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Adblocking relies on ilter lists, which are manually curated and maintained by a community of ilter list authors. Filter list

curation is a laborious process that does not scale well to a large number of sites or over time. In this paper, we introduce AutoFR,

a reinforcement learning framework to fully automate the process of ilter rule creation and evaluation for sites of interest. We

design an algorithm based on multi-arm bandits to generate ilter rules that block ads while controlling the trade-of between

blocking ads and avoiding visual breakage.We testAutoFRon thousands of sites andwe show that it is eicient: it takes only a few

minutes to generate ilter rules for a site of interest. AutoFR is efective: it optimizes ilter rules for a particular site that can block

86%of the ads, as compared to 87%byEasyList,while achieving comparable visual breakage.UsingAutoFR as a building block,we

devise threemethodologies that generateilter rules across sites basedon: (1) amodiiedversionofAutoFR, (2) rulepopularity, and

(3) site similarity.We conduct an in-depth comparative analysis of these approaches by considering their efectiveness, eiciency,

and maintainability. We demonstrate that some of them can generalize well to new sites in both controlled and live settings.

We envision that AutoFR can assist the adblocking community in automatically generating and updating ilter rules at scale.

CCS Concepts: · Security and privacy→ Privacy protections;Web application security; Browser security.

Additional KeyWords and Phrases: adblocking, ilter lists, reinforcement learning

1 Introduction

Adblocking is widely used today to improve the security, privacy, performance, and browsing experience of web
users. Twenty years after the introduction of the irst adblocker in 2002, the number of web users who use some
form of adblocking now exceeds 42% [6]. Adblocking primarily relies on ilter lists (e.g., EasyList [14]) that are
manually curated based on crowd-sourced user feedback by a small community of ilter list (FL) authors. There
are hundreds of diferent adblocking ilter lists that target diferent platforms and geographic regions [7]. It is
well-known that the ilter list curation process is slow and error-prone [3], and requires signiicant continuous
efort by the ilter list community to keep them up-to-date [31].
The research community is actively working on machine learning (ML) approaches to assist with ilter rule

generation [8, 20, 41] or to build models to replace ilter lists altogether [1, 23, 40, 50]. There are two key limitations
of prior ML-based approaches. First, existing ML approaches are supervised as they rely on human feedback
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(a) FilterListAuthors’ (Human)Worklow.Howilter list authors

create ilter rules for a site ℓ : (1) they select a network request caused

by the site; (2) they create a rule and apply it on the site; (3) they

visually inspect whether it blocked ads without breakage; (4) they

repeat the process if necessary for other network requests; and (5)

they stop when they have crafted rules that can block all/most ads

for the site without causing signiicant breakage.
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(b) AutoFR (Automated)Worklow.AutoFR automates these steps

as follows: (1) the agent selects an action (i.e., ilter rule) following

a policy; (2) it applies the action on the environment; (3) the envi-

ronment returns a reward, used to update the action space; (4) the

agent repeats the process if necessary; and (5) the agent stops when a

time limit is reached, or no actions are available to be explored. The

human ilter list author only provides a site ℓ and conigurations (e.g.,

threshold� and hyper-parameters).

Fig. 1. AutoFR automates the steps taken by FL authors to generate filter rules for a particular site. FL authors can configure
the AutoFR parameters but no longer perform the manual work. Once rules are generated by AutoFR, it is up to the FL authors
to decide when and how to deploy the rules to end-users.

and/or existing ilter lists (which are also manually curated) for training. This introduces a circular dependency
between these supervised ML models and ilter lists Ð the training of models relies on the very ilter lists (and
humans) that they aim to augment or replace. Second, existing ML approaches do not explicitly consider the
trade-of between blocking ads and avoiding breakage. An over-aggressive adblocking approach might block
all ads on a site but may block legitimate content at the same time. Thus, despite recent advances in ML-based
adblocking, ilter lists remain defacto in adblocking.
Fig. 1(a) illustrates the worklow of a FL author for creating rules for a particular site: (1) select a network

request to block; (2) design a ilter rule that corresponds to this request and apply it on the site; (3) visually inspect
the page to evaluate if the ilter rule blocks ads and/or causes breakage and; (4) repeat for other network requests
and rules; since modern sites are highly dynamic, and often more so in response to adblocking [3, 12, 31, 52],
the FL author usually revisits the site multiple times to ensure the rule remains efective; and (5) stop when a
set of ilter rules can adequately block ads without causing breakage.

We ask the question: how can weminimize the manual efort of FL authors by automating the process of generating

and evaluating adblocking ilter rules? We propose AutoFR to automate each of the aforementioned steps, as
illustrated in Fig. 1(b), and we make the following contributions.

First, we formulate the ilter rule generation problem within a reinforcement learning (RL) framework, which
enables us to eiciently create and evaluate good candidate rules, as opposed to brute force or random selection.
We focus on URL-based ilter rules that block ads, a popular and representative type of rules that can be visually
audited. An important component that replaces the visual inspection, is the detection of ads (through a perceptual
classiier, Ad Highlighter [43]) and of visual breakage (through JavaScript [JS] for images and text) on a page.
We design a reward function that combines these metrics to enable explicit control over the trade-of between
blocking ads and avoiding breakage.
Second, we design and implement AutoFR to train the RL agent by accessing sites in a controlled realistic

environment. It optimizes rules that block ads and avoid breakage for a given site in under two minutes, which
is crucial for scalability. We deploy and evaluate AutoFR’s eicient implementation on Topś5K websites, and
we ind that the ilter rules generated by AutoFR block 86% of the ads. The efectiveness of the AutoFR rules is
overall comparable to EasyList in terms of blocking ads and visual breakage.

Third, we show how to generate ilter rules that are applicable across, not just one, but several sites. Sites can
be known during the optimization of rules or unseen, unintended sites that rules are applied to. We propose
three approaches. The irst modiies the AutoFR algorithm to create rules from scratch and optimizes for a given
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set of sites considered jointly. The other two approaches leverage AutoFR as a building block to irst generate
per-site rules optimized for individual sites, and then post-process these rules to select a subset that performs
well across all known sites. Ideally, it is desirable that rules optimized this way also perform well on any unseen
sites. In particular, our second approach utilizes the notion of rule popularity, i.e., if the same rules are created
individually for several sites, then intuitively, they will also be good for other sites. The third approach employs
collaborative iltering, i.e., it uses rules created for known sites and applies them to other łsimilarž sites based
on the domains that they contact. We compare these approaches against AutoFR as our baseline, using both
controlled and in-the-wild experiments and we evaluate them for efectiveness, eiciency, and maintainability.
We envision that the adblocking community will use the AutoFR framework and its variations to automatically
generate and update ilter rules at scale.
The rest of our paper is organized as follows. Sec. 2 provides background and related work. Sec. 3 formalizes

the problem of ilter rule generation, including the human process, the formulation as an RL problem, and our
particular multi-arm bandit algorithm for solving it. Sec. 4 presents our implementation of the AutoFR framework.
Sec. 5 provides its evaluation on the Topś5K sites. Sec. 6 describes and compares new approaches to generating
ilter rules across multiple sites. Sec. 7 provides recommendations on which AutoFR approach to use and outlines
the limitations and future directions for AutoFR. Sec. 8 concludes the paper with a summary. An extended
version of this paper is available at [29].

2 Background & RelatedWork

Filter Rules. Adblockers have relied on ilter lists since their inception. The irst adblocker in 2002, a Firefox
extension, allowed users to specify custom ilter rules to block resources (e.g., images) from a particular domain or
URL path [37]. There are diferent types of ilter rules. The most popular type is URL-based ilter rules, which block
network requests to provide performance and privacy beneits [42]. Other types of ilter rules are element-hiding
rules (hide HTML elements) and JS-based rules (stop JS execution). Filter rules are łtriggeredž when they block
at least one network request.
Per-site vs.Global Rules. There are two broad types of ilter rules that describe how they can be applied. First,
there are łper-sitež rules, which are restricted to trigger for particular sites. They are denoted with the ł$domainž
option. Second, there are łglobalž rules, which can trigger for any site. Examples for both are shown in Table 1.
Popular ilter lists support per-site and global rules; they contain mostly global rules. In Sec. 3, the AutoFR
framework generates per-site rules. In Sec. 6, we develop new approaches to generating both per-site and global
rules that apply across sites.
Known vs.Unseen Sites. Per-site and global rules are expected to work well on łknownž sites, i.e., given sites
that the rules are being optimized for during their construction. While per-site rules can only be triggered for
their known sites, global rules, on the other hand, can trigger for other łunseenž sites, i.e., sites that the rules
were not optimized for. In Sec. 6, we evaluate the performance of per-site and global ilter rules on both known
and unseen sites.
Breakage and Collateral Damage. All types of ilter rules have the potential to cause visual (e.g., missing
legitimate content like images and text) and/or functionality breakage (e.g., breaking ininite scrolling, navigation,
form submissions) to sites. If the sites are known during the construction of rules, then this potential for breakage
can be minimized (i.e., optimized for). However, rules can cause unintended breakage when applied to unseen
sites, we call this łcollateral damagež. In Sec. 3, AutoFR generates per-site rules that consider visual breakage
automatically for a known site. We explore the potential for collateral damage when applying rules on unseen
sites in Sec. 6.1.
Filter Lists and their Curation. Since it is non-trivial for lay web users to create ilter rules, several eforts
were established to curate rules for the broader adblocking community. Speciically, rules are curated by ilter
list (FL) authors based on informal crowd-sourced feedback from users of adblocking tools. EasyList [14] is the
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most widely used adblocking ilter list. Started in 2005 by Rick Petnel, it is now maintained by a small set of FL
authors and has 22 language-speciic versions. An active EasyList community provides feedback to FL authors
on its oicial forum and GitHub.
The research community has looked into the ilter list curation process to investigate its efectiveness and

pain-points [3, 31, 42, 47]. Snyder et al. [42] studied EasyList’s evolution and showed that it needs to be frequently
updated (median update interval of 1.12 hours) because of the dynamic nature of online advertising and eforts
from advertisers to evade ilter rules. They found that it has grown signiicantly over the years, with 124K+ rule
additions and 52K+ rule deletions over the last decade. Alrizah et al. [3] showed that EasyList’s curation, despite
extensive input from the community, is prone to errors that result in missed ads (false negatives) and over-blocking
of legitimate content (false positives). They concluded that most errors in EasyList can be attributed to mistakes by
FL authors. We elaborate further on the challenges of ilter rule generation in Sec. 3.1 and maintenance in Sec. 5.5.
Machine Learning for Adblocking.Motivated by these challenges, prior work has explored using machine
learning (ML) to assist with ilter list curation or replace it altogether.
One line of prior work aims to develop ML models to automatically generate ilter rules for blocking ads

[8, 20, 41]. Bhagavatula et al. [8] trained supervised ML classiiers to detect advertising URLs. Similarly, Gugel-
mann et al. [20] trained supervised ML classiiers to detect advertising and tracking domains. Sjosten et al. [41]
is the closest related to our work. First, they trained a hybrid perceptual and web execution classiier to detect
ad images. Second, they generated adblocking ilter rules by irst identifying the URL of the script responsible
for retrieving the ad and then simply using the efective second-level domain (eSLD) and path information of the
script as a rule (similar to Table 1 row 3). We found that 99% of rules that they open-sourced had paths. However,
this overreliance on rules with paths makes them brittle and easily evaded with minor changes [31]. Furthermore,
the design of these rules did not automatically consider potential breakage.
Another line of prior work, instead of generating ilter rules, trains ML models to automatically detect and

block ads [1, 2, 23, 40, 43, 50]. AdGraph [23], WebGraph [40], and WTAGraph [50] represent web page execution
information as a graph and then train classiiers to detect advertising resources. Ad Highlighter [43], Sentinel
[2], and PERCIVAL [1] use computer vision techniques to detect ad images. These eforts do not generate ilter
rules but instead attempt to replace ilter lists altogether.

While promising, existing ML-based approaches have not seen any adoption by adblocking tools. Our discus-
sions with the adblocking community have revealed a healthy skepticism of replacing ilter lists with ML models
due to performance, reliability, and explainability concerns. On the performance front, the overheads of feature
instrumentation and running ML pipelines at run-time are non-trivial and almost negate the performance beneits
of adblocking [36]. On the reliability front, concerns about the accuracy and brittleness of ML models in-the-
wild [1, 2, 41], combined with a lack of explainability [45], have hampered their adoption. In short, it seems unlikely
that ilter lists will be replaced by ML models any time soon, and ilter rules remain crucial for adblocking tools.
ML-assisted FLCuration. There is, however, optimism in using ML-based approaches to assist withmaintenance

of ilter lists. For example, Brave [41], Adblock Plus [2], and the research community [31] have been using ML
models to assist FL authors in prioritizing ilter rule updates. However, they have two main limitations. First,
they rely on ilter lists, such as EasyList, for training their supervised ML models, causing a circular dependency:
a supervised model is only as good as the ground-truth data it is trained on. This also means that the adblocking
community has to continue maintaining both ML models as well as ilter lists. Second, existing ML approaches do
not explicitly consider the trade-of between blocking ads and avoiding breakage. An over-aggressive adblocking
approach might block all ads on a site but may block legitimate content at the same time. It is essential to control
this trade-of for real-world deployment. In summary, a deployable ML-based adblocking approach should be
able to generate ilter rules without relying on existing ilter lists for training, while also providing control to
navigate the trade-of between blocking ads and avoiding breakage. To the best of our knowledge, AutoFR is
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the only system that can generate and evaluate ilter rules automatically (without relying on humans) and from
scratch (without relying on existing ilter lists).
Reinforcement Learning.We formulate the problem of ilter rule curation from scratch (i.e.,without any ground
truth or existing list) as a reinforcement learning (RL) problem; see Sec. 3. Within the vast literature in RL [44],
we choose the Multi-Arm Bandits (MAB) framework [4], for reasons explained in Sec. 3.2. Identifying the topśk
arms [10, 34] rather than searching for the one best arm [18] has been used in the problems of coarse ranking [25]
and crowd-sourcing [11, 21]. Contextual MAB has been used to create user proiles to personalize ads and
news [33]. Bandits where arms have similar expected rewards, commonly called Lipschitz bandits [26], have also
been utilized in ad auctions and dynamic pricing problems [27]. In our context of ilter rule generation, we leverage
the theoretical guarantees established for MAB to search for łgoodž ilter rules and identify the łbadž ilter rules,
while searching for opportunities of łpotentially goodž ilter rules (hierarchical problem space [48]), as discussed
in Sec. 3.3. While RL algorithms, in general, have been applied to several application domains [9, 15, 16, 51], RL
often faces challenges in the real-world [13] including convergence and adversarial settings [5, 19, 22, 38, 49].
OurWork in Perspective. The design of the AutoFR framework is described in Sec. 3 and illustrated in Fig. 1(b).
It is the irst to fully automate the process of ilter rule generation and create URL-based, per-site rules that block
ads from scratch, using reinforcement learning. Most prior ML-based techniques relied on existing ilter lists
at some point in their pipeline, thus creating a circular dependency. Furthermore, AutoFR is the irst to choose
the granularity of the URL-based rule to explicitly optimize the trade-of between blocking ads and avoiding
visual breakage. We further compare AutoFR to related works in Sec. 5.3.

The implementation is described in Sec. 4 and illustrated in Fig. 3. Within the RL framework, AutoFR’s key
design contributions include the action space, the RL components (e.g., agent, environment, reward, policy), the
annotation of raw AdGraphs into site snapshots, and the logic and implementation of utilizing site snapshots to
emulate site visits. The latter was instrumental in scaling the approach (it reduced the time for generating rules for
a single site from approximately 13 hours to 1.6 minutes) and making our results reproducible. For some individual
RL components, we leverage state-of-the-art tools: (1) we utilize one part of AdGraph that creates a graph represent-
ing the site (we do not use the trainedMLmodel of AdGraph); and (2) we use AdHighlighter to automatically detect
ads, which is used to compute our reward function. As these individual components improve over time, the AutoFR
framework can beneit from new and improved versions or even incorporate newly available tools in the future.

A conference version of this work appeared in USENIX Security 2023 [30]. In comparison, this journal version
includes (1) an enhanced Sec. 5 with more evaluation results ; (2) a new expansive Sec. 6 that develops and
evaluates new approaches to generating both per-site and global rules that can be applied across multiple sites;
and (3) a new Sec. 7 that provides recommendations on selecting the approaches that we present in this paper,
along with limitations and future directions.

3 The AutoFR Framework

We formalize the problem of ilter rule generation, including the process followed by human FL authors (Sec. 3.1
and Fig. 1(a)), our formulation as a reinforcement learning problem (Sec. 3.2 and Fig. 1(b)), and our multi-arm
bandit algorithm for solving it (Sec. 3.3 and Alg. 1).

3.1 Filter List Authors’ Workflow

Scope. Among all possible ilter rules, we focus on the important case of URL-based rules for blocking ads to
demonstrate our approach. Table 1 shows examples of URL-based rules at diferent granularities: blocking by
the efective second-level domain (eSLD), fully qualiied domain (FQDN), and including the path.
Filter ListAuthors’Worklow forCreating FilterRules. Our design of AutoFR is motivated by the bottlenecks
of ilter rule generation, revealed by prior work [3, 31], our discussions with FL authors, and our experience
in curating ilter rules. Next, we break down the process that FL authors employ into a sequence of tasks, also
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Table 1. URL-based Filter Rules. They block requests, listed from coarser to finer-grain: eSLD (efective second-level domain),
FQDN (fully qualified domain), With Path (domain and path). They can be optimized for particular sites (e.g., �.���), as shown
in the łPer-site Variationž column. Sec. 3ś 5 focus on per-site rules, while Sec. 6 focuses on approaches that generate rules
across sites.

Description Filter Rule Per-site Variation

1 eSLD | |��.���ˆ | |��.���ˆ$domain=a.com

2 FQDN | |���.��.���ˆ | |���.��.���ˆ$domain=a.com

3 With Path | |��.���/�������/ or | |���.��.���/�������/ | |��.���/�������$domain=a.com

illustrated in Fig. 1(a). When FL authors create ilter rules for a speciic site, they start by visiting the site of
interest using the browser’s developer tools. They observe the outgoing network requests and create, try, and
select rules through the following worklow.
Task1: Select aNetworkRequest. FL authors consider the set of outgoing network requests and treat them as candi-
dates to produce a ilter rule. The intuition is that blocking an ad request will prevent the ad from being served. For
sites that initiate many outgoing network requests, it may be time-consuming to go through the entire list. When
faced with this task, FL authors depend on sharing knowledge of ad server domains with each other or heuristics
based on keywords like ładsž and łbidž in the URL. FL authors may also randomly select network requests to test.
Task 2: Create a Filter Rule and Apply. FL authors must create a ilter rule that blocks the selected network request.
However, there are many options to consider since rules can be the entire or part of the URL, as shown in Table 1. FL
authors intuitively handle this problem by trying irst an eSLD ilter rule because the requests can belong to an ad
server (i.e., all resources served from the eSLD relate to ads). However, the more speciic the ilter rule is (e.g., eSLD
→ FQDN), the less likely it would lead to breakage. Then, the FL authors apply the ilter rule of choice onto the site.
Task 3: Visual Inspection. Once the ilter rule is applied on the site, FL authors inspect its efect, i.e., whether it
indeed blocks ads and/or causes breakage (i.e., legitimate content goes missing or the page displays improperly).
FL authors use diferential analysis. They visit a site with and without the rule applied, and they visually inspect
the page and observe whether ads and non-ads (e.g., images and text) are present/missing before/after applying
the rule. In assessing the efectiveness of a rule, it is essential to ensure that it blocks at least one request, i.e., a
hit. Filter rules are considered łgoodž if they block ads without breakage and łbadž otherwise. Avoiding breakage
is critical for FL authors because rules can impact millions of users. If a rule blocks ads but causes breakage, it
is considered a łpotentially goodž rule.
Task 4: Repeat. FL authors repeat the process of Tasks 1, 2, 3, multiple times to make sure that the ilter rule
is efective. Repetition is necessary because modern sites typically are dynamic. Diferent visits to the same site
may trigger diferent page content being displayed and diferent ads being served. If a rule from Task 2 blocks
ads but causes breakage, the author may try a more granular ilter rule (e.g., eSLD→ FQDN from Table 1). If
the rule does not block ads, go back to Task 1.
Task 5: Stop and Store Good Filter Rules. FL authors stop this iterative process when they have identiied a set
of ilter rules that block most ads without breakage (i.e., a best-efort approach). None of the considered rules
may satisfy these (somewhat subjective) conditions, in which case no ilter rules are produced.
Bottlenecks: Scale andHuman-in-the-Loop. The worklow above is labor-intensive and does not scale well.
There is a large number of candidate rules to consider for sites with a large number of network requests (Task 1)
and long and often obfuscated URLs (Task 2). The scale of the problem is ampliied by site dynamics, which
requires repeatedly visiting a site (Task 4). The efect of applying each single rule must then be evaluated by
the human FL author through visual inspection (Task 3), which is time-consuming on its own.
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Motivated by these observations, we aim to automate the process of ilter rule generation per-site. We reduce
the number of iterations needed (by intelligently navigating the search space for good ilter rules via reinforcement
learning), and we minimize the work required by the human FL author in each step (by automating the visual
inspection and assessment of a rule as łgoodž or łbadž). Our proposed methodology is illustrated in Fig. 1(b) and
formalized in the next section.

3.2 Reinforcement Learning Formulation

As described earlier and illustrated in Fig. 1(a), FL authors repeatedly apply diferent rules and evaluate their
efects until they build conidence on which rules are generally łgoodž for a particular site. This repetitive
action-response cycle lends itself naturally to the reinforcement learning (RL) paradigm, as depicted in Fig. 1(b),
where actions are the applied ilter rules and rewards (response) must capture the efectiveness of the rules upon
applying them to the site (environment). Testing all possible ilter rules by brute force is infeasible in practice
due to time and power resources. However, RL can enable eicient navigation of the action space.

More speciically, we choose the multi-arm bandit (MAB) RL formulation. The actions in MAB are independent
k-bandit arms and the selection of one arm returns a numerical reward sampled from a stationary probability
distribution that depends on this action. The reward determines if the selected arm is a łgoodž or a łbadž arm.
Through repeated action selection, the objective of the MAB agent is to maximize the expected total reward over
a time period [4].
The MAB framework its well with our problem. The MAB agent replaces the human (FL author) in Fig. 1(a).

The agent knows all available łarmsž (possible ilter rules), i.e., the action space; see Sec. 3.2.1. The agent picks a
ilter rule (arm) and applies it to theMAB environment, which, in our case, consists of the site ℓ (with its unknown
dynamics as per Task 4), the browser, and a selected coniguration (how we value blocking ads vs. avoiding
breakage, explained in Sec. 3.3). The latter afects the reward of an action (rule) the agent selects. Filter rules
are independent of each other. Furthermore, the order of applying diferent ilter rules does not afect the result.
In adblockers, like Adblock Plus, blocking rules do not have precedence. Through exploring available arms,
the agent eiciently learns which ilter rules are best at blocking ads while minimizing breakage; see Sec. 3.2.2.
Next, we deine the key components of the proposed AutoFR framework, depicted in Fig. 1(b). It replaces the
human-in-the-loop in two ways: (1) the FL author is replaced by the MAB policy that avoids brute force and
eiciently navigates the action space; and (2) the reward function is automatically computed, as explained in
Sec. 3.2.2, without requiring a human’s visual inspection.

3.2.1 Actions. An action is a URL blocking ilter rule that can have diferent granular levels, shown in Table 1,
and is applied by the agent onto the environment. We use the terms action, arm, and ilter rule, interchangeably.
Hierarchical Action SpaceAH. Based on the outgoing network requests of a site ℓ (Task 1), there are many
possible rules that can be created (Task 2) to block that request. Fig. 2(a) shows an example of dependencies
among candidate rules:
(1) We should try coarser grain rules irst before more iner-grain rules (the horizontal dotted lines), i.e., try

�����������.��� , then ����� .�.�����������.��� . This intuition was discussed in Task 4.
(2) If �����������.��� initiates requests to �������ℎ.���, we should explore it irst, before trying �������ℎ.���

(vertical solid lines). Sec. 4.2 describes how we retrieve the initiator information.
The dependencies among rules introduce a hierarchy in the action space A� , which can be leveraged to

expedite the exploration and discovery of good rules via pruning. If an action (ilter rule) is good (it brings a
high reward, as deined in Sec. 3.2.2), the agent no longer needs to explore its children. We further discuss the
size of action spaces in Fig. 5; we show that they can be large. The creation of A� automates Task 2.

3.2.2 Rewards. Once a rule is created, it is applied on the site (Task 2). The human FL author visually inspects
the site, before and after the application of the rule, and assesses whether ads have been blocked without breaking
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(a) Hierarchical Action Space

C
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I

C
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11

20

3

(b) Site Representation

Fig. 2. (a) Hierarchical Action Space.A node (filter rule) within the action space has two diferent edges (i.e., dependencies to
other rules): (1) the initiator edge,→, denotes that the source node initiated requests to the target node; and (2) the finer-grain
edge,d, targets a request more specifically, as discussed in Task 4 and Table 1. (b) Site Representation.We represent a
site as counts of visible ads (��), images (�� ), and text (�� ), as explained in Sec. 3.2.2. Applying a filter rule changes them
by blocking ads (reducing��) and/or hiding legitimate content (changing�� and�� , thus breakageB).

the page (Task 3). To automate this task, we need to deine a reward function for the rule that mimics the human
FL author’s assessment of whether a rule blocks ads and the breakage that could occur.
Site Representation. We abstract the representation of a site ℓ by counting three types of content visible to the
user: we count the ads (��), images (�� ), and text (�� ) displayed. An example is shown in Fig. 2(b). The baseline
representation refers to the site before applying the rule. Since a site ℓ has unknown dynamics (Task 4), we visit

it multiple times and average these counters: ��, �� , and �� .
We envision that obtaining these counters from a site can be done not only by a human (as it is the case today

in Task 3) but also automatically using image recognition (e.g., Ad Highlighter [43]) or better tools as they become
available. This is an opportunity to remove the human-in-the-loop and further automate the process. We further
detail this in Sec. 4.3.
Site Feedback after Applying a Rule.When the agent applies an action � (rule), the site representation will

change from (��,�� ,�� ) to (��, �� , �� ). The intuition is that after applying a ilter rule, it is desirable to see the
number of ads decrease as much as possible (ideally ��=0) and continue to see the legitimate content (i.e., no
change in �� , �� compared to the baseline). To measure the diference before and after applying the rule, we
deine the following:

�̂�=
��−��

��

, �̂� =
|�� −�� |

��

, �̂� =
|�� −�� |

��

(1)

�̂� measures the fraction of ads blocked; the higher, the better the rule is at blocking ads. Ideally all ads are blocked,

i.e., �̂� is 1. In contrast, �̂� and �̂� measure the fraction of page broken. Higher values incur more breakage. �̂�,

�̂� and �̂� are bounded between [0,1]. Next, we deine page breakage (B) as the visible images (�̂� ) and text (�̂� ),
which are not related to ads but are missing after a rule is applied:

B=
�̂� +�̂�

2
(2)
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We take a neutral approach and treat both visual components equally and average �̂� , �̂� . This can be conigured
to express diferent preferences by the user, e.g., treat content above-the-fold as more important. Lastly, avoiding
breakage is measured by 1−B. It is desirable that 1−B is 1, and the site has no visual breakage.

Trade-of: Blocking Ads (�̂�) vs. Avoiding Breakage (1−B). The goal of a human FL author is to choose ilter

rules that block as many ads as possible (high �̂�) without breaking the page (high 1−B). There are diferent

ways to capture this trade-of. We could have taken a weighted average of �̂� and B. However, to better mimic
the practices of today’s FL authors, we use a threshold � ∈ [0,1] as a design parameter to control how much
breakage a FL author tolerates: 1−B≥� . Blocking ads is easy when there is no constraint on breakage Ð one
can choose rules that break the whole page. FL authors control this either by using more speciic rules (e.g., eSLD
→ FQDN) to avoid breakage or avoid blocking at all. We rely on this trade-of as the basis of our evaluation in

Sec. 5. It is desirable to operate where �̂�=1 and 1−B=1. In practice, FL authors tolerate little to no breakage,
e.g.,� ≥ 0.9. However,� is a conigurable parameter in our framework.
Reward FunctionRF.When the MAB agent applies a ilter rule � (action �) at time � on the site ℓ (environment),

this will lead to ads being blocked and/or content being hidden, which is measured by feedback (�̂�, �̂� , �̂� ) deined
in Eq. (1). We design a reward functionR� :R

3→[−1,1] that mimics the FL author’s assessment (Task 3) of whether

a ilter rule � is good (R� (�,�̂�,B)>0) or bad (R� (�,�̂�,B)<0) at blocking ads based on the site feedback:

R� (�,�̂�,B)=




−1 if �̂�=0 (3a)

0 if �̂� >0 , 1−B<� (3b)

�̂� if �̂� >0 , 1−B≥� (3c)

The rationale for this design is as follows.

a) Bad Rules (Eq. (3a)): If the action does not block any ads (�̂�=0), the agent receives a reward value of −1 to
denote that this is not a useful rule to consider.

b) Potentially Good Rules (Eq. (3b)): If the rule blocks some ads (�̂� > 0) but incurs breakage beyond the FL
author’s tolerable breakage, then it is considered as łpotentially goodž1 and receives a reward value of zero.

c) Good Rules (Eq. (3c)): If the rule blocks ads2 and causes no more breakage than what is tolerable for the FL

author, then the agent receives a positive reward based on the fraction of ads that it blocked (�̂�).

3.2.3 Policy. Our goal is to identify łgoodž ilter rules, i.e., rules that give consistently high rewards. To that end,
we need to reine our notion of a łgoodž rule and deine a strategy for exploring the space of candidate ilter rules.
ExpectedRewardQt (a). The MAB agent selects an action �, following a policy, from a set of available actionsA,

and applies it on the site to receive a reward (�� =R� (�,�̂�,B)). It does this over some time horizon � =1, 2, ..., � .
However, due to the site dynamics as explained in Task 4, the reward varies over time, and we need a diferent
metric that captures how good a rule is over time. In MAB, this metric is the weighted moving average of the
rewards over time: ��+1 (�)=�� (�)+� (��−�� (�)), where � is the learning step size.
Policy. Due to the large scale of the problem and the cost of exploring candidate rules, the agent must spend
more time exploring good actions. The MAB policy utilizes �� (�) to balance between exploring new rules in
A� and exploiting the best known � so far. This process automates Task 1 and 2.
We use a standard Upper Bound Conidence (UCB) policy to manage the trade-of between exploration and

exploitation [4]. Instead of the agent solely picking the maximum �� (�) at each � to maximize the total reward,
UCB considers an exploration value �� (�) that measures the conidence level of the current estimates, �� (�).
An MAB agent that follows the UCB policy selects � at time � , such that �� = argmax� [�� (�) +�� (�)]. Higher

1łPotentiallyž means that the rule may have children rules within the action space that are efective at blocking ads with less breakage.
2Eq. (3) explicitly requires a rule to block at least some ads, to receive a positive reward. AutoFR can select rules that have additional side-beneits

(e.g., also blocks tracking requests, typically related to ads).
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Algorithm 1 AutoFR Algorithm

Require:

Design-parameter: � ∈ [0,1]

Inputs: Site (ℓ)

Reward function (R� :R
3→[−1,1])

Noise threshold (� =0.05)

Number of site visits (�=10)

Hyper-parameters: Exploration for UCB (� =1.4)

Initial Q-value (�0=0.2)

Learning step size (� =
1

� [�]
)

Time Horizon (� )

Output: Set of ilter rules (F)

1:

2: procedure Initialize(ℓ ,�)

3: ��,�� ,�� , ����← VisitSite(ℓ ,�, ∅)

4: A�← BuildActionSpace(����)

5: return��,�� ,�� ,A�

6: end procedure

7:

8: procedureAutoFR(ℓ ,�, � , � ,�)

9: ��,�� ,�� ,A�← Initialize(ℓ,�)

10: F←∅, A←∅

11: A← A� .root.children

12: repeat

13: � (�)←�0, ∀� ∈ A

14: for � =1 to� do

15: ��← ChooseArmUCB(A,�� , �)

16: ���
,���

,���
, ℎ���← VisitSite(ℓ , 1, �� )

17: �̂��
,�̂��

,�̂��
← SiteFeedback(���

,���
,���

)

18: B� ← Breakage(�̂��
,�̂��

)

19: if �� ∈ℎ��� then

20: ��← R� (�, �̂��
,B� )

21: ��+1 (�� )←�� (�� ) +� (�� −�� (�� ) )

22: else

23: Put �� to sleep

24: end if

25: end for

26: A←{�.children , ∀� ∈ A | − � <=� (�) <= � }

27: F←F∪{∀� ∈ A |� (�) > � }

28: until A is ∅

29: return F

30: end procedure

values of �� (�) mean that � should be explored more. It is updated using �� (�)=�×
︃

log� [�′ ]
� [�] , where � [�′] is

the number of times the agent selected all actions (�′) and � [�] is the number of times the agent has selected
�, and � is a hyper-parameter that controls the amount of exploration.
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3.3 The AutoFR Algorithm

Algorithm 1 summarizes our AutoFR algorithm. The inputs are the site ℓ that we want to create ilter rules for,
the design parameter (threshold)� , and various hyper-parameters, detailed in [29]. In the end, it outputs a set
of ilter rules F , if any. It consists of the two procedures discussed next.
Initialize Procedure. First, we obtain the baseline representation of a site of interest ℓ (Sec. 3.2.2), when no
ilter rules are applied. To do so, it will visit the site � times (i.e., VisitSite) to capture some dynamics of ℓ . The

environment will return the average counters ��,�� ,�� , and the set of outgoing ���� . The average counters will
be used in evaluating the reward function (Eq. (3)). Next, we build the hierarchical action space A� using all
network requests ���� (Task 1, 2).
AutoFR Procedure. This is the core of AutoFR algorithm. We call Initialize and then traverse the action space
A� from the root node to get the irst set of arms to consider, denoted as A. Note that we treat every layer (A)
of A� as a separate run of MAB with independent arms (ilter rules).

One run of MAB starts by initializing the expected values of all łarmsž at �0 and then running UCB for a time
horizon � , as explained in Sec. 3.2.3. Since the size of A can change at each run, we scale � based on the number
of arms; by default, we used 100×A .���� . Each run of the MAB ends by checking the candidates for ilter rules.
In particular, we check if a ilter rule should be further explored (down the A� ) or become part of the output
set F , using Eq. (3) as a guide. A technicality is that Eq. (3b) compares the reward R� to zero, while in practice,
� (�) may not converge to exactly zero. Therefore, we use a noise threshold (� =0.05) to decide if �� (�) is close
enough to zero (−� ≤� (�) ≤ �). Then, we apply the same intuition as in Eq. (3) but using � (�), instead of �� ,
to assess the rule and next steps.

a) Bad Rules: Ignore. This case is not explicitly shown but mirrors Eq. (3a). If a rule is � (�)< � , then we ignore
it and do not explore its children.

b) Potentially Good Rules: Explore Further.Mirroring Eq. (3b), if a rule is within a range of ± � of zero, it helps
with blocking ads but also causes more breakage than it is acceptable (� ). In that case, we ignore the rule
but further explore its children within A� . An example based on �����������.��� is shown in Fig. 2(a). In
that case, A is reset to be the immediate children of these arms, and we proceed to the next MAB run.

c) Good Rules: Select. When we ind a good rule (� (�)> �), we add that rule to our list F and no longer explore
its children. This mimicks Eq. (3c). An example is shown in Fig. 2(a): if �����������.��� is a good rule, then
its children are not explored further.

We repeatedly runMAB until there are no more potentially good ilter rules to explore3. This stopping condition
automates Task 5. The output is the inal set of good ilter rules F .

4 AutoFR Implementation

In this section, we present the AutoFR tool that fully implements the RL framework as described in the previous
section. AutoFR removes the human-in-the-loop. The FL author only needs to provide their preferences (i.e., how
much they care about avoiding breakage via� ) and hyper-parameters (detailed in Alg. 1), and the site of interest ℓ .
AutoFR then automates Tasks 1ś 5 and outputs a list of ilter rules F speciic to ℓ , and their corresponding values� .
Implementation Costs. Let us revisit Fig. 1(b) and relect on the interactions with the site. The MAB agent
(as well as the human FL author) must visit the site ℓ , apply the ilter rule, and wait for the site to inish loading
the page content and ads (if any). The agent must repeat this several times to learn the expected reward of rules
in the set of available actions A.
We employed cloud services using Amazon Web Services (AWS) to scale to tens of thousands of sites. This

has high computation and network access costs and, more importantly, introduces long delays until convergence.

3When we ind a rule that we cannot apply, we put it to łsleepž, in MAB terminology. This is because they do not block any network request

(i.e., no hits, in Task 3), and we expect them to not likely afect the site in the future, either.
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Fig. 3. AutoFR ExampleWorkflow (Controlled Environment). Initialize (aśc, Alg. 1): (a) spawns �=10 docker instances
and visits the site until it finishes loading; (b) extracts the outgoing requests from all visits and builds the action space; (c)
extracts the raw graph and annotates it to denote �� , �� , and �� , using JS and Selenium. Once all 10 site snapshots are
annotated, we run the RL portion of the AutoFR procedure (steps 1ś4). Lastly, AutoFR outputs the filter rules at step 5, e.g.,
| |s.yimg.com/rq/darla/4-10-0/html/r-sf.html.

To make things concrete. For the delay, we found it took 47 seconds per-visit to a site, on average, by sampling
100 sites in the Topś5K. Thus, running AutoFR for one site with ten arms in the irst MAB run, for 1K iterations,
would take 13 hours for one site alone! For themonetary cost, runningAutoFR-L on 1K sites and scaling it using one
AWS EC2 instance per-site ($0.10/hour) would cost roughly $1.3K for 1K sites, or $1.3 to run it once per-site. This
a well-known problem with applying RL in a real-world setting. Thus, an implementation of AutoFR that creates
rules by interacting with live sites is inherently slow, expensive, and does not scale to a large number of sites.
Scalable and Practical. Although AutoFR-L is already an improvement over the human worklow, we were able
to design an even faster tool, which produces rules for a single site in minutes instead of hours. The core idea
is to create rules in a realistic but controlled environment, where the expensive and slow visits to the website
are performed in advance, stored once, and then used during multiple MAB runs, as explained in Sec. 3.3. In this
section, we present the design of this implementation in a controlled environment: AutoFR-C, or AutoFR for
simplicity. An overview of our implementation is provided in Fig. 3. Importantly, this allows our AutoFR tool
to scale across thousands of sites and, thus, utilized as a practical tool.

4.1 Environment

To deal with the aforementioned delays and costs during training, we replace visiting a site live with emulating

a visit to the site, using saved site snapshots. This provides advantages: (1) we can parallelize and speed up the
collection of snapshots, and then runMAB of-line; (2) we can reuse the same stored snapshots to evaluate diferent
� values, algorithms, or reward functions while incurring the collection cost only once; and (3) we plan to make
these snapshots available to the community (i.e., it can replicate our results and utilize snapshots in its own work).
Collecting and Storing Snapshots. Site snapshots are collected up-front during the Initialize phase of Alg. 1
and saved locally. We illustrate this in Fig. 3, steps aśc. We use AdGraph [23], an instrumented Chromium browser
that outputs a graph representation of how the site is loaded. To capture the dynamics, we visit a site multiple
times using Selenium to control AdGraph and collect and store the site snapshots. The environment is dockerized
using Debian Buster as the base image, making the setup simple and scalable. For example, we can retrieve 10 site
snapshots in parallel, if the host machine can handle it. In Sec. 5.1, we ind that a site snapshot takes 49 seconds
on average to collect. Without parallelization, this would take 8 minutes to collect 10 snapshots sequentially.
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Deining Site Snapshots. Site snapshots represent how a site ℓ is loaded. They are directed graphs with known
root nodes and possible cycles. An example is shown in Fig. 4. Site snapshots are large and contain thousands of
nodes and edges, shown later in Fig. 5. We use AdGraph as the starting point for deining the graph structure and
build upon it. First, we automatically identify the visible elements, i.e., ads (AD), images (IMG), and text (TEXT)
(technical details in Sec. 4.3), for which we need to compute counts ��, �� , and �� , respectively. Second, once
we identify them, we make sure that AdGraph knows that these elements are of interest to us. Thus, we annotate
the elements with a new attribute such as łFRG-adž, łFRG-imagež, and łFRG-textnodež set to łTruež. Annotating
is challenging because ads have complex nested structures, and we cannot attach attributes to text nodes. Third,
we include how JS scripts interact with each other using łScript-used-byž edges, shown in Fig. 4. Lastly, we save
site snapshots as ł.graphmlž iles.
Emulating a Visit to a Site. Emulation means that the agent does not actually visit the site live but instead
reads a site snapshot and traverses the graph to infer how the site was loaded. To emulate a visit to the site, we
randomly read a site snapshot into memory using NetworkX and traverse the graph in a breadth-irst search
manner starting from the root Ð efectively replaying the events (JS execution, HTML node creation, requests
that were initiated, etc.) that happened during the loading of a site. This greatly increases the performance of
AutoFR as the agent does not wait for the per-site visit to inish loading or for ads to inish being served. Thus,
reducing the network usage cost. We hard-code a random seed (40) so that experiments can be replicated later.
Applying Filter Rules. To apply a ilter rule, we use an oline adblocker, adblockparser [39], which can be
instantiated with our ilter rule. If a site snapshot node has a URL, we can determine whether it is blocked by
passing it to adblockparser. We further modiied adblockparser to expose which ilter rules caused the blocking
of the node (i.e., hits). If a node is blocked, we do not consider its children during the traversal.
Capturing Site Feedback from Site Snapshots. The next step is to assess the efect of applying the rule on
the site snapshot. At this point, the nodes of site snapshots are already annotated. We need to compute the
counters of ads, images, and text (��, �� , �� ), which are then used to calculate the reward function. Its Python
implementation follows Sec. 3.2.2.

We use the following intuition. If we block the source node of edge types łActorž, łRequestorž, or łScript-used-
byž, then their annotated descendants (IMG, TEXT, AD) will be blocked (e.g., not visible or no longer served) as
well. Consider the following examples on Fig. 4: (1) if we block JS Script A, then we can infer that the annotated
IMG and TEXT will be blocked; (2) if we block the annotated IMG node itself, then it will block the URL (i.e.,
stop the initiation of the network request), resulting in the IMG not being displayed; and (3) if we block JS Script
B that is used by JS Script A, then the annotated nodes IMG, TEXT, IFRAME (AD) will all be blocked. As we
traverse the site snapshot, we count as follows. If we encounter an annotated node, we increment the respective
counters ��, �� , �� . If an ancestor of an annotated node is blocked, then we do not count the annotated node.
Limitations. To capture the site dynamics due to a site serving diferent content and ads, we perform several visits
per-site and collect the corresponding snapshots. We found that 10 visits were suicient to capture site dynamics
in terms of the eSLDs on the site, which is a similar approach taken by prior work [31, 52]. We describe why
10 visits are enough in [29]. However, snapshots also miss a diferent type of dynamics. When we emulate a visit
to the site while applying a ilter rule, we infer the response based on the stored snapshot. In the live setting, the
site might detect the adblocker (or detect missing ads [31]) and try to evade it (i.e., trigger diferent JS code), thus
leading to a diferent response that is not captured by our snapshots. We evaluate this limitation in Sec. 5.1.1 and
show that it does not impact the efectiveness of our rules. Another limitation can be explained via Fig. 4. When JS
Script B is used by JS Script A, we assume that blocking B will negatively afect A. Therefore, if A is responsible for
IMG and TEXT, then blocking B will also block this content; this may not happen in the real world. When we did
not consider this scenario, we found that AutoFR may create ilter rules that cause major breakage. Since breakage
must be avoided and we cannot diferentiate between the two possibilities, we maintain our conservative approach.
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Fig. 4. Site Snapshot. It is a graph that represents how a site is loaded. The nodes represent JS Scripts, HTML nodes (e.g.,
DIV, IMG, TEXT, IFRAME), and network requests (e.g., URL). łActorž edges track which source node added or modified a
target node. łRequestorž edges denote which nodes initiated a network request. łDOMž edges capture the HTML structure
between HTML nodes. Lastly, łScript-used-byž edges track how JS scripts call each other. As described in Sec. 4.1, nodes
annotated by AutoFR have filled backgrounds, while grayed-out nodes are invisible to the user.

4.2 Agent

Action SpaceA� . During the Initialize procedure (Alg. 1), we visit the site ℓ multiple times and construct the
action space. First, we convert every request to three diferent ilter rules, as shown in Table 1. We add edges
between them (eSLD→ FQDN→With path), which serve as the iner-grain edges, shown in Fig. 2(a). We further
augment A� by considering the łinitiatorž of each request, retrieved from the Chrome DevTools protocol and
depicted in solid lines in Fig. 2(a). This makes the A� taller and reduces the number of arms to explore per run
of MAB, as described in Sec. 3.3. The resulting action space is a directed acyclic graph with nodes that represent
ilter rules. Fig. 2(a) provides a zoom-in example. We implement it as a NetworkX graph and save it as a ł.graphmlž
ile, a standard graph ile type utilized by prior work [41].
Policy. The UCB policy of Sec. 3.2.3 is implemented in Python. At time � (Alg. 1, line 14), the agent retrieves
the rule selected by the policy and applies it on the randomly chosen site snapshot instance.

4.3 Automating Visual Component Detection

A particularly time-consuming step in the human worklow is Task 3 in Fig. 1(a). The FL author visually inspects

the page, before and after they apply a ilter rule, to assess whether the rule blocked ads (�̂�) and/or impacted

the page content (�̂� , �̂� ). AutoFR in Fig. 1(b) summarizes this assessment in the reward in Eq. (3). However, to
minimize human work, we also need to replace the visual inspection by automatically detecting and annotating
elements as ads (AD), images (IMG), or text (TEXT) on the page.
DetectionofAD(Perceptual). To that end, we automatically detect ads using AdHighlighter [43], a perceptual ad
identiier (and web extension) that detects ads on a site. We evaluated diferent ad perceptual classiiers, including
Percival [1], and we chose Ad Highlighter because it has high precision and does not rely on existing ilter rules.
We utilize Selenium to traverse nested iframes to determine whether Ad Highlighter has marked them as ads.
Detection of IMG and TEXT.We automatically detect visible images and text by using Selenium to inject our
custom JS that walks the HTML DOM and inds image-related elements (i.e., ones that have background-urls)
or the ones with text node type, respectively. To know if they are visible, we see whether the element’s or text
container’s size is > 2px [31].
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Table 2. Approaches to Generating Filter Rules.We split them into two categories. łConstructionž approaches optimize
rules during the training process, while the others apply a łpost-processingž step on existing per-site rules. We use AutoFR
(row 1) as our baseline. The column łGeneralizesž denotes whether the approach can deal with unseen sites. łEficiencyž and
łMaintainabilityž provide empirical estimates of each approach in minutes. Square brackets [] denote that parallalization
can be used, e.g., 1.6×�→ 1.6. Note that for AutoFR-Global’s maintainability, we must run the entire algorithm again for
� sites, even when� is small (e.g.,�=1).
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Discussion of the Visual Components. It is important to note that our framework is agnostic to how we detect
elements on the page. For detecting ads, this can be done by a human, the current Ad Highlighter, future improved
perceptual classiiers, heuristics, or any component that identiies ads with high precision. This also applies to
detecting the number of images and text. Images can be counted using an instrumented browser that hooks into
the pipeline of rendering images [1]. Text can be extracted from screenshots of a site using Tesseract [43], an OCR
engine. Therefore, the AutoFR framework is modular and dependent on how well these components perform.
Discussion of Blocking Ads vs. Tracking. We focus on detecting ads and generating ilter rules that block
ads for two reasons. First, they are the most popular type of rules in ilter lists. Second, ads can be visually
detected, enabling a human (FL author) or a visual detection module (such as Ad Highlighter) to assess if the
rule was successful (the ad is no longer displayed) or not at blocking ads. Although tracking is related to ads,
it is impossible to detect visually, and assessing the success of a rule that blocks tracking is more challenging,
e.g., involves JS code analysis [12]. Extending AutoFR for tracking is a direction for future use.

5 Evaluation

In this section, we evaluate the performance of per-site rules generated by AutoFR (i.e., the trade-of between
blocking ads and avoiding breakage) and compare it to EasyList as a baseline. We characterize properties of
AutoFR and the rules it generates: how they compare to related works, how they compare to EasyList rules, and
how fast they need to be updated. Later, in Sec. 6, we extend AutoFR to develop approaches that generate rules
across multiple sites. We provide an overview of these approaches in Table 2. Our hyper-parameter tuning and
experiment setup are detailed in [29].

5.1 Filter Rule Evaluation Per-Site

5.1.1 AutoFR Results. We apply AutoFR on the Tranco Topś5K sites [32, 46] to generate rules using the breakage
tolerance threshold of� =0.9. All other AutoFR parameters are the same as in Alg. 1. Table 3 summarizes our
datasets and ilter rules generated on the Topś5K, while Fig. 5 utilizes the Full-W09-Dataset to characterize the
sizes of action spaces and site snapshots, the run-time of AutoFR and the number of rules generated per-site.
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Table 3. AutoFR Topś5KDatasets

Datasets� =0.9 Sites Filter Rules Snapshots

W09-Dataset (Sites ≥ 1 rule) 933 361 9.3K

Full-W09-Dataset (All sites) 1042 361 10.4K
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Fig. 5. Full-W09-Dataset.: (a) Action Spaces: 75% of action graphs have 800 nodes or fewer. AutoFR only needs to explore
a fraction of the action space to find efective rules. (b) Site Snapshots: 75% of site snapshots contain 10K nodes or fewer. (c)
AutoFR Run–time: 75% of sites take a minute or less to execute the multi-arm bandit portion of Alg. 1. (d) Filter Rules: For
75% of sites, AutoFR generated three filter rules or fewer.

Table 4. Results.We provide additional results to Fig. 6. We explain the meaning of each row: (1) the number of sites that
are in the operating point (top-right corner of the figures), where filter rules were able to block the majority of ads with
minimal breakage; (2) the number of sites that are within� ; and (3) the fraction of ads that were blocked across all ads within
� . *Confirming via Visual Inspection (In theWild) (Sec. 5.1): col. 3 is based on a binary evaluation. As it is not simple for a human
to count the exact number of missing images and text, we evaluate each site based on whether the rules blocked all ads or

not (i.e., �̂� is either 0 or 1) and whether they caused breakage or not (i.e.,B is either 0 or 1). For col. 5 (Sec. 5.5.1), we repeat
the same experiment of col. 2 during July 2022 for a longitudinal study of AutoFR rules.

Sec. 5.1, Fig. 6, Topś5K Sec. 5.5.1

AutoFR

(Snapshots)

(Jan. 2022)

AutoFR

(In theWild)

(Jan. 2022)

AutoFR

(*Conirm)

(In theWild)

EasyList

(In theWild)

(Jan. 2022)

AutoFR

(In theWild)

(July 2022)

Description (�=0.9) 1 2 3 4 5

1
Sites in operating point:

�̂� ≥ 0.95, 1−B ≥ 0.95
62% 74% 85% 79% 72%

2
Sites within�:

�̂� >0, 1−B ≥ 0.9
77% 86% 85% 87% 82%

3
Ads blocked within�:∑

ℓ (��×�̂� ) /
∑

ℓ�� ;

1−� ≥ 0.9

70% 86% 84% 87% 78%

Overall, AutoFR generated 361 ilter rules for 933 sites. For some sites, AutoFR did not generate any rules since
none of the potential rules were viable at the selected� threshold.
Eiciency. AutoFR is eicient and practical: it can take 1.6ś9 minutes to run per-site, which is an order of
magnitude improvement over the 13 hours per-site of live training in Sec. 4. During each per-site run, we explore
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(a) AutoFR (Snapshots)
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(b) AutoFR (In theWild)
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(c) EasyList (In theWild)

Fig. 6. AutoFR (Topś5K). All sub-figures exhibit similar paterns. First, the filter rules were able to block ads with minimal
breakage for the majority of sites. Thus, the top-right bin (the operating point) is the darkest. Second, there are edge cases
for sites with partially blocked ads within the� threshold (right of� line) and sites below the� threshold (let of� line).
See Table 4, col. 1, 2, and 4, for additional information.

tens to hundreds of potential rules and conduct up to thousands of iterations within MAB runs (see Fig. 5). This
eiciency is key to scaling AutoFR to a large number of sites and over time.
AutoFR: Validationwith Snapshots. Since AutoFR generates rules for each particular site (i.e., per-site), we
irst apply these rules to the site for which they have been created. To that end, we irst apply the rules to the
stored site snapshots, and we report the results in Fig. 6(a) and Table 4 col. 1. We see that the rules block ads
on 77% of the sites within the� =0.9 breakage threshold. As we demonstrate next, this number is lower due to
the limitations of traversing snapshots (Sec. 4.1) and the rules are more efective when tested on sites in the wild.
AutoFR vs. EasyList: Validation In TheWild. EasyList4 to the same set of Topś5K sites and we report our
results in Fig. 6(b) and Table 4 col. 2 and 4. AutoFR’s rules block 95% (or more) of ads with less than 5% breakage
for 74% of the site (i.e., within the operating point) as compared to 79% for EasyList. For sites within the �
threshold, AutoFR and EasyList perform comparably at 86% and 87%, respectively (row 2). Overall, our rules
blocked 86% of all ads vs. 87% by EasyList, within the� threshold (row 3). Some sites fall below the� threshold
partly due to the limitations of AdGraph [23].

To further conirm our results for AutoFR and EasyList, we randomly selected 272 sites (a sample size out of 933
sites to get a conidence level of 95% with a 5% conidence interval), and we visually inspected them. In particular,
we looked for breakage that was not perfectly captured by automated evaluation. Table 4 col. 3 summarizes the
results and conirms our results obtained through the automated worklow. We ind that 3% (7/272) of sites had
previously undetected breakage. For instance, the layout of four sites was broken (although all of the content was
still visible), and one site’s scroll functionality was broken. Note that this kind of functionality breakage is currently
not considered by AutoFR.We ind three sites had some images missing. This was because images were served with
ł<amp-img>ž instead of the standard ł<img>ž tag. This can be easily addressed by updating howwe retrieve�� in
Sec. 4.3. We observed two sites (e.g., gazeta.ru) that intentionally caused breakage (the site loads the content, then
goes blank) after detecting their ads were blocked. AutoFR’s implementation currently does not handle this type of
adblocking circumvention. AutoFR can generate ilter rules that block ads that do not have ad transparency logos.
We observe that our ilter rules could block all ads for 90% (44/49) of sites that also served non-transparency ads.We
deduce this is because a site will use the same approach (or JS) to serve ads with and without ad transparency logos.

5.1.2 Validation of Detection Modules. In this section, we validate the detection of AD, IMG, and TEXT used
in AutoFR.

4For a fair comparison, we parse EasyList and utilize delimiters (e.g., ł$ž, ł | |ž, and łˆž) to identify URL-based ilter rules and keep them.
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(a) AutoFR:�=0
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(b) AutoFR:�=0.5
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(c) AutoFR:�=1

Fig. 7. AutoFR across Diferentw (Topś5K).We run AutoFR on Full-W09-Dataset using a range of� ∈ [0,0.5,1] and visualize
the efectiveness based on the trade-of of blocking ads vs. avoiding breakage. As� increases, there are more sites in operating
point. Lower� denotes that the user does not care about breakage, which causes less exploration of the action space for
rules that fall in the operating point.

Detection of AD (Perceptual): Validation In TheWild.We leverage the same sample of 272 sites to keep track
of ads detected by Ad Highlighter to validate its precision. We count a total of 1040 ads that were detected by
Ad Highlighter. We found ive false positives (i.e., not ads), giving us a 99% precision in ads. When we consider it
in terms of sites, this afected 2% of sites (5/272). False positives can appear due to social widgets like Twitter and
SoundCloud with play buttons similar to AdChoice logos. However, we note that this does not always happen
for every embedded social widget.
Detection of IMG and TEXT: Validation In TheWild. To validate our methodology of capturing the number
of visible images (�� ) and text (�� ) for a given site, we randomly sample 100 sites from W09-Dataset and modify
our custom JS in the following ways. For images that we identify, we add a blue solid border; for text, we append
ł(AutoFR)ž. For each site, we automatically visit the site using Selenium and inject the modiied JS before taking
a screenshot. We then visually inspected the 100 screenshots to see whether the images and text were correctly
captured. Note that the images and text captured must not be part of ads. We observe our methodology has 100%
precision in capturing visible images and text. This is not surprising, as our methodology relies on common
approaches to display images (using ��� tags, and łbackground-urlž) and text (we only consider HTML nodes
with the type łTEXT_NODEž [35]).

Next, we evaluate the images and text that were missed. First, we utilize the screenshots to ind the locations of
visible content that were missed and keep track of their counts. Then, we visit the site manually using a Chrome
browser, inject the JS using the Chrome Developer Tools, and inspect the HTML DOM to discern the reason for
the missed content. For instance, we miss some visible images and text because they are rendered using <���>

or pseudo-elements. However, most of this missed content is small icons for social media sharing (e.g., Facebook,
Twitter), top menus, and footers. If we consider the missed images as false negatives, we get a recall of 95% for
capturing visible images. For capturing visible text, we get a recall of 99%. Future improvements to AutoFR can
consider <���> for�� by modifying the JS. However, for pseudo-elements, we would need to modify the browser
to capture these images. Fortunately, these are often used for trivial images such as small icons.

5.2 Customizing AutoFR to User Preferences

We design AutoFR to be customizable to user preferences. AutoFR is the irst approach that can be tuned per-site
and explicitly allows one to express a preference. The FL author that uses AutoFR must select the site to create
rules for and express their preference by tuning a knob (threshold� ). There is no optimized value for threshold
� , but rather,� is an important knob, manually selected by the user of AutoFR to express how much they value
adblocking vs. breakage; see Eq.(3).
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Table 5. AutoFR vs. RelatedWork.We compare AutoFR to the four most relevant works across several factors. AutoFR
was evaluated on the Topś5K in Sec. 5.1.1, while other works in rows 2ś5 conducted their evaluation across the Topś10K
sites. The input to AutoFR can be 1 or more sites, while other works require � sites in terms of thousands to train and test
classifiers. Performance values reflect the accuracy of in-the-wild evaluation, which compares with AutoFR results of łsites
in�ž (Table 4 row 2, col. 2). Eficiency is calculated based on minutes. It sums the duration for data collection and training.
Note that AutoFR only requires individual sites (even one is enough) as it generates rules per-site. Conversely, other works
need � sites in terms of thousands to train their classifiers. Maintainability is based on� sites, a subset of � sites, to retrain
classifiers. Prior works and AutoFR need only to update the data for� sites that have changed over time. All rows 2ś5 values

are retrieved directly from their respective works. *AutoFR per-site rules do not generalize to other unseen sites by design.
In Sec. 6, we extend AutoFR to generate rules that can generalize to other sites.
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1 AutoFR (Sec. 5) 1 Per-site RL Of 86% ✕ 1.6 1.6 ×�

2 Iqbal et al. [23] � Classify ML On ✕ ✕ 95% ś retrain w/�

3 Siby et al. [40] � Classify ML Of ✕ ✕ 94% 0.7 × � 0.7 ×�

4 Sjösten et al. [41] � Global ML Of ✕ ✕ 98% 0.5 × � 0.5 ×�

5 Yang et al. [50] � Classify ML On|Of ✕ ✕ 93|98% (2 × �) + 15 (2 ×�) + 15

Express User Preference using Threshold w. Fig. 7 illustrates the trade-of as � increases on the entire
Full-W09-Dataset for each individual� value. First, for low� ’s, we notice more breakage. This is not surprising
as the user does not care about breakage. As� increases, we can see that the ilter rules adhere to the threshold
and mostly stay within it (i.e., being on the right side of� ). However, interestingly, we observe that there are
more sites that are in the operating point of the plots (i.e., the top-right corner). This is because as the user cares
more about breakage, AutoFR is exploring more of the action space (i.e., going down the hierarchy), and thus
more chances of candidate rules that are in the operating point.

5.3 AutoFR vs. RelatedWork

In Sec. 2, we described work related to AutoFR. Next, we revisit them and qualitatively compare AutoFR against
the four most relevant related works with respect to several metrics, and we summarize them in Table 5. These
works take diferent approaches, not directly comparable to ours, such as applying traditional machine-learning
approaches on tabular features (Iqbal et al. [23], Siby et al. [40]), deep learning approaches on images for perceptual
classiiers (Sjösten et al. [41]), and graph neural networks on HTTP request, JavaScript, and HTML DOM features
(Yang et al. [50]). Thus, in Sec. 5.4, we compare AutoFR to the state-of-the-art EasyList, providing the most fair
comparison.

The most distinguishing contribution of AutoFR is that it generates ilter rules from scratch, without needing
existing ones and automatically minimizes visual breakage during its training phase. All other works require
existing ilter rules to label their ground truths while evaluating breakage during a manual post-processing step.
Regarding inputs, AutoFR requires only a single site to generate its rules, thus, users of AutoFR can provide any
number of sites to it. On the other hand, other works require thousands of sites (e.g., the Top-10K) to train and test
their classiiers. In terms of outputs, AutoFR generates per-site rules for three diferent network blocking rules,
and optimizes for the right type of rule during the training process, described in Table 1 and Sec. 3. The closest
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approach is Sjösten et al., which classiies outgoing network requests as ads and tracking and transforms the URL
into global rules with paths. This can be limited, as rules with paths are easily evaded. We demonstrate that AutoFR
prioritizes generating coarser grain ilter rules, which results in robust rules over time in Sec. 5.5. Other works
apply classiiers to determine whether a network request (URL) is ads or tracking without generating ilter rules.
Regarding performance, AutoFR achieves similar results with related work: high 80s% vs. 90s%. The key con-

tribution is that it achieves that level of performance without needing existing ilter rules. However, the per-site
rules do not generalize to other sites, while other works can apply their classiiers to any sites and network
requests. In Sec. 6, we design and evaluate extensions to AutoFR to generate ilter rules that are applicable to
other sites. For eiciency, AutoFR can run in under two minutes, which is comparable to other works that also
run within minutes. Note that AutoFR can generate ilter rules for any number of sites and does not require
thousands of sites to train classiiers. Lastly, for maintainability, AutoFR can be re-run to generate ilter rules
for any number of� sites that have changed over time (�⊆�). Similarly, other works can update their features
for any number� of sites and re-run their training and testing.

5.4 AutoFR vs. EasyList: Comparing Rules

We compare the rules generated per-site by AutoFR and EasyList from Sec. 5.1. For a fair comparison, we only
consider EasyList rules that are triggered when visiting sites.

5.4.1 Rule Type Granularity. An important aspect to consider when comparing rules is the suitable granularity
of the rules that block ads while limiting breakage. Fig. 8(a) breaks down the granularity of rules by AutoFR and
EasyList. We note that both exhibit a similar distribution: eSLD rules are the most common, while the other rule
types are less common. Across all granularities, there are 59 identical rules (e.g., | |�������.��ˆ, | |���������.���ˆ,
and | |���������.���ˆ) between AutoFR and EasyList, which represents 15% of EasyList rules.

Next, we focus on rules that are related, i.e., they share a common eSLD but may difer in subdomain or path, to
understand why AutoFR generates rules that are coarser or iner-grain than EasyList rules. In Fig. 8(b), we show
that when we group rules by eSLD, there are 78 common eSLDs, 60 (77%) of which have at least one identical
rule. For example, for���� .��, both AutoFR and EasyList have | |��.���� .��ˆ.
For 26 eSLD groups, AutoFR and EasyList rules difer in granularity. First, 18 eSLDs have AutoFR rules that

are coarser-grained than EasyList. For instance, AutoFR has | |����� � ���� .���ˆ but EasyList has 15 diferent
rules based on FQDNs like | |�2��2�72������.����� � ���� .���ˆ. CloudFront is a CDN that can serve resources for
legitimate content, ads, and tracking. As AutoFR generates per-site rules, it can aford to be more coarse-grained
because a particular site may only use CloudFront for ads and tracking. However, since EasyList rules that target
CloudFront are not per-site, they are more iner-grain to avoid breakage on other sites.

Second, six eSLDs have AutoFR rules that are iner-grain than EasyList. For instance, for�������.���, AutoFR
has | |�.�������.���ˆ when EasyList has | |�������.���ˆ. Recall in Sec. 4.1 that AutoFR generates rules with a
conservative approach when using site snapshots, and thus will consider iner-grain rules for some cases to avoid
breakage. Whereas FL authors manually verify rules for EasyList and will know that | |�������.���ˆ is more
appropriate.
Lastly, four eSLDs share the same granularity but contain rules that are not identical. For example, for

site �������������.���, AutoFR has | |�������������.���/������/ ��/���-���-�9-��.�� , while EasyList has
�������������.���/������/ ��/���-. Partial paths within EasyList may extend the life of a ilter rule over time
for some sites. We further evaluate this in Sec. 5.5.1. AutoFR can extend to partial paths in the future.

5.4.2 Understanding Unique Rules. We investigate why AutoFR generates rules that are not present in Ea-
syList and vice versa. We found that when grouped by eSLD (Fig. 8(b)), unique rules are due to the design and
implementation of our framework, as well as due to site dynamics.
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Fig. 8. Comparing AutoFR Rules to EasyList. Some rules are common and some are unique to each approach. When
comparing rules, one must consider the right granularity.

Methodology. To investigate each unique rule (either from AutoFR or EasyList), we apply the rule to its cor-
responding site snapshots (per-site) and extract the requests that were blocked. We manually investigate these
requests as follows. For images, we visually decide whether it is an ad. For scripts, we use our domain knowledge
and keywords (e.g., ładvertisingž, łbidž) to examine the source code to discern whether they afect ads, tracking,
functionality, or legitimate site content. When we cannot determine the nature of the request (e.g., due to obfus-
cated JS code), we fall back to applying the rule and evaluating its efectiveness via visual inspection, following
the methodology in Sec. 5.1.
Findings. In Fig. 8(b), the diferences in rules when grouped by eSLDs are due to three main reasons.
1. AutoFR Framework: Our framework exhibits several strengths when generating rules. 48% (105/220) of the

unique eSLDs for AutoFR have rules that are valid but seem challenging for a FL author to manually craft. Within
this set, 19% (20/105) are irst-party (e.g., | |����ℎ����ℎ.���/.../������_��.ℎ��� ), 52% (55/105) block resources that
involve both ads and tracking (e.g., | |���������� .���ˆ), 23% (24/105) block ad-related resources served by CDNs (e.g.,
| |���.� ����������.���/��������/�����_����� . ��), and 42% (44/105) block ad-related resources served through
seemingly obfuscated URLs. We conclude that AutoFR can create rules that are not obviously ad-related (e.g.,
by looking at keywords in the URL) but are efective nonetheless.

Next, we explain how certain design decisions behind AutoFR’s framework can lead to missed EasyList rules.
First, AutoFR focuses on rules that block at least some ads (due to Eq. (3a)), which is why AutoFR ignored 10%
(28/279) of unique eSLDs from EasyList that are responsible for purely tracking requests. Second, we choose to
generate rules that block ads across all 10 site snapshots of a site, not just one site snapshot, to be robust against
site dynamics. In addition, we choose to stop exploring the hierarchical action space when we ind a good rule
following the intuition from Sec. 3.2.1, which improves the eiciency of AutoFR. Of course, these design decisions
can be altered depending on the user’s preference. When we do so, we ind that the overlap in Fig. 8(b) goes from
22% (78/357) to 35% (124/357). For example, ����������� .��� and �������.�� are new common eSLDs found when
we remove these design decisions.

2. AutoFR Implementation: Our implementation of Alg. 1 focuses on visual components (e.g., using Ad High-
lighter to detect ads) and how ilter rules afect them. The rules generated are as good as the components
that we utilize. First, AutoFR misses 28% (78/279) of unique eSLDS from EasyList because Ad Highlighter can
only detect ads that contain transparency logos. However, AutoFR rules are still efective when compared to
EasyList, as shown in Sec. 5.1 and Table 4. This demonstrates that we do not necessarily need to replicate all rules
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Fig. 9. Δ Site Snapshots between July vs. January 2022. The diferences in site snapshots for nodes, edges, and URLs.
A positive change in the x-axis denotes that July had more of the respective factor, while a zero denotes no change.

from EasyList to be efective. Second, 18% of unique eSLDs from AutoFR can afect both ads and functionality
(e.g., cdn.ampproject.org/v0/amp-ad-0.1.js for ads, amp-accordion-0.1.js for functionality). AutoFR balances the
trade-of between blocked ads and breakage, see Sec. 5.1.
3. Site Dynamics can also lead to diferences in the site resources between site snapshots vs. the in the wild

evaluation. Due to this, 18% (50/279) of unique eSLDs on the EasyList side did not appear in ourW09-Dataset.
Thus, AutoFR did not get an opportunity to generate these rules. Conversely, 5% (11/220) of unique eSLDs from
AutoFR appear in EasyList but were not triggered during the evaluation of EasyList rules. This can be mitigated
by increasing the number of site snapshots used in AutoFR’s rule generation or applying EasyList more times
during our in the wild evaluation. Although, recall that we already do these steps for 10 times.
Takeaways. The diference in the granularity of related rules generated by AutoFR and EasyList is mainly because
AutoFR creates rules per-site. Unique rules to AutoFR or EasyList are due to the design and implementation of
our framework and site dynamics. These diferences are acceptable because the efectiveness of the rules from
AutoFR and EasyList is comparable. This is crucial from a practical standpoint.

5.5 Robustness of AutoFR Filter Rules

AutoFR generates rules for a particular site and uses snapshots collected at a particular time. Next, we investigate
and discuss how well these rules perform over time and in adversarial scenarios.

5.5.1 How Long-lived are AutoFR Rules? Sites change naturally over time, which may result in changes in the
site snapshots, and eventually into changes in the ilter rules. We show that AutoFR rules remain efective for
a long time and can be rerun fast when needed to update.
Eicacy of Rules Over Time.We re-apply per-site rules generated in January 2022 (Sec. 5.1) to the same sites in
July 2022 and summarize the results in Table 4 (col. 5). We ind that the majority of AutoFR rules are still efective
after six months. 72% of sites (down only by 2%) still achieve the operating point (row 1), and 82% (down by 4%)
achieve 1−B ≥ 0.9 (row 2). Even more interestingly, we found only 6% of the sites now no longer have all or
any ads blocked in July. For those few sites, which we refer to as łsites to rerunž, we can rerun AutoFR; this takes
1.6 min-per-site on average.
Site Snapshots Over Time.We recollect site snapshots for our entireW09-Dataset in July 2022 and associate
them with the results of re-applying the rules above. For the 6% of sites that AutoFR needs to rerun, we report
the changes in their corresponding snapshots. Fig. 9 reports the changes in snapshots of the same site between
January and July in terms of diferent nodes, edges, and URLs. It also compares the diferences for all sites, with
those 6% sites to rerun AutoFR. For all other sites, 50% and 70% of sites have more than ±1K changes in nodes and
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Fig. 10. Longitudinal Study Every Four Days.We conduct a finer-grain longitudinal study of 100 sites over a two-month
period. We find that over time, site snapshots will become less similar (i.e., negative Δ Jaccard similarity), oten denoting that
rules may be less efective. FL authors can rerun AutoFR on these sites that change more frequently to output efective rules.

edges, respectively; while 40% of sites have more than ±100 changes in URL nodes. Compared to sites to rerun,
75% of sites have more than ±1K changes in nodes and edges, while 65% of sites have more than ±100 changes
in URL nodes. As expected, the snapshots of the sites to rerun indeed change more than other sites. However,
AutoFR’s rules remain efective on the vast majority of sites whose snapshots do not signiicantly change.
Why do Rules become Inefective? For the sites that need to be rerun, we conduct a comparative analysis
of how rules change by rerunning AutoFR on those sites. We ind that 23% of these sites have completely new
rules than before, which is typically due to a change in ad-serving infrastructure on the site. 40% of the sites need
some additional rules (some older rules still work), which is due to additional ad slots on the site. In addition, 9%
of the sites have changes in their paths. Lastly, 29% of these sites have the same rules as before. We deduce that
this is because the rules are the best we can do without pushing breakage beyond the acceptable threshold� .
Takeaways. AutoFR rules need to be updated for a small fraction of sites (6% of Topś5K in six months), which
demonstrates that AutoFR generates robust rules over time. AutoFR can be rerun for these sites at an average
of 1.6 min-per-site.

5.5.2 How Frequently Should We Run AutoFR? Next, to understand how often FL authors should run AutoFR
over time, we provide a iner-grain longitudinal study of every four days for two months to study how site
snapshots change and the sites that need AutoFR to be rerun. We choose every four days because this is how
often EasyList is updated and deployed to end-users. In addition, we choose to focus on 100 sites, two-thirds
of which are sampled fromW09-Dataset and one-third is sampled from the set of 6% of sites that need to rerun in
July (from Sec. 5.5.1). Fig. 10 illustrates our two-month results, using July 15, 2022, as our baseline. In this study,
using Jaccard similarity, our comparison considers the relationship between HTML, JS, and CSS (diferent nodes
within site snapshots). To do so, we retrieve the path from the root to every URL node for every site snapshot. We
then convert these paths to strings and use them to calculate the Jaccard similarity between the site snapshots
of July 15 and subsequent dates shown in the igure.

As expected, we arrive at the same conclusion as Sec. 5.5.1. As time passes, the similarity between site snapshots
will naturally decrease, which denotes that there are sites where our rules are no longer efective, and we need
to rerun AutoFR on them. For our 100 sites, we ran AutoFR on 13 sites only once (e.g.,��ℎ������ .���, ����� .��),

ACMTrans. Priv. Sec.



24 • H. Le et al.

10
1

Collateral Damage (∑)
||googletagmanager.com^

||rlcdn.com^
||cookielaw.org^

||amazonaws.com^
||adobedtm.com^
||cloudflare.com^

||bing.com^
||consensu.org^

||jquery.com^
||cloudflareinsights.com^Fi

lte
r R

ul
es

 b
y 

A
ut

oF
R

(N
ot

 in
 E

as
yL

is
t)

52
16

14
5

4
3

3
3
3

1

Fig. 11. Collateral Damage of Global Rules. AutoFR rules are generated per-site and can potentially cause breakage when
applied to other sites (i.e., treated as a global rule). We report the rules that are unique to AutoFR (i.e., not part of EasyList),
ordered by decreasing total collateral damage (

∑
B) that they cause to site snapshots within Full-W09-Dataset . We can see

that most of these rules (93%) cause negligible collateral damage (below 10 on the x-axis). Note that the possible max
∑
B

of each rule is the size of the dataset.

three sites twice (e.g., ����� �������.���), and two sites three or more times (e.g., ��� .���), within two months.
In terms of the time between the reruns of AutoFR, we ind that one site (e.g., �ℎ��������������� .���) varied
between four to 10 days from August 12 to September 13. This was due to path changes that would evade our
rules like | |�ℎ��������������� .���/.../0�086549941921�9��8�. �� . Similarly, one site (e.g., ��� .���) varied from two
weeks to one month. In addition, two sites had runs that were 1ś2 weeks apart (e.g., AutoFR found additional
rules for ����� ����.���). Lastly, one site had runs that were one month apart (e.g., �������6.��� went from
| |�����������������.���ˆ to a new rule, | |��� ���.��ˆ). By the end of this study, the similarity of site snapshots
decreased by 10% (compared to site snapshots of July 15), and we ran AutoFR 27 times on 18 unique sites within
two months.
Takeaways. We ind that each site will naturally change over time, causing site snapshots to be less similar.
More changes often denote a higher possibility of rules being evaded. Overall, 18% of 100 sites needed a rerun
of AutoFR. FL authors can periodically rerun AutoFR on sites that tend to change frequently in terms of weekly
to monthly reruns. AutoFR minimizes the human efort for updating rules over time.

5.5.3 Evading URL-based Filter Rules. AutoFR generates URL-based ilter rules, which EasyList also supports.
Well-known evasion techniques for URL-based ilter rules, such as randomizing URL components, afect both
AutoFR rules and EasyList rules [31]. The strength of AutoFR is that new rules can be learned automatically and
quickly (e.g., in 1.6 min-per-site on average) when old ones are evaded. Publishers and advertisers can also try to
speciically evade AutoFR [31, 45]. For example, they can put ads outside of iframes, use diferent ad transparency
logos, or split the logo into smaller images, preventing Ad Highlighter from detecting ads [45]. This impacts our
reward calculations. Defense approaches include the following. At the component level, we can try to improve
Ad Highlighter to handle new logos or look beyond iframes, replace Ad Highlighter with a better future visual
perception tool, or pre-process the logos to remove adversarial perturbations [24]. At the system level, as an
adversarial bandits problem, where the reward received from pulling an arm comes from an adversary [5].

6 Generating Rules Across Multiple Sites

By design, AutoFR generates per-site rules, i.e., rules that are optimized for known sites. In this section, we
also show how to generate global rules, i.e., rules that perform well not only on the site they have been optimized
for but also across multiple sites. To that end, we propose three approaches that leverage AutoFR as a building
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block and extend it during and after per-site rule generation. We compare these approaches and evaluate their
efectiveness at blocking ads vs. avoiding breakage to known sites, and how well they generalize to unseen sites.
Sec. 6.1 compares the diferences between per-site and global rules. Sec. 6.2 outlines our approaches to generate
ilter rules across multiple sites. Sec. 6.3 presents their comparative analysis and makes recommendations.

6.1 Per-site vs. Global Filter Rules

Recall that Sec. 2 and Table 1 introduce ways in which ilter rules can be applied to known and unseen sites,
and their potential for collateral damage. The irst are per-site rules, which can only trigger for known sites. For
example, AutoFR generates per-site rules for ���.���, which can only be used on ���.���, e.g., | |��.���ˆ$������=

���.���. Note that the previous sections disregard this qualiier for simplicity when mentioning per-site rules. The
second, which we refer to as łglobalž ilter rules, can trigger for both known and unseen sites, e.g., | |��.���ˆ. Thus,
these deinitions are based on how they can be applied to sites and not the methodology used to generate them.

EasyList supports per-site rules and currently contains ∼800 of them. Per-site rules are guaranteed to perform
well on known sites because they are commonly optimized for those sites (Sec. 5.1). However, as they cannot
be applied to unseen sites, they cause the ilter list to be larger. More rules in a ilter list mean more efort to
maintain them over time. On the other hand, global ilter rules do not have these limitations. Hence, EasyList
contains mostly global rules. However, when rules are applied to unseen sites, they have the potential to cause
collateral damage.

In Fig. 11, we report the potential collateral damage, deined as the sum of breakage (
∑
B), caused when AutoFR

per-site rules are treated as global rules. This serves as an example of applying per-site and global rules to unseen
sites. We observe that they tend to block tag managers (e.g., | |���������������� .���ˆ, | |��������.���ˆ), CDNs
or cloud storage services
(e.g., | |����� � ����.���ˆ, | |���������.���ˆ, | |�����.���ˆ), third-party libraries (e.g., | | ������.���ˆ), and cookie
consent forms (e.g., | |���������.���ˆ, | |��������.���ˆ). These rules target domains that can serve legitimate
content and ads across diferent sites. Thus, adopting a per-site rule into a global rule is nontrivial because the
rule may not block as many ads or may cause more breakage (i.e., collateral damage). It is not a problem distinct
to AutoFR. Our discussions with EasyList authors conirmed that new rules are created per-site. They become
global rules when FL authors know that the same rules are efective for other sites. FL authors rely on feedback
from users to know when global rules either are inefective or cause collateral damage on unknown sites [3].

Global rules can be evaluated by: (1) how a rule afects multiple sites using the sum of �̂�, �̂� , �̂� (Eq. (1))
to calculate breakage � (Eq. (2)), shown in Fig. 11; (2) how a set of rules afect multiple sites using averages of

�̂�, �̂� , �̂� (Eq. (4)) and R� (Eq. (5)), shown in Fig. 13; and (3) the number of sites they are efective on, shown in
Tables 6, 7.

6.2 Methodologies to Generating Filter Rules

There are two general approaches to generating ilter rules for both known and unseen sites. The irst approach
is based on post-processing of per-site rules, i.e., it selects and possibly modiies from existing per-site rules to
also apply to other sites. The second possible approach is to optimize the rules during their construction (i.e.,
training) process for a given set of sites and does not depend on existing per-site rules. In this section, we explore
representative implementations of these broad approaches and summarize them in Table 2. We evaluate their
performance, eiciency, and maintainability in Sec. 6.3.
6.2.1 AutoFR-Global: ExtendingAutoFR forGlobal Filter Rules. For AutoFR-Global, we revise our Alg. 1 to generate
global rules (i.e., output) optimized for a set of known sites (i.e., input). By doing so, the output of possible global
rules is not limited to the union of all known per-site rules, as compared to Sec. 6.2.2, 6.2.3. We make the following
changes to the algorithm and refer to speciic lines of code. First, we build our action space (line 4) from web
requests of all visits to the given sites (i.e., there is only one action space for the given sites). The virtual node
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Fig. 12. AutoFR vs. EasyList: Popular Rules
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Fig. 13. Selecting Per-Site Rules into Global Filter Lists. Ater creating the per-site AutoFR rules for each site (with
� =0.9), we create 10 global filter lists. łPopularity 1ž means that a rule is selected into the global list if it was generated in
at least one site; łpopularity 10ž means that a rule is selected if it was generated for at least 10 sites. Once selected, the rules
are now treated as global rules. We apply these global filter lists on our Full-W09-Dataset site snapshots and plot the average
blocking ads, avoiding breakage, and reward.

of the action space represents all of the given sites instead of one site as before. Next, once an action is selected,
we apply the action to each site (lines 16ś23). Similar to Alg. 1, we consider rewards where the action caused
at least one hit. Otherwise, we put the arm to sleep. Everything else, including hyper-parameters, is kept the
same. The outputs are global rules optimized for the given sites. Note that if AutoFR-Global is given one site
as input, it is essentially AutoFR.
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Table 6. AutoFR-Pop: (Top 5Kś10K, In theWild). We evaluate AutoFR-Pop on unseen sites. See Fig. 14.

AutoFR-Pop

(≥ 1 sites)

AutoFR-Pop

(≥ 3 sites)
EasyList

Description (�=0.9) 1 2 3

1
Sites in operating point:

�̂� ≥ 0.95, 1−B ≥ 0.95
67% 73% 80%

2
Sites within�:

�̂� >0, 1−B ≥ 0.9
76% 80% 87%

3
Ads blocked within�:∑

ℓ (��×�̂� ) /
∑

ℓ�� ; 1−� ≥ 0.9
72% 80% 86%

To optimize AutoFR-Global, we explore diferent ways of calculating the reward for the action. One approach

is to take the site feedback terms (�̂�, �̂� , �̂� )) (Eq. (1)) from applying the action to each site, then averages them
before calculating the reward using Eq. (3).

�̂�=
1

�

�︁

�=1

�̂�ℓ�
, �̂� =

1

�

�︁

�=1

�̂�ℓ� , �̂� =
1

�

�︁

�=1

�̂�ℓ� (4)

Another approach takes the individual rewards received after applying the action to each site and calculates their
average. We deine this average reward below, where ℓ� represents a particular site and � is the number of sites:

R� =
1

�

�︁

�=1

�ℓ� (5)

6.2.2 AutoFR-Pop: Using Popularity to Select Per-site Rules as Global Rules. Although we cannot guarantee, in
advance, how well per-site rules will perform on other sites, we can try heuristics and assess their performance.
Intuitively, if the same ilter rule is generated by AutoFR across multiple sites, then it has a better chance of
generalizing to new sites. As mentioned in Sec. 6.1, this is exactly the process that FL authors utilize when
changing a per-site rule into a global rule. We denote this as the łpopularityž of a rule. Fig. 12(a) shows the
Topś20 AutoFR most popular rules across sites in the Topś5K, which shares common rules with EasyList in
Fig. 12(b). They intuitively make sense as they belong to widely used advertising and tracking services. Therefore,
we utilize this heuristic as criteria to select AutoFR per-site rules to include in ilter lists. Once selected, we now
treat them as global rules. To further understand how popularity can afect the performance of global ilter rules,
we leverage our site snapshots, as explained in Fig. 13. Notably, it depicts the trade-of between blocking ads
vs. avoiding breakage, which exists even for global ilter rules. As the popularity increases, the global ilter list
contains fewer global rules, resulting in fewer blocked ads but less breakage.

6.2.3 AutoFR-Sim: Applying Per-site Filter Rules from Similar Sites. We devise a collaborative iltering approach
whereupon visiting an unseen site, we utilize per-site ilter rules from similar sites. This is an intuitive approach:
sites commonly share similar eSLDs that are related to advertising and tracking services. Thus, if two sites contact
roughly the same set of eSLDs, then the same ilter rules will be efective for both. Other notions of similarity can
also be incorporated into our framework if desired. This is illustrated in Fig. 12. We envision the following scenario.
First, there is a large dataset of known sites where we already applied AutoFR, such as our W09-Dataset. Second,
when a user visits an unseen site, wewill identify its TopśK similar sites within our dataset using a similaritymetric.
Then, we treat per-site rules of similar sites as per-site rules belonging to the unseen site. This strategy allows
us to rely solely on per-site rules. Note that for known sites, we simply apply their corresponding per-site rules.

Motivated by how we measure site dynamics using unique eSLDs of a site, we now represent a site as the set
of unique destinations that it contacts to calculate the similarity between sites. For example, for any eSLD � and
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(c) EasyList (In theWild)

Fig. 14. AutoFR-Pop: Top 5Kś10K, In theWild.We create two filter lists, Fig. 14(a) with all rules fromW09-Dataset and
Fig. 14(b) that contains rules that were created for ≥ 3 sites. We test them in the wild on the Topś5K to 10K sites (unseen
sites) and show their efectiveness along with EasyList (Fig. 14(c)). We observe that Fig. 14(b) performs beter, blocking 8%
more ads than Fig. 14(a). Table 6, col. 1ś3, contains additional information.

site ℓ� in a training set D, ∀� ∈D, we deine �ℓ� as the set of unique �, found in the site’s action space. Then, their

set union is �D =

⋃
�ℓ� . Then for every � ∈�D , we can now represent a site ℓ as vector ®�ℓ = [��1, ��2, ..., �� |�D | ],

where �� =1 if � ∈�ℓ and zero otherwise. We can now leverage ®�ℓ to calculate similarity metrics as the cosine
similarity of two sites:

cos( ®�ℓ1, ®�ℓ2)=
®�ℓ1 · ®�ℓ2 ®�ℓ1


 ®�ℓ2


(6)

For the TopśK similar sites, we calculate the cosine distance: � ( ®�ℓ1, ®�ℓ2)=1−cos( ®�ℓ1, ®�ℓ2).

6.3 Evaluation

6.3.1 Evaluating AutoFR-Pop In theWild. We can evaluate and compare diferent methodologies for generating
rules across multiple sites. First, we take AutoFR-Pop as a naive use case.
We analyze in detail two global ilter lists. First, łpopularity 1ž (i.e., ≥ 1 sites) treats all AutoFR per-site rules

as global rules, which serves as a baseline for comparison. Second, łpopularity 3ž denotes AutoFR rules that
were generated from ≥ 3 sites. Fig. 13 reveals that this has the highest average reward. Note that selecting the
popularity threshold based on the average reward implicitly considers collateral damage because it encompasses
breakage (Eq. (3)). We apply these global ilter lists on the Tranco Top 5Kś10K sites in the wild. Fig. 14 and Table 6
col. 1ś3 show the results. As expected, we see that the global ilter list created from rules that appeared in ≥
3 sites perform better than the list with all rules. Moreover, Fig. 14(b) compares relatively well against Fig. 14(c)
(EasyList): 73% of sites are in the desired operating point (top-right corner), vs. 80% by EasyList (row 1, col. 2ś3).
Overall, the rules generated from the Topś5K sites were able to block 80% of ads on the Top 5Kś10K sites. This
shows a good generalization of AutoFR rules across unseen sites, which agrees with Fig. 12(a). However, although
expected, there is a decrease in performance when applied to unseen sites. Motivated by this use case, we will
evaluate all methodologies on known sites and unseen sites in the next section.

6.3.2 Known Sites vs. Unseen Sites. To evaluate each methodology described in Sec. 6.2, we split our W09-Dataset

into a training set by randomly sampling 50% of the dataset (466 sites). We treat the remaining as a test set
(350), i.e., the unseen sites. We remove any shared eSLDs from the test set that it has with the training set so
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Table 7. Generating Rules acrossMultiple Sites (using Site Snapshots).We leverage ourW09-Dataset to evaluate our
methodologies (from Table 2) for generating filter rules that can be applied across multiple sites. We provide recommendations
by comparing the approaches based on performance on the known sites (training set), how well they generalize to unseen sites
(test set), and their empirical eficiency andmaintainability (over time). We use the following criteria for each methodology
from col. 7ś8:○ = 30+% from the baseline,� = 30%,� = 20%,� = 10%,○ = same as baseline. On the other hand, łBest
Overallž treats○ = 1. We then sum up the scores of each row from col. 7ś10 and take their averages. e.g., row 1 has� = 3/4.
For details about each approach, see Table 2.
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Methodology 1 2 3 4 5 6 7 8 9 10 11

1 AutoFR (Baseline) 59% 77% 76% 64% 78% 75% ○ ○ ○ ○ �

AutoFR-Global
2(a) Eq. (4), Eq. (3) 40% 53% 56% 42% 54% 53% � � � � �
2(b) Eq. (5) 51% 69% 67% 50% 64% 58% � � � � �

AutoFR-Pop

3(a) ≥ 1 sites 41% 53% 54% 42% 53% 52% � � � � �
3(b) ≥ 2 sites 41% 53% 54% 44% 54% 53% � � � � �
3(c) ≥ 3 sites 42% 55% 57% 44% 54% 53% � � � � �
3(d) ≥ 4 sites 42% 56% 57% 45% 55% 53% � � � � �
3(e) ≥ 5 sites 42% 57% 58% 46% 56% 54% � � � � �
3(f) ≥ 6 sites 45% 61% 60% 49% 60% 59% � � � � �
3(g) ≥ 7 sites 44% 61% 59% 49% 60% 59% � � � � �
3(h) ≥ 8 sites 44% 61% 59% 49% 60% 59% � � � � �
3(i) ≥ 9 sutes 44% 61% 59% 49% 60% 59% � � � � �
3(j) ≥ 10 sites 44% 61% 59% 49% 60% 59% � � � � �

AutoFR-Sim (eSLD, cosine distance�)
4(a) Topś1,� ≤ 0.2 59% 77% 76% 19% 23% 22% ○ ○ � � �
4(b) Topś3,� ≤ 0.2 59% 77% 76% 19% 23% 24% ○ ○ � � �
4(c) Topś5,� ≤ 0.2 59% 77% 76% 19% 23% 24% ○ ○ � � �
4(d) Topś1,� ≤ 0.6 59% 77% 76% 48% 62% 60% ○ � � � �
4(e) Topś3,� ≤ 0.6 59% 77% 76% 53% 66% 65% ○ � � � �
4(f) Topś5,� ≤ 0.6 59% 77% 76% 53% 65% 64% ○ � � � �
4(g) Topś1,� ≤ 1.0 59% 77% 76% 48% 62% 60% ○ � � � �
4(h) Topś3,� ≤ 1.0 59% 77% 76% 53% 66% 65% ○ � � � �
4(i) Topś5,� ≤ 1.0 59% 77% 76% 53% 65% 64% ○ � � � �
AutoFR-Sim (FQDN, cosine distance�)
4(j) Topś1,� ≤ 0.2 59% 77% 76% 11% 13% 12% ○ ○ � � �
4(k) Topś3,� ≤ 0.2 59% 77% 76% 11% 13% 12% ○ ○ � � �
4(l) Topś5,� ≤ 0.2 59% 77% 76% 11% 13% 12% ○ ○ � � �
4(m) Topś1,� ≤ 0.6 59% 77% 76% 48% 62% 56% ○ � � � �
4(n) Topś3,� ≤ 0.6 59% 77% 76% 53% 65% 64% ○ � � � �
4(o) Topś5,� ≤ 0.6 59% 77% 76% 51% 63% 62% ○ � � � �
4(p) Topś1,� ≤ 1.0 59% 77% 76% 48% 62% 56% ○ � � � �
4(q) Topś3,� ≤ 1.0) 59% 77% 76% 52% 64% 63% ○ � � � �
4(r) Topś5,� ≤ 1.0) 59% 77% 76% 53% 66% 64% ○ � � � �

that similarity between home and sub-pages is not a factor. Table 7 presents our comparative results across
performance, eiciency, and maintainability factors, as discussed in Sec. 2. This corresponds to Table 2.
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(1) AutoFR (row 1): For the training set, we apply the per-site rules to their speciic site. We do the same for
the test set (col. 4ś6). This serves as our baseline to compare against other approaches.

(2) AutoFR-Pop (row 2(a)ś2(b)): For the training set, we take the per-site rules created by AutoFR (row 1) and
select them as global rules within a ilter list using a popularity threshold of 1ś10. We then apply those
same ilter lists generated by the training set to the test set.

(3) AutoFR-Global (row 3(a)ś3(j)): We explore two ways of calculating rewards as described in Sec. 6.2.1. For
the test set, we apply the generated global rules created during the training phase to the test set.

(4) AutoFR-Sim (row 4(a)ś4(r)): We evaluate AutoFR-Sim using three diferent factors: (a) representing a site
as a vector of eSLDs or FQDNs; (b) which TopśK to use for a range of 1ś5; and (c) a minimum distance
threshold to be considered a TopśK. For instance, for row 4(a), the distance between site ℓ1 and ℓ2 must be
≤ 0.2 before using the ilter rules. For brevity, we report the results for cosine distance only and Topś[1, 3, 5].

Performance (Training Set). We now examine the results in Table 7 using AutoFR as our baseline. We irst
focus on the training set results. AutoFR-Pop performs identically to our baseline by returning the known per-site
rules. A close second is AutoFR-Global using Eq. (5), which outperforms AutoFR-Pop. This is not surprising,
as AutoFR-Global is not conined to existing per-site rules like AutoFR-Pop. For AutoFR-Pop, the popularity
threshold ≥ 6 performs the best among the diferent thresholds. Although, we note that it did not perform
considerably better than other thresholds from ≥ 7 to ≥ 10.
Generalization (Test Set). Next, we focus on the test set results. We ind that AutoFR-Sim performs the best,
especially for Topś[3, 5] with d ≤ 0.6. AutoFR-Global and AutoFR-Pop come in a close second. Notably, neither
of the approaches is closely comparable to our baseline. This highlights the advantage of optimizing ilter rules
per-site and further illustrates the limitation of generalizing rules to unseen sites. As expected, we cannot
guarantee good performance for our test set.
Eiciency. Table 2 provides the eiciency of each approach using empirical estimates using our Python-based
implementation, while Table 7 visualizes it. AutoFR-Pop runs AutoFR for every given site to have per-site rules
before selecting them as global rules using a predetermined threshold. We treat its post-processing as negligible
time. For AutoFR-Global, it collects site snapshots of the given sites irst, which takes on average 0.8 min per
site (Sec. 4.1). Then, it runs the modiied AutoFR algorithm. Similar to AutoFR, AutoFR-Global’s eiciency is
afected by the given sites and the reward function. The former afects the size of the action space, while the
latter afects how much of the action space is explored. We execute AutoFR-Global for various input size (� sites)
[1, 10, 50, 100, 200, 500] using Eq. (5) and ind that it linearly increases with �. For AutoFR-Sim, we must run
AutoFR for the given sites (like AutoFR-Pop) irst. If an unseen site is given, then we must visit the site to collect
the URLs that it contacts to build its vector representation. This takes on average 0.8 min (Sec. 4). This overhead
is a downside to AutoFR-Sim that may make it impractical for users. However, this can be reduced with future
implementation, such as using open-sourced web archives to get the URLs for the site quickly. Next, we must
calculate the TopśK similar sites. Our experiments show that this takes on average 0.02ś0.06 sec and we regard
this as negligible time. AutoFR-Global cannot be optimized across actions. For example, if 100 sites were given
to AutoFR-Global, at each time step � , it must inish applying the action to 100 sites irst before selecting the
next action at �+1. This can considerably slow down the run time.
Maintainability. Table 2 summarizes how to deal with maintaining ilter rules over time, i.e., when rules are
no longer efective for some sites, while Table 7 visualizes the comparison. Most approaches rely on updating
rules for the afected sites before applying some post-processing. However, rerunning AutoFR-Global is the
most costly, especially if the number of afected sites is small. For instance, it may not be worthwhile to rerun
AutoFR-Global when only one site has rules that are no longer efective. AutoFR is the easiest to maintain,
followed by AutoFR-Pop and AutoFR-Sim.
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Directions for Future Work. In this section, we compared the performance of four possible approaches to
generating ilter rules using site snapshots. Future work can explore their eicacy in the wild. Furthermore,
although we compare them as separate methodologies, hybrid approaches may yield better results. For instance,
one can use AutoFR-Sim for unseen sites while triggering the run of AutoFR for them behind the scenes. Once
AutoFR is done, use the newly generated per-site rules instead. If we want to utilize global rules instead, we can
run AutoFR-Global infrequently (e.g., once a month). To address its maintainability, run AutoFR for sites that
have inefective rules and use the per-site rules temporarily (for those sites) until the next run of AutoFR-Global.

7 Discussion

7.1 Which Approach ShouldWe Use to Generate Filter Rules?

As shown in Tables 2, 7 and Sec. 6.3.2, every approach has its trade-ofs, including ones that we designed and
implemented. Choosing the right approach depends on the context of the user. In this section, we irst revisit the
nuances between per-site vs. global rules, and then we provide recommendations adapted to various contexts.
Per-site vs. Global Rules. Creating rules is nontrivial, as illustrated in Sec. 3.1 and discussed in Sec. 2 and 6.1.
Creating rules for a speciic site may cause collateral damage to other sites. When using per-site rules, we can
minimize collateral damage by either optimizing the rules for a given site (AutoFR) or ensuring that the rules are
applied to a (smaller) speciic set of sites (AutoFR-Sim). In practice, global rules are more widely used: e.g., there are
thousands of global rules compared to hundreds of per-site rules in EasyList. This is because it is impracticable for
FL authors tomanually create per-site rules formillions of sites andmaintain them over time. Global rules solve this
problem because they can be applied to any other site despite having the potential to cause collateral damage. In
short, FL authors and the adblocking community value the generalizability of global rules. However, in return, they
must ix rules that cause collateral damage and rely on crowd-sourcing user reports to know when this happens.
Recommendations. We recommend the following for users who want to adopt our approaches outlined in
Table 2 to generate ilter rules. For users who visit a small set of sites and wish to create their custom ilter
list, use approaches that generate per-site rules (AutoFR, AutoFR-Sim). There is little need for generalizability
and one would beneit from better performance, as per-site rules are optimized for the given sites. In addition,
as the number of sites is small, maintainability over time is also not a concern Ð per-site approaches are a
clear choice. Conversely, for adblockers that must be efective on millions of sites, consider approaches that
generate global rules (AutoFR-Global, AutoFR-Pop), given the increasing importance of generalizability, eiciency,
and maintainability. If the user cares about performance and generalizability only, choose AutoFR-Global or
AutoFR-Sim. If they value all factors, choose AutoFR-Pop or AutoFR-Sim (a unique approach that allows per-site
rules to generalize, thus a viable option when the user values generalizability).

7.2 Limitations & Challenges

There are several limitations and challenges that can impact the eicacy of AutoFR. First, the inference of breakage,
as discussed in Sec. 4.1, is only as good as the site snapshots that we can construct using AdGraph. Fortunately,
AdGraph can be improved and adapted to changes in how sites are developed as Chromium is open-sourced.
Second, detecting the components of ads, images, and texts on a site is crucial to calculate rewards. This is
especially challenging for ads due to the diverse nature of their content, formats, and HTML structure [31]. In
this work, we utilized Ad Highlighter to detect ads with ad transparency logos. Fortunately, AutoFR is agnostic
of how we detect these components. Future implementations can integrate an ensemble of approaches to detect
ads, images, and texts, or a subset of them based on user preference and context (e.g., don’t count ads if they
adhere to speciic ad standards).
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7.3 Future Directions

AutoFR provides a general framework for automating ilter rule generation. In this paper, we focused speciically
on the commonly used URL-based rules for blocking ads on browsers, but we envision several extensions and
applications. The AutoFR framework can be extended to generate other types of ilter rules. For instance, we
can leverage CSS speciicity and JavaScript’s abstract syntax trees to construct the action space hierarchy for
element hiding and JavaScript-aborting rules, respectively. We can extend AutoFR to generate rules that block
tracking requests. This is much more challenging because tracking requests, unlike ads, cannot be visually audited.
However, being visible is not a requirement for AutoFR. We can still extend it by introducing a new tracking
counter in our formulation (Eq.(1)), similar to the counter of ads, and count them by integrating tracking detection
approaches from prior work [17, 40] or by developing our own. These approaches often detect URLs as tracking
based on their URL components, headers, cookies, or whether their response bodies are 1x1 tracking pixels.

8 Conclusion

Today, ilter rules and lists are curated following a human-in-the-loop approach: (1) the rules are manually created,
visually evaluated, and maintained by FL author experts; and (2) the FL authors have to carefully balance between
blocking ads vs. avoiding breakage. We introduced the AutoFR framework to mimic that process and automated
the generation of URL-based ilter rules to block ads from scratch. Our implementation of the framework allows it
to learn rules without relying on existing rules created by humans. Our evaluation showed that AutoFR is eicient
and performs comparably to EasyList. We also developed and evaluated new approaches for generating ilter
rules that apply across multiple sites. Thus, we envision that AutoFR will be used by the adblocking community
to automatically generate and update ilter rules at scale. The AutoFR code and dataset are available at [28],
conference version at [30], and extended version at [29].
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