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Abstract

We study the images of the Markov measures under transformations gen-
erated by the Mealy automata. We find conditions under which the image
measure is absolutely continuous or singular relative to the Markov measure.
Also, we determine statistical properties of the image of a generic sequence.
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1 Introduction

Finite Mealy-type automata (and closely related to them Moore-type automata) play
an important role in computer science. Such automata also play remarkable role
in algebra, dynamical systems, theory of random walks, spectral theory of graphs,
operator algebras, holomorphic dynamics and other areas of mathematics (see for
instance [6] and references therein).

The main feature of an initial deterministic automaton Aq with a finite input
alphabet X and output alphabet Y is that it transforms finite words (strings) over
X into words of the same length over Y , and this transformation can be extended
to a map Âq : XN → Y N defined on the space XN of infinite words. If the input

and output alphabets coincide then one can iterate the map Âq which leads to the
dynamics on the space X∗ of all finite words over X as well as on the space XN of
infinite words. Also, we can compose different maps of this kind, which leads to the

∗The first author graciously acknowledges support from the Simons Foundation through Collab-
oration Grant #527814.
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Figure 1: The odometer, also known as the adding machine

automaton semigroups or groups (in the invertible case). The space XN is endowed
with the natural product topology which makes it homeomorphic to a Cantor set.
The map Âq is continuous with respect to this topology and the pair (Âq, XN) is a
topological dynamical system. A famous example of this sort is given by the odometer
(see Figure 1).

The map Âq : XN → XN can be viewed as transducer that transforms the input
sequence of symbols into output sequence and it can be considered as a coding map.
One may be interested in what happens statistically with the sequence after such
transformation. For instance, what happens with the frequency of occurrence of a
fixed symbol from the alphabet? Or what happens with the probability distribution
on the space of sequences if the input sequence is random?

Ryabinin [10] (see also [8], where more details are given) raised the above ques-
tions in the case of the binary alphabet when different input symbols have identical
and independent distribution. In terms of ergodic theory, this means that the input
sequence is generic with respect to a Bernoulli measure µ. It was observed that the
output sequence is in general distributed according to a different law, just because of
the change of the frequencies of symbols. Moreover, given the frequency p of symbol
1 in a µ-generic sequence, a formula was suggested for the frequency f(p) of 1 in
a sequence generic with respect to the image measure (Âq)∗µ. The function f was
suggested to be called a stochastic function. No justification of the formula for f(p)
was given. A formula with a heuristic argument was presented in the book [8].

The shift map σ acts on sequences by deleting the first symbol and hence sta-
tistical properties of a µ-generic sequence are impacted by ergodic properties of σ
relative to µ. While the Bernoulli measures are shift-invariant and ergodic, their im-
ages under Âq are usually not. The nature of the images was thoroughly studied by
Kravchenko [7] in the case of the alphabet of arbitrary cardinality and a formula for
the frequencies of symbols in the output sequences was found and justified. More-
over, he showed that in the case when automaton Aq has polynomially bounded
activity (as defined by S. Sidki [11]), the image measure is absolutely continuous
with respect to µ, while in the case of a strongly connected automaton it is typically
singular with respect to µ. Singularity was proved by comparing the frequencies at
which various symbols occur in a µ-generic input sequence and the corresponding
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output sequence.
This paper generalizes and extends the results of Kravchenko to the case when the

measure µ belongs to a more general class of Markov measures. First we show that
the image (Âq)∗µ is absolutely continuous with respect to µ if the automaton Aq is
of low activity (Theorem 3.4). This result is extended to non-invertible automata as
well as to transformations generated by automata with infinitely many states. We do
have a restriction though. Indeed, the Markov measures can have forbidden words,
when certain transitions in the corresponding Markov chain have zero probability.
The automaton must not transform any allowed word into a forbidden one. Our
next result is a formula that expresses the frequencies of symbols in a sequence
generic with respect to the image measure (Theorem 4.7), which is then generalized
to calculate frequencies of arbitrary words (Theorem 4.8). In these two theorems, the
automaton is supposed to be strictly connected. The proof uses the idea of converting
the Markov chain on the alphabet X of the automaton Aq (given by a stochastic
matrix L that defines µ) into a Markov chain on the product S×X (where S is a set
of states of Aq). The latter is determined by a stochastic matrix T constructed as

a kind of a skew product. This allows to represent (Âq)∗µ as composed of pieces of
a measure Q that is the image under a 1-block factor map of a Markov measure on
(S ×X)N. Special attention is devoted to the case when the stationary probability
vector t of the matrix T decomposes as a tensor product of the stationary probability
vector l of L with another probability vector k. This condition holds, e.g., when µ
is a Bernoulli measure or the automaton is reversible. For our last result, under
assumptions that t = k⊗ l and the automaton is invertible and strongly connected,
we prove that the Markov measure µ and its image (Âq)∗µ are either singular or the
same (particular cases lead to Theorems 7.5 and 7.9).

The Bernoulli and Markov measures belong to the class of finite-state (or self-
similar) measures, which was considered by the authors in [5]. This looks like a
natural class for future generalizations.

Now let us discuss possible applications of the results obtained in this paper. First
there is very interesting group theory related to the finite automata of Mealy type.
Namely, given a non-initial invertible automaton A, we can set any state q as initial.
Hence the automaton generates several invertible transformations Âq : XN → XN,
which in turn generate a transformation group G(A). Groups of this kind are called
automaton (or self-similar) groups [9] and they play an important role in group
theory as they were used to solve a number of famous problems and find applications
in many areas of mathematics [1]. The results of the present paper allow for a deeper
study of such groups and their relation to the dynamics and information theory.

Secondly, if the automaton A is of polynomial activity, then the Markov measures
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are quasi-invariant with respect to the group G(A) and therefore can be used to build
a Koopman type unitary representations in the Hilbert space L2(XN, µ). Study of
such representations was initiated by A. Dudko and the first author in [4], where it
was shown that there are many pairwise disjoint representations of this type, they
are irreducible and possess a number of interesting and useful properties.

2 Preliminaries

2.1 The shift and the Markov measures

Let X be a finite set consisting of more than one element. We refer to X as the
alphabet. Elements of X are referred to as letters, symbols or characters. Let X∗

denote the set of all finite strings x1x2 . . . xn of letters from X (including the empty
one ∅). We refer to them as words over X and write without any delimiters. Ele-
ments of X are identified with one-letter words in X∗. Let XN denote the set of all
infinite sequences (or infinite words) ω = ω1ω2ω3 . . . over X. Given u,w ∈ X∗ and
ω ∈ XN, we can naturally define the concatenations uw ∈ X∗ and uω ∈ XN. Then
u is called a prefix of the word uw and the sequence uω.

The set XN is endowed with the product topology. The topology is generated by
the cylinders, which are sets of the form uXN = {uω | ω ∈ XN}, where u ∈ X∗. The
shift over the alphabet X is a transformation σ : XN → XN given by (σ(ω))n = ωn+1

for all ω ∈ XN and n ∈ N. The shift is continuous and non-invertible. To simplify
notation, we use the same symbol σ even when dealing simultaneously with shifts
over different alphabets.

Suppose µ is a Borel probability measure on XN. By Kolmogorov’s theorem, µ
is uniquely determined by its values on the cylinders. Conversely, for any function
f : X∗ → [0,∞) satisfying f(∅) = 1 and

∑
x∈X f(wx) = f(w) for all w ∈ X∗, there

is a (unique) Borel probability measure ν on XN such that ν(wXN) = f(w) for all
w ∈ X∗. The measure µ is shift-invariant if µ(σ−1(E)) = E for any Borel set E ⊂
XN. A necessary and sufficient condition for this is that

∑
x∈X µ(xwXN) = µ(wXN)

for all w ∈ X∗. The shift-invariant measure µ is ergodic if any Borel set E ⊂ XN

satisfying σ−1(E) = E has measure 0 or 1.
Let Y be another alphabet and g : XN → Y N be a Borel measurable map. Given

a Borel probability measure µ on XN, the pushforward of µ by g, denoted g∗µ, is
a Borel probability measure on Y N given by g∗µ(E) = µ(g−1(E)) for all Borel sets
E ⊂ Y N. If the map g intertwines the shifts on XN and Y N, that is, gσ = σg, then
the pushforward measure g∗µ is shift-invariant whenever µ is shift-invariant. In the
case g is continuous, it satisfies gσ = σg if and only if there exist an integer k ≥ 1 and
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a function φ : Xk → Y such that (g(ω))n = φ(ωn, ωn+1, . . . , ωn+k−1) for all ω ∈ XN

and n ∈ N. Such a map is called a k-block factor map. Note that the shift itself is
a 2-block factor map.

Any function p : X → R can be interpreted as a vector p = (px)x∈X which
coordinates are indexed by symbols in X. We use both p(x) and px as notation for
the coordinates. If the setX is naturally ordered, we can write p as a usual row vector.
The vector p is a probability vector if px ≥ 0 for all x and

∑
x px = 1. The probability

vector defines a Bernoulli measure µ on XN by µ(x1x2 . . . xnX
N) = px1px2 . . . pxn

for any x1, x2, . . . , xn ∈ X. Any Bernoulli measure is shift-invariant and ergodic.
Any function L : X × X → R can be interpreted as a matrix L = (Lxy)x,y∈X

which rows and columns are indexed by symbols in X. We use both L(x, y) and Lxy
as notation for the entries. If the set X is naturally ordered, we can write L as a usual
matrix. The matrix L is stochastic if all entries are nonnegative and

∑
y Lxy = 1

for all y. The stochastic matrix defines a Markov chain on X such that Lxy is the
probability of transition from x to y. The stochastic matrix L is called irreducible
if the Markov chain is irreducible, which means that for any x, y ∈ X we can find
x1 = x, x2, . . . , xn = y such that Lxixi+1

> 0 for 1 ≤ i ≤ n − 1. Given a stochastic
matrix L = (Lxy)x,y∈X and a probability vector l = (lx)x∈X , we define a Markov
measure µ on XN by

µ(x1x2x3 . . . xnX
N) = lx1Lx1x2Lx2x3 . . . Lxn−1xn

for any x1, x2, x3, . . . , xn ∈ X. The Bernoulli measures are a particular case of the
Markov measures, when each row of the matrix L coincides with l. The Markov
measure µ is shift-invariant if and only if l is a stationary probability vector of the
matrix L, which means that lL = l, i.e.,

∑
x lxLxy = ly for all y. If, additionally, L is

irreducible then the Markov measure is ergodic. Moreover, the stationary probability
vector of an irreducible stochastic matrix is unique and positive. For more details on
Markov measures, see, e.g., [3]. In what follows we consider Markov measures that
are shift-invariant but not necessarily ergodic.

Given a sequence ω ∈ XN and a letter x ∈ X, let N(n) be the number of times
x occurs among the first n terms of ω. The limit of N(n)/n as n → ∞, if it exists,
yields the asymptotic frequency at which x occurs in the sequence ω. We denote
this limit by freqω(x). If the limit does not exist then freqω(x) is not defined. Let
χxXN be the characteristic function of the cylinder xXN. It is easy to see that

freqω(x) = lim
n→∞

1

n

n−1∑
i=0

χxXN(σi(ω)).
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Similarly, for any nonempty word u ∈ X∗ the limit

freqω(u) = lim
n→∞

1

n

n−1∑
i=0

χuXN(σi(ω)),

if it exists, yields the asymptotic frequency at which u occurs as a subword in ω
(compared with other words of the same length in X∗).

Suppose µ is a Borel probability measure on XN. If µ is shift-invariant then it
follows from the Birkhoff ergodic theorem that freqω(u) is defined for µ-almost all
ω ∈ XN. If, additionally, µ is ergodic then freqω(u) = µ(uXN) for µ-almost all ω.

2.2 The Mealy-Moore coding

In this article we consider the Mealy automata, which are the simplest type of trans-
ducers with input and output (for a detailed exposition, see [6]). By definition, a
Mealy automaton (or simply an automaton) is a quadruple A = (X,S, π, λ)
consisting of two nonempty finite sets X (the input/output alphabet) and S (the set
of states), and two functions, the transition function π : S ×X → S and the output
function λ : S ×X → X. (One can consider a more general construction where the
automaton has separate input and output alphabets X and Y ; then λ takes values in
Y .) These functions are naturally extended to functions on S ×X∗ by π(s,∅) = s,
λ(s,∅) = ∅, and recursive rules

π(s, xw) = π(s, x) π(π(s, x), w),

λ(s, xw) = λ(s, x)λ(π(s, x), w),

where x ∈ X and w ∈ X∗. The same recursive rules allow to extend π and λ to
functions on S ×XN, but this time w ∈ XN.

Selecting a state g ∈ S as initial makes A into an initial automaton. The initial
automaton generates transformations of X∗ and of XN, both given by w 7→ λ(g, w)
and referred to as the action of the state g or, more generally, as an automaton
transformation. The state g is nontrivial if the action is nontrivial. Note that the
action on X∗ uniquely determines the action on XN, and vice versa. By overloading
notation, we use g to denote either transformation.

All automaton transformations of XN are continuous. An automaton with one
state generates a 1-block factor map. No block factor map that is not a 1-block
factor map can be generated by an automaton.

Any automaton A = (X,S, π, λ) can be pictured using its Moore diagram,
which is a directed graph with labeled edges. The vertices are the states and the
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edges correspond to transition routes (loops and multiple edges are possible). Every
edge carries a label consisting of two fields. The top (or left) field is the input letter
that invokes that particular transition. The bottom (or right) field is the output

letter produced during that. Hence every edge is of the form s
x−→
y
s′ or s

x|y→ s′, where

π(s, x) = s′ and λ(s, x) = y. Multiple edges can be pictured as a single edge with
multiple labels. The action of a state g on X∗ can be described using paths in the
Moore diagram. Namely, given an input word x1x2 . . . xn ∈ X∗, we need to find a
path of the form

g
x1−→
y1

s1
x2−→
y2

. . .
xn−→
yn

sn.

Such a path exists and is unique. Then g(x1x2 . . . xn) = λ(g, x1x2 . . . xn) = y1y2 . . . yn
and π(g, x1x2 . . . xn) = sn. Likewise, the action of g on XN can be described using
infinite paths.

The automaton A is called strongly connected if its Moore diagram is a
strongly connected graph, which means that there is a path from any state to any
other state.

The automaton A = (X,S, π, λ) is called invertible if each state acts on X by
a permutation, that is, the function λ(s, ·) : X → X is invertible for any s ∈ S.
Assuming this, let λ′(s, x) be a unique letter such that λ(s, λ′(s, x)) = x. Also, let
π′(s, x) = π(s, λ′(s, x)). Then A′ = (X,S, π′, λ′) is called the inverse automaton
of A. In terms of the Moore diagrams, the automaton A′ is obtained from A by
interchanging the two fields of each label. The action of any state s ∈ S on X∗ (or
on XN) generated by A′ is the inverse of the action of the same state generated by
A. It follows that the automaton is invertible if and only if the action of each state
on X∗ (or on XN) is invertible. In the case the automaton is strongly connected, it
is enough to know that the action of one state is invertible.

2.3 Endomorphisms of a regular rooted tree

Given an alphabet X, let T (X) be a graph with the vertex set X∗ in which two
vertices are connected by an edge if and only if one of them is obtained by adding
one letter at the end of the other. Then T (X) is an m-regular rooted tree, where
m = |X|, the number of letters in X. The root is the empty word. All words of
a fixed length k form the k-th level of the tree as they are at distance k from the
root. An invertible map g : X∗ → X∗ is an automorphism of the tree T (X) if it
maps adjacent vertices to adjacent vertices. Any automorphism fixes the root and
hence preserves each level of T (X). An arbitrary map g : X∗ → X∗ is called an
endomorphism of the tree T (X) if it maps adjacent vertices to adjacent vertices
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and also preserves each level. An equivalent condition is that g preserves the length
of any word and does not decrease the length of the longest common prefix of any two
words. In particular, any automaton transformation of X∗ is a tree endomorphism.

The set XN of infinite sequences is naturally identified with the boundary of the
rooted tree T (X), which consists of infinite paths without backtracking that start
at the root. Consequently, any tree endomorphism h : X∗ → X∗ induces a unique
transformation h̃ : XN → XN such that h(u) is a prefix of h̃(ω) whenever u ∈ X∗
is a prefix of ω ∈ XN. If h is an automaton transformation, then h̃ is generated by
the same initial automaton. Note that h̃ does not decrease the length of the longest
common prefix of any two sequences. Moreover, any transformation of XN with the
latter property is induced by a unique tree endomorphism. In view of this, we refer
to h̃ itself as a tree endomorphism and also as the action of h on XN.

Given a tree endomorphism g : X∗ → X∗, for any word u ∈ X∗ there exists a
unique map g|u : X∗ → X∗ such that g(uw) = g(u) g|u(w) for all w ∈ X∗. The map
g|u, which is also a tree endomorphism, is called the restriction (or section) of g by
the word u. The restriction g|u describes how g acts inside a subtree of T (X) with
the vertex set uX∗ = {uw | w ∈ X∗}, which is canonically isomorphic to the entire
tree. Likewise, we can define restrictions for a tree endomorphism g : XN → XN

(but this time w ∈ XN). If a tree endomorphism g is generated by an automaton
A = (X,S, π, λ) with initial state g, then any restriction g|u is the action of another
state of the same automaton, namely, π(g, u). In the case the automaton is strongly
connected, all states are restrictions of one another.

A tree endomorphism is called finite-state if it has only finitely many distinct
restrictions. Given a finite-state tree endomorphism g : X∗ → X∗, we associate
to it the automaton of restrictions A = (X,S, π, λ), where S = {g|w : w ∈ X∗},
π(s, x) = s|x and λ(s, x) = s(x) for all s ∈ S and x ∈ X. Then g is generated
by A with initial state g. An arbitrary endomorphism of T (X) could be similarly
generated by the automaton of restrictions if we allowed automata with infinitely
many states (see [6]), which we do not.

3 Tree endomorphisms of low activity

Suppose a transformation g : X∗ → X∗ is an endomorphism of the regular rooted
tree T (X). For any integer n ≥ 0 let Rg(n) denote the number of words w ∈ X∗ of
length n such that the restriction g|w is nontrivial (i.e., not the identity map). The
function Rg describes the activity growth of g as the length of input increases. It
is not uncommon that only few (if any) restrictions of g are trivial, in which case
Rg(n) grows exponentially in n, i.e., Rg(n) ≥ cn for some c > 1 and all sufficiently
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large n. For example, if g is generated by an automaton with no trivial state, then
all restrictions are nontrivial so that Rg(n) = |X|n for any n. However in this section
we are looking for transformations with much slower activity growth.

We say that the endomorphism g is of polynomial activity growth (or simply
of polynomial activity) if the function Rg(n) grows at most polynomially in n,
that is, Rg(n) ≤ cnα for some c, α > 0 and all n. Similarly, we can consider endo-
morphisms g of bounded activity, when the function Rg is bounded (they form
a smaller class), and of subexponential activity growth, when Rg(n) ≤ cn for
any fixed c > 1 and all sufficiently large n (those form a larger class). Note that
(g|u)|w = guw for all u,w ∈ X∗. Therefore Rg|u(n) ≤ Rg(n+k), where k is the length
of u. It follows that all three classes are closed under taking restrictions.

If a restriction g|u is nontrivial, then so is the restriction of g by any prefix of
u. As a consequence, Rg(n + 1) ≤ |X|Rg(n) for all n. Conversely, if a function
f : N ∪ {0} → N ∪ {0} satisfies f(0) ≤ 1 and f(n + 1) ≤ |X|f(n) for all n ≥ 0,
then f is the activity growth function of some tree endomorphism. Hence various
tree endomorphisms exhibit a huge variety of activity growths including intermediate
between polynomial and exponential. As there are only countably many finite-state
tree endomorphisms, their activity growth cannot be so diverse. In fact, any finite-
state endomorphism has either polynomial or exponential activity growth. There is
an elegant criterion, due to Sidki [11] who introduced the notion of activity growth,
that allows to distinguish between these two possibilities.

Proposition 3.1. All tree endomorphisms generated by an automaton A have poly-
nomial activity growth if and only if the Moore diagram of A does not admit two
distinct simple cycles through any nontrivial state.

Given a tree endomorphism g : X∗ → X∗, let us associate to it two sets of finite
words. The set V (g) consists of all w ∈ X∗ such that the restriction g|u is trivial
whenever g(u) = w. This includes a possibility that no such words u exist. If g is
invertible, then w ∈ V (g) if and only if g−1|w is trivial. The set Vmax(g) is a subset
of V (g). A word w ∈ V (g) belongs to Vmax(g) if no word in V (g) is a proper prefix
of w.

In the case g is invertible, it is an automorphism of the regular rooted tree T (X),
and so is the inverse g−1. In this case, any word w ∈ V (g) corresponds to a subtree
wX∗ such that the action of g−1 inside wX∗ is trivial. Words in Vmax(g) correspond
to maximal subtrees of that kind.

Now we turn to the action of g on XN. By definition of the set Vmax(g), the cylin-
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ders wXN, w ∈ Vmax(g) are disjoint subsets of XN. Let us consider the complement

Ωg = XN \
⋃

w∈Vmax(g)

wXN.

The size of the set Ωg depends on the activity growth of g.

Lemma 3.2. Suppose g : XN → XN is a finite-state tree endomorphism of polyno-
mial activity. Then the sets Ωg and g−1(Ωg) are at most countable.

Proof. Let A = (X,S, π, λ) be the automaton of restrictions of g. Then every state
of A is of polynomial activity. By Proposition 3.1, the Moore diagram of A does not
admit two distinct simple cycles through any nontrivial state.

Let Ω′g denote the set of all sequences ω ∈ XN such that the restriction of g
by any prefix of ω is nontrivial. Given ω = x1x2x3 . . . ∈ Ω′g, consider a sequence
of states s0, s1, s2, . . . that the automaton A with initial state g goes through while
processing the input ω. We have s0 = g and sn = π(sn−1, xn) for n ≥ 1. Each sn is
nontrivial since ω ∈ Ω′g. As there are only finitely many states, some s ∈ S is visited
infinitely often. If sk = sn = s for some k and n, k < n, then s|xk+1xk+2...xn = s.
Let u be the shortest nonempty word in X∗ such that s|u = s. Since the Moore
diagram of A does not admit two distinct simple cycles through any nontrivial state,
it follows that s|w = s if and only if the word w is obtained by repeating u several
times. We conclude that some tail of the sequence ω coincides with the periodic
sequence uuu . . . so that ω is eventually periodic. As there are only countably many
eventually periodic sequences in XN, the set Ω′g is at most countable.

Next we show that Ωg ⊂ g(Ω′g), which will imply that Ωg is also at most countable.
Indeed, let ω = x1x2x3 . . . be in Ωg. Then no prefix x1x2 . . . xn of ω belongs to
V (g). Hence there is a word u(n) of length n such that g(u(n)) = x1x2 . . . xn and
the restriction g|u(n) is nontrivial. Since X is a finite set, we can build inductively a
sequence ω′ ∈ XN such that any prefix of ω′ is also a prefix for infinitely many words
u(n). If a word w occurs as a prefix for another word u, then g(w) is a prefix for
g(u) and g|w is nontrivial whenever g|u is nontrivial. It follows that g(ω′) = ω and
ω′ ∈ Ω′g so that ω ∈ g(Ω′g).

Let ω ∈ Ωg and suppose ω′ is a pre-image of ω under the transformation g. If
ω′ is not in Ω′g then there is a prefix u of ω′ such that the restriction g|u is trivial.
This implies that g does not change the tail of ω′ following the prefix u. Hence ω
can be obtained from ω′ by changing some letters in the prefix u. We conclude that
any element of g−1(Ωg) \ Ω′g coincides with some element of Ωg up to finitely many
terms. Note that for any ω ∈ XN there are only countably many sequences in XN
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that coincide with ω up to finitely many terms. Since the sets Ωg and Ω′g are at most
countable, it follows that g−1(Ωg) is at most countable as well.

A Borel measure on XN is called non-atomic if every one-element set has mea-
sure zero. Under the assumptions of Lemma 3.2, we have µ(Ωg) = µ(g−1(Ωg)) = 0
for any non-atomic measure µ.

Lemma 3.3. If g : XN → XN is a tree endomorphism of subexponential activity
growth, then µ(Ωg) = µ(g−1(Ωg)) = 0 for any non-atomic Markov measure µ on XN.

Proof. Let µ be an arbitrary non-atomic Markov measure on XN. It is defined by a
stochastic matrix L with stationary probability vector l. First we need to estimate
measures of cylinders. Let α0 be the largest entry of L different from 1. Let m be
the number of letters in X. We claim that µ(wXN) ≤ cαn for any word w ∈ X∗

of length n ≥ 1, where c = α
−1−1/m
0 and α = α

1/m
0 (note that α < 1). Assume

the contrary: µ(wXN) > cαn for some w = x1x2 . . . xn, where each xi ∈ X. The
measure is given by µ(wXN) = lx1Lx1x2 . . . Lxn−1xn , where no factor in the product

exceeds 1. Since cαn = α
(n−1)/m−1
0 , the sequence Lx1x2 , Lx2x3 , . . . , Lxn−1xn contains

no more than (n − 1)/m − 1 numbers different from 1. Also, n − 1 > m since

α
(n−1)/m−1
0 < µ(wXN) ≤ 1. It follows that the sequence admits m consecutive 1s.

That is, Lxixi+1
= 1 for k ≤ i ≤ k +m− 1, where 1 ≤ k ≤ n−m. Then some letter

x ∈ X occurs more than once in the word xkxk+1 . . . xk+m, that is, xj = xj′ = x
for some j and j′, k ≤ j < j′ ≤ k + m. Let us take the first j letters of w and
append to them the word xj+1xj+2 . . . xj′ repeated infinitely many times. We obtain
an infinite sequence ω = y1y2y3 . . . in XN. By construction, yi = xi for 1 ≤ i ≤ j
and Lyiyi+1

= 1 for i ≥ j. As a consequence, a cylinder y1y2 . . . yiX
N has the same

measure M = lx1Lx1x2 . . . Lxj−1xj for all i ≥ j. This measure is not zero since µ(wXN)
is not zero. The cylinders y1y2 . . . yiX

N are nested and their intersection is {ω}. It
follows that µ({ω}) = M 6= 0, which contradicts with µ being a non-atomic measure.

For any n ≥ 1 let W ′
n denote the set of all words w ∈ X∗ of length n such that

the restriction g|w is nontrivial. Further, let Wn = g(W ′
n). For any k, 0 ≤ k ≤ n,

let Wn,k be the set of all words of length n that coincide with a word in Wn up to
changing some of the first k letters. The cardinality of the set W ′

n is |W ′
n| = Rg(n).

Then |Wn| ≤ |W ′
n| = Rg(n) and |Wn,k| ≤ |X|k|Wn| ≤ mkRg(n).

Let Ξ′n be the union of cylinders wXN over all w ∈ W ′
n, let Ξn be the union of

wXN over all w ∈ Wn, and let Ξn,k be the union of wXN over all w ∈ Wn,k. Since
µ(wXN) ≤ cαn for any word w of length n, it follows that µ(Ξ′n) ≤ cαnRg(n), µ(Ξn) ≤
cαnRg(n) and µ(Ξn,k) ≤ cαnmkRg(n). By assumption, Rg(n) grows subexponentially
in n. Since α < 1, we conclude that µ(Ξ′n), µ(Ξn) and µ(Ξn,k) all tend to 0 as n→∞.
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Just like in the proof of Lemma 3.2, consider the set Ω′g of all sequences ω ∈ XN

such that the restriction of g by any prefix of ω is nontrivial. Clearly, Ω′g ⊂ Ξ′n for all
n. Since µ(Ξ′n)→ 0 as n→∞, the set Ω′g has measure zero. Just like in the proof of
Lemma 3.2, we can show that Ωg ⊂ g(Ω′g). Then Ωg ⊂ Ξn for all n. Since µ(Ξn)→ 0
as n → ∞, the set Ωg has measure zero. Further, we can show that any pre-image
under g of any ω ∈ Ωg either belongs to Ω′g or coincides with ω up to finitely many
terms. Hence any element of g−1(Ωg) \Ω′g belongs to Ξn,k for some k (depending on
the element) and all n. Since µ(Ξn,k)→ 0 as n→∞ for any fixed k, it follows that
µ(g−1(Ωg) \ Ω′g) = 0. We already know that µ(Ω′g) = 0. Thus µ(g−1(Ωg)) = 0.

Lemmas 3.2 and 3.3 suggest that a tree endomorphism of slow activity growth
changes only finitely many terms in a generic infinite sequence ω ∈ XN. This obser-
vation leads to the following result.

Theorem 3.4. Let µ be a non-atomic Markov measure on XN and g : XN → XN

be a tree endomorphism of subexponential activity growth. Then the measure g∗µ
is absolutely continuous with respect to µ if and only if µ(wxXN) = 0 implies
µ(g−1(wxXN)) = 0 for all w ∈ Vmax(g) and x ∈ X. If this is the case, then the
Radon-Nikodym derivative is given by

dg∗µ

dµ
=

∑
w∈Vmax(g), x∈X:

µ(wxXN)6=0

µ(g−1(wxXN))

µ(wxXN)
χwxXN . (3.1)

Proof. If the measure g∗µ is absolutely continuous with respect to µ, then µ(E) = 0
implies µ(g−1(E)) = g∗µ(E) = 0 for any measurable set E ⊂ XN. Hence the
conditions of the theorem are clearly necessary. Now assume they hold. We need to
show that g∗µ = Dµ, where the function D : XN → R is given by (3.1).

Consider any w ∈ Vmax(g) and x ∈ X such that µ(wxXN) 6= 0. Let δw,x =
µ(g−1(wxXN))/µ(wxXN). First we are going to show that g∗µ(C) = δw,xµ(C) for
any cylinder C ⊂ wxXN. The cylinder C is of the form wxw′XN, where w′ ∈ X∗.
Let Uw be the set of all words u ∈ X∗ such that g(u) = w. The pre-image g−1(wXN)
is the disjoint union of cylinders uXN, u ∈ Uw. Since the restriction g|u is trivial for
each u ∈ Uw, it follows that g−1(wxXN) is the union of cylinders uxXN, u ∈ Uw,
while g−1(C) is the union of cylinders uxw′XN, u ∈ Uw. Let w = x1x2 . . . xn and
w′ = x′1x

′
2 . . . x

′
k (xi, x

′
j ∈ X). The Markov measure µ is defined by a stochastic

matrix L with stationary probability vector l. We have

µ(wxXN) = lx1Lx1x2 . . . Lxn−1xnLxnx,

µ(C) = lx1Lx1x2 . . . Lxn−1xnLxnxLxx′1Lx′1x′2 . . . Lx′k−1x
′
k
,
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which implies that µ(C) = µ(wxXN)Lxx′1Lx′1x′2 . . . Lx′k−1x
′
k
. Similarly,

µ(uxw′XN) = µ(uxXN)Lxx′1Lx′1x′2 . . . Lx′k−1x
′
k

for all words u ∈ X∗. Summing up the latter equality over u ∈ Uw, we obtain

µ(g−1(C)) = µ(g−1(wxXN))Lxx′1Lx′1x′2 . . . Lx′k−1x
′
k
.

It follows that

g∗µ(C) = µ(g−1(C)) = δw,xµ(wxXN)Lxx′1Lx′1x′2 . . . Lx′k−1x
′
k

= δw,xµ(C).

To prove that g∗µ = Dµ, it is enough to show that the two measures agree on all
cylinders. Take any cylinder C ⊂ XN. The set XN is the disjoint union of Ωg and
all cylinders of the form wxXN, where w ∈ Vmax(g) and x ∈ X. By definition, the
function D takes a constant value on each wxXN, which is δw,x if µ(wxXN) 6= 0 and
0 otherwise. Also, D is zero on Ωg. It follows that∫

C

D(ω) dµ(ω) =
∑

w∈Vmax(g), x∈X:

µ(wxXN) 6=0

δw,xµ(C ∩ wxXN).

Since C is a cylinder, the intersection C ∩ wxXN is either a cylinder or the empty
set. By the above, δw,xµ(C ∩ wxXN) = g∗µ(C ∩ wxXN). Further, if µ(wxXN) = 0
for some w ∈ Vmax(g) and x ∈ X, then g∗µ(wxXN) = 0 by assumption. As a
consequence, g∗µ(C ∩ wxXN) = 0. Finally, g∗µ(Ωg) = 0 due to Lemma 3.3. Hence
g∗µ(C ∩ Ωg) = 0. We conclude that∫

C

D(ω) dµ(ω) = g∗µ(C ∩ Ωg) +
∑

w∈Vmax(g), x∈X

g∗µ(C ∩ wxXN) = g∗µ(C),

which completes the proof.

The set Vmax(g) is rarely finite. Therefore the conditions of Theorem 3.4 might
not be easy to verify, especially if g is not invertible. We can replace them with
simpler but somewhat stronger conditions.

Corollary 3.5. Let µ be a Markov measure on XN defined by a stochastic matrix L
with stationary vector l, and g : XN → XN be a tree endomorphism of subexponential
activity growth. If all coordinates of l and all entries of L are positive, then the
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measure g∗µ is absolutely continuous with respect to µ, with the Radon-Nikodym
derivative given by

dg∗µ

dµ
=

∑
w∈Vmax(g), x∈X

µ(g−1(wxXN))

µ(wxXN)
χwxXN .

Proof. Since all coordinates of l and all entries of L are positive, every cylinder has
nonzero measure. Besides, all entries of L are less than 1, which implies that the
measure µ is non-atomic. It remains to apply Theorem 3.4.

Corollary 3.6. Let µ be a non-atomic Markov measure on XN defined by a stochastic
matrix L with stationary vector l, and g : XN → XN be a tree endomorphism of
polynomial activity generated by an automaton A = (X,S, π, λ). Suppose that lx = 0
whenever lλ(g,x) = 0 and Lx,y = 0 whenever Lλ(s,x), λ(π(s,x),y) = 0 (for all s ∈ S and
x, y ∈ X). Then the measure g∗µ is absolutely continuous with respect to µ, with the
Radon-Nikodym derivative given by (3.1).

Proof. In view of Theorem 3.4, we only need to show that µ(wxXN) = 0 implies
µ(g−1(wxXN)) = 0 for all w ∈ Vmax(g) and x ∈ X. We are going to show more,
namely, µ(wXN) = 0 implies µ(g−1(wXN)) = 0 for all w ∈ X∗. Since the pre-image
g−1(wXN) is the union of cylinders uXN over all words u such that g(u) = w, it is
enough to show that µ(wXN) = 0 and g(u) = w implies µ(uXN) = 0.

Suppose w = x1x2 . . . xn and u = y1y2 . . . yn are words of length n ≥ 1 such that
g(u) = w. We have µ(wXN) = lx1Lx1x2 . . . Lxn−1xn and µ(uXN) = ly1Ly1y2 . . . Lyn−1yn .
Let s1 = g and si = π(g, y1y2 . . . yi−1) for 2 ≤ i ≤ n. Then λ(si, yi) = xi for 1 ≤ i ≤ n
and π(si, yi) = si+1 for 1 ≤ i ≤ n − 1. It follows that lx1 = 0 implies ly1 = 0 and
Lxixi+1

= 0 implies Lyiyi+1
= 0 for any i, 1 ≤ i ≤ n − 1. Thus µ(wXN) = 0 implies

µ(uXN) = 0.

4 Strongly connected automata

Suppose µ is a shift-invariant, ergodic Markov measure on XN defined by an ir-
reducible stochastic matrix L with stationary vector l. Let g : XN → XN be an
automaton transformation and ω be a µ-generic sequence in XN. To learn about sta-
tistical properties of the sequence g(ω), we should study the pushforward measure
g∗µ. Unfortunately, the measure g∗µ need not be shift-invariant, let alone ergodic.
On the cylinders, it is given by

g∗µ(y1y2 . . . ynX
N) =

∑
g

x1−→
y1

s1
x2−→
y2

...
xn−→
yn

sn

l(x1)L(x1, x2) . . . L(xn−1, xn),
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where the sum is over all paths of the form g
x1−→
y1

s1
x2−→
y2

. . .
xn−→
yn

sn in the Moore

diagram of the automaton A = (X,S, π, λ) generating g.
One way to address this difficulty is to keep track of the states A goes through

along with the output. We are going to define maps to obtain a commutative diagram

(S ×X)N

XN g
>

π̃g

⊂

>

g(XN) ⊂ XN

λ̃

>>

so that g∗µ = λ̃∗π̃g∗µ. Then we introduce a shift-invariant measure Q on XN that is
the pushforward of a Markov measure under the 1-block factor map λ̃. Under some
assumptions on the automaton A and the matrix L, the measure Q is ergodic while
the measure g∗µ is absolutely continuous with respect to Q.

Let us begin with defining a map π̃ : S ×XN → (S ×X)N recursively by

π̃(s, xω) = (s, x) π̃(π(s, x), ω)

for all s ∈ S, x ∈ X and ω ∈ XN. Then for any state s ∈ S we define a map
π̃s : XN → (S ×X)N by π̃s(ω) = π̃(s, ω), ω ∈ XN.

Recall that g is one of the states of the automaton A. Given a sequence π̃g(ω) =
π̃(g, ω) ∈ (S ×X)N, we can extract the output g(ω) = λ(g, ω) simply by looking at
the states. Hence we define a map λ̃ : (S ×X)N → XN recursively by

λ̃
(
(s, x)ω̃

)
= λ(s, x)λ̃(ω̃)

for all s ∈ S, x ∈ X and ω̃ ∈ (S ×X)N. Note that λ̃ is a 1-block factor map. Now
for every infinite path

g
x1−→
y1

s1
x2−→
y2

. . .
xn−→
yn

sn
xn+1−−−→
yn+1

. . .

in the Moore diagram of the automaton A we have

π̃g(x1x2 . . . xn . . .) = (g, x1)(s1, x2) . . . (sn−1, xn) . . . ,

λ̃
(
(s0, x1)(s1, x2) . . . (sn−1, xn) . . .

)
= y1y2 . . . yn . . .

In particular, λ̃(π̃g(ω)) = g(ω) for all ω ∈ XN. Hence we do have the commutative
diagram.

The measure π̃g∗µ on (S × X)N is easier to treat than the measure g∗µ on XN.
On the cylinders, the former is given by

π̃g∗µ
(
(g, x1)(s1, x2) . . . (sn−1, xn)(S ×X)N

)
= lx1Lx1x2 . . . Lxn−1xn
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if g
x1−→
y1

s1
x2−→
y2

. . .
xn−→
yn

sn is a valid path for some y1, y2, . . . , yn ∈ X and sn ∈ S.

Otherwise the cylinder has measure 0.
In a sense, the measure π̃g∗µ is “piecewise” Markov, scaled by constants on cylin-

ders (s, x)(S ×X)N. To make this statement more precise, let us introduce a matrix
T = TL,A with rows and columns indexed by elements of S × X, and entries given
by

T(s0,x0)(s1,x1) =

{
L(x0, x1) if π(s0, x0) = s1,

0 otherwise.
(4.1)

This matrix is stochastic. Indeed,∑
(r,y)

T(s,x)(r,y) =
∑
y

L(x, y) = 1

since T(s,x)(r,y) 6= 0 for at most one choice of r, r = π(s, x).
Let t be a stationary probability vector of the stochastic matrix T . Recall that t

is a row vector which coordinates are indexed by elements of S×X. All coordinates
are nonnegative and add up to 1. The vector t satisfies the matrix identity tT = t.
Let P denote the Markov measure on (S ×X)N with transition matrix T and initial
probability distribution t. On the cylinders, the measure P is given by

P
(
(s0, x0) . . . (sn, xn)(S ×X)N

)
= t(s0,x0)T(s0,x0)(s0,x1) . . . T(sn−1,xn−1)(sn,xn)

= t(s0,x0)Lx0x1 . . . Lxn−1xn

if s0
x0−→
y0

s1
x1−→
y1

. . .
xn−→
yn

sn+1 is a valid path for some y0, y1, . . . , yn ∈ X and sn+1 ∈ S.

Otherwise the cylinder has measure 0.
The measure P is shift-invariant since t is a stationary vector of T . If the Markov

chain defined by the matrix T is irreducible, then the vector t is unique and positive,
and the measure P is ergodic, but we do not make this assumption yet. We do know
that the vector l is positive. Hence for every finite word w̃ ∈ (S ×X)∗,

P
(
(g, x)w̃(S ×X)N

)
=

t(g, x)

l(x)
π̃g∗µ

(
w̃(S ×X)N

)
.

Therefore for each cylinder Ωg,x = (g, x)(S ×X)N we obtain

P |Ωg,x =
t(g, x)

l(x)
π̃g∗µ|Ωg,x .
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Since the image of the map π̃g is contained in the union of the cylinders Ωg,x, x ∈ X,
the measure π̃g∗µ is supported on that union. It follows that

π̃g∗µ =
∑
x∈X

l(x)

t(g, x)
P |Ωg,x

provided that t(g, x) > 0 for all x ∈ X. From this observation we derive the following
lemma.

Lemma 4.1. If t(g, x) > 0 for all x ∈ X, then the measure π̃g∗µ is absolutely
continuous with respect to P .

Next we introduce the measure Q = λ̃∗P . Note that g∗µ = λ̃∗π̃g∗µ. Since λ̃ is a
1-block factor map, properties of the measures P and π̃g∗µ translate into analogous
properties of Q and g∗µ.

Lemma 4.2. The measure Q is shift-invariant. It is ergodic whenever P is ergodic.

Proof. Since λ̃ is a block factor map, it intertwines the shifts on (S ×X)N and XN

so that we have the following commutative diagram:

(S ×X)N
σ
> (S ×X)N

XN

λ̃∨∨
σ

> XN

λ̃∨∨

By construction, the measure P is shift-invariant, that is, P (σ−1(Ẽ)) = P (Ẽ) for

any measurable set Ẽ ⊂ (S ×X)N. Then for any measurable set E ⊂ XN,

Q(σ−1(E)) = P (λ̃−1(σ−1(E))) = P (σ−1(λ̃−1(E))) = P (λ̃−1(E)) = Q(E).

Hence Q is shift-invariant as well.
Now assume that P is ergodic, that is, for any measurable set Ẽ ⊂ (S × X)N

invariant under the shift, σ−1(Ẽ) = Ẽ, we have P (Ẽ) = 0 or 1. Let E be a measurable

subset of XN invariant under the shift. Then Ẽ = λ̃−1(E) is also invariant under the

shift and Q(E) = P (Ẽ). Hence Q(E) = 0 or 1. Thus the measure Q is ergodic as
well.

Lemma 4.3. If t(g, x) > 0 for all x ∈ X, then the measure g∗µ is absolutely contin-
uous with respect to Q.
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Proof. We need to show that Q(E) = 0 implies g∗µ(E) = 0 for any measurable

set E ⊂ XN. Let Ẽ = λ̃−1(E). Then P (Ẽ) = Q(E) = 0. By Lemma 4.1, the

measure π̃g∗µ is absolutely continuous with respect to P . Hence π̃g∗µ(Ẽ) = 0. Since

g∗µ = λ̃∗π̃g∗µ, it follows that g∗µ(E) = π̃g∗µ(Ẽ) = 0.

Now let us discuss when the Markov chain defined by the matrix T is irreducible.
An obvious necessary condition is that the automaton A be strongly connected. If all
entries of the matrix L are positive (for example, if the measure µ is Bernoulli), this
condition is also sufficient. However it need not be so for a general Markov measure.

Example 4.4. Let X = {0, 1, 2}, the measure µ be defined by the matrix

L =

 1/2 1/2 0
0 1/2 1/2

1/2 0 1/2

 ,

and the automaton A have the transition function given by the diagram in Figure 2.

Figure 2: Any path from A to C ends in 02

Note that 02 is a forbidden word in the Markov chain defined by L, that is,
µ(wXN) = 0 whenever 02 is a subword of w. On the other hand, any input word
that takes the automaton from state A to state C must end in 02. Therefore in the
Markov chain defined by T there is zero chance to get from (A, x) to (C, y) in any
number of steps. Thus the Markov chain is not irreducible. 4

The above example motivates the following definition.

Definition 4.5. We say that the automaton A is L-strongly connected if for any
pair of states s, r ∈ S and any pair of symbols x, y ∈ X, there exists a word w ∈ X∗
such that π(s, xw) = r and xwy is not a forbidden word in the Markov chain defined
by the matrix L (that is, if w = w1 . . . wn then Lxw1 , Lwiwi+1

for 1 ≤ i ≤ n− 1, and
Lwny are all nonzero).

Lemma 4.6. The Markov chain defined by the matrix T = TL,A is irreducible if and
only if the automaton A is L-strongly connected.
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Proof. This follows directly from the definitions.

Finally we can formulate the main results of this section.

Theorem 4.7. Let µ be a Markov measure on XN defined by an irreducible stochastic
matrix L. Suppose a transformation g : XN → XN is generated by an automaton
A. If the automaton A is L-strongly connected then for any x ∈ X and µ-almost all
ω ∈ XN,

lim
n→∞

1

n

n−1∑
i=0

χxXN(σig(ω)) =
∑

s0
x0−→
x
s1

t(s0, x0),

where t is the stationary probability vector of the stochastic matrix T = TL,A defined
in (4.1) and the sum is over edges in the Moore diagram of A.

Proof. We are going to use the measures P andQ defined above. Since the automaton
A is L-strongly connected, the Markov chain defined by the matrix T is irreducible
due to Lemma 4.6. It follows that the stationary vector t is unique and positive.
Besides, the Markov measure P defined by T and t is ergodic. Then Lemma 4.2
implies that the measure Q is also shift-invariant and ergodic. By the Birkhoff
ergodic theorem, for Q-almost all v ∈ XN we have

lim
n→∞

1

n

n−1∑
i=0

χxXN(σi(v)) =

∫
XN
χxXN dQ = Q(xXN) = (λ̃∗P )(xXN)

=
∑

s0
x0−→
x
s1

P
(
(s0, x0)(S ×X)N

)
=

∑
s0

x0−→
x
s1

t(s0, x0),

where the last two sums are over valid edges in the Moore diagram of the automaton
A. Since all coordinates of the vector t are positive, Lemma 4.3 implies that the
measure g∗µ is absolutely continuous with respect to Q. Therefore the above equality
also holds for g∗µ-almost all v ∈ XN. In other words, if v = g(ω) then the equality
holds for µ-almost all ω ∈ XN.

Theorem 4.7 allows to calculate frequencies with which various symbols x ∈ X
appear in a sequence g(ω), where ω is µ-generic. A generalization to frequencies of
arbitrary words over the alphabet X is straightforward.

Theorem 4.8. Let µ be a Markov measure on XN defined by an irreducible stochastic
matrix L. Suppose a transformation g : XN → XN is generated by an automaton
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A. If the automaton A is L-strongly connected then for any nonempty word u =
u1u2 . . . uk ∈ X∗ and µ-almost all ω ∈ XN,

lim
n→∞

1

n

n−1∑
i=0

χuXN(σig(ω)) =
∑

s0
x0−→
u1

s1...
xk−1−−−→
uk

sk

t(s0,x0)Lx0x1 . . . Lxk−2xk−1
,

where t is the stationary probability vector of the stochastic matrix T = TL,A defined
in (4.1) and the sum is over paths in the Moore diagram of A.

The proof is completely analogous to that of Theorem 4.7 and we omit it. For
examples of calculations using Theorems 4.7 and 4.8, see Section 6 below.

Suppose K = (Kss′)s,s′∈S is a stochastic matrix that defines a Markov chain on
the set S. The tensor product K ⊗ L is an array of numbers indexed by two states
s, s′ ∈ S and two symbols x, x′ ∈ X, and given by (K ⊗ L)(s,x)(s′,x′) = Kss′Lxx′ . We
regard K⊗L as a matrix which rows and columns are indexed by elements of S×X,
not as a 4-dimensional array. Then K ⊗ L is stochastic and defines a Markov chain
on S×X. Suppose k is a stationary probability vector of the matrix K. The tensor
product k ⊗ l is an array of numbers indexed by pairs (s, x) ∈ S × X and given
by (k ⊗ l)(s,x) = kslx. We regard it as a vector, not as a matrix. Then k ⊗ l is a
stationary probability vector of the matrix K ⊗ L.

Recall that the matrix T = TL,A defines a Markov chain on S×X. Unfortunately,
T cannot be represented as the tensor product of L with another stochastic matrix.
Nevertheless, in some cases the stationary probability vector t does decompose as
the tensor product of l with another probability vector, which allows to simplify the
formulas in Theorems 4.7 and 4.8.

Let us define a matrix K = Kl,A by

Ks0s1 =
∑

x:π(s0,x)=s1

l(x) =
∑
s0

x−→
y
s1

l(x) (4.2)

for all s0, s1 ∈ S (in the second formula, the sum is over valid edges in the Moore
diagram of the automaton A). For any s ∈ S we have

∑
rKsr =

∑
x l(x) = 1 so that

K is indeed a stochastic matrix. Since the vector l is positive, it follows that K is
irreducible if and only if the automaton A is strongly connected.

Lemma 4.9. Suppose k is a stationary probability vector of K. If the Markov
measure defined by L is Bernoulli, then k⊗ l is a stationary probability vector of T .
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Proof. The vector k = (ks)s∈S satisfies
∑

s ksKss′ = ks′ for all s′ ∈ S. We need to
show that

∑
s,x kslxT(s,x)(s′,x′) = ks′lx′ for all (s′, x′) ∈ S ×X. The Markov measure

defined by L is Bernoulli if Lxx′ = lx′ for all x, x′ ∈ X. Then T(s,x)(s′,x′) = lx′ if
π(s, x) = s′ and 0 otherwise. It follows that

∑
x lxT(s,x)(s′,x′) = Kss′lx′ . Consequently,∑

s,x kslxT(s,x)(s′,x′) =
∑

s ksKss′lx′ = ks′lx′ .

Combining Lemma 4.9 with Theorem 4.8, we obtain the following result (in the
case of one-letter words, it was proved by Kravchenko [7]).

Theorem 4.10. Let µ be a Bernoulli measure on XN defined by a positive probability
vector l. Suppose a transformation g : XN → XN is generated by an automaton A. If
the automaton A is strongly connected then for any nonempty word u = u1u2 . . . uk ∈
X∗ and µ-almost all ω ∈ XN,

lim
n→∞

1

n

n−1∑
i=0

χuXN(σig(ω)) =
∑

s0
x0−→
u1

s1...
xk−1−−−→
uk

sk

ks0lx0lx1 . . . lxk−1
,

where k is the stationary probability vector of the stochastic matrix K = Kl,A defined
in (4.2) and the sum is over paths in the Moore diagram of A.

If the Markov measure defined by L is not Bernoulli, the vector t need not
decompose as k ⊗ l (see Example 6.4 below). However there is a large, well known
class of automata for which Lemma 4.9 does hold for a general stochastic matrix L.
We consider that class in the next section.

5 Reversible automata

Definition 5.1. An automaton A = (X,S, π, λ) is called reversible if for any s ∈ S
and any x ∈ X there exists a unique state s0 ∈ S such that π(s0, x) = s.

Suppose A = (X,S, π, λ) is a reversible automaton. For any s ∈ S and any

x ∈ X let←−π (s, x) be a unique state such that π
(←−π (s, x), x

)
= s. Also, let

←−
λ (s, x) =

λ
(←−π (s, x), x

)
. Then

←−A = (S,X,←−π ,←−λ ) is called the reverse automaton of A. In

terms of the Moore diagrams, the automaton
←−A is obtained from A by reversing

all edges. That is, every edge of the form s0
x−→
y
s1 is replaced by s1

x−→
y
s0. The

automaton
←−A is also reversible and its reverse automaton is A.

Suppose L is a stochastic matrix that defines a Markov chain on X and l is a
stationary probability vector of L.
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Lemma 5.2. If an automaton A = (X,S, π, λ) is reversible then the constant vector
k = 1

|S|(1, 1, . . . , 1) is a stationary probability vector of the stochastic matrix K = Kl,A

defined in (4.2) while k⊗ l is a stationary probability vector of the stochastic matrix
T = TL,A defined in (4.1).

Proof. For any s, s′ ∈ S,

Kl,A(s, s′) =
∑
s

x−→
y
s′

l(x).

It follows that the transpose of the matrix Kl,A is K
l,
←−
A . As a consequence, the

transpose is stochastic as well. Then
∑

sKl,A(s, s′) = 1 for all s′ ∈ S, which implies
that kKl,A = k.

To prove the second statement of the lemma, it is enough to show that∑
s,x

lxT(s,x)(s′,x′) = lx′

for all (s′, x′) ∈ S ×X. Note that T(s,x)(s′,x′) = Lxx′ if s =←−π (s′, x) and 0 otherwise.
It follows that

∑
s T(s,x)(s′,x′) = Lxx′ . Then

∑
s,x lxT(s,x)(s′,x′) =

∑
x lxLxx′ = lx′ .

Combining Lemma 5.2 with Theorem 4.8, we obtain the following result.

Theorem 5.3. Let µ be a Markov measure on XN defined by an irreducible stochastic
matrix L with stationary probability vector l. Suppose a transformation g : XN →
XN is generated by an automaton A. If the automaton A is L-strongly connected
and reversible, then for any nonempty word u = u1u2 . . . uk ∈ X∗ and µ-almost all
ω ∈ XN,

lim
n→∞

1

n

n−1∑
i=0

χuXN(σig(ω)) =
1

N

∑
s0

x0−→
u1

s1...
xk−1−−−→
uk

sk

lx0Lx0x1 . . . Lxk−2xk−1
,

where N is the number of states in A and the sum is over paths in the Moore diagram
of A.

A remarkable feature of the reversible automata is that their states act naturally
on bi-infinite sequences over the alphabet. Suppose A = (X,S, π, λ) is a reversible
automaton and let w = . . . x−2x−1x0.x1x2x3 . . . be a bi-infinite sequence in XZ (the
dot between x0 and x1 serves as a reference point). Given a state g ∈ S, we need to
find a bi-infinite path in the Moore diagram of A of the form

. . .
x−2−−→
y−2

s−2
x−1−−→
y−1

s−1
x0−→
y0

g
x1−→
y1

s1
x2−→
y2

s2
x3−→
y3

. . .
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Since the automaton A is reversible, such a path exists and is unique. Then, by
definition, g(w) = . . . y−2y−1y0.y1y2y3 . . .. Let g+ denote the action of the same
state g on XN and g− denote the action of g on XN when g is regarded as a state

of the reverse automaton
←−A . Then y1y2y3 . . . = g+(x1x2x3 . . .) and y0y−1y−2 . . . =

g−(x0x−1x−2 . . .).
The two-sided shift on XZ (still denoted by σ) is defined by

σ(. . . x−2x−1x0.x1x2x3 . . .) = . . . x−1x0x1.x2x3x4 . . .

Unlike the shift on XN, it is invertible. Given a stochastic matrix L = (Lxx′)x,x′∈X
with a stationary probability vector l = (lx)x∈X , a Markov measure µ on XZ is
defined on the cylinders by

µ
(
{. . . w−2w−1w0.w1w2 . . . | wi = xi, m ≤ i ≤ n}

)
= lxmLxmxm+1 . . . Lxn−1xn

for any m,n ∈ Z, m ≤ n and any xm, xm+1, . . . , xn ∈ X. The measure µ is shift-
invariant. It is ergodic if L is irreducible.

For any nonempty word u = u1u2 . . . uk ∈ X∗ consider a cylinder Ωu ⊂ XZ

defined by Ωu = {. . . w−2w−1w0.w1w2 . . . | wi = ui, 1 ≤ i ≤ k}. Given w ∈ XZ, the
limit

lim
n→∞

1

n

n−1∑
i=0

χΩu(σi(w)),

if it exists, yields the (asymptotic) frequency at which the word u occurs in the
right-hand half of the bi-infinite sequence w. Likewise, the limit

lim
n→∞

1

n

n−1∑
i=0

χΩu(σ−i(w)),

if it exists, yields the frequency at which u occurs in the left-hand half of w.
Now we can formulate an analogue of Theorem 5.3 for bi-infinite sequences.

Theorem 5.4. Let µ be a Markov measure on XZ defined by an irreducible stochastic
matrix L with stationary probability vector l. Suppose a transformation g : XZ → XZ

is generated by a reversible automaton A. If the automaton A is L-strongly connected
then for any nonempty word u = u1u2 . . . uk ∈ X∗ and µ-almost all w ∈ XZ,

lim
n→∞

1

n

n−1∑
i=0

χΩu(σig(w)) = lim
n→∞

1

n

n−1∑
i=0

χΩu(σ−ig(w))

=
1

N

∑
s0

x0−→
u1

s1...
xk−1−−−→
uk

sk

lx0Lx0x1 . . . Lxk−2xk−1
,
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where N is the number of states in A and the sum is over paths in the Moore diagram
of A.

Proof. We are going to use the transformations g+ and g− defined above. Let us also
define maps F+, F− : XZ → XN by

F+(. . . w−2w−1w0.w1w2w3 . . .) = w1w2w3 . . . ,

F−(. . . w−2w−1w0.w1w2w3 . . .) = w0w−1w−2 . . .

The maps F+ and F− are continuous. Consider the pushforward measures µ+ = F+
∗ µ

and µ− = F−∗ µ on XN. The measure µ+ is clearly the Markov measure on XN defined
by the same matrix L and vector l. By Theorem 5.3,

lim
n→∞

1

n

n−1∑
i=0

χuXN(σig+(ω)) =
1

N

∑
s0

x0−→
u1

s1...
xk−1−−−→
uk

sk

lx0Lx0x1 . . . Lxk−2xk−1

for µ+-almost all ω ∈ XN. In other words, if ω = F+(w) then the latter equality
holds for µ-almost all w ∈ XZ. Since

χuXN(σig+(F+(w))) = χuXN(σiF+(g(w))) = χuXN(F+(σig(w))) = χΩu(σig(w))

for all w ∈ XZ and i ≥ 0, this establishes the first limit in the formulation of the
theorem.

The second limit requires more work. The measure µ− is given on the cylinders
by

µ−(y1y2 . . . ymX
N) = lymLymym−1 . . . Ly2y1 .

Consider a matrix
←−
L = (

←−
L xx′)x,x′∈X defined by

←−
L xx′ = lx′Lx′x/lx for all x, x′ ∈ X

(note that the vector l is positive). The matrix
←−
L is stochastic. Indeed,

∑
x′
←−
L xx′ =∑

x′ lx′Lx′x/lx = lx/lx = 1 for all x ∈ X. Also, l is a stationary probability vector of←−
L since

∑
x lx
←−
L xx′ =

∑
x lx′Lx′x = lx′ for all x′ ∈ X. Now for any y1, y2, . . . , ym ∈ X

we obtain

ly1
←−
L y1y2

←−
L y2y3 . . .

←−
L ym−1ym = ly1(ly2Ly2y1/ly1)(ly3Ly3y2/ly2) . . . (lymLymym−1/lym−1)

= lymLymym−1 . . . Ly3y2Ly2y1 ,

which implies that µ− is the Markov measure defined by the matrix
←−
L with stationary

probability vector l.
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By construction,
←−
L xx′ > 0 if and only if Lx′x > 0. Since the stochastic matrix

L is irreducible, it follows that
←−
L is irreducible as well. Next let us show that the

reverse automaton
←−A is

←−
L -strongly connected. Given states s, s′ ∈ S and symbols

x, x′ ∈ X, we need to find symbols x0 = x, x1, . . . , xm = x′ (m ≥ 1) such that
←−π (s, x0x1 . . . xm−1) = s′ and

←−
L xixi+1

> 0 for 0 ≤ i ≤ m − 1. Let r = ←−π (s, x) and
r′ = ←−π (s′, x′). Since the automaton A is L-strongly connected, there exist symbols
y0 = x′, y1, . . . , yj = x (j ≥ 1) such that π(r′, y0y1 . . . yj−1) = r and Lyiyi+1

> 0 for
0 ≤ i ≤ j − 1. Then s = π(s′, y1y2 . . . yj) so that s′ = ←−π (s, yj . . . y2y1). Moreover,←−
L yiyi−1

> 0 for 1 ≤ i ≤ j.

Applying Theorem 5.3 to the measure µ−, the matrix
←−
L , the transformation g−,

the automaton
←−A and the word ←−u = ukuk−1 . . . u1 (which is u written backwards),

we obtain that for µ−-almost all ω ∈ XN,

lim
n→∞

1

n

n−1∑
i=0

χ←−u XN(σig−(ω)) =
1

N

∑
←−
A : s0

x0−→
uk

s1...
xk−1−−−→
u1

sk

lx0
←−
L x0x1 . . .

←−
L xk−2xk−1

,

where the sum is over paths in the Moore diagram of
←−A . In other words, if ω =

F−(w) then the latter equality holds for µ-almost all w ∈ XZ. By construction of

the automaton
←−A , its Moore diagram admits a path s0

x0−→
uk

s1 . . .
xk−1−−−→
u1

sk if and

only if the Moore diagram of A admits the path sk
xk−1−−−→
u1

. . . s1
x0−→
uk

s0. By the

above, lx0
←−
L x0x1 . . .

←−
L xk−2xk−1

= lxk−1
Lxk−1xk−2

. . . Lx1x0 for all x0, x1, . . . , xk−1 ∈ X.
It follows that the right-hand side in the last formula (that is, the value of the limit)
is the same as in the formulation of the theorem. As for the left-hand side, we have
σig−(F−(w)) = σiF−(g(w)) = F−(σ−ig(w)) for all w ∈ XZ and i ≥ 0. Besides,
χΩu(σ−i(w̃)) = χ←−u XN(F−(σ−i+k(w̃))) for all w̃ ∈ XZ and i ∈ Z (here k is the length
of the word u). It follows that

lim
n→∞

1

n

n−1∑
i=0

χΩu(σ−ig(w)) = lim
n→∞

1

n

n−1∑
i=0

χ←−u XN(σig−(F−(w)))

whenever the latter limit exists. This completes the proof.
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6 Examples with strongly connected automata

In this section we consider several examples of automaton transformations generated
by strongly connected automata and perform for them calculations related to results
of Sections 4 and 5.

In each example, an automaton A = (X,S, π, λ) is given by its Moore diagram.
A shift-invariant, ergodic Markov measure µ on XN is defined by an irreducible
stochastic matrix L with stationary probability vector l (lL = l and

∑
x lx = 1). In

most examples, the alphabet is X = {0, 1} and the matrix L is in general form

L =

(
1− p p
q 1− q

)
,

that is, p > 0 is the probability of transition from 0 to 1 and q > 0 is the probability
of transition from 1 to 0. Then

l =

(
q

p+ q
,

p

p+ q

)
.

In all examples, we compute the matrix T = TL,A defined in (4.1) and find its
stationary probability vector t. Rows and columns of T as well as coordinates of t
are indexed by elements of S×X. The sets S and X are canonically ordered as their
elements are either letters or digits. We impose the lexicographic order on the set
S ×X, which allows us to write T as a usual matrix and t as a usual row vector.

In addition, we compute the matrix K defined in (4.2) and find its stationary
probability vector k to check if the vector t decomposes as the tensor product k⊗ l.

Finally, we calculate the vector f = (fx)x∈X of frequencies of each character
x ∈ X after the action of A with an initial state g on a µ-generic sequence:

fx = lim
n→∞

1

n

n−1∑
i=0

χxXN(σig(ω))

for µ-almost all ω ∈ XN, where σ denotes the shift. If the automaton is L-strongly
connected, then the vector f of output frequencies does not depend on the initial
state g (as easily follows from Theorem 4.7).
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6.1 Automaton generating a free group

The three states of this automaton generate a free nonabelian group. Moreover, this
is essentially the only 3-state automaton over the alphabet X = {0, 1} with that
property (see [2]). What is more important for us is that the automaton is reversible
(in fact, bireversible: its inverse is reversible as well), and hence t = k ⊗ l.

a c

0|1

b1|0

0|0

1|1

1|0

0|1

K =

 0 p
p+q

q
p+q

0 q
p+q

p
p+q

1 0 0


k =

(
1
3

1
3

1
3

)

T =


0 0 0 0 1− p p
0 0 q 1− q 0 0
0 0 1− p p 0 0
0 0 0 0 q 1− q

1− p p 0 0 0 0
q 1− q 0 0 0 0


t =

(
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)

)
k ⊗ l =

(
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)

)
f =

(
2p+q

3(p+q)
p+2q

3(p+q)

)
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6.2 The Bellaterra automaton

The Bellaterra automaton is obtained by composing the automaton from the previous
example with a one-state automaton that switches 0 and 1. In other words, all values
of the transition function are retained while all values of the output function are
switched. This significantly changes the character of transformations generated by
the automaton: they are all involutions now (see [2]). However the action on Markov
measures is not that much different: the coordinates of the vector f are interchanged
while the other data remain the same.

a c

0|0

b1|1

0|1

1|0

1|1

0|0

K =

 0 p
p+q

q
p+q

0 q
p+q

p
p+q

1 0 0


k =

(
1
3

1
3

1
3

)

T =


0 0 0 0 1− p p
0 0 q 1− q 0 0
0 0 1− p p 0 0
0 0 0 0 q 1− q

1− p p 0 0 0 0
q 1− q 0 0 0 0


t =

(
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)

)
k ⊗ l =

(
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)

)
f =

(
p+2q

3(p+q)
2p+q

3(p+q)

)
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6.3 The lamplighter automaton

The two states of this automaton generate a group isomorphic to the lamplighter
group (Z/2Z) o Z (see [6]). This is again a reversible automaton. An interesting
feature of the lamplighter automaton is that the output frequencies of individual
characters do not depend on the input frequencies.

a

0|1

b1|0
0|0

1|1

K =

( q
p+q

p
p+q

p
p+q

q
p+q

)
k =

(
1
2

1
2

)
T =


1− p p 0 0

0 0 q 1− q
0 0 1− p p
q 1− q 0 0


t =

(
q

2(p+q)
p

2(p+q)
q

2(p+q)
p

2(p+q)

)
k ⊗ l =

(
q

2(p+q)
p

2(p+q)
q

2(p+q)
p

2(p+q)

)
f =

(
1
2

1
2

)
Note: even though the output frequencies of individual characters do not depend

on p and q, this is not the case for words of length 2. The input and output frequencies
are as follows.

Words: 00 01 10 11

Input frequency: q−pq
p+q

pq
p+q

pq
p+q

p−pq
p+q

Output frequency: q
2(p+q)

p
2(p+q)

p
2(p+q)

q
2(p+q)
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6.4 Case when t 6= k ⊗ l

This can already happen with a two-character alphabet. The automaton in this
example differs from the automaton in Example 6.1 only by one arrow (in the Moore
diagram), but that change makes the automaton non-reversible.

a

b
0|1

1|0

0|1

c

1|0

0|0

1|1

K =

 0 1 0
0 q

p+q
p
p+q

1 0 0


k =

( p
3p+q

p+q
3p+q

p
3p+q

)

T =


0 0 1− p p 0 0
0 0 q 1− q 0 0
0 0 1− p p 0 0
0 0 0 0 q 1− q

1− p p 0 0 0 0
q 1− q 0 0 0 0


t =

(
− pq(p+q−2)
qp2+(2q2−3q+3)p+(q2−3q+3)q

p(q2+(p−2)q+1)
qp2+(2q2−3q+3)p+(q2−3q+3)q

q(p2+(2q−3)p+q2−3q+3)
qp2+(2q2−3q+3)p+(q2−3q+3)q

p
qp2+(2q2−3q+3)p+(q2−3q+3)q

pq
qp2+(2q2−3q+3)p+(q2−3q+3)q

p−pq
qp2+(2q2−3q+3)p+(q2−3q+3)q

)
k ⊗ l =

(
pq

(p+q)(3p+q)
p2

(p+q)(3p+q)
q

3p+q
p

3p+q
pq

(p+q)(3p+q)
p2

(p+q)(3p+q)

)
f =

(
p(q2+(p−1)q+2)

qp2+(2q2−3q+3)p+(q2−3q+3)q

p(q−1)2+(q2−3q+3)q
qp2+(2q2−3q+3)p+(q2−3q+3)q

)
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6.5 Automaton over a three-character alphabet

In our final example, we consider an automaton A over a three-character alphabet
X = {1, 2, 3}.

Let µ be the Markov measure on XN defined by the matrix

L =

 1
2

1
2

0
0 1

2
1
2

1
2

0 1
2


with stationary probability vector l = (1/3, 1/3, 1/3). Then A is L-strongly con-
nected and we have

T =



0 0 0 1
2

1
2

0 0 0 0
0 0 0 0 1

2
1
2

0 0 0
1
2

0 1
2

0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0
0 1

2
1
2

0 0 0 0 0 0
0 0 0 0 0 0 1

2
0 1

2

0 0 0 0 0 0 1
2

1
2

0
0 1

2
1
2

0 0 0 0 0 0
0 0 0 0 0 0 1

2
0 1

2


t =

(
2
15

2
15

1
5

1
15

2
15

1
15

2
15

1
15

1
15

)
f =

(
4
15

1
3

2
5

)
31



We did not include the matrix K and the vector k in this example, but it is easy to
see that t 6= v ⊗ l for any vector v.

Note that if we modified the automaton A by changing one arrow in the Moore
diagram so that π(a, 2) = a (instead of b), then A would no longer be L-strongly-
connected. Indeed, since L1,3 = µ(13XN) = 0, there would be zero chance to get
from (a, 1) and (b, 3) in the Markov chain defined by T . As a result, the vector t is
no longer positive:

t =
(

2
9

2
9

1
3

1
9

1
9

0 0 0 0
)
.

This modification shows that in the case of Markov measures, t may not be uniquely
determined by the automaton and the vector l, like in the case of Bernoulli measures.
Indeed, for a Bernoulli measure with the same probability distribution l, the vector
t would be positive.

7 Singularity

Suppose µ is a Markov measure on XN and g is an automaton transformation of
XN. If g has polynomial activity growth, the results of Section 3 suggest that we
should expect the pushforward measure g∗µ to be absolutely continuous with respect
to µ. In this section we study the relation between the measures µ and g∗µ in the
case when g is generated by a strongly connected automaton. The relation turns out
to be quite different, namely, we should expect µ and g∗µ to be singular (that is,
concentrated on disjoint sets).

Kravchenko observed in [7] that if µ is a Bernoulli measure and the transformation
g generated by a strongly connected automaton is invertible, then µ and g∗µ are
singular except for a few cases, in which g∗µ = µ. We are going to correct his result
fixing a minor error in the argument, and then further extend it.

One obvious exception is when g acts trivially. The second exception is when µ
is the uniform Bernoulli measure (defined by a constant probability vector). Such
a measure is preserved by any invertible automaton transformation. Unfortunately,
another exceptional case (that kind of combines the said two) was overlooked in [7].

Example 7.1. Let X = {1, 2, 3} and µ be a Bernoulli measure on XN defined by
a probability vector l = (1/2, 1/4, 1/4). Let A = (X, {g}, π, λ), where π(g, x) = g
for all x ∈ X, λ(g, 1) = 1, λ(g, 2) = 3 and λ(g, 3) = 2. The only state g of the
automaton A acts on XN as a 1-block factor map that applies the transposition (2 3)
to every term of a sequence. Since l2 = l3, we have g∗µ = µ even though g does not
act trivially and the measure µ is not uniform. 4

32



Lemma 7.2. Let µ be a Bernoulli measure on XN defined by a positive probability
vector l and g : XN → XN be an invertible transformation generated by a strongly
connected automaton A = (X,S, π, λ). Then the following conditions are equivalent:
(i) g∗µ = µ; (ii) lx′ = lx whenever λ(s, x) = x′ for some s ∈ S.

Proof. The action of g on X∗ is invertible as well. We use g−1 to denote the inverse of
both the action of g on XN and on X∗. Consider an arbitrary word u ∈ X∗ of length
k ≥ 1. We have u = x1x2 . . . xk and g−1(u) = y1y2 . . . yk for some xi, yi ∈ X, 1 ≤ i ≤
k. Then µ(uXN) = lx1lx2 . . . lxk and g∗µ(uXN) = µ(g−1(uXN)) = µ

(
g−1(u)XN

)
=

ly1ly2 . . . lyk . Note that xi = λ(si, yi), where s1 = g and si = π(g, y1y2 . . . yi−1) for
2 ≤ i ≤ k. Assuming the condition (ii) holds, we obtain that lxi = lyi for 1 ≤ i ≤ k.
Then µ(uXN) = g∗µ(uXN). Thus the measures µ and g∗µ coincide on the cylinders,
which implies that g∗µ = µ.

Conversely, assume that g∗µ = µ and suppose λ(s, x) = x′ for some s ∈ S.
Since the automaton A is strongly connected, there exists a word u ∈ X∗ such that
π(g, u) = s. Let u′ = g(u). Then g(ux) = u′x′. As a consequence, µ(uXN) =
g∗µ(u′XN) = µ(u′XN) and µ(uxXN) = g∗µ(u′x′XN) = µ(u′x′XN). By definition of
the measure µ, we have µ(uxXN) = µ(uXN)lx and µ(u′x′XN) = µ(u′XN)lx′ . Since
l is a positive vector, the measure µ(uXN) = µ(u′XN) is not zero. It follows that
lx′ = lx.

The main idea behind the proof of singularity is rather simple. Recall that the
asymptotic frequency freqω(u) with which a finite word u ∈ X∗ occurs in an infinite
sequence ω ∈ XN is defined as a limit

freqω(u) = lim
n→∞

1

n

n−1∑
i=0

χuXN(σi(ω))

(it is not defined if the limit does not exist).

Lemma 7.3. Let µ be a Borel probability measure on XN that is invariant and ergodic
with respect to the shift. Let g : XN → XN be a Borel measurable map. Suppose that
freqg(ω)(u) 6= freqω(u) for some u ∈ X∗ and µ-almost all ω ∈ XN. Then the measures
µ and g∗µ are singular.

Proof. Let E1 be the set of all sequences ω ∈ XN such that freqω(u) = µ(uXN). Let
E2 be the set of all ω ∈ XN such that freqg(ω)(u) 6= freqω(u). Both E1 and E2 are
Borel measurable sets. We have µ(E2) = 1 by assumption and µ(E1) = 1 due to the
Birkhoff ergodic theorem. As a consequence, µ(E1 ∩E2) = 1. The image g(E1 ∩E2)
is clearly disjoint from E1. It follows that g∗µ(XN \ E1) ≥ µ(E1 ∩ E2) = 1. Hence
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E1 is a set of full measure for µ while XN \E1 is a set of full measure for g∗µ. Thus
µ and g∗µ are singular measures.

The next lemma is crucial for this section.

Lemma 7.4. Let µ be a Markov measure on XN defined by an irreducible stochastic
matrix L with stationary probability vector l and g : XN → XN be an invertible
transformation generated by an L-strongly connected automaton A. Suppose that
t = k ⊗ l, where t is the stationary probability vector of the matrix TL,A defined in
(4.1) and k is the stationary probability vector of the matrix Kl,A defined in (4.2).
Then the measures µ and g∗µ are either singular or the same.

Proof. Since g is invertible, all restriction of g are invertible as well. Since the
automaton A is strongly connected, every state s ∈ S is a restriction of g. Both the
action of s on XN and on X∗ are invertible. We denote by s−1 the inverses of both
actions.

Assume g∗µ 6= µ. Then g∗µ(wXN) 6= µ(wXN) for some nonempty word w ∈ X∗.
Note that g∗µ(wXN) = µ(g−1(wXN)) = µ

(
g−1(w)XN

)
. Let k denote the length of

w. Consider all words u ∈ X∗ of length k such that µ
(
s−1(u)XN

)
6= µ(uXN) for

some s ∈ S (one such word is w) and choose among them one with the largest value
of µ(uXN). We claim that µ

(
s−1(u)XN

)
≤ µ(uXN) for all s ∈ S (by the choice of u,

at least one of these inequalities is going to be strict). Indeed, take any s ∈ S and
let u(0) = u, u(1), u(2), . . . be a sequence of words such that u(n+1) = s−1(u(n)) for all
n ≥ 0. Since the state s acts as a permutation on the finite set of all words of length
k, it follows that the sequence is periodic. If µ(u(n)XN) > µ(uXN) for some n, then
µ(u(n+1)XN) = µ(u(n)XN) due to the choice of u. Therefore µ(u(1)XN) > µ(uXN)
would imply µ(u(n)XN) = µ(u(1)XN) > µ(uXN) for all n ≥ 1, which is not the case
as u occurs infinitely often in the sequence.

Let u = u1u2 . . . uk, where each ui ∈ X. By Theorem 4.8, for µ-almost all ω ∈ XN

we have
freqg(ω)(u) =

∑
s0

x0−→
u1

s1...
xk−1−−−→
uk

sk

t(s0,x0)Lx0x1 . . . Lxk−2xk−1
,

where the sum is over paths in the Moore diagram of A. Let Σ denote the value of
the sum. Since t = k ⊗ l, we have

t(s0,x0)Lx0x1 . . . Lxk−2xk−1
= ks0lx0Lx0x1 . . . Lxk−2xk−1

= ks0µ(x0x1 . . . xk−1X
N).
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For any choice of s0 the Moore diagram of A admits a unique path of the form

s0
x0−→
u1

s1 . . .
xk−1−−−→
uk

sk, with x0x1 . . . xk−1 = s−1
0 (u). It follows that

Σ =
∑
s∈S

ksµ
(
s−1(u)XN).

Since the automaton A is strongly connected, the stochastic matrix Kl,A is irre-
ducible. Therefore the vector k is positive. By the above, µ

(
s−1(u)XN

)
≤ µ(uXN)

for all s ∈ S. Moreover, at least one of these inequalities is strict. It follows that
Σ <

∑
s ksµ(uXN) = µ(uXN). In particular, freqg(ω)(u) < µ(uXN) for µ-almost all

ω ∈ XN. On the other hand, freqω(u) = µ(uXN) for µ-almost all ω ∈ XN due to the
Birkhoff ergodic theorem. Now Lemma 7.3 implies that the measures µ and g∗µ are
singular.

Theorem 7.5. Let µ be a Bernoulli measure on XN defined by a positive probability
vector l. Suppose g : XN → XN is an invertible transformation generated by a
strongly connected automaton A = (X,S, π, λ). Then the measures µ and g∗µ are
singular unless lλ(s,x) = lx for all s ∈ S and x ∈ X, in which case g∗µ = µ.

Proof. The measure µ can be regarded as a Markov measure defined by a stochastic
matrix L each row of which coincides with l. Since all entries of L are positive, the
automaton A is L-strongly connected. By Lemma 4.6, the stochastic matrix TL,A
defined in (4.1) is irreducible. Therefore its stationary probability vector t is unique.
Lemma 4.9 implies that t = k ⊗ l, where k is the stationary probability vector of
the stochastic matrix Kl,A defined in (4.2). By Lemma 7.4, the measures µ and g∗µ
are either singular or the same. It follows from Lemma 7.2 that g∗µ = µ if and only
if lλ(s,x) = lx for all s ∈ S and x ∈ X.

Example 7.6. Let X = {1, 2, 3} and µ be a Bernoulli measure on XN defined by a
probability vector l = (1/2, 1/4, 1/4). Let A = (X, {s0, s1}, π, λ), where π(si, x) =
s1−i for all x ∈ X and i ∈ {0, 1}, λ(s0, 1) = 2, λ(s1, 1) = 3, and λ(si, x) = 1 for
x ∈ {2, 3} and i ∈ {0, 1}. Let g be either of the two states of the automaton A.
Then for µ-almost all ω ∈ XN any symbol x ∈ X occurs with the same frequency lx
in ω and g(ω). If g were invertible, this would imply g∗µ = µ. In fact, the measures
µ and g∗µ are singular, but we need to look at words of length 2 to be able to apply
Lemma 7.3. Indeed, 22 and 33 occur with the same frequency 1/16 in a µ-generic
sequence ω while not occurring at all in g(ω). 4

In view of the previous example, we should expect the measures µ and g∗µ to be
singular even if g is not invertible. There are exceptions, of course.
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Example 7.7. Let X be any alphabet of more than one character. For any x ∈ X
and ω ∈ XN let gx(ω) = xω. All transformations gx, x ∈ X can be generated by
a single automaton A = (X,S, π, λ), where S = {gx | x ∈ X}, π(gx, y) = gy and
λ(gx, y) = x for all x, y ∈ X. If µ is a Bernoulli measure on XN defined by a positive
probability vector l, then µ =

∑
x lx (gx)∗µ. As a consequence, each measure (gx)∗µ

is absolutely continuous with respect to µ while not the same as µ. 4

To prove an analogue of Theorem 7.5 for general Markov measures, we need first
to establish an analogue of Lemma 7.2.

Lemma 7.8. Let µ be a Markov measure on XN defined by an irreducible stochastic
matrix L with stationary probability vector l and g : XN → XN be an invertible
transformation generated by an L-strongly connected automaton A = (X,S, π, λ).
Then the following conditions are equivalent: (i) g∗µ = µ; (ii) lx′ = lx whenever
λ(g, x) = x′, and Lx′y′ = Lxy whenever λ(s, xy) = x′y′ for some s ∈ S.

Proof. Consider an arbitrary word u = x1x2 . . . xk ∈ X∗ and let g−1(u) = y1y2 . . . yk.
Then µ(uXN) = lx1Lx1x2 . . . Lxk−1xk and g∗µ(uXN) = µ(g−1(uXN)) = µ

(
g−1(u)XN

)
=

ly1Ly1y2 . . . Lyk−1yk . Clearly, x1 = λ(g, y1) and x1x2 = λ(g, y1y2). Besides, xixi+1 =
λ(si, yiyi+1) for 2 ≤ i ≤ k−1, where si = π(g, y1y2 . . . yi−1) . Assuming the condition
(ii) holds, we obtain that lx1 = ly1 and Lxixi+1

= Lyiyi+1
for 1 ≤ i ≤ k − 1. Then

µ(uXN) = g∗µ(uXN). Thus the measures µ and g∗µ coincide on the cylinders, which
implies that g∗µ = µ.

Conversely, assume that g∗µ = µ. If λ(g, x) = x′ for some x, x′ ∈ X, then
lx′ = µ(x′XN) = g∗µ(x′XN) = µ(xXN) = lx. Now suppose λ(s, xy) = x′y′ for
some s ∈ S. Since the automaton A is L-strongly connected, there exist sym-
bols x0, x1, . . . , xk = x (k ≥ 1) such that π(g, x0x1 . . . xk−1) = s and Lxixi+1

> 0
for 0 ≤ i ≤ k − 1. Note that the vector l is positive since the stochastic ma-
trix L is irreducible. Therefore µ(x0x1 . . . xkX

N) = lx0Lx0x1 . . . Lxk−1xk > 0. Let
u = x0x1 . . . xk−1 and u′ = g(u). Since π(g, u) = s, we have g(ux) = u′x′ and
g(uxy) = u′x′y′. As a consequence, µ(uxXN) = g∗µ(u′x′XN) = µ(u′x′XN) and
µ(uxyXN) = g∗µ(u′x′y′XN) = µ(u′x′y′XN). By definition of the measure µ, we have
µ(uxyXN) = µ(uxXN)Lxy and µ(u′x′y′XN) = µ(u′x′XN)Lx′y′ . By the above the
measure µ(uxXN) = µ(u′x′XN) is not zero. It follows that Lx′y′ = Lxy.

Theorem 7.9. Let µ be a Markov measure on XN defined by an irreducible stochas-
tic matrix L with stationary probability vector l. Suppose g : XN → XN is an
invertible transformation generated by a reversible, L-strongly connected automaton
A = (X,S, π, λ). Then the measures µ and g∗µ are singular unless lλ(g,x) = lx and
Lλ(s,x), λ(π(s,x),y) = Lx,y for all s ∈ S and x, y ∈ X, in which case g∗µ = µ.
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Proof. The theorem is proved in the same way as Theorem 7.5 but instead of Lemmas
4.9 and 7.2, one has to use respectively Lemmas 5.2 and 7.8.
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