti-
inflammatory conditions has the property of a decoy recep-
tor, possibly contributing to an anti-inflammatory process
(34). In summary, the failure of inducing TLR-2 by LPS in the
cirrhotic PCLSs might indicate less regulation of inflamma-
tion through TLR-2 compared with healthy PCLSs.

Moreover, cirrhotic PCLSs expressed more RP105, MD-1,
IRAK-M, and A20 (Supplemental Fig. S5) than healthy PCLSs
at baseline. RP105 and MD-1 are homologs of the major LPS
receptors TLR-4 and MD-2, respectively. RP105 and TLR-4
share 22 leucine-rich regions in the extracellular domain,
whereas RP105 only has 11 amino acids in the intracellular
part and lacks a toll-interleukin receptor domain that initiates
the TLR signaling pathway (29). MD-1 is the adaptor molecule
for RP105. Together, they were considered to be negative reg-
ulators of LPS response in various diseases (35). In a previous
study, monocytes from patients with primary biliary cirrhosis
were hypersensitive to LPS stimuli, probably due to a downre-
gulated RP105 expression with LPS treatment (36); however,
the authors correlated RP105 and increased inflammation,
but did not confirm the exact role of RP105. A20 is an inhibi-
tor of NF-κB signaling, which is the downstream of TLR-4 sig-
naling (37). IRAK-M is a negative regulator of TLR-4 signaling
(38). CD14, TLR-4, and MD-2 form a multireceptor complex to
sense and signal an LPS stimulus (39). Chou et al. showed that
CD14 was upregulated transiently during 24 h in liver tissue
after LPS stimulation in the bile duct ligated (BDL) rat model.
Furthermore, a highermortality was found in the BDL rat, but

CD14 was not changed in the sham-operated liver although
endotoxin level was elevated (39). In the current study, only
the healthy liver showed the capacity to upregulate the CD14
transiently at 24 h, but not at 48 h or LPS treatment at all time
points, which may lead to elevated LPS sensitivity of the
healthy than the cirrhotic PCLSs.

Although the overall inflammatory cytokines induced by
LPS was pronounced in cirrhotic, the fold changes of them
were lower than healthy in our study, which could be due to 1)
the elevated expression of negative regulators of LPS, RP105,
IRAK-M, and A20 in the cirrhotic PCLSs at baseline; 2)
decreased RP105 expression in healthy but augmented in the
cirrhotic by LPS; and 3) transient increase of CD14 expression
in healthy at 24 h.

In summary, the receptors, decoy receptors, and negative
regulators of TLR-4 are expressed and dynamically regulated
during incubation or with the LPS challenge. Most impor-
tantly, they are regulated in a different pattern between
healthy versus cirrhotic PCLSs. These results suggest that
altered LPS receptor expression and regulation in the cir-
rhotic livers, as compared with healthy livers, contributes at
least partially to the altered inflammatory response in the
development of ACLF. Future research on the exact mecha-
nism of regulation and involvement of these players in ACLF
is encouraged, especially in human samples.

Furthermore, spontaneous increase (upon incubation of
the PCLSs) ofmRNA of IL-8, IL-6, IL-1b , and protein secretion
of IL-8, IFN-c, IL-15, VEGF,MCP-1, and IL-4 were higher in the
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cirrhotic PCLSs, indicating hyperreactive proinflammatory
status toward DAMPs stimuli compared with a healthy liver.
In line with our observation, monocytes from patients with
advanced cirrhosis were spontaneously activated to produce
proinflammatory cytokines (15). In addition, serum levels of
IL-1b and IL-8 were significantly elevated in patients with pri-
mary biliary cirrhosis (16). Moreover, our previous study dem-
onstrated that the preparation and slicing (which involves
cold ischemia and mechanical trauma) as well as incubation
of PCLSs caused universal transcriptomic and pathway
changes to the precision-cut tissue slices (liver, kidney, intes-
tine, and lung) (40). In particular, pathways are involved in
IL-6, IL-8, and high-mobility group protein 1 (HMGB1) signal-
ing (40). HMGB1 is secreted by various immune cells or
released by injured cells and acts through TLR-2/TLR-4 (41).
During cutting and incubation of the slices, HMGB1, repre-
senting a DAMP, is released into the culture medium
(Supplemental Fig. S6), contributing to the spontaneous
inflammatory response in the slices, which might be a resem-
blance of sterile inflammation caused by necrotic hepatocytes
during ACLF. TLR-4 is the receptor for HMGB1, interestingly,
the negative regulators of TLR-4, RP105, and MD-1 are
increased in the healthy but not cirrhotic PCLSs during incu-
bation, which might be suggesting a better negative regula-
tion of HMGB1 signal transduction in the healthy liver (42).
However, the exact role of RP105 and MD-1 in controlling
spontaneous inflammatory response in PCLSs and their role
in ACLF development needs further examination.

As part of our main interest in elucidating the altered
immune response of the cirrhotic liver, we studied the
response of cirrhotic PCLSs toward LPS, one of the core

proinflammatory agents during ACLF. It was demonstrated
previously that repeated LPS exposure causes tolerance to a
second LPS stimuli (43). The cirrhotic liver will encounter
LPS repeatedly via the gut-liver axis (44). In our study, we
showed that cirrhotic livers responded to LPS actively.
However, the lower fold change of LPS-induced cytokine
level in cirrhotic compared with the healthy as well as higher
baseline RP105, MD1, IRAK-M, and A20 in cirrhotic are sug-
gestive of a baseline tolerant phenotype. LPS induced rigor-
ous inflammatory response both in healthy and cirrhotic
PCLSs, as 27 of the cytokines tested, 17 were upregulated
both in healthy and cirrhotic PCLSs, five were induced only
in the healthy (IL-12 p70, basic-FGF, eotaxin, MCP-1, and
VEGF) and two were only in the cirrhotic PCLSs (IL-7 and IL-
13). IL-5 and IP-10 were not regulated by LPS, whereas granu-
locyte-macrophage colony-stimulating factor (GM-CSF) was
not expressed in the PCLSs (Fig. 6, Supplemental Fig. S1).

Cirrhotic PCLSs exhibited an excessive inflammatory
response toward LPS stimuli than healthy PCLSs, and pro-
duced more proinflammatory cytokines (IL-8, IL-6, TNF-a,
eotaxin, and VEGF). In line with our observation, a previous
study revealed that monocytes from patients with advanced
cirrhosis were hyperresponsive to LPS (15). In addition, pe-
ripheral blood mononuclear cells (PBMCs) and human intra-
hepatic biliary epithelial cells (HIBECs) from primary biliary
cirrhosis expressed higher TNF-a, IL-1b, IL-6, and IL-8 than
healthy HIBECs after LPS (16). One reason could be that the
diseased liver contains more activated myofibroblasts, which
possibly produce more cytokines upon LPS stimulus (45).
Another reason could be that IL-1ra, an anti-inflammatory
protein that blocks IL-1a and inflammation (IL-1b, TNF-a, and
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MCP-1), was less secreted by cirrhotic PCLSs than healthy
PCLSs, leading to an imbalanced inflammation (46, 47). In
addition, IL-1ra can initiate blocking of IL-1a and IL-1b, which
are capable of inducing IL-8 production, which might explain
the lower IL-8 gene expression and secretion in healthy PCLSs
than in cirrhotic (48). However, the expression of well-known
anti-inflammatory cytokine IL-10 did not differ between the
healthy and cirrhotic PCLSs in our study (Supplemental Figs.
S4 and S5). Future studies are needed to clarify the role of IL-
10 in the context of LPS-induced ACLF.

Furthermore, IL-8 was higher at baseline (gene expres-
sion), during incubation (both gene expression and protein)
and with LPS (both gene expression and protein) in cirrhotic

than in healthy PCLSs. Our finding is in line with a previous
report that serum level of IL-8 was significantly elevated in
patients with chronic liver disease and this increment was
associated with neutrophil or macrophage infiltration to pro-
mote liver inflammation (49). These findings show that the
cirrhotic liver has a unique basal profile to direct the differ-
ent inflammatory responses during incubation and with LPS
challenge, in which Kupffer cell activation could probably
play a role (50).

In addition, we found that cirrhotic PCLSs secreted more
monocyte chemotactic protein-1 (MCP-1), which is responsi-
ble for monocyte recruitment and closely related to the se-
verity of liver cirrhosis, at 24 h compared with healthy PCLSs
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(51), and LPS did not induce the release ofMCP-1. In contrast,
it is upregulated by LPS in the healthy, suggesting a satu-
rated MCP-1 production of the cirrhotic liver before LPS
challenge.

Moreover, in the current study, healthy PCLSs produced
more macrophage inflammatory protein-1 (MIP-1b), which is
a chemoattractant for leukocytes to participate in inflamma-
tion, is capable of recruiting regulatory T-cell (CD4 þ
CD25þ ) population, to maintain the normal initiation of T
cell and humoral responses and inhibit autoimmunity (52,
53). This finding might indicate a superior ability in leuco-
cyte regulation of healthy PCLSs. Nevertheless, further
research on the role of MIP-1b in the cirrhotic liver or
patients with ACLF is encouraged. Taken together, several
mediators of the inflammatory response in the cirrhotic liver
indeed differ from healthy liver, at baseline, during incuba-
tion, and upon LPS challenge. These findings provide a bet-
ter understanding of the imbalanced inflammatory response
in cirrhotic livers and might guide the basic research and de-
velopment of therapeutic approaches for combatting the ex-
cessive inflammation during the onset of ACLF.

Conclusions

In summary, our study demonstrates that the expression
and regulatory pattern of LPS receptors, spontaneous inflam-
mation, and the response to LPS are different between cirrhotic
versus healthy human liver tissue. Cirrhotic PCLSs released
markedly more pro-inflammatory cytokines but lower anti-
inflammatory cytokines to LPS challenge compared with
healthy PCLSs, leading to dysregulated inflammatory response.
These events could possibly resemble the inflammatory
response of the liver in ACLF. Using human PCLSs for better
understanding the pathogenesis of the disease may guide the
novel therapeutic approaches to mitigate the excessive inflam-
matory response during the onset of ACLF, which might result
in less additional damage to the already damaged cirrhotic
liver and hopefully a better outcome in patients with ACLF.
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