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Abstract
Energy modeling and cutting parameter optimization of the machining process have been recognized as powerful and effective 
ways to save energy. However, in the actual machining process, technologists often use empirical methods to determine the final 
cutting parameters. Due to the lack of theoretical support and optimization tools, this method is difficult to fully consider the 
constraints of machine tool capability, cutting tool performance, and workpiece material, which affects the overall performance 
of the machine tool to give full play. To address this problem, a multi-objective parameter optimization method of computer 
numerical control (CNC) plane milling for sustainable manufacturing was proposed in this paper. More specifically, three 
tasks were carried out: (1) an accurate milling energy model considering transient processes such as spindle acceleration was 
established; (2) a multi-objective parameter optimization model of CNC plane milling was established with cutting parameters 
as optimization variables and considering various complex constraints; (3) by drawing 3D surface maps, the internal relation-
ship between the cutting parameters and the optimization index was presented in detail and intuitively. Finally, a case study 
was carried out in the XHK-714F vertical machining center. The results showed that the processing efficiency is improved by 
21.0%, the energy consumption is reduced by 15.3%, and the surface roughness is reduced by 5.5% through the optimization 
of cutting parameters, which verified the effectiveness and feasibility of the proposed model and method.

Keywords  Sustainable manufacturing · Parameter optimization · Plane milling · Power modeling · Energy modeling · 
Energy-saving strategy

Nomenclature
ae 	� Milling width (mm)
ap 	� Milling depth (mm)
Eaccelerate 	� Spindle rotation acceleration energy con-

sumption (J)
Eair 	� Air cutting energy consumption (J)
Ecutting 	� Cutting energy consumption (J)
Eprocess 	� Total energy consumption (J)
Estandby 	� Standby energy consumption (J)

f  	� Feed rate (mm/r)
fv 	� Feed speed (mm/min)
fz 	� Feed rate per tooth (mm/tooth)
Hp 	� Height of the feature (mm)
Lair 	� Cutting length (mm)
Lp 	� Length of the feature (mm)
m 	� Number of tool paths
n 	� Spindle speed (r/min)
n1 	� Initial spindle speed (r/min)
n2 	� Final spindle speed (r/min)
Paccelerate 	� Spindle rotation acceleration power (W)
Pauxiliary 	� Auxiliary system power (W)
Pfeed 	� Feed power (W)
Pmaterial 	� Material milling power (W)
Pmax 	� Rated power of the spindle motor (W)
Pspindle 	� Spindle rotation power (W)
Pstandby 	� Standby power (W)
Pstandby_i 	� iTh measured standby power (W)
Punload 	� Unload power (W)
Ra 	� Surface roughness (μm)
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taccelerate 	� Spindle acceleration time (s)
tair 	� Air cutting time (s)
tcutting 	� Cutting time (s)
tstandby 	� Standby time (s)
Teconomiclife 	� Economic tool life (min)
Tprocess 	� Total processing time (s)
Ttoollife 	� Tool life (min)
Vmaterial 	� Material removal volume (mm3)
Wp 	� Width of the feature (mm)
x 	� Number of cutting layers
z 	� Number of cutting edges
� 	� Angular acceleration of spindle (rad/s2)
� 	� Efficiency of the spindle

Introduction

The ecological environment problem has always been con-
sidered a prominent bottleneck restricting the sustainable 
development of manufacturing industry (Xiao et al. 2019b; 
Liu et al. 2021). At the same time, the outbreak of coronavi-
rus disease (COVID-19) ravaged the world and caused great 
damage to the world economy in recent years (Wei et al. 
2021; Negrete-Cardoso et al. 2022). The greater instabil-
ity and uncertainty have brought a series of risks and chal-
lenges to the sustainable development of the manufacturing 
industry (Ullah et al. 2022; Yip et al. 2022). In this situation, 
human awareness of environmental protection and energy 
conservation is also growing (Gulistan et al. 2020). As a 
very important advanced manufacturing technology, numeri-
cal control machining has been widely used in various fields 
of the manufacturing industry, which is very important to 
improve the quality of product production, shorten the 
production cycle, and reduce the production cost (Jia et al. 
2019). However, many statistical survey results show that the 
average energy utilization rate of machine tools is very low, 
averaging less than 30% (Tuo et al. 2018). Thus, improving 
the energy efficiency of machine tools is a basic scientific 
problem that needs to be solved urgently under the back-
ground of sustainable manufacturing (Li et al. 2017c).

Cutting parameter optimization is an important research 
direction to improve the energy utilization rate of machine 
tools (Xiao et al. 2019a, 2021). The selection of cutting 
parameters directly affects the processing efficiency, pro-
cessing energy consumption, processing quality, and tool 
life of machine tools (Bhushan 2013; Bilga et al. 2016; 
He et al. 2017; Gürgen et al. 2022). However, in the actual 
machining process, technologists often determine the final 
cutting parameters based on the machining process manual 
and machining experience (Jia et al. 2021b). This empiri-
cal method is simple and practical, and can quickly obtain 
the available cutting parameters to meet the needs of nor-
mal computer numerical control ( CNC) machining (Chen 

et al. 2021). However, due to the lack of theoretical support 
and optimization tools, this method is difficult to fully con-
sider the constraints of machine tool capability, tool life, 
and workpiece material, thus affecting the overall perfor-
mance of the machine tool (Moreira et al. 2019). If the cut-
ting parameters are selected improperly, it will even damage 
the machine tool, cutting tools, and workpieces, resulting 
in unnecessary waste of resources (Li et al. 2016). To solve 
this problem, this paper proposed a multi-objective cutting 
parameter optimization method of CNC plane milling for 
sustainable manufacturing (Fig. 1). Through the detailed 
analysis of energy consumption characteristics in the milling 
process, a more accurate milling energy model was estab-
lished. On this basis, a multi-objective optimization model 
of milling parameters was further established, which takes 
cutting parameters as optimization variables, processing 
efficiency, processing energy consumption, and processing 
quality as optimization objectives, and comprehensively 
considers various complex constraints. With the support of 
an accurate energy model, the optimization results will be 
more realistic and then guide the machine’s energy-saving 
operation.

The layout of the rest of this article is summarized as fol-
lows: the literature review is presented in the next section. 
The section “Analysis of energy consumption in CNC mill-
ing” discusses the modeling method of milling energy con-
sumption through a typical milling process; the optimization 
model and method of milling parameters are given in the 
section “Multi-objective parameter optimization model of 
CNC plane milling,” followed by experiment and case stud-
ies to verify the proposed model and method in the section 
“Experimental and case studies.” Finally, the main conclu-
sions and future research directions are summarized in the 
section “Conclusion.”

Literature review

In the past, compared with steel, chemical, and other pro-
cess industries, the energy consumption and environmental 
emissions of machine tools in the discrete manufacturing 
industry have not been paid enough attention (Liu et al. 
2013). Nowadays, with the rapid increase in the number of 
machine tools and the increasingly serious environmental 
problems, the energy consumption and energy efficiency 
of machine tools have gradually attracted the attention of 
scholars at home and abroad (Jia et al. 2021a). The energy 
efficiency optimization of CNC machine tools can be carried 
out from two aspects: machine tool design energy-saving and 
machine tool use management energy-saving (Kroll et al. 
2011). Among them, lightweight design and selection of 
energy-saving components are commonly used in machine 
tool design energy-saving methods (Dietmair et al. 2011). 
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However, this energy-saving method may require companies 
to retrofit existing manufacturing systems and invest a lot 
of money (Bi and Wang 2012), so companies often tend 
to save energy by managing machine tools. For example, 
Meng et al. (2019) studied the flexible job shop scheduling 
problem to minimize total energy consumption. Yan and Li 
(2013) studied the energy optimization of CNC machine 
tools from the perspective of cutting parameter optimiza-
tion. There are also some studies focused on CNC machine 
tool equipment power and energy consumption real-time 
monitoring (Liu et al. 2017; Palasciano et al. 2016). It can 
be seen that the development of a new generation of science 
and technology has accelerated the process of sustainable 
development, making the traditional manufacturing industry 
gradually shift from labor-intensive to high-value and high-
quality production (Zheng et al. 2020).

After reading some literature, it was found that establish-
ing an accurate machine energy consumption model is the 
premise and foundation to solve the problem of energy effi-
ciency (Jia et al. 2016). Therefore, many scholars have mod-
eled and analyzed the energy consumption in machine tool 
processing from different perspectives (Zhou et al. 2016). 
Li et al. (2020) proposed a data-driven energy consumption 
prediction method of CNC turning based on meta-action 
to solve the problems of low prediction accuracy and poor 
generalization of conventional energy consumption models. 
Kara and Li (2011) put forward a new specific energy con-
sumption (SEC) model for machining processes to describe 
the relationship between energy consumption and process 

variables in the material cutting process, and the model 
was tested and validated on several turning and milling 
machine tools. Luan et al. (2018) proposed a generalized 
mathematical power prediction model of the face milling 
process and verified the reliability of the proposed model 
through experiments. To reduce drilling costs and achieve 
high-performance drilling, Kliuev et al. (2019) studied the 
energy distribution of electro discharge machining process. 
Jia et al. (2021c) proposed an improved rapid power and 
energy prediction method for the drilling process to solve the 
problems of high computational complexity and low practi-
cability of conventional drilling power and energy consump-
tion models. In addition, Jia et al. (2018a) further established 
a novel energy model of machine-operator systems to assess 
the energy efficiency of machining processes and initially 
proposed energy-saving strategies. Lv et al. (2017) modeled 
the energy consumption of the spindle acceleration process, 
which often occurs in machine tool processing, and explored 
potential methods to reduce this energy consumption. Wang 
et al. (2020) conducted in-depth research on advanced grind-
ing processes for parts. At the same time, some scholars have 
studied the modeling of carbon emissions in the machining 
process (Kong et al. 2021). The above research has accumu-
lated many research results, which have become an impor-
tant and popular research field and laid a solid foundation 
for energy-saving optimization of machine tools (Jia et al. 
2017b).

Under the foundation of energy modeling, some schol-
ars have done extensive research on the energy-saving 

Fig. 1   Framework of the proposed CNC plane milling parameter optimization method



	 Environmental Science and Pollution Research

1 3

technology of machine tools (Khanna et al. 2022). Cut-
ting parameter optimization has been recognized as a pow-
erful and effective way to save energy for machine tools 
(Pavanaskar et  al. 2015). For this reason, Camposeco-
Negrete (2015) used the response surface method to opti-
mize the cutting parameters in the turning process and used 
contour plots to analyze the relationship between cutting 
parameters and the response variables. Sukumar et  al. 
(2014) used the Taguchi method and artificial neural net-
work method to solve the optimal combination of processing 
parameters with the roughness in the CNC milling process 
as the optimization objective. Nguyen et al. (2020) improved 
the energy efficiency, product quality, and productivity of the 
electrical discharge drilling (EDD) process by optimizing 
various parameters in the EDD process. Wang et al. (2014) 
used the NSGA-II algorithm to solve the optimal combi-
nation of cutting parameters, and the research has shown 
that the optimization of cutting parameters is beneficial to 
energy saving in the machining process, but it will increase 
the cost. Similarly, Li et al. (2019) proposed a comprehen-
sive approach to parameter optimization of energy-aware 
CNC milling, and the experimental results have shown that 
the cutting depth and cutting width specific energy consump-
tion (SEC) have the greatest impact, and the spindle speed 
has the greatest impact on the production time.

Based on cutting parameter optimization, some integrated 
optimization studies have emerged gradually (Edem et al. 
2017). For example, Chen et al. (2019) proposed an inte-
grated optimization method of machining tools and cutting 
parameters to reduce energy consumption in the CNC mill-
ing process. Tian et al. (2020) proposed an integrated opti-
mization method for cutting parameters and process routes, 
which can effectively reduce carbon emissions in CNC pro-
duction. To realize energy-saving optimization of CNC face 
milling processing parameters and the number of passes, 
Li et al. (2017a) proposed a multi-objective optimization 
model of machining parameters in multi-step CNC milling 
for energy efficiency and solved the model using a multi-
objective particle swarm optimization algorithm based on 
the adaptive mesh. In addition, to reduce the energy con-
sumption of CNC machine tools, Wu et al. (2017) deeply 
studied the optimization of tool combinations in the process 
of 2.5D cavity CNC milling. Li et al. (2021) found through 
research that energy saving and efficiency improvement can 
be achieved by optimizing the tool path. Similarly, Li et al. 
(2017b) proposed an integrated method of process planning 
and cutting parameter optimization to reduce the total energy 
consumption of CNC machining and balance the workload 
of machine tools in the workshop.

Throughout the existing literature, these studies rarely 
consider the impact of cutting parameters on tool life, 
making the final optimization results difficult to apply in 
practice. Secondly, these studies rarely consider the energy 

consumption of transient processes such as spindle accelera-
tion, resulting in a large difference between the optimization 
results and the actual situation. Therefore, the multi-objec-
tive optimization of milling parameters based on an accurate 
milling energy model and considering complex constraints 
such as tool life is worthy of further study.

Analysis of energy consumption in CNC 
milling

As shown in Fig. 2, the power profile of a typical milling 
process is presented. After the machine is powered on, the 
startup process of the CNC system, lubrication system, 
display, and lighting equipment needs to consume part of 
the energy, and the energy consumption of these devices 
will continue throughout the processing process; Before 
the cutting process, the machine tool has been in a standby 
state, to adjust the numerical control program, workpiece 
clamping, and other processing preparations; this stage of 
the machine energy consumption is closely related to the 
length of standby time; subsequently, the spindle and feed 
shaft of the machine tool start and enter the cutting stage. 
The energy consumption of the machine tool in this stage 
includes not only the material milling energy consumption 
used to remove the excess material of the workpiece, but also 
the no-load energy consumption driving the spindle rotation 
and feed axis movement, as well as the energy consumption 
of various auxiliary systems related to the cutting process. 
As can be seen, the energy consumption of the CNC milling 
process is complex, and the energy consumption character-
istics of each processing stage are different. The following 
chapters will analyze the energy consumption in each stage 
of CNC milling.

Startup and standby energy consumption

The power variation of the machine tool during startup is 
large and short, and the energy consumption characteris-
tics are complex. The energy consumption and startup time 
of the machine tool startup process are mainly determined 
by the performance of the machine tool itself and have 
little relationship with the process parameters. Therefore, 
the energy consumption of the machine tool startup is not 
considered in this paper. After the machine tool is started, 
it is in the standby state. The standby energy consump-
tion is related to the standby power (the minimum power 
necessary to maintain the machine tool operation) and the 
standby time. The standby power of the machine tool is 
stable and can be measured through experiments. After the 
machine tool is started, make it in the standby state, and 
then use the power data acquisition experimental device 
to collect N machine tool standby power values and take 
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the average value (Jia et al. 2014). Therefore, the standby 
power of the machine tool can be expressed as:

where Pstandby is the standby power of the machine tool, W; 
Pstandby_i is the standby power value of the ith acquisition, 
W; N is the number of data collected.

Standby power is continuous after the machine tool is 
turned on, whether the machine tool is in a cutting or non-
cutting state. The standby time of the machine tool mainly 
refers to the preparation time before the processing of the 
workpiece. During this period, it is mainly used for preheating 
the machine tool, adjusting the zero return of the machine tool 
table, clamping the workpiece, adjusting the position of the tool 
and fixture, and viewing and transferring the CNC machining 
program. It can be seen that the length of the standby time is 
mainly related to the operation level of the workshop workers, 
which can be treated as a constant. Therefore, the machine tool 
standby time can be expressed as:

where tstandby is the standby time of the machine tool, s; C 
is a constant.

According to Eqs. (1) and (2), the standby energy con-
sumption can be further expressed as:

(1)Pstandby =

N∑
i=1

Pstandby_i∕N

(2)tstandby = C

where Estandby is the standby energy consumption of the 
machine tool, J.

Spindle acceleration energy consumption

Spindle acceleration energy consumption refers to the machine 
tool spindle under the condition of no cutting load, from static 
or low-speed state accelerated to high-speed process consumed 
energy. The energy consumption of spindle acceleration is 
related to the power and corresponding acceleration time of 
the machine tool spindle. Spindle acceleration power is mainly 
composed of three parts (Jia et al. 2017a): (i) the power to 
maintain the operation of basic equipment such as machine 
tool numerical control system, lubrication system, display, 
and lighting, Pstandby ; (ii) the power to maintain the spindle 
rotation, Pspindle(n) ; (iii) the power to overcome the inertia of 
the spindle mechanical transmission system to accelerate the 
spindle, Paccelerate.

Assuming that the spindle accelerates from speed n1 to 
speed n2, the spindle acceleration time can be expressed as 
(Jia et al. 2017a):

(3)Estandby = ∫
tstandby

0

Pstandbydt = ∫
C

0

Pstandbydt

(4)taccelerate =
2�

(
n2 − n1

)
60�

Fig. 2   Power profile of a typical 
milling process
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where taccelerate is the spindle acceleration time, s; n1 is the 
initial speed before the spindle acceleration; n2 is the final 
speed when the spindle acceleration is completed, r/min; � 
is the angular acceleration of machine tool spindle, rad/s2.

Therefore, the spindle rotation acceleration energy con-
sumption can be further expressed as:

where Eaccelerate is the spindle rotation acceleration energy 
consumption, J; Pspindle(n) is the rotation power of the spin-
dle at speed n, W; Paccelerate is the spindle rotation accelera-
tion power, W.

Air cutting energy consumption

In the process of machining, to ensure the safety of machine 
tools and cutting tools, an air cutting distance is generally 
set in the cutting process. At this stage, the machine tool 
spindle system and feed system will be turned on. The energy 
consumed in the air cutting process of the machine tool is 
related to the air cutting power and the corresponding air 
cutting time. In the actual machining process, the air cutting 
power includes two parts: (i) the basic power to maintain the 
machine tool operation, Pstandby ; (ii) the unload power to drive 
the machine tool spindle rotation and feed system movement, 
Punload . According to the previous research results of our 
research group (Lv et al. 2014), the spindle rotation power can 
be written as a linear function of speed, as shown in Eq. (6):

where Pspindle is the spindle rotation power, W; n is the spin-
dle speed, r/min; Asp is the constant term of function for-
mula; Bsp is the coefficient of function formula; Asp and Bsp 
can be obtained by linear fitting of experimental data.

Reference (Lv et al. 2016) pointed out that the feed 
power and feed speed of the machine tool have a quadratic 
function relationship, which can be expressed as:

where Pfeed is the feed power, W; fv is the feed speed, mm/
min; Cfeed is the first term coefficient of the function formula; 
Dfeed is the second term coefficient of the function formula; 
Cfeed and Dfeed can be obtained by fitting the experimental 
data.

The air cutting time is related to the length of the air 
cutting path and the feed rate. The calculation formula is 
as follows:

(5)Eaccelerate = ∫
taccelerate

0

Pstandby + Pspindle(n) + Pacceleratedt

(6)Pspindle = Asp + Bsp × n

(7)Pfeed = Cfeed × fv + Dfeed × f 2
v

where tair is the air cutting time, s; Lair is the length of the air 
cutting path, mm; fv is feed speed, mm/min; n is the spindle 
speed, r/min; f  is the feed rate, mm/r.

Therefore, the air cutting energy consumption can be 
further expressed as:

where Eair is the air cutting energy consumption, J; Punload 
is the unload power that drives the spindle rotation and feed 
system movement of the machine tool, W.

Cutting energy consumption

In the cutting process, the cutting tool contacts the 
workpiece and removes the excess material, the process 
of machine power consumption is cutting energy 
consumption. The cutting energy consumption is related 
to the cutting power and the corresponding cutting time. 
In the cutting process, cutting power mainly includes 
four parts: (i) the basic power to maintain the machine 
tool operation, Pstandby ; (ii) the unload power to drive the 
machine tool spindle rotation and feed system movement, 
Punload ; (iii) the auxiliary system power related to the 
cutting process, Pauxiliary ; (iv) the material milling power to 
remove excess material from the workpiece, Pmaterial . The 
power of the auxiliary system related to the cutting process 
is stable (such as the spraying cutting fluid power), which 
is regarded as a constant in this paper and can be obtained 
by experimental measurement. The material milling power 
is one of the most complex parts of the power composition 
of machine tools. According to the previous research 
results of our research group (Lv et al. 2021), the material 
milling power can be expressed as an exponential function 
of cutting parameters, as shown in Eq. (10):

where Pmaterial is the material milling power, W; n is the 
spindle speed, r/min; f  is the feed rate, mm/r; ap is the mill-
ing depth, mm; ae is the milling width, mm; � , �m , �m , �m , 
and �m are the correlation coefficients of the material milling 
power function formula, � , �m , �m , �m and �m can be obtained 
through experimental analysis and statistical methods.

The cutting time can be calculated according to the 
material removal volume Vmaterial and the material removal 
rate MRR, as shown in Eq. (11):

(8)tair = 60 ×
Lair

fv
= 60 ×

Lair

n × f

(9)Eair = ∫
tair

0

(
Pstandby + Pspindle + Pfeed

)
dt = ∫

tair

0

(
Pstandby + Punload

)
dt

(10)Pmaterial = � × n�m × f �m × a�m
p
× a�m

e
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where tcutting is the cutting time, s; Vmaterial is the material 
removal volume, mm3; MRR is the material removal rate, 
mm3/s.

Therefore, the cutting energy consumption can be fur-
ther expressed as:

where Ecutting is the cutting energy consumption, J; Punload is 
the unload power of machine tool, W; Pauxiliary is the auxil-
iary system power, W.

Replacing worn tool energy consumption

During the machining process, the friction between 
the tool and the workpiece will cause tool wear. When 
the wear degree of the tool reaches the blunt standard, 
the tool needs to be replaced, and this process needs to 
be completed manually under the standby state of the 
machine tool (Chen et al. 2018). Due to tool wear, the time 
consumed when the machine tool needs to replace the tool 
manually is allocated to each processing process, which 
is related to the tool life, the time for a single manual tool 
change of the machine tool, and the cutting time. It can 
be expressed as:

where ttoolchange_1 is the time consumed by the machine tool 
to manually change the tool allocated to each machining 
process, s; ttoolchange is the single manual tool change time, 
min; Ttoollife is the tool life, min.

At present, the widely used tool life model is the gen-
eralized Taylor tool life formula, as shown in Eq. (14):

where CT is a constant term of the formula, which is related 
to the tool and workpiece materials. �t , �t , �t , and �t are the 
correlation coefficients of the tool life function formula. �t , 
�t , �t , and �t can be obtained by experimental analysis com-
bined with statistical methods.

Therefore, due to tool wear, the energy consumption of 
the machine tool when it is necessary to manually replace 
the tool is distributed to the energy consumption of each 
machining process can be expressed as:

(11)tcutting =
Vmaterial

MRR
= 60 ×

Vmaterial

n × f × ap × ae

(12)

Ecutting = ∫
tcutting

0

(
Pstandby + Punload + Pauxiliary + Pmaterial

)
dt

(13)ttoolchange_1 = 60 × ttoolchange

tcutting

Ttoollife

(14)Ttoollife =
CT

n�t × f �t × a
�t
p × a

�t
e

where Etoolchange_1 is the energy consumption allocated to 
each machining process when the machine needs to manu-
ally replace the tool due to tool wear, J.

In addition, the spindle deceleration time is generally 
short and the energy consumption is very small, which can 
be ignored in the calculation of energy consumption. There-
fore, based on the above discussion, a complete CNC milling 
process’s total energy consumption can be expressed as:

where Eprocess is the total energy consumption, J.

Multi‑objective parameter optimization 
model of CNC plane milling

Problem statement

The selection of cutting parameters (spindle speed n, feed 
rate f, milling depth ap, and milling width ae) is one of the 
most important links in the process of CNC plane millings, 
such as the processing of step surface, large plane, and cav-
ity surface. Reasonable cutting parameters play a significant 
role in reducing processing time, and energy consumption 
and improving the quality of the workpiece. In addition, 
plane milling often adopts the parallel reciprocating tool 
path, which can effectively reduce the air cutting distance 
and improve processing efficiency, as shown in Fig. 3.

To sum up, the multi-objective parameter optimization 
problem of CNC plane milling can be described as follows: 
based on the dimensional feature parameters of the plane 
to be machined (Lp, Wp, Hp), select the optimal cutting 
parameters (n, f, ap, ae) for the CNC plane milling process 
and comprehensively consider various complex constraints 
(machine tool capacity, cutting tool life, processing techni-
cal requirements, workpiece materials, etc.), so that the final 
processing scheme can achieve the comprehensive optimiza-
tion in the three goals of processing efficiency, processing 
energy consumption and processing quality. In this paper, 
the flow chart of multi-objective parameter optimization of 
CNC plane milling is shown in Fig. 4.

Optimization variables

There are many changing parameters involved in the CNC 
milling process, such as workpiece material, machine tool 
performance, cutting tools, process route, and other pro-
duction conditions that will have a significant impact on 
the optimization objectives of the milling process. In the 

(15)Etoolchange_1 = ∫
ttoolchange_1

0

Pstandbydt

(16)
Eprocess = Estandby + Eaccelerate + Eair + Ecutting + Etoolchange_1
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actual production and processing, the production condi-
tions such as workpiece material, machine tool model, 
tool type, and process route have been determined when 
enterprises make production plans, and the optimization 
of production conditions is no longer considered in the 
optimization process of this paper. Therefore, in theory, 
when the production conditions are determined, the main 
impact of milling optimization objectives is the cutting 

parameters, namely spindle speed n, feed rate f, milling 
depth ap, and milling width ae.

Optimization objective functions

Machinery manufacturing enterprises in the actual pro-
duction process often pay more attention to processing 
costs, processing efficiency, and processing quality, and 

Fig. 3   CNC plane milling sche-
matic diagram

Fig. 4   The flow chart of multi-
objective parameter optimiza-
tion of CNC plane milling
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little attention to the process of energy consumption and 
environmental issues. However, with global warming and 
increasingly serious energy problems, people pay more and 
more attention to the energy consumption of the machinery 
manufacturing industry (Cai et al. 2019; Hu et al. 2019). 
Therefore, in the mechanical manufacturing industry, how 
to reduce processing energy consumption while ensuring the 
requirements of processing efficiency and processing qual-
ity has gradually become a hot topic of current research. 
In this paper, the processing efficiency, processing energy 
consumption, and processing quality in milling are selected 
as the optimization objectives. The details are as follows:

(1)	 Processing efficiency objective function
	   In the CNC milling process, the processing time of 

the workpiece can be used as a measure of machine 
efficiency indicators. According to the machine running 
state, the CNC milling process can be generally divided 
into the machine startup stage, standby stage, spindle 
acceleration stage, air cutting stage, cutting stage, spin-

dle deceleration stage, and blunt tool replacement state. 
Among them, the machine startup phase and spindle 
deceleration phase are not within the scope of this 
study. Therefore, the objective function of milling pro-
cess efficiency can be expressed as:

where Tprocess is the total processing time, s.
(2)	 Processing energy consumption objective function
	   The section “Analysis of energy consumption in CNC 

milling” has made a detailed elaboration of the numeri-
cal control milling each processing stage energy con-
sumption model, this section will not repeat. According 
to the previous analysis, the energy consumption objec-
tive function of the milling process can be expressed as:

(17)

Tprocess = tstandby + Taccelerate + Tair + Tcutting + Ttoolchange_1

= C +
2�

(
n
2
− n

1

)
60�

+
60 × Lair

n × f

+
60 × Vmaterial

n × f × ap × ae
+ 60 × +Ttoolchange

Tcutting

Ttoollife

(18)

Eprocess = Estandby + Eaccelerate + Eair + Ecutting + Etoolchange_1 = ∫
tstandby

0

Pstandbydt + ∫
taccelerate

0

(
Pstandby + Pspindle(n) + Paccelerate

)
dt + ∫

tair

0

(
Pstandby + Pspindle + Pfeed

)
dt

+ ∫
tcutting

0

(
Pstandby + Pspindle + Pfeed + Pauxiliary + Pmaterial

)
dt + ∫

ttoolchange_1

0

Pstandbydt

(3)	 Processing quality objective function

In the process of CNC milling, the surface roughness of 
the workpiece can be used as an index to measure the pro-
cessing quality of the machine tool. Surface roughness refers 
to the uneven and staggered peaks on the outer surface of 
the workpiece, which is an important index to reflect the 
micro-geometric shape error of the part surface (Bal and 
Dumanoğlu 2019). To avoid the prediction error caused by 
the theoretical calculation model, the empirical model of 
workpiece surface roughness can be established by experi-
mental fitting. For example, with cutting parameters as factor 
variables, the exponential roughness function model can be 
expressed as:

where Ra is the surface roughness of the workpiece, μm; k 
is the correction factor, depending on the workpiece mate-
rial; �a , �a , �a , and �a are coefficients of roughness function 
formula; �a , �a , �a , and �a can be obtained by experimental 
analysis and statistical method.

(19)Ra = k × n�a × f �a × ap
�a × ae

�a

Optimization model

In the CNC milling process, to ensure the safety of machine 
tools and cutting tools, while meeting the processing quality 
and economic requirements, the choice of cutting param-
eters must meet the relevant technical requirements, such as 
machine capability and tool performance. According to the 
optimization variables and optimization objective functions 
defined above, considering a variety of complex constraints, 
the multi-objective parameter optimization model of CNC 
plane milling is established as follows:

Subject to:

(20)minF
(
n, f , ap, ae

)
=
(
minTprocess,minEprocess,minRa

)

(21)nmin ≤ n ≤ nmax

(22)fmin ≤ f ≤ fmax

(23)ap_min ≤ ap ≤ ap_max
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Constraints (21)–(24) control the selected optimum 
spindle speed n, feed rate f, milling depth ap, and milling 
width ae within the feasible range recommended by the tool 
manufacturer; Constraint (25) controls the power required 
in the machining process not to exceed the rated power of 
the machine tool spindle motor Pmax ; Constraint (26) ensures 
that the tool life Ttoollife is not less than the minimum eco-
nomic tool life Teconomiclife ; Constraint (27) represents the 
functional relationship between the milling layer number x 
and the milling depth ap and the height dimension feature 
Hp of the plane to be machined; similarly, Constraint (28) 
represents the functional relationship between the number 
of tool paths m of each layer and the milling width ae and 
the width dimension feature Wp of the plane to be machined.

Optimization solution via NSGA‑II

The evolutionary algorithm represented by the genetic 
algorithm has the characteristics of generating multiple 
points and searching in multiple directions, which is very 
suitable for dealing with the multi-objective optimization 
problem with a very complex search space. The genetic 
algorithm is a global optimization adaptive probability 
search algorithm developed by referring to the natural 
selection and genetic evolution mechanism of organisms. 
The basic idea comes from Darwin’s evolution theory and 
Mendel’s genetics theory. Its basic concepts and basic 
theories were first proposed by Professor J Holland of 
the University of Michigan in 1975. In the study of multi-
objective optimization based on the genetic algorithm, 
Srinivas and Deb (1994) proposed NSGA in 1994, namely 
non-dominated sorting genetic algorithm. The advantages 
of NSGA are that the number of optimization objectives 
is not limited, the non-inferior optimal solution is evenly 
distributed and multiple different equivalent solutions are 
allowed. However, NSGA also has many shortcomings. 
First, there is no optimal individual retention mechanism, 

(24)ae_min ≤ ae ≤ ae_max

(25)
Pspindle + Pmaterial

�
≤ Pmax

(26)Ttoollife ≥ Teconomiclife

(27)Hp =

x−1∑
i=1

ap + ΔH

(28)Wp =

m−1∑
i=1

ae + ΔW

and there may be a loss of optimal solution. Second, the 
time complexity of constructing the Pareto optimal solu-
tion set is high. Each generation of evolution needs to 
construct a non-dominated set. When the size of the evo-
lutionary population is large, the execution time of the 
algorithm will be large. The third is the problem of shared 
parameters. In the process of evolution, the shared param-
eter �share is mainly used to maintain the distribution of 
the solution population, but the size of the shared param-
eters is not easy to determine, and the dynamic modifica-
tion and adjustment of the parameters is a difficult task. 
Therefore, in 2000, Deb et al. (2000) proposed NSGA-II, 
a non-dominated sorting genetic algorithm with an elitist 
strategy. The main improvements are as follows: First, the 
elite strategy is introduced to merge the parent population 
and the intermediate offspring population to compete for 
the next generation, which is conducive to ensuring that 
the excellent individuals in the parent generation will not 
be discarded, and the optimization performance of the 
algorithm is improved. Secondly, a non-dominated sort-
ing method based on classification is proposed to reduce 
the complexity of the algorithm. The third is to use the 
crowding degree and crowding degree comparison opera-
tor, which not only overcomes the defect of prespecified 
shared parameters in NSGA, but also takes it as the deci-
sive criterion of peer comparison, effectively ensuring the 
diversity of the population. The flow chart of NSGA-II 
is shown in Fig. 5.

From Fig. 5, four main steps are used in the NSGA-II, 
which are initialization, determination, selection, and repro-
duction. The initialization step is composed of solution rep-
resentation and solution initialization. It is used to code the 
cutting parameters and generate the initial cutting parameter 
solutions. The initialization solutions are generated ran-
domly within the cutting parameter ranges. The determina-
tion step is set to calculate the fitness values (such as pro-
cessing time, energy consumption, surface roughness, etc.) 
of each cutting parameter solution and identify the termina-
tion of the algorithm. The selection step is used to choose a 
portion of the existing solution for a new generation. Each 
optimization algorithm has its unique mechanism for solu-
tion selection. For the NSGA-II, nondominated sorting and 
crowding distance are usually used. The reproduction step 
is used to produce new generations and varies with differ-
ent algorithms. In the NSGA-II, crossover and mutation are 
adopted to realize the production of new generations.

Experimental and case studies

To obtain some parameters in the milling energy model 
established above, an experimental study was carried out 
on the XHK-714F vertical machining center. Detailed 
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Fig. 5   The flow chart of NSGA-
II
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Fig. 6   Experimental setup of the power-energy collecting system



	 Environmental Science and Pollution Research

1 3

information is shown in the section “Parameters identifica-
tion of the milling energy model.” During the milling pro-
cess, power and energy data are synchronously measured and 
collected by the power-energy data collection system built 
by our research group (see Fig. 6). For more information 

about the power-energy collecting system, see Reference 
(Jia et al. 2018b). In addition, to verify the effectiveness 
and feasibility of the multi-objective optimization method of 
plane milling parameters proposed in this paper, a case study 
is carried out. Detailed information is shown in the section 
“Multi-objective parameter optimization of CNC plane mill-
ing case studies.” The technical specifications of the selected 
machine tool and cutting tool are listed in Table 1.

Parameters identification of the milling energy 
model

According to the energy consumption modeling method 
introduced in the section “Analysis of energy consumption 
in CNC milling,” the plane milling experiment is carried 
out to obtain the relevant parameters involved in the energy 
consumption function model of each machining process. The 
Taguchi orthogonal table L16(44) is used to design the mill-
ing experiment. The four factors of cutting speed vc, feed per 
tooth fz, milling depth ap, and milling width ae are selected 
as experimental factors. The level of each factor is given by 
the material characteristics and the performance of the CNC 
machine tool, as shown in Table 2. The experimental results 
are shown in Table 3. The cutting speed vc, feed per tooth fz, 
milling depth ap, and milling width ae are selected according 

Table 1   Technical specifications of the selected machine tool and cut-
ting tool

Item Unit Numerical data

Machine tool (XHK-714F)
  Motor power Pmax(W) 7500
  Efficiency � 0.8
  Spindle angular accelera-

tion
�(rad/s2) 1047.20

  Spindle speed [nmin , nmax ] (r/min) [100, 5000]
  Feed rate [ fmin , fmax ] (mm/r) [0.01, 0.5]
  Depth of cut [ap_min , ap_max ] (mm) [0.01, 5]
  Width of cut [ae_min , ae_max ] (mm) [5, 12]

Cutting tool (W400F-FS)
  Number of cutting edges z 4
  Tool diameter D (mm) 14
  Total length of the tool L (mm) 100
  Height of the cutter H (mm) 35

Table 2   Factors and levels Workpiece material Experimental factors Level 1 Level 2 Level 3 Level 4

45# steel Cutting velocity vc (m/min) 60 80 100 120
Feed rate per tooth fz (mm/tooth) 0.03 0.06 0.09 0.12
Milling depth ap (mm) 0.5 1 1.5 2
Milling width ae (mm) 6 8 10 12

Table 3   Experimental results Items vc (m/min) n (r/min) fz (mm/tooth) f (mm/r) ap (mm) ae (mm) P (W)

1 60 1364.18 0.03 0.12 0.5 6 40.0
2 60 1364.18 0.06 0.24 1.0 8 176.0
3 60 1364.18 0.09 0.36 1.5 10 428.3
4 60 1364.18 0.12 0.48 2.0 12 872.5
5 80 1818.91 0.03 0.12 1.5 12 272.0
6 80 1818.91 0.06 0.24 2.0 10 558.4
7 80 1818.91 0.09 0.36 0.5 8 160.2
8 80 1818.91 0.12 0.48 1.0 6 295.7
9 100 2273.64 0.03 0.12 2.0 8 304.1
10 100 2273.64 0.06 0.24 1.5 6 310.2
11 100 2273.64 0.09 0.36 1.0 12 589.5
12 100 2273.64 0.12 0.48 0.5 10 312.2
13 120 2728.37 0.03 0.12 1.0 10 236.4
14 120 2728.37 0.06 0.24 0.5 12 286.1
15 120 2728.37 0.09 0.36 2.0 6 677.6
16 120 2728.37 0.12 0.48 1.5 8 819.8
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to the orthogonal table. The spindle speed n and feed rate f 
are obtained by the corresponding conversion formula.

According to the experimental data shown in Table 3, 
the experimental data are further processed by linear fit-
ting, nonlinear curve fitting, and polynomial fitting with 
the help of graphic visualization and data analysis software 
OriginPro 9.1, and then the power model of each machining 
process in CNC milling process is obtained, as shown in 
Table 4. In addition, the correlation coefficient R2 of each 
process power model is close to 1, indicating that the fitted 
power model is good.

Multi‑objective parameter optimization of CNC 
plane milling case studies

Basic information of milling parameter optimization case

The case to be optimized is described as follows: H 
manufacturing plant workshop plans to use XHK-714F 
vertical machining center, plane milling a piece of mate-
rial for 45# steel workpiece. The size of the workpiece is 
150 mm × 80 mm × 52 mm, which is made into a rectangular 
flat bar with a size of 150 mm × 80 mm × 50 mm. Due to the 

Table 4   Power models of each process in the milling process

Items Power models R2 (COD)

Standby power
Pstandby =

100∑
i=1

Pstandby_i∕100 = 371.0
/

Spindle acceleration power Pacceleration = Pspindle

(
n
1
+ 10000t

)
+ 6.505n

1
+ 65049.7t 0.9946

Spindle rotating power

Pspindle =

⎧⎪⎨⎪⎩

0.086n + 14.76(0 < n ≤ 2200r∕min)

0.0186n + 164.97(2200 < n ≤ 3000r∕min)

0.0522n + 61.62(3000 < n ≤ 4200r∕min)

0.9987
0.9790
0.9835

Feeding power Pfeed_X = 5 × 10
−7 × v2

f_X
+ 0.0491 × vf_X

Pfeed_Y = −1 × 10
−6 × v2

f_Y
+ 0.043 × vf_Y

Pfeed_ZU = −5 × 10
−7 × v2

f_ZU
+ 0.059 × vf_ZU

Pfeed_ZD = −1 × 10
−7 × v2

f_ZD
+ 0.0461 × vf_ZD

0.9961
0.9794
0.9958
0.9948

Material milling power Pmaterial = 0.080n0.932 × f 0.788 × a0.937
p

× a1.002
e

0.9973
Auxiliary power (fluid spraying power) Pauxiliary = 233.0 /

150mm

10mm

80mm

52mm

10mm

Main view of workpiece

Top view of workpiece

-Y

-X

+Z

-X

Fig. 7   Tool path of CNC plane milling process
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small machining allowance in the milling depth, it is often 
processed in one step, and the optimization space of the mill-
ing depth is not large. To improve the processing efficiency, 
milling depth ap is directly set as the machining allowance of 
the process, and it is no longer further optimized. The mill-
ing tool is W400F-FS coated tungsten steel tool with a paral-
lel reciprocating tool path (zig-zag), as shown in Fig. 7. The 
processing condition is wet cutting, and the cutting fluid is 
an ordinary water-based emulsion. The surface roughness of 
the machined workpiece is required to be less than 2.5 μm, 
and the expected tool life Ttoollife is greater than 30 min.

The path of the milling cutter relative to the workpiece is 
described as follows: The milling cutter first feeds quickly to 
the plane to be machined from the initial position and then 
drops a milling depth distance along the − Z axis ( where 
the milling depth is directly set to the machining allow-
ance of the process, that is, ap = 2 mm). Then, the spindle 
rotates at the speed n, and at the same time, it cuts 170 mm 
along the + X axis at the cutting feed speed vf to complete 
the first cutting; then moves a cutting width distance along 
the − Y axis with the same cutting feed speed vf, and then 
cuts 170 mm along the − X axis with the same cutting feed 
speed vf again to complete the second cutting, repeat the 
above steps until the plane milling is completed.

Eprocess =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

60 × Pstandby + (1.00 × 10
−4 × n) × (Pstandby + Pspindle(n) + Paccelerate)

+(60 ×
(10+10)

n×f
× ⌈ 80

ae
⌉) × (Pstandby + Pspindle + Pfeed_X)

+(60 ×
80

n×f
) × (Pstandby + Pspindle + Pfeed_Y )

+(60 ×
150×80×2

n×f×2×ae
) × (Pstandby + Pspindle + Pfeed + Pauxiliary + Pmaterial)

+(60 × 2 ×
150×80×2

n×f×2×ae
×

n1.786×f 0.211×ap
0.450×ae

0.150

e17.287
) × Pstandby

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Milling parameter optimization model

Processing efficiency objective function  According to the 
description of the tool path and case information of the 
CNC plane milling process in Fig. 7, the objective func-
tion of the machining process efficiency is modeled. The 
workpiece clamping process machine standby state time 
tstandby = 60s , workshop workers single manual tool change 
time ttoolchange = 2min , milling process tool life formula from 
reference (Zhou 2018), as follows in Eq. (29):

In summary, the total time of the milling process can be 
calculated as:

where ⌈⋅⌉ denotes the upward rounding.

Processing energy consumption objective function  According 
to the power model table of each sub-process of the machining 
center shown in Table 4, the energy consumption objective func-
tion of the case milling process can be calculated by combining 
the above case milling process time objective function Eq. (30):

(29)Ttoollife =
e17.287

n1.786 × f 0.211 × a0.450
p

× a0.150
e

(30)

Tprocess =

⎡⎢⎢⎢⎣

60 + 1.00 × 10
−4 × n + 60 ×

(10+10)

n×f
× ⌈ 80

ae
⌉

+60 ×
80

n×f
+ 60 ×

150×80×2

n×f×2×ae

+60 × 2 ×
150×80×2

n×f×2×ae
×

n1.786×f 0.211×20.450×a0.150
e

e17.287

⎤⎥⎥⎥⎦

Processing quality objective function  To obtain the prediction 
model of surface roughness, the spindle speed n, feed rate f, milling 
depth ap, and milling width ae were selected as experimental fac-
tors for the orthogonal experiment. The surface roughness model 
(R2 = 0.928) of the workpiece in the milling process is obtained by 
fitting the experimental data with OriginPro 9.1 software:

Optimization results and analysis

Using the non-dominated sorting genetic algorithm with 
the elite strategy introduced above, the case is solved by 
Python language programming. The parameters of the 

(32)Ra = 25.234n−0.327 × f 0.322 × ap
0.027 × ae

0.259

(31)

NSGA-II algorithm are set as follows: “RI” coding method 
is adopted, that is, mixed coding of real number and integer; 
the population size is set to 100; the algorithm termination 
condition is set to the maximum number of iterations 300 
generations; the fitness function is the objective function to 
be optimized, and the fitness calculation adopts the fitness 
distribution calculation method based on grade division. The 
crossover probability of the crossover operator is set to 0.9; 
The mutation probability of the mutation operator is set to 
0.1; after the parameter setting is completed, the algorithm 
is called many times to solve the objective function. The 
partial Pareto optimal solution set and the corresponding 
objective function value obtained by the optimization cal-
culation are shown in Table 5, and the Pareto optimal front 
is shown in Fig. 8.
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It can be seen from Table 5 that the Pareto optimal 
solution set provides a f lexible and diverse decision 
space for managers. Managers can not only according 
to the current specific processing requirements to select 
a single target better processing scheme, but can also 
be considered in many aspects, taking into account the 
objectives, and select a comprehensive better process-
ing scheme. It can be seen from Fig. 8 that optimizing 

one of the objectives will inevitably weaken the other 
objective, and there is no case of obtaining the optimal 
solution together. In practical applications, the multi-
objective optimization model can be appropriately 
modified according to different processing conditions 
and requirements. If the workpiece processing qual-
ity requirements are not high, the workpiece surface 
roughness constraints can be appropriately relaxed; 

Table 5   Partial Pareto optimal solution

Cutting parameters (n, f, ap, ae) Optimize target values (Tprocess, 
Eprocess, Ra)

Cutting parameters (n, f, ap, ae) Optimize target values 
(Tprocess, Eprocess, Ra)

(1942.87; 0.26; 2.00; 9.41) (251.48; 256570.96; 2.50) (2439.78; 0.05; 2.00; 5.72) (1336.84; 1141879.37; 1.20)
(2279.04; 0.06; 2.00; 9.77) (741.44; 663405.27; 1.49) (2249.01; 0.07; 2.00; 7.86) (787.39; 695096.90; 1.49)
(2174.16; 0.10; 2.00; 8.64) (541.94; 497430.29; 1.73) (1903.48; 0.26; 2.00; 9.12) (260.90; 263145.77; 2.50)
(2057.37; 0.14; 2.00; 8.97) (410.66; 388520.58; 1.99) (2320.23; 0.05; 2.00; 7.95) (1035.64; 896768.94; 1.33)
(2548.97; 0.05; 2.00; 3.51) (2028.33; 1701434.94; 1.04) (2463.34; 0.05; 2.00; 4.99) (1503.64; 1275515.29; 1.16)
(2057.37; 0.14; 2.00; 9.41) (395.18; 376708.99; 2.01) (2302.81; 0.06; 2.00; 9.55) (749.69; 670973.33; 1.48)
(2041.62; 0.16; 2.00; 9.41) (355.79; 344410.91; 2.10) (2001.68; 0.22; 2.00; 7.06) (348.64; 333948.44; 2.18)
(2350.20; 0.05; 2.00; 9.43) (880.52; 778045.90; 1.38) (2336.40; 0.05; 2.00; 9.52) (877.56; 774929.63; 1.39)
(2420.42; 0.05; 2.00; 6.24) (1243.05; 1066496.48; 1.23) (2201.37; 0.07; 2.00; 9.08) (706.95; 630698.76; 1.56)
(2037.24; 0.12; 2.00; 9.94) (434.08; 408016.54; 1.95) (1979.12; 0.22; 2.00; 9.28) (285.02; 284901.15; 2.35)
(2407.60; 0.05; 2.00; 7.31) (1081.89; 939122.14; 1.29) (2174.41; 0.10; 2.00; 9.54) (498.88; 464332.99; 1.78)
(2140.01; 0.11; 2.00; 9.32) (474.22; 442926.67; 1.83) (1963.88; 0.22; 2.00; 7.27) (345.58; 330781.48; 2.21)
(1957.86; 0.19; 2.00; 9.83) (308.81; 304580.69; 2.28) (1957.86; 0.22; 2.00; 9.92) (273.41; 275704.05; 2.40)
(2326.55; 0.05; 2.00; 8.52) (971.38; 847253.93; 1.35) (2432.10; 0.05; 2.00; 5.57) (1373.63; 1170095.60; 1.19)
(2275.78; 0.06; 2.00; 9.54) (757.79; 675896.64; 1.48) (2201.37; 0.07; 2.00; 9.46) (682.41; 611830.97; 1.58)

Fig. 8   Pareto optimal front
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when machining thin-walled workpieces, cutting force 
constraints need to be further considered. The excessive 
cutting force will cause machining deformation of thin-
walled parts. When machining advanced alloy materials 
such as nickel-based alloys and titanium alloys, cutting 
temperature constraints need to be considered. Because 
the thermal conductivity of these materials is extremely 
low, most of the cutting heat flows to the tool during 
machining, which will cause serious thermal stress and 
aggravate the fatigue and wear process of the tool.

Table 6 and Fig. 9 show the comparison between the tar-
get values under empirical cutting parameters and the target 
values under optimal cutting parameters. It can be seen that 
the processing efficiency of the workpiece is improved by 
21.0%, the processing energy consumption is reduced by 
15.3% and the surface roughness is reduced by 5.5% through 
cutting parameter optimization, which verifies the effective-
ness and feasibility of the proposed method.

Influence of cutting parameters on optimization 
objectives

To explore the influence of cutting parameters on the opti-
mization index, two-factor plane milling experiments were 
carried out on XHK-714F vertical machining center. With 
the help of OriginPro 9.1 software, 3D surface maps are 
drawn to show the internal relationship between cutting 
parameters and optimization indicators in detail and intui-
tively, as well as the significance of the impact on optimi-
zation indicators.

Parametric influence on processing efficiency

Figure 10 shows the influence of cutting parameters on pro-
cessing efficiency. It can be seen from the figure that within 
the given range of process parameters, the total processing 
time decreases with the increase of spindle speed n, feed rate 
f, and milling width ae. The main reason is that, on the one 
hand, higher spindle speed and feed rate are conducive to 
reducing the air cutting time in the machining process; On 
the other hand, higher spindle speed, feed rate, and milling 
width will increase the material removal rate MRR in the 
machining process, while MRR is conducive to reducing 
the material cutting time in the machining process, thereby 
reducing the total time in the machining process. In addi-
tion, it can be seen from the diagram that compared with 
the spindle speed n and feed rate f, the milling width ae has 
the most significant effect on the total time of the machin-
ing process. The main reason is that the value of the milling 
width is directly related to the tool’s radial cutting times m 
in the machining process. The larger the milling width, the 
smaller the radial cutting times of the tool, and the smaller 
the total machining time. On the contrary, the smaller the 
milling width, the greater the number of radial cutting times 
of the tool, and the greater the total processing time.

Parametric influence on processing energy consumption

Figure 11 shows the influence of cutting parameters on pro-
cessing energy consumption. It can be seen from the figure 
that within the given range of process parameters, the total 

Table 6   Empirical cutting 
parameters and optimal cutting 
parameters

Items n (r/min) f (mm/r) ap (mm) ae (mm) Tprocess (s) Eprocess (J) Ra (µm)

Empirical value 1800.00 0.13 2.00 6.00 686.02 587510.27 1.83
Optimal value 2174.16 0.10 2.00 8.64 541.94 497430.29 1.73

Fig. 9   Comparison between empirical value and optimal value. a Total processing time. b Total energy consumption. c Surface roughness
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energy consumption of the machining process decreases 
with the increase of spindle speed n, feed rate f, and milling 
width ae. Although large spindle speed, feed rate, and mill-
ing width will increase the power of each motion stage of 
the machine tool, it can be seen from the previous analysis 
that large spindle speed, feed rate, and milling width will 
greatly reduce the running time of each processing stage 
of the machine tool. Compared with the reduction of pro-
cessing time, the increase in power is very small, so the 
total energy consumption of the machining process is still 
decreasing. In addition, it can also be seen from the fig-
ure that compared with the spindle speed n and feed rate f, 
the milling width ae has the most significant effect on the 
total energy consumption of the machining process. The 
main reason is that the value of the milling width is directly 
related to the tool’s radial cutting times m in the machining 
process. The larger the milling width, the smaller the radial 
cutting times of the tool, and the smaller the total machining 

time, and thus the smaller the total energy consumption of 
the machining process.

Parametric influence on processing quality

Figure 12 shows the influence of cutting parameters on pro-
cessing quality. It can be seen from the figure that within 
the given range of process parameters, with the increase of 
spindle speed n, the surface roughness value shows a down-
ward trend. This is because high-speed milling will increase 
the temperature of the contact surface between the machine 
tool and the workpiece so that the parts to be processed 
are thermally softened, the cutting deformation coefficient 
becomes smaller, the cutting process is smoother, and the 
surface roughness is smaller. With the increase of feed rate f 
and milling width ae, the workpiece surface roughness is on 
the rise, this is because the large feed and milling width will 
produce a larger cutting force, resulting in cutting vibration, 

Fig. 10   3D surface map of processing efficiency. a Influence of feed rate f and spindle speed n on processing time Tprocess. b Influence of milling 
width ae and spindle speed n on processing time Tprocess. c Influence of milling width ae and feed rate f on processing time Tprocess
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which affects the processing quality, resulting in poor work-
piece surface roughness value. In addition, it can be seen that 
the feed rate has the most significant effect on the surface 
roughness of the workpiece.

Conclusion

Improving the energy efficiency of machine tools is a 
basic scientific problem that needs to be solved urgently 
under the background of sustainable manufacturing. CNC 
milling is one of the most common machining methods. 
Energy modeling and cutting parameter optimization of 
the milling process have been recognized as powerful and 
effective energy-saving methods. Therefore, this paper 
proposed a multi-objective parameter optimization method 
of CNC plane milling for sustainable manufacturing. The 

main research results were summarized as follows: first, 
a precise milling energy model considering transient 
processes such as spindle acceleration was established; 
then, a multi-objective parameter optimization model of 
CNC plane milling was further established, which takes 
cutting parameters as optimization variables, processing 
efficiency, processing energy consumption and processing 
quality as optimization objectives, and comprehensively 
considers various complex constraints. Finally, multiple 
3D surface maps were drawn, which directly reflected 
the internal relationship between cutting parameters and 
optimization objectives in the process of machining. The 
results of the research showed that the processing effi-
ciency of the workpiece was improved by 21.0%, the pro-
cessing energy consumption was reduced by 15.3% and the 
surface roughness was reduced by 5.5% through cutting 
parameter optimization, which verified the effectiveness 

Fig. 11   3D surface map of processing energy consumption. a Influ-
ence of spindle speed n and feed rate f on processing energy con-
sumption Eprocess. b Influence of spindle speed n and milling width ae 

on processing energy consumption Eprocess. c Influence of feed rate f 
and milling width ae on processing energy consumption Eprocess
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and feasibility of the proposed method. Moreover, the 
advantages of the proposed approach can be summarized 
as follows:

	 (i)	 A more accurate milling energy model was estab-
lished, which considers transient processes such as 
spindle acceleration.

	 (ii)	 The established multi-objective parameter optimiza-
tion model of CNC plane milling takes into account 
the tool life constraint, which will make the optimiza-
tion results more realistic.

	 (iii)	 The internal relationship between cutting parameters 
and optimization objectives in the process of machin-
ing was intuitively reflected by drawing 3D surface 
diagrams.

Milling energy modeling and cutting parameter optimi-
zation were the focus of this research. The main limitation 

of this research was that this paper only studied the optimi-
zation of milling cutting parameters and did not cover all 
kinds of machining processes (such as turning and grind-
ing). Therefore, the next step will be to expand the scope of 
research and select more types of processing technology to 
improve the proposed models and methods, thus providing 
comprehensive technical support for the energy efficiency 
improvement of machine tools.
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