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As conversational search becomes more pervasive, it becomes increasingly important to understand the users’
underlying information needs when they converse with such systems in diverse domains. We conduct an in
situ study to understand information needs arising in a home cooking context as well as how they are verbally
communicated to an assistant. A human experimenter plays this role in our study. Based on the transcrip-
tions of utterances, we derive a detailed hierarchical taxonomy of diverse information needs occurring in
this context, which require different levels of assistance to be solved. The taxonomy shows that needs can be
communicated through different linguistic means and require different amounts of context to be understood.
In a second contribution, we perform classification experiments to determine the feasibility of predicting the
type of information need a user has during a dialogue using the turn provided. For this multi-label classi-
fication problem, we achieve average F1 measures of 40% using BERT-based models. We demonstrate with
examples which types of needs are difficult to predict and show why, concluding that models need to include
more context information in order to improve both information need classification and assistance to make
such systems usable.
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1 INTRODUCTION

Voice-based interaction systems are changing the way people seek information by making
search more conversational [40, 90]. Spoken queries are known to be very different from typed
queries [40]. They are longer and use richer semantics and more natural language phrases com-
pared with text queries [40]. These qualities make it possible for users to express more complex and
abstract concepts than are typically used in search. Human-to-human conversation, nevertheless,
goes further, typically featuring follow-up and clarification questions that lead to better shared
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understanding of needs and perspectives. If systems could replicate this process, conversing
as humans do, systems could move beyond simply providing results to offering intelligent
assistance [50].

Understanding how this process works in human-to-human conversation is a prerequisite to
implementing this kind of functionality into conversational assistants. Despite fields, such as
Information Science, having a rich tradition of studying conversations with librarians to learn
about user information needs (e.g., see [37, 80, 81]) and their behaviour to address these (e.g.,
see [11, 15, 75]), voice-based applications on mobile devices and dedicated hardware, such as
Amazon Echo and Google Home, mean that information-seeking conversations now take place
in diverse situations embedded in users’ everyday lives that are very different from a library visit.
Our understanding of how information-seeking conversations unfold is very limited in domains
beyond the library. Recent research meetings focusing on conversational search have identified
the need to accurately elicit information needs, correct user misconceptions and provide the right
amount of information at the right time across all possible domains (e.g., [8, 28]). Our focus in
this work is on the first of these challenges — need elicitation — specifically on understanding
and predicting user information needs, which are important for systems to conversationally
identify what a user requires, facilitate appropriate retrieval, and attain relevance feedback [89].
Although domain-independent taxonomies already exist describing, for example, conversational
moves for search [91] or conversations for domain-agnostic planning tasks (e.g., [45, 77]), no
domain-specific schemata have been published to date.

Prominent researchers in this area emphasise that developing new information need taxonomies
derived from studies in diverse realistic settings is crucial to developing usable real-world systems
(e.g., [74, 91]). With this in mind, we study information needs in one particular domain, home cook-
ing, which, based on the literature, we believe provides a fertile context for the kinds of complex
needs suited to conversational search [29, 34, 63]. Cooking, moreover, offers a situation in which
users simultaneously perform practical, sometimes cognitively challenging tasks, which make
searching in the traditional sense problematic. By studying conversational information-seeking
behaviour in this setting, we can learn not only about the diverse information needs that occur
but also how information needs are communicated and resolved in this specific scenario. Being
able to predict these needs is a first, yet crucial, step towards a truly conversational search system.

Concretely, our contributions are the following:

e We perform an in situ study that facilitates a naturalistic cooking situation, resulting in the
organic development of information needs.

e We analyse the collected data qualitatively to learn about the diverse types of information
needs which can occur in this context.

e We utilise machine learning approaches to classify needs using the raw transcription of
participant utterances.

In doing so, our findings add to the information-seeking literature in which information needs
have been studied in many contexts for many reasons but rarely in the context of home cooking.
The results are insightful for the future development of conversational search systems, as they
show that within this context it is possible to detect the kind of need a user has based on raw
speech utterances. For systems of practical use to be developed, however, performance needs to
be improved. Our results suggest that this may be achieved by providing algorithms with more
context information.

2 RELATED WORK

Our work relates to research contributions across diverse fields of the computer and information
sciences, ranging from information seeking to natural language understanding to artificial
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intelligence. Here, we link the fields by first reviewing appropriate and relevant literature on
conversations in interactive information retrieval (IIR), and understanding and predicting user
needs and goals, before relating this research to appropriate contributions on natural language
understanding more generally.

2.1 Conversations in Interactive Information Retrieval

Studying conversations is not new in information seeking. Many of the key models which have
guided research for decades were conceived by analysing user conversations (e.g., [11, 52, 80]).
Belkin’s research used dialogues to model information-seeking behaviour; later dialogue structure
inspired the design of IIR systems [12, 101]. Prekop [65] identified patterns describing prototypi-
cal behaviours, actions, and interactions of participants in collaborative tasks. The patterns were
“information seeking by recommendation” [p. 543], “direct questioning” [p. 544], and “advertis-
ing information paths” [p. 545]. Other publications looked at the language used in conversations.
Thomas et al. [84] distinguish several conversational styles and discovered that divergent styles
between agents can be strenuous for users. One take-away from the work is that conversational
systems should be capable of adapting to the user’s style to reduce workload. Trippas et al. [90]
identified patterns resembling Prekop’s when pairs of users conversed during collaborative tasks.
They also found that integrating discourse in conversational search models is necessary to cope
with the complexity of the information-seeking process [91]. For example, grounding, that is, mak-
ing mutual knowledge and intentions clear, is a means of relevance feedback in the conversational
search domain [91] which can help reduce complexity. This strategy was also found to be im-
portant by Aliannejadi et al. [5] in the sense that clarifying questions led to better search results
since they help to resolve complex information needs. Zamani et al. [102], who investigated which
kind of clarifying questions are preferred by users, also found that such questions are typically
employed in ambiguous and long natural language user interactions. This indicates that the infor-
mation needs are hard to express in such situations and, thus, might be complex. This aligns with
the findings of Ruthven [70], which indicate that early-stage, that is, hard to express, information
needs are expressed with more words and greater narrative. The work by Trippas, Aliannejadi, and
their colleagues shows that conversational search supports users by allowing natural dialogue to
address complex goals. The underlying information needs of these goals, however, are linguisti-
cally hard to express for users. For this reason, an in-depth understanding of information needs
would be beneficial, as it would offer the potential for conversational search systems to adapt to
user needs and behaviour.

2.2 Understanding User Information-seeking Goals

The aforementioned properties of information-seeking dialogues — adaptation of the language
style [84, 85], the usage of clarifying questions [5, 102] and grounding [91] — are important aspects
that help in understanding information-seeking goals. However, understanding user information
needs is not a new field of investigation.

Conversational search fits with the progression in IR, from the matching of queries and tex-
tual documents to understanding and supporting user needs. Classifications of search tasks are
one way of thinking about user information needs. In IIR, such classifications are numerous and
often delineated based on type or characteristic [48]. Type-based examples focus on what peo-
ple are trying to achieve (e.g., see [87]). Characteristic-based classifications, on the other hand,
delineate tasks by property, such as specificity [69] or complexity [22]. Such classifications are
useful because they inform the design of IIR systems [48, 97], help to study and model search
behaviour [41], and provide the basis for the evaluation of search systems and user interfaces
[33]. Classifications for specific domains — including web [19], mobile [25], and personal search
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[33] — have been published. The closest in the literature to our work is [29], which establishes
categories based on 678 Google Answer Forum queries relating to cooking, identifying 17 types
of information needs. However, these are not based on conversational speech data; thus, they
are only to some extent transferable to conversational search systems. Trippas et al. [91] suggest
that domain-specific taxonomies need to be created to better understand the complexity of infor-
mation needs and user information-seeking goals. Extracting these domain-specific information
needs from the user can be done by mixed-initiative conversational search systems that retrieve
information by user-agent conversations and help users reveal their underlying information needs
[67]. To achieve this goal technically, systems must be able to automatically predict and detect the
user’s information-seeking goal, that is, information needs.

2.3 Predicting Information Needs Conversationally

Understanding and algorithmically predicting user needs can be useful for many reasons: different
results can be shown [27], results can be presented differently [83], or answers can be presented
directly in the results page [13]. Conversations with the user is one method of detecting such in-
formation needs. Automated conversational agents can provide personalisation and support users
in selecting an item [86] or talking about areas of interests [76] and have been applied in scenarios
such as in trauma therapy [61]. This often requires systems to utilise a memory function in which
systems can reference past statements [67] in order to maintain an understanding of context [6, 51].

In conversational search, preliminary work has utilised user speech utterances as a means to
identify user intents. Intent classification models are also used in other conversational domains,
including generic agents (e.g., see [49, 54, 57]). Focussing on the conversational search domain,
Ahmadvand [1] attempts to capture context with the use of topic sequence models in order to sug-
gest topics in open-domain dialogues. Qu et al. [66] predict generic user intents with the help of
dialogue acts, while Boteanu et al. [16] focus on the prediction of latent intents in text-based prod-
uct queries. In addition to predicting user intents, there have been efforts to improve information
need prediction. For example, Aliannejadi et al. [4] found that contextually relevant utterances lie
at a position in the conversation that is close to the current utterance which informs the design of
the memory and context property of such systems. Ren et al. [68] attempt to understand complex
information needs and provide appropriate answers in a conversational search/agent setting. They
emphasise the importance of context, for example, via conversational history, which they argue
must be modelled to fully understand a current turn. Shiga et al. [74] classify needs along two
dimensions: one uses Taylor’s levels of specification [80] and the other delineates type based on a
classification derived from the literature. Moreover, they incorporate an aspect of task hierarchy in
which a main task (e.g., booking a holiday) can be viewed as consisting of sub-tasks (e.g., finding a
destination, comparing flight schedules, etc.). Their work shows that information need categories
can be distinguished using machine learning approaches. This work is the closest to our own re-
search in terms of motivation and approach. However, the categories of needs predicted are very
high level and domain unspecific, which is also the case in the study by the authors of [66]. One
could imagine that conversations and the types of support required across domains could be quite
different. If systems could identify specific need types within specific domains, conversational sys-
tems could provide much more appropriate assistance. Thus, building on the work of Shiga et al.
[74], we test similar approaches in a home cooking context.

2.4 Understanding Dialogue

Theoretical foundations and technical solutions for conversational search are closely related to
research on dialogue understanding in linguistics and artificial intelligence. In the vast literature
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on this topic, two complementary trends are discernible. The first (and historically earlier) trend
relates to discourse analysis. It aims to generate computational features from all linguistic, cog-
nitive, and (discourse) pragmatic processes that are active — often in parallel — while dialogue
participants interact. Macagno and Bigi [59] present a recent overview that positions conversa-
tional search in the class of information-seeking dialogues. While this strand of research develops
extensive linguistic models for the pragmatics of dialogues, it does not focus on developing effec-
tive algorithms for them. The second major trend does exactly this, based on recent successes of
machine learning algorithms (e.g., see [73, 96]): Deep neural networks are leveraged to implicitly
model the current state of any active process using the hidden and recurrent layers of the em-
ployed network architecture. Dialogue systems based on these machine learning approaches are
regularly evaluated in the dialogue state tracking challenge [99] on a class of so-called open-domain
dialogues [2, 43] or multi-domain dialogues [39]. Whereas algorithms for open-domain dialogues
aim to imitate human-to-human conversations as naturally as possible without necessarily trying
to complete a task, other single-domain dialogues can be task based (e.g., [10]), in which the user
provides rational interactions trying to complete a certain goal (e.g., booking a flight). In this class
of dialogue systems, the task knowledge is formalized in terms of slots [10] whose values must
be extracted from natural language user input using appropriate natural language understanding
(NLU) algorithms. If such problems are to be extended to multi-domain dialogues, a small number
of tasks may need to be completed in parallel (i.e., booking a flight, reserving a room in a hotel, and
retrieving a public transport connection from the airport to the hotel). In either case, machine learn-
ing-based dialogue systems are trained on huge corpora of mostly publicly available datasets [99].

Such systems are trained to predict values for slots to be filled from current user input and a
current latent state of the task inferred from the sequence of dialogue moves (i.e., classified user
utterances) observed so far (see [2]). Since dialogue move sequences result from changes in the
state of the task to be completed, the training process tends to result in models fitted strongly to
the specific task. This, in turn, means that models perform poorly in contexts outside the training
scenario [46].

Building a task-oriented conversational search system for a new domain, that is, a domain for
which no corpus is available, remains a huge challenge despite the recent progress in machine
learning. Therefore, only a few cross-context systems exist due to the lack of data available and
the high costs involved in annotating such data (e.g., see [92, 95]).

2.5 Key Differentiators

The summarized related work indicates several open issues in the literature. Next, we highlight
these issues and formulate concrete research questions that we will answer with our empirical
work.

To implement working conversational search systems, it is crucial to develop taxonomies or
classification schemes to understand the information needs commonly occurring in one specific
domain such that systems can employ appropriate strategies to elicit the user’s underlying need.
As, to date, no such taxonomies exist for conversational search in the cooking domain, RQ1 aims
to answer the question of what kind of information needs arise when cooking with a con-
versational assistant.

Detecting such needs in a dialogue still remains a huge challenge for current systems due to
difficulties in understanding discourse pragmatics. In RQ2, we want to investigate how informa-
tion needs are communicated to identify linguistic features in dialogue that raise difficulties in
interpreting information needs.

Finally, systems must be capable of predicting user information needs to satisfy them accord-
ingly. Since the previous literature has focused only on predicting broad and domain-agnostic
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needs, we evaluate in RQ3 whether cooking-related information needs can be predicted in
a conversational assistance scenario.

3 METHODOLOGY
3.1 Data Collection

We designed an experiment to collect naturalistic dialogues that involved the communication of
and attempts to solve information needs. To simulate a naturalistic cooking scenario, an in situ
experiment was performed whereby participants were gifted a box of ingredients and tasked to
cook a meal that they had not cooked previously using as many of the contained ingredients as
possible. Participants were allowed to supplement the supplied ingredients with the contents of
their own pantry if necessary. To assist this process, participants could converse with the exper-
imenter, who would answer any questions and needs arising using any resources available via
the Web. The experimenter provided the best answer possible and communicated this orally in a
natural human fashion, which is arguably the optimal behaviour for a conversational system. The
setup was equivalent for all participants who worked in their own kitchens with the experimenter
mimicking a conversational search system, sitting close by with access to the Internet via laptop.
No time constraints were imposed for the task. Each experiment comprised the following six steps:

(1) The instructions were read to the participant.

(2) Participants signed a consent form explaining how the collected data would be stored and
used in the future.

(3) The ingredient box was provided.

(4) The recording device was tested.

(5) Participants started the cooking task and the full dialogue between experimenter and partic-
ipant was recorded.

(6) After the task, the experimenter thanked the participant and gifted the remaining
ingredients.

To encourage a naturalistic setting, all experiments took place in each participant’s home. As
such, the participants were more familiar with their surroundings and materials available. Feeling
comfortable in the environment is advantageous, as it is known to leverage informal speech [23].

3.2 Ingredients

To ensure diversity in the recipes and, thus, variety in subsequent conversations, the ingredient
boxes varied across participants. The ingredients mostly had a value of around 10€ and were chosen
based on the guidelines by the German Nutritional Society, which suggests that seven categories
of ingredient are required for a balanced meal. Typically, the box contained some kind of grain or
starch (e.g., potatoes or rice), a selection of vegetables, a source of protein (e.g., eggs), and at least
one ingredient that was seasonal (e.g., asparagus) or that we felt might not have been commonly
cooked with by all participants. We did this in order to stimulate conversation and, thus, to gain as
many potential utterances as possible. Participants prepared diverse meals using the ingredients.
To ensure freshness, all ingredients were bought on the day they were used in an experiment.

3.3 Participants

Participants were recruited using a snowball sampling technique with a convenience sample pro-
viding the first group of candidates. These participants, in turn, were willing to recruit friends
and relatives, and so on. This method offers two advantages. First, it generates a basis for trust
among the participants and the experimenter, which leads to more informal and open dialogue
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[23]. Our impressions confirmed relaxed and natural behaviour in the experiments. Second, it al-
lows a relatively large sample to be achieved. The only requirements for potential participants
were a kitchen and Internet connection. Participants were not paid for participation. However, to
increase response rate, the ingredients were gifted. A total of 45 participants (22 females, X4, =
24 years, mingg. = 19 years, maxqg. = 71 years, 20% non-students) were tested between May 7,
2018 and June 28, 2018. A total of 37 had never used conversational agents before, while 4 used
either Alexa or Google Home. Asked about their cooking experience, six participants reported
cooking multiple times per week or on a daily basis, 18 reported seldom cooking or not at all, and
one person regarded cooking as her hobby. The remaining 20 participants stated that they cooked
but not on a regular basis.

3.4 Transcription

In total, 38.75 hours of material was collected, with the language spoken being German. The
recorded conversations were transcribed by a trained linguist. Compared with our pilot study [38],
this new transcription represents a much more rigorous and work-intensive approach, providing
additional detail to systems and future research, that is, pauses and intonation.

The transcription approach was inspired by previous work dealing with comparable data, that
is, naturalistic conversational search dialogues in German dialect [38]. Since many participants
spoke in dialect (Bavarian German), we followed the recommendation in Dresing and Pehl [32] to
translate the dialectal expressions into standard German so that other German readers can fully
understand what was said. This is also important for the natural language processing steps that
take place afterwards, which necessitate Standard German text. However, syntactic errors and the
word order were maintained [32]. Building on past work from the conversational search literature,
we applied the guidelines for transcribing spoken conversational search dialogues that Trippas
et al. [88] adopted from [60]. These recommendations include the suggestions that transcription
rules should be independent in the sense that independent transcribers or third parties can easily
understand them, that the transcripts should be suitable for both human and computer use, and
that the transcription rules should be elegant, thus, minimising the number of rules and keeping
them easy to learn.

More concretely, inspired by Dresing and Pehl [32], Trippas et al. [88], Braun and Clarke [18],
and McLellan et al. [60], we followed these guidelines:

o Recorded audio files were transcribed verbatim (following the guidelines outlined earlier).
Every dialogue related to the cooking session was transcribed. Only private chatter and
small talk during the experiment were not transcribed due to ethical issues. These passages
were marked with a (smalltalk) placeholder.

e Noisy, incomprehensible passages were marked with (unv.), which means “unverstandlich”,
the German word for incomprehensible. Other notes were also marked in rounded brackets.

e There is no punctuation in the transcript. Instead, intonation was marked in the following
way: (_) and (;) mark a low intonation, whereby (;) is not as low as (_). (-) indicates that
intonation is on the same level, that is, neither going down nor up. (,) and (?) indicate a high
intonation, where (?) is higher than (,). For further investigation with the usage of intonation,
it is highly recommended to group the high and low intonation levels.

e Pauses were added with the following pattern: (.) is a short break of about one second, (..) is
a break of about two seconds, (...) is a three-second pause, and ([number]) is a pause lasting
[number] seconds.

e Numbers up to 12 were transcribed as words, higher numbers were transcribed numerically.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 81. Publication date: January 2022.



81:8 A. Frummet et al.

e URLs were transcribed as they were spoken (e.g., chefkoch.de was transcribed as chefkoch
de).

e Abbreviations were written as said.

e Overlaps in talking were marked with double slashes: //

e Strong accentuation was marked with capital letters.

3.5 Annotation

One primary goal is to achieve a detailed understanding of the information needs that occur dur-
ing the cooking process as well as how these originate and are expressed conversationally. We
previously published a preliminary analysis of the collected data using less rigorous transcription
and analysis approaches [38]. The results of the preliminary work were sufficient to convince us
of the value of insights that could be provided using a more detailed analysis. More detail in the
transcription and analysis processes are necessary, as the information needs categories in our pilot
study were very broad and, therefore, difficult to distinguish using machine learning approaches.
Moreover, hierarchical relationships and semantic similarity between categories led to misclassifi-
cations. By creating a more precise, tree-structured representation of the information needs in the
cooking context, our aim was to develop more accurate classifiers. By doing this, we aim to im-
prove the performance of classifiers when distinguishing between different types of information
needs.

The process comprised the following steps outlined by Braun and Clarke [17]: (Step 1) familiaris-
ing self with data, (Step 2) generating initial codes, (Step 3) searching for themes, (Step 4) reviewing
themes, (Step 5) defining and naming themes, and (Step 6) producing the report. Furthermore, we
followed the recommendations by Charmaz [24] on line-by-line coding, which helps to remain
open during the coding process and to detect more nuances in the data. One crucial element for
comparison and consistency validation was the strong usage of memos where decisions taken and
new ideas were noted as suggested by Corbin [26]. Using the f4analyse' software made iterative
comparison and refinement convenient due to support for qualitative data analysis (QDA), which
allows utterances from multiple classes to be compared. This makes the identification of common-
alities and differences easier. The whole annotation process was conducted by the first author, who
is also a trained linguist. As outlined by Braun and Clarke [17], the process was conducted itera-
tively and tested repeatedly until the researcher was satisfied that a consistent information need
taxonomy was achieved. The following steps were taken to ensure the development of a consistent
coding scheme:

(1) Identifying which participant spoke, that is, identifying turns. For turns in spoken conversa-
tional search, the definition by Trippas et al. [88] was employed: “Taking the initiative equals
taking the turn”. Thus, a turn could consist of multiple moves or conversational goals.

(2) Assigning codes to each turn and taking notes and memos for later comparison and to un-
derstand why certain decisions have been made.

(3) Combining codes to themes for further analysis and merging indistinguishable labels.

(4) Checking for consistency across participants and themes to ensure that the labels actually
are distinct.

Selective coding was employed to systematically relate codes, validate the relationships between
them, and add and refine further categories as suggested by Strauss and Corbin [78]. By doing
this, we gained the tree-like structure of our information needs taxonomy. This helps us to better
understand the relationships between the information needs.

ISee https://www.audiotranskription.de/en/f4analyse/.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 81. Publication date: January 2022.


https://www.audiotranskription.de/en/f4analyse/

“What Can | Cook with these Ingredients?” 81:9

4 RESULTS

The results are presented in three subsections, each of which addresses one of the research ques-
tions formulated in Section 2.5. In Section 4.1, we address RQ1 by presenting a hierarchical infor-
mation need coding scheme along with its top-level categories. These categories are described by
means of examples in Table 2. Section 4.2 addresses RQ2 and illustrates how information needs
were communicated linguistically by participants. This allows us to identify dialogue-specific chal-
lenges that need to be considered when implementing systems for information need detection. To
address RQ3, Section 4.3 reports on experiments designed to establish the extent to which the
class of information need (based on the level 1 categories) can be successfully predicted given
participant utterances.

4.1 Information Need Taxonomy

We first offer a broad overview of the different levels of information needs detected in our corpus
and provide a sample description of the utterances issued to the experimenter. We subsequently
present a more detailed description of the tree structure and the taxonomy codes to offer a more de-
tailed understanding of the information needs that occur when cooking. We refer to our annotated
dataset as the CookversationalSearch dataset.

4.1.1 The CookversationalSearch Dataset. contains, overall, N, = 2376 turns describing one or
multiple user information needs that were extracted from the dialogues.? A total of 2102 (88.5%)
of these express one information need only, 249 (10.5%) of all turns represent two information
needs, and 25 (1.05%) turns express three different needs. Each row in the dataset represents one
turn and its corresponding information need. Thus, some turns appear multiple times, that is, in
multiple rows, as they can represent multiple needs. This results in a corpus with N; = 2675 turns
in total, with each representing an information need and consisting of one or more sentences. We
also refer to such turns as queries. Thus, the terms query and turn will be used interchangeably for
the rest of this article. Each trial yielded an average of 52.80 queries (min = 8, x 25 = 33, X = 45,
x.75 = 70, max = 120, sd = 28.73, skewness = 0.57, curtosis = —0.60). The coding scheme used to
describe these queries is structured as a tree. The tree consists of two top level (= level 0) branches,
each of which descends, at deepest, to a 5th level. Each level provides additional detail describing
the user’s information need. To illustrate this process, we provide samples from the dataset in
Table 3. Readers can additionally access the full coding scheme.® Turns were coded at the lowest
level possible. Figure 1 shows the number of codes distributed over the different information need
levels. It can be seen that in addition to the two level 0 categories, 11 information need categories
occurred on level 1, 93 information needs occurred on level 2, 75 on level 3, 18 on level 4, and 2 on
level 5. All 2376 turns were assigned a level 0, level 1, and level 2 code. Thus, all turns were coded
to at least level 2. A total of 1848 queries were assigned with a level 3 code, 395 with level 4, and
97 with level 5. More details about the different levels and information needs will be provided in
the following sections.

4.1.2  Inter-rater Reliability. To check the consistency of the annotation scheme, inter-rater reli-
ability with a second researcher who is also an experienced coder was measured. Before calculating
agreement, small samples from the corpus were coded by both annotators in multiple iterations.
Problems were discussed and the codebook was refined after each round. Utterances representing
an information need were labelled, with annotators having access to full dialogues and context to
better interpret an utterance. In the final pass, a stratified sample of 10% of all corpus utterances

Zhttps://github.com/AlexFrummet/CookversationalSearch.
Shttps://github.com/AlexFrummet/CookversationalSearch/blob/master/annotation/InfoNeed Taxonomy.svg.
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Table 1. Cohen’s k Values for Each
Level 1 Information Need Category

Information Need Cohen’s k

Amount 0.96
Cooking technique 0.72
Equipment 0.89
Ingredient 0.59
Knowledge 0.66
Meal 0.67
Miscellaneous 0.86
Preparation 0.62
Recipe 0.90
Temperature 1.00
Time 0.97

was selected among level 1 categories. Stratifying the sample allowed us to test whether agreement
could be achieved for all information need categories.

To measure inter-rater agreement, unweighted Cohen’s k was chosen. Artstein and Poesio [9]
suggest this measure for dialogue data in which category labels are equally distinct from one
another. In the final pass, the annotators achieved a Cohen’s k value of k¥ = 0.69 using codes at
level 2 (93 codes) and a value of k = 0.75 using codes at level 1 (11 codes), which, according to
Landis and Koch [53], both represent substantial agreement. Although there are many more codes
on level 2 than on level 1, this did not relate to a substantially lower k value. The results across
need types are shown in Table 1.

The agreement achieved is higher than what has been achieved in other conversational search
corpora that were created in much more controlled contexts. For example, when evaluating the
SCoSAS annotation schema, a k score of k = 0.59 was achieved [91]. Moreover, on the widely used
Maptask dialogue corpus — which was collected in a very controlled situation — the same level of
inter-rater reliability (k = 0.59) was attained according to Isard and Carletta [44].

4.1.3  Description of the Communicated Information Needs. This section provides a broad out-
line of the information needs as derived from the qualitative analysis. For space reasons, we limit
our descriptions to the two topmost levels, that is, the two information need types on level 0 and
the 11 information need categories on level 1.* Level 0 distinguishes between Fact-based needs,
which relate to information about recipes, and competence needs, which refer to knowledge about
how to prepare recipes. Level 1 delineates needs more precisely and includes codes such as Recipe,
which relates to the user seeking a recipe to cook, and Ingredient, which relates, in some way, to in-
gredients that are contained within the recipe being cooked. To assist the reader’s understanding,
we provide several examples of queries for each class of information need at level 0 and 1 in Table 2.
Figure 2 shows the frequency of queries over the different types of information needs. Here, we first
illustrate the hierarchical annotation scheme with a short example. We then describe the defining
characteristics of different information need types in greater detail.

Hierarchical annotation: As described in the previous section, the annotation scheme has a tree-
like structure. A visual representation of this taxonomy can be found in the accompanying reposi-
tory.® To illustrate the hierarchical annotation process, we provide some examples from the dataset

“The codebook with a detailed description of every information need class is available online: https://github.com/
AlexFrummet/CookversationalSearch/.
Shttps://github.com/AlexFrummet/CookversationalSearch/blob/master/annotation/InfoNeed Taxonomy.svg.
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Table 3. Coding Samples from the Dataset

Turn Level 0 Level 1 Level 2 Level 3 Level 4 Level 5
“Um can you find  Fact Recipe Recipe Recipe Recipe Explicit
me dishes with Retrieval Request Request with
asparagus with Ingredients

many dairy

products.” (part. 1)

“How much Fact Amount Amount of - - -
sugar?” (part. 2) Ingredients

“Um - How do Competence Cooking Cooking - - -
you prepare technique technique —

bulgur?” (part. 34) Ingredient

“Then I need to Competence Preparation Preparation Preparation - -
add the onion, Steps Step

right?” (part. 40) —Explicit

Reassurance

75
50-
25-
_ mm B
0 2 4

Number of Labels

0-
Information Need Level

Fig. 1. Information need distribution over levels.

in Table 3. Lower-level codes subsume the code from the higher-level branches. The turn “How
much sugar?” (part. 2) from Table 3, for instance, is coded as Amount of Ingredients on the lowest
level and, thus, inherits the Amount category from level 1 and Fact from level 0.

Fact-based Information Needs. refers to information about the recipe being cooked. One proto-
typical fact-based information need is the level 1 category Amount, which includes turns that target
the quantity of ingredients and recipe portions, for example. Information needs of this type are
easily identifiable due to their specific vocabulary and syntax. The majority of queries that were
labelled with Amount start with keywords such as “How many..” or “How much..” as in “How
many onions do I need?” (part. 25). This makes it straightforward for the annotator to label such
utterances correctly. The inter-rater agreement of k = 0.96 for this category is much higher than
the average x = 0.75 over all categories. It is similarly straightforward to annotate the information

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 81. Publication date: January 2022.



81:14 A. Frummet et al.
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Frequency
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Information Need

Fig. 2. Level 1 Information need frequencies.

need categories Equipment, Ingredient, Temperature, and Time. Time, for example, contains many
phrases, such as “How much longer does the bulgur need?” (part. 25), and “How many minutes
are remaining?” (part. 29). Time-related words, such as “minutes”, and time phrases, such as “How
long..?, occur frequently, which makes it easy to code utterances as time-related information needs.
This impression is evidenced by the relatively high inter-rater agreement in the Time category
(x = 0.97).

Keywords and phrases which are specific for certain information needs made it easier for the
coder to identify needs. One commonality of fact-based needs is that little context is needed to
identify this kind of information need in the dialogue.

Competence-oriented Information Needs, in contrast, were more challenging to annotate because
context was often required to decide the appropriate label. Competence-oriented information
needs involve the user requesting information from the system on how to perform certain cooking
actions. Categories associated with this type of need are Preparation and Cooking technique. Turns
in the Preparation category relate to particular steps of the recipe being cooked. In such cases, a
user needs assistance regarding what to do next and how to do it. When turns occurred that relate
to more basic cooking processes —often not described in the recipe — the system (i.e., the human
mimicking a system) made use of a search engine to provide assistance. If this was the case, then
utterances were labelled as Cooking technique. For utterances in the Preparation category, the user
is looking for information regarding the steps to perform, for example, what they should do next.
Being able to differentiate between these two categories requires an understanding of the context
in which a query was issued. As an annotator, one needs to understand the current task state of
the cooking process and know which steps have already been completed. In contrast to fact-based
information needs, the task state needs to be considered, which makes it more challenging to cor-
rectly label these kinds of needs. Unlike fact-based needs, it was hardly possible to distinguish
competence needs based on keywords alone. This can be illustrated by the examples “Can I add
them before the water boils?” (part. 12, labelled as Cooking technique) and “So I need to let the
water boil first?” (part. 10, labelled as Preparation). The first query was related to a more general
cooking process; thus, it was labelled as Cooking technique. The second query was concerned with
the order of steps; therefore, it was coded as Preparation. It was only after the context of situa-
tion was considered that this distinction could be made. The difficulties that arise when coding
such needs is reflected in the achieved x values (x = 0.72 for Cooking technique and k = 0.62 for
Preparation) which are below the average that was achieved for fact-based needs.

To further investigate why some information need categories were easier to detect than oth-
ers, we performed a keyword analysis to assess the importance of certain words for different
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Table 4. Keywords of Level 1 Information Need Categories Amount, Time, Temperature,
Cooking Technique and Preparation

Amount Time Temperature Cooking Technique Preparation
wie how* lange long* hitze heat* man one* dann then*
viel much* minuten minutes* auf on* spargel asparagus* schritt step*
gramm gram* wie how* mittlerer middle*  schélen peel* jetzt now*
zZwei two* lang long* stufe level* am at* und and*
liter liter* kochen cook* heif3hot* ob if weiter further
essloffel tbspn* zehn ten* welcher which* kann can erst first
milliliter milliliter* dauert takes* ofen oven* besten best muss need
halfte half* bis to* niedrigster lowest* kocht cook die the
personen persons*  braucht need* ober upper* wasser water nachstes next
eine one* uhrzeit time* umluft circul air*  griinen green machen do
wasser water” zwanzig twenty* unterhitze b. heat* schneidet cut fertig ready
viele many* funf five* vorheizen preheat* mach do nachste next
fur for ungefahr about*  grad degree weiflen white zuerst first
halber half* zwOlf twelve mittlere middle ZU to als as

menge amount* zeit time runter down abschélen peel der the

Note: Arranged in descending order along log-likelihood values, with * : p < 0.05 (Bonferroni adjusted).

information need categories. To measure this, we employed log-likelihood analysis using odds
ratio as effect-size measure and Bonferroni adjusted p values as the statistical threshold. The re-
sults for the words with highest log-likelihood values among several information need categories
are provided in Table 4. The results highlight that fact-based information needs Amount, Time, and
Temperature have many more significant keywords than competence-oriented information needs
Cooking technique and Preparation. While the most distinctive words for Cooking technique and
Preparation are stopwords such as you and then, these kind of words are not found to be discrim-
inatory in Amount, Time and Temperature. The most relevant words for Amount are how, much,
and gram, which is plausible for this information need. Similarly, it is plausible that long and min-
utes are especially relevant for Time and heat is an important keyword for Temperature. These
observations corroborate our impression that fact-based needs are easier to distinguish based on
keywords than competence needs.

Section 4.1 has presented a robustly coded taxonomy with different levels of information needs.
At the highest level, information needs can be broadly divided into two types — fact- and compe-
tence oriented — which require different types of assistance from the system and different amounts
of context information to be interpreted correctly.

4.2 Communication of Information Needs

A second research aim was to investigate how information needs are communicated. An under-
standing of how users verbally pose queries to conversational systems would allow us to better
extract information needs from these turns by focusing on certain linguistic features. We can de-
rive implications for the system design by knowing which linguistic aspects in the dialogue make
detection and interpretation of turns as particular types of information needs difficult. Since the
speech used in this corpus is natural and communicated as humans typically do, this might help us
to learn about what features are relevant for information need detection for humans to make these
also available for system-side information need detection. The following stylistic peculiarities of
issuing an information need could be observed from the data:
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Fig. 3. Distribution of implicit and explicit coded requests over all classes.

4.2.1  Explicit Versus Implicit Queries. We observed both explicitly and implicitly expressed
queries. Explicit queries took the form of a direct question, including an increase in intonation
when the query was uttered. Explicit queries also exhibited the grammatical form of questions, for
example, “Which ingredients are needed?” (part. 1). Implicit queries, on the other hand, largely do
not possess an interrogative particle and the speaker tends to go down in intonation, as would be
expected in a typical declarative sentence. An example from the corpus is “OK. And I forgot the
other ingredients.” (part. 9). The difference between these two types of queries was so pronounced
that a distinction in the annotation schema was made to reflect this Ingredients in Recipe — implicit
and Ingredients in Recipe — explicit. Figure 3 illustrates the distribution of explicit and implicit
labels. It should be noted that this distinction was made only when it was obvious. Otherwise, ex-
plicit queries did not receive a separate code. This is also the reason why Figure 3 does not split all
queries into one of these two categories. What it does show, however, is that explicit queries are
more frequent than implicit ones. Implicit queries, nevertheless, represent a significant portion of
utterances in the corpus. Thus, they need to be further analysed to identify patterns which help
identify them in a dialogue. As outlined in Section 2.4, conversational agents often analyse only
the surface structure of utterances, which makes it hard to fully understand dialogue pragmatics.
The human annotators found it harder to identify implicit queries due to their declarative and
indirect shape compared with a direct question. For example, “T will just cut it in pieces.” (part. 8)
illustrates this challenge. In this case, the Preparation Step —Implicit Reassurance label was assigned
to this turn. Some people might not interpret this as an implicit query but rather as an example of
simply thinking aloud. However, this utterance is embedded in a reading situation of preparation
steps. Thus, it was interpreted as an implicit query to reassure the next action. This illustrates that
previous turns, that is, contextual information, needs to be taken into account, especially when
implicit queries should be detected.

As already mentioned, using both explicit and implicit ways of expressing queries was a common
pattern observed in the corpus. Thus, dealing with both explicit and implicit queries should be
taken into consideration for systems design and will be further discussed in Section 5.2.

4.2.2 Reassurances. A further means that participants used to communicate information needs
was to make use of reassurances. These were used extensively by participants to determine
whether they had correctly interpreted the instruction provided by the assistant. Linguistically,
these are marked either with explicit queries, such as “Meanwhile, I have to let it cook, right?”
(part. 1) or with implicit queries like “Er — steeping it.” (part. 2). Implicit queries offer more scope
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for interpretation, which made it difficult to determine whether something should be treated as a
query or not, as already discussed in the section before. When using reassurances in this way, par-
ticipants expected an appropriate response from the assistant. Thus, this is an interaction pattern
which should be considered for system design. To present a satisfying response to the participant,
the assistant had to track the task state to inform the participant as to whether the currently per-
formed task is correct or not. Here, again, context information is an important feature for response
generation.

4.2.3 Discourse Markers and Linguistic Feedback. Discourse markers, such as “Mhm” (part. 1)
and “Ahm” (part. 26) were frequently used in the cooking experiments. This was particularly no-
ticeable in the classes Next ingredient and Next preparation step. Discourse markers relate segments
pragmatically [36]. In our corpus, they were mostly used to signal that the system instruction had
been understood and that it is appropriate for the assistant to move to the next step in the process.
In general, in this corpus, a lot of discourse markers occur since they pragmatically link conver-
sational units in spoken language [21]. The following example from the corpus illustrates their
usage:

“Participant: OK. Good. (Alarm bell rings). Now we need to add zucchini and corn, right? Zuc-
chini, corn and —

Assistant: Exactly. You need to mix corn, zucchini, and chickpeas.

Participant: Mhm?

Assistant: Fill it up with half a liter of water and add the tomato paste.” (part. 5)

This example shows that the discourse marker, highlighted in bold, signals the assistant to read
out the next step in the recipe. The example also demonstrates that discourse markers require
context and cannot be interpreted in isolation. “Mhm?” in the example can only be interpreted as
Next Preparation Step if the content of previous turns, that is, the reassurance question of whether
mixing zucchini and corn is correct, is known. Deriving this information from the context was
quite simple during annotation since this is a common situation in everyday dialogues, where Dis-
course Markers such as Mhm? are used as linguistic feedback [7]. Its basic functions include an
understanding of the currently heard and the reaction of the conversational partner to go on to
the next point in the conversational flow [7]. This stylistic property should be taken into account
in future systems design, as it frequently occurred in this corpus and brings structure into con-
versation [71]. For this reason, it is a relevant linguistic aspect to deal with as a system to better
understand natural language.

This section has illustrated how three important linguistic features shaped conversational descrip-
tions of needs. The use of explicit and implicit queries, reassurances as a means to request feedback
from the assistant, and discourse markers all featured heavily in user behaviour.

So far, we have analysed which information needs can occur in cooking conversational search
(see Section 4.1) and how these are communicated throughout the dialogue (see Section 4.2).
One theme that is relevant for both information need understanding and detection is context.
It is important for understanding competence needs but is also highly relevant for identifying im-
plicit queries, reassurances, and discourse markers in a dialogue. Since context helps humans with
interpretation of dialogue and needs, in the following section we want to test whether systems are
able to utilise context information to predict information needs automatically.

4.3 Predicting Information Needs

Now that we understand more about what information needs occur in cooking situations and how
they are expressed, in this section we explore whether the turns contain enough information for
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systems to determine the kind of information need. To test this, we formulate the problem as a
multi-label prediction task since a single turn may express one or more information need: Given
a set of features derived from the raw conversational turns, is it possible to predict the level 1
category of information need?

4.3.1 Dataset. For the classification task, the CookversationalSearch dataset described earlier
was employed. In our quantitative analysis, all N, = 2675 turns with their corresponding infor-
mation need label were used. As outlined in Section 4.1.1, each turn consists of one or multiple
sentences. On average, one level 1 category contains 243 turns (min = 12, x5 = 42, x = 182,
X 75 = 343, max = 768, sd = 269.29, skewness = 0.85, curtosis = —0.96).

4.3.2  Experimental Conditions. The multi-label classification problem is treated as a binary clas-
sification task whereby we attempt to classify needs at level 1 in the taxonomy. Each target turn
is classified as either an information need type or not, that is, 11 classifiers ([information need] vs.
Other) were trained — one for each need type. Since we found context to be an important factor for
identifying information needs throughout the coding process and in the literature (see [5, 68, 91]),
we tested the following conditions which model context information in the following ways:

No context — We consider only the target turn, ignoring what has been uttered previously.

One previous participant turn — We add the previous information need turn that was is-
sued by the participant to the target turn. The previous turn and the target turn are simply
concatenated.

All previous participant turns — We include all participant turns preceding the target turn.
The collected turns are added as text before the target.

We account for the turns uttered by the participant only, since this has been shown to be very
effective in similar prediction tasks (e.g., [35]). To avoid overfitting, we employed 10-fold cross-
validation. Due to the highly skewed and imbalanced dataset, we further used stratified sampling
to ensure a fair distribution in training and test sets. We also tested hierarchical classification
methods but found them to significantly lower prediction performance and, thus, do not report
them here. The observation that hierarchical classifiers lower prediction performance has also
been made by Fornaciari et al. [35].

4.3.3  Models.

Baseline Models: To generate a baseline for our experiments, we employed some of the mod-
els, which have been shown to be effective in past experiments predicting information needs in
conversational settings [38, 72, 74]. For our baseline models, we used 300-dimensional FastText
embeddings [47] combined with BytePairEmbeddings provided by Flair [3], which are able to cap-
ture out of vocabulary words using sub-word information [42]. This feature was the main reason
for choosing FastText embeddings, as it was considered helpful when dealing with spoken dia-
logue data where out of vocabulary words might occur more likely due to its natural style. For the
baseline experiments, we use Gaussian Naive Bayes (=GNB or GaussianNB), Random Forest and
SVM classificators provided by the Python package scikit-learn [64].

BERT-based models: Since Schwabl [72] showed that information need detection in the cooking
domain benefits from using BERT-based models, we employed them for comparison. BERT was
chosen due to its success in natural language understanding problems [98], such as Named Entity
Recognition and Text Classification. For our experiments, we leveraged pre-trained BERT models:
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GermanBERT® and the multilingual BERT models mBERT 7 and XLM-RoBERTa.® Due to the small
amount of data, 85% was kept as training and 15% as test data to ensure that there are still samples
available for the test dataset even for categories with few data. For each BERT model, we chose
the BERTgasr architecture which was available for all three models in contrast to BERT[ ARGE.
Since fine-tuning pre-trained BERT models on downstream tasks has shown to improve classifi-
cation performance [79], this technique was also applied in our experiments. All BERT-related
experiments were conducted using the transfer-learning library FARM.? To fine-tune each of the
11 binary classifiers, a TextClassficationHead!® was added on top of the BERT language model. The
TextClassificationHead consists of a one-layer feed-forward neural network (FFNN) of dimension
(768,2) and a softmax activation function. This follows the recommendations made by Sun et al.
[79] and Devlin et al. [31]. The classification head receives the final hidden state of the [CLS] to-
ken which represents the turn. Stopwords were not removed since removing stopwords decreases
the effectiveness of the BERT model [30]. Also, resampling was not conducted, as BERT handles
imbalanced datasets well [82]. Class weights were adjusted by FARM’s DataSilo, which also en-
sured stratified sampling for cross-validation.!! We followed the suggestions by Sun et al. [79] and
Devlin et al. [31] regarding the parameters to choose for fine-tuning. To avoid the “catastrophic
forgetting problem”, we selected a lower learning rate (2e-5) [79]. The classifiers were trained for 4
epochs with a dropout probability of 10% and a batch size of 32. To avoid overfitting, early stopping
was included. The models were trained on three GeForce GTX 1080 Ti GPUs. Due to computing
limitations, we had to choose a maximum sequence length of 256, which would have resulted in
clipping down 63% of all samples to 256 tokens for the all prev turns condition. As preceding turns
were added as raw text before each target turn in this condition, leaving the text unchanged would
have led to cutting out the actual target turn. Thus, as a preprocessing step, only the last 256 to-
kens which also include the current target turn were considered. The impact on the classification
results will be discussed in the limitations section.

4.3.4 Results. The results are illustrated in Table 5. We report precision, recall, and the F-
measure. Accuracy was not taken into consideration since it would not be a reliable measure for
such imbalanced datasets. In this subsection, we assess the performance of the different models
that were employed. In the subsequent sections, we present the results that were achieved regard-
ing the different context conditions and information needs.

Model performance: In Table 5, we report the values achieved when removing stopwords for
classification. While no significant difference could be observed when stopwords were removed
for the Random Forest and SVM classifiers, removing stopwords when using the GaussianNB clas-
sifier significantly improved classification performance (p < 0.05) compared with the results in
which stopwords are kept. GaussianNB also outperforms Random Forest and SVM regarding the
F-Measure in detecting information needs (p < 0.001 for both). Thus, it will be the baseline to test
against BERT-based models.

To assess overall model performance, a one-way ANOVA as well as post-hoc tests with
Bonferroni-adjusted values were conducted. These indicate that the GermanBERT model performs
significantly better than mBERT (p < 0.001) and XLM-RoBERTa (p < 0.001). As shown in Table 6,

STaken from https://huggingface.co/bert-base-german-cased.

7Taken from https://huggingface.co/bert-base-multilingual-cased.

8Taken from https://huggingface.co/xIm-roberta-base.

%See https://github.com/deepset-ai/FARM.

10See https://farm.deepset.ai/api/modeling. html#farm.modeling prediction_head. TextClassificationHead.
HSee https://farm.deepset.ai/api/data_handling html#farm.data_handler.data_silo.DataSiloForCrossVal.
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Table 5. Experiment Results After 10-fold Cross-Validation Grouped by Models and Conditions

Model Condition Precision Recall F-Measure 95%- CI
no context 19.20% 60.72% 23.68% [20.44%; 26.91%]
GaussianNB 1 prev turn 19.14% 60.67% 25.21% [21.96%; 28.47%]
all prev turns 14.09% 45.99% 19.51% [15.61%; 23.41%]
no context 34.97% 13.02% 18.30% [14.44%; 22.17%)
Random Forest 1 prev turn 27.51% 04.35% 07.21% [05.12%; 09.30%]
all prev turns 02.79% 03.86% 02.69% [01.51%; 03.87%]
no context 32.41% 14.51% 19.13% [13.92%; 24.34%]
SVM 1 prev turn 25.50% 07.11% 10.49% [07.34%; 13.63%]
all prev turns 00.16% 01.18% 00.11% [00.00%; 00.38%]
no context 34.42% 36.84% 34.18% [27.51%; 40.84%]
mBERT 1 prev turn 33.76% 38.56% 34.46% [27.85%; 41.06%]
all prev turns 21.26% 32.09% 22.82% [17.59%; 28.05%]
no context 26.58% 34.92% 27.61% [21.01%; 34.20%]
XLM-RoBERTa 1 prev turn 19.32% 29.94% 20.36% [14.70%; 26.01%]
all prev turns 15.37% 33.59% 18.64% [14.18%; 23.09%|
no context 41.95% 43.14% 41.43% [34.57%; 48.28%]
GermanBERT 1 prev turn 42.28% 43.71% 42.11% [35.19%; 49.03%]
all prev turns 38.05% 40.88% 37.87% [30.71%; 45.03%]

Table 6. Overall Average F1 Scores Model Performance

Model F-Measure 95%-CI

GaussianNB 22.80% [20.80%; 24.80%]
mBERT 30.48% " [26.89%; 34.08%]
XLM-RoBERTa  22.20% [18.95%; 25.45%]

GermanBERT 40.47% ***  [36.48%; 44.46%|
In bold: the significant results against GNB, with “**: p < 0.001.

mBERT and GermanBERT perform significantly better (p < 0.001) compared to baseline models.
However, no difference was found between XLM-RoBERTa and GaussianNB.

Fine-tuning BERT with a language specific model, GermanBERT, on the text classification task
yielded strong results compared with previous approaches with word embeddings that were, for
example, employed in Frummet et al. [38]. The main reason for this is that BERT can capture
contextual information much better than, for instance, word2vec or FastText embeddings [31].
Among the BERT models we tested, GermanBERT was found to yield the best results. One reason-
able explanation for this is the more accurate tokenisation by GermanBERT, which leads to better
understanding of words by the BERT model.'?

Context Conditions: Since the GermanBERT model performs best, this model was employed to
further assess classification performance regarding context conditions and information need pre-
diction. Figure 4 illustrates that while the 1 prev turn condition (M = 42.11%) performs slightly
better than no context (M = 41.43%) and all prev turns (M = 37.87%), no significant differences
were detected after conducting one-way ANOVA analysis (F = 0.42,p = 0.69). The average F1
score achieved for GermanBERT among all conditions was 40.47%.

25ee https://www.deepset.ai/german-bert.
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Fig. 5. F1 score for each information need grouped by condition using the GermanBERT model, with * :
p <0.05*":p <0.01; " : p < 0.001.

Information Need prediction: The achieved F1 scores, grouped by information need and condition
for the GermanBERT model, as well as an overview of which conditions lead to significantly better
results within information need categories, are illustrated in Figure 5.

While some information need categories, for example, Amount and Time, performed quite well,
Equipment, Knowledge, Meal, Miscellaneous, and Temperature achieved F1 scores below 20%. This
is likely due to the lack of data for these categories since the aforementioned needs relate to, on
average, only 35 turns. While BERT can usually deal quite well with limited data [82], limits seem to
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be reached with this dataset. The lack of data for these categories means that the results achieved
cannot be interpreted reliably. Therefore, we will focus on the interpretation of the remaining
information need categories in which it is possible to identify several patterns.

For the fact-based information needs Amount, Time, and Ingredient, the no-context condition
performs best. The results of the Time information need indicate a significantly better performance
for the condition where no-context information was taken into account compared with the all
prev turns condition. This aligns with the impression gained during the qualitative analysis that
annotating these needs was straightforward as little context needs to be accounted for. Similar
patterns were observed for the competence-oriented information needs Cooking technique and
Preparation. For both needs, the all prev turns condition performed significantly better than the no-
context condition. Turns labelled as Cooking technique performed significantly better when more
context was modelled. The 1 prev turn condition showed significantly better results compared with
the no-context one and all prev turns showed significant better performance than 1 prev turn. This,
again, aligns with the findings from Section 4.2.

The classification at level 1 gives the impression that fact-based needs are easier to predict, which
aligns with the experiences of the manual annotation as explained in Section 4.1.3. To test this, we
formulated a similar prediction task with the same setup but for level 0 needs. We employed the
GermanBERT model and fine-tuned this as it was done in the best performing model in the first
round of experiments. Fact-based information needs are indeed significantly easier to detect than
competence needs (Mg qcr = 86.68%, Mcompetence = 74.78%, t = 4.20,p < 0.001).

Our experiments demonstrate that fact-based needs such as Amount and Time can be predicted
with high confidence and require little context information. On the other hand, classifiers for
competence-oriented needs, that is, Cooking technique and Preparation, perform better when more
context information is added but are generally less accurate than classifiers for fact-based needs.

5 DISCUSSION

In this section, the results reported earlier will be discussed. In Section 5.1, we focus on our informa-
tion need taxonomy. We compare it with other coding schemes from the literature and illustrate the
additional value that is offered by our CookversationalSearch taxonomy. In Section 5.2, we discuss
the implications that our results have on the design of conversational assistants and extrapolate
what needs to be considered when implementing a conversational search system. Finally, we elab-
orate on the relevance of context for information need classification and discuss why some needs
are easier to predict than others.

5.1 Comparing CookversationalSearch with other Conversational Taxonomies

To assess the value of our dataset and our taxonomy for the research community, we discuss
differences in cooking- and non-cooking-related taxonomies and annotation schemes.

5.1.1  Comparison with Domain-agnostic Taxonomies. A prominent domain-agnostic taxonomy
is the Dialogue Act ISO annotation scheme that was introduced by Bunt et al. [20]. This hierarchical
annotation scheme contains, at the highest level, 26 communicative functions that can be used to
label turns, for example, Accept Suggest and Decline Suggest. Some of these labels relate to codes in
our taxonomy. For example, the Accept Suggest move can be observed in the Recipe Selection need
since participants can accept or reject suggested recipes. Other similar dialogue-related functions
can also be observed in datasets, such as VERBMOBIL [45], in which codes such as Clarify are
assigned to turns that aim to make taken actions explicit and seek reassurance. Reassurances form
part of our information need taxonomy; this relates to the Clarify dialogue act, which is also part
of the taxonomy of Bunt et al. A difference between these domain-agnostic coding schemes and
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the one we present is that they lack a description of the associated content. Knowing what is being
reassured would help the system to provide better assistance in the sense that systems then know
how they should react. For example, Amount of Ingredient — Reassurance (level 3 code) specifies
that participants want to be reassured with respect to the amount of a certain ingredient. A system
can then react accordingly and clarify whether the amount of an ingredient has been understood
correctly.

Our coding scheme also goes beyond that proposed by Shiga et al. [74] which, in contrast to
the aforementioned coding schemes, offers a stronger relation to information needs. They em-
ployed Taylor’s information needs [81] and combined them with high-level task-related needs,
such as Topic, Problem Solving, and Search in a travel planning task. Although — like our work —
the coding scheme is applied in a conversational search setting, the way the needs are classified
was coarse-grained and abstract. We argue that these labels are not specific enough to adequately
describe travel planning content such that systems can provide assistance. Our taxonomy, on the
other hand, illustrates that two different kinds of assistance should be provided: fact based, in
which information is provided, and competence oriented, which revolves around teaching skills.
Moreover, the tree-like structure allows needs to be distinguished based on content. This, again,
helps the system tailor the information provided. To summarise, the coding scheme we developed
offers utility beyond domain-agnostic taxonomies (e.g., see Bunt et al. [20]) and the information
need classifications (e.g., Taylor [81] and Shiga et al. [74]) since it offers finer-grained descriptive
qualities that are content specific. In the next section, we compare our contribution with previously
published taxonomies related to cooking.

5.1.2  Comparison with Cooking-related Taxonomies. Our coding scheme goes beyond those pre-
viously collated in the cooking domain. For example, Nouri et al. [62] created a very controlled
environment and had a very small group of users (eight participants) that used smart speakers
privately and were cooking pre-selected recipes. In a similar environment, Vtyurina and Fourney
[94] analysed intents that occur during cooking, again with only 10 participants. In our study, we
had 45 participants and the recipe search was part of the natural dialogue (i.e., uncontrolled). More-
over, participants in our study conversed in a more natural manner with the system, that is, the
experimenter. Due to the small sample size, Nouri et al. identified only a small number of cooking-
related intents, which we list in Table 7. Table 7 shows how the level 1 categories in our taxonomy
relate to those reported in Nouri et al. [62] and Cunningham and Bainbridge [29]. For intents
such as ingredient_quantity, ingredient_list_all, and step_next, Amount, Ingredient, and Prepara-
tion can be found as equivalents. Our taxonomy, however, goes beyond their limited list of cooking-
related intents to offer a broader and finer-grained description of needs that can occur during
cooking.

A second obvious point of comparison is the taxonomy created by Cunningham and Bainbridge
[29], which is perhaps the closest to our work. As outlined in Section 2, their taxonomy is based on
Google Answer posts that were created by hobby chefs and distinguishes 13 different needs that
were uttered in these posts. Most frequently, posters requested information about products and
recipes but were also curious about definitions and cooking techniques. These are needs similar
to the ones detected in our corpus, that is, Recipe, Knowledge (akin to definitions) and Cooking
technique. However, Cunningham and Bainbridge’s taxonomy covers needs of only one specific
group, hobby chefs, which is the reason why needs such as food trivia and food history, which
are less likely to occur in an everyday cooking situation, are part of their taxonomy. Our coding
scheme is more applicable to practical situations in which assistance may be required, which is
reflected in additional codes such as Time being prominent.
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Table 7. Comparison of Selected Cooking User Intents and Needs from Nouri et al. [62],
Cunningham & Bainbridge [29] and our Work (Right Column)

Intents (Nouri et al)) Response Types (Cunningham & Bainbridge) Level 1 info. need

ingredient_quantity - Amount
ingredient_list_all - Ingredient
step_next - Preparation
recipe_name Recipes Recipe

- Definitions Knowledge

- Cooking Techniques Cooking technique
- - Time

- - Equipment

For demonstration purposes, we highlight just some of the categories that are in our taxonomy and not in
past works.

This section has illustrated the value of our taxonomy for the research community. It is the
first conversational search-related taxonomy for the cooking domain that represents information
needs to such a level of detail and, at the same time, contains codes that allow a broader range of
needs — ones that are likely to require assistance in everyday cooking — to be described.

5.2 Implications for the Interaction Design of Conversational Assistants

In this section, we discuss which aspects are considered relevant when designing the interaction
with conversational assistants. With this aim in mind, we elaborate on the role of conversational
cues in conversational search dialogues, as well as to what extent our findings may be generalised
beyond the scenario of assisting cooking.

5.2.1 The Role of Conversational Cues. In Section 4.2, we identified conversational cues, which
seem to be relevant in the context of information need communication and, thus, should be con-
sidered when designing conversational systems. We observed the use of both explicit and implicit
queries to convey information needs. Conversational agents often process only those turns that
exhibit the shape of explicit queries (see [6, 51]), as is the case in this example: “Which ingredients
are needed?”. Queries of this type make it easier for systems to interpret utterances as system input
that needs to be processed since less context modeling is required [68]. Existing dialogue manage-
ment systems such as RavenClaw [14], which are employed in task-oriented dialogue contexts, are
good at handling explicit requests. However, they have trouble coping with the implicit queries.
If such systems are to interact as humans do, they would need to deal with the kind of implicit
requests that were outlined in Section 4.2. Our results align with findings from Vtyurina and Four-
ney, with both studies finding a similar proportion (~25%) of implicit queries. In their analyses,
Vtyurina and Fourney [94] also found that grounding behaviour was exhibited by means of ver-
batim repetitions of what has been understood — a pattern described as Reassurance in our study.
For example, with a turn such as “Covered?” (part. 15), a participant is seeking reassurance as to
whether the taken action is correct and, therefore, grounds one’s behaviour by requesting feed-
back from the system. Grounding and relevance feedback have also been considered appropriate
for conversational systems by Trippas et al. [91].

To summarise, our findings reinforce patterns observed in previous studies in that they under-
line — even in this specific cooking context context — that conversational cues are important for
assistants to identify and provide appropriate assistance. Accounting for concepts such as implicit
queries, grounding, and reassurance is imperative if human-like interaction patterns are to be
supported.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 81. Publication date: January 2022.



“What Can | Cook with these Ingredients?” 81:25

5.2.2  Generalisability of our Findings. The presented study was performed in the fairly specific
context of home cooking. Nevertheless, there are aspects of the task performed that might mean
that our findings transfer to other situations. Cooking tasks are highly procedural, goal-oriented
tasks. They involve completing a sequence of individual steps to achieve a larger goal. There are
other situations which would be comparable. For example, we could imagine that tasks such as
bicycle maintenance, for example, fixing a punctured tyre, or building flat-pack furniture would
have considerable overlap with the cooking examples studied here. We believe, for instance, that
since such tasks are similarly sequential, one could expect that similar usage of discourse markers
such as “‘Mhm” or “OK” indicate task completion.

Furthermore, we would anticipate a similar high-level delineation of information need types in
these situations to fact-based/competence-based distinctions we present at level 0 in our taxonomy:.
For example, when building a shelf, a user might ask “How many screws do I need to fix the bottom
plate?” (fact-based). On the other hand, competence-oriented needs could also be expected, for
example, “How do I fix the bottom plate to the wall?” (competence-oriented).

We would argue that it is not only the high-level codes that would transfer. It seems plausible
that some level 1 needs may also apply in other domains in which procedural tasks take place. The
turn “How many screws do I need to fix the bottom plate?”, for example, expresses an Amount-
related need that can be used in both the cooking domain and the DIY domain, for instance. Also,
utterances asking for system capabilities, such as “Do you have an integrated timer?” (labelled as
Miscellaneous), seem to be generic and applicable to other domains. Similarly, turns such as “What
do I'have to do next?”, which are labelled as Preparation in our corpus, seem to generalise beyond
the cooking context.

One could easily perform a comparable study in a do-it-yourself (DIY) context to test to what ex-
tent our codes and the classification performance transfer to this domain. The Alexa Prize TaskBot
challenge 2021,'* in which teams develop conversational assistants for both cooking and DIY tasks,
underlines how closely related to each other these domains are.

In this section, we have discussed the relevance of conversational cues for system design and
arguing, for example, that implicit requests are important, particularly in procedural tasks, to repli-
cate human to human-style interaction. We have also argued that there is potential for our results
to transfer into other domains that feature procedural tasks. We named DIY assistance as one
example.

5.3 On the Relevance of Context

Both the qualitative annotation process and the prediction experiments underlined the importance
of context information needs. The results from our prediction experiment revealed that fact-based
needs perform significantly better than competence-oriented needs. One reason for this is that
fact-based information needs contain more information need-discriminating words (illustrated in
Table 4). The annotation process revealed that the competence-oriented categories require more
context to be taken into account given the lack of distinctive features, that is, words, which makes
it challenging for both human coders and classifiers to distinguish classes. This assertion is sup-
ported by the classification experiment results. While fact-based needs, such as Amount and Time,
achieved F1 scores of %90%, Cooking technique and Preparation achieved results of ~70% in their
best performing condition. Including the context in the form of previous turns, however, signifi-
cantly improved results in competence-oriented needs Cooking technique and Preparation.

13See https://www.amazon.science/academic-engagements/ten-university-teams-selected-to-participate-in-alexa-prize-
taskbot-challenge.
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With respect to the development of future systems, we argue that while we can reliably de-
tect Amount and Time needs and, to some extent, other fact-based needs — such as Temperature,
which achieved low results due to lack of data — other strategies need to be established to identify
competence needs. Similar to our results, Ren et al. [68] and Aliannejadi et al. [5] showed that
including more context, that is, conversational history, improves the classification performance
of the current turn. Recently, this problem was investigated by Nouri et al. [63], who tried to en-
able step-wise recommendations for current steps in a controlled cooking task, including different
contextual information.

Our results demonstrate the feasibility of predicting some types of need. To further improve the
detection of the classes that are trickier to identify, we will need to find other ways for augmenting
and representing the cooking process and the context. One way to achieve this may be to refor-
mulate queries by adding missing context from the conversation history to the current turn query
[93]. In our study, we employed a simple approach, modelling information need turns with differ-
ent amounts of context by adding previous queries as plain text to the current query. However,
more elaborate methods exist to better model context. See, for example, Voskarides et al. [93], Yu
et al. [100], and Lin et al. [55, 56]. In future work, more effort can be put into this by building on
prior work.

In summary, our results — both of the annotation and classification — highlight the importance
of context, particularly in identifying competence needs. Applying more elaborate strategies to
achieve a better representation of context information will be part of our future work.

6 LIMITATIONS

In this section, we reflect on some of the limitations of this study. When performing data collection
with 45 participants, we cannot exclude learning effects by the experimenter mimicking a conver-
sational system. From session to session, the experimenter increased in confidence and developed
strategies for interacting with participants. This affected, for example, the amount of information
that was provided when participants issued queries. The means of interacting with participants
was certainly not completely consistent throughout the study. However, we do not believe that this
detracts from the quality of the data since the interaction patterns were always plausible, human
dialogue. Moreover, we did not observe different information needs or particular phraseology at
different time points when transcribing or analysing the data. It is also possible that having the
experimenter act as the assistant led to specific outcomes (experimenter bias). However, this is
unlikely, as the experimenter did not have any preconceived ideas of what assistance should be
provided and the conversations were largely driven by the participants with utterances arising
naturally from the cooking process.

A further point worthy of discussion is that since we conducted an in situ study, both experi-
menter and participant were able to see and interact with each other using non-oral communica-
tion (e.g., body language). This raises the question of whether the physical environment, that is,
gestures and visual aspects, might have influenced the dialogue interaction. While we fully relied
on speech-only interaction and the experimenter did not accept queries that were not possible
in such a scenario, minor environmental effects cannot be fully excluded. When participants em-
ployed anaphoras to refer to ingredients, as in “Is this enough?” seeing what the participant was
doing might have unconsciously simplified the interpretation of utterances which would be less
clear in a spoken-only Wizard-of-Oz scenario.

One limitation of our quantitative experiment relates to the representation of the multi-label
classification as a binary classification task. While we learned about how well information needs
can be identified based on an utterance, we cannot measure whether co-occurrences of certain
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needs influence one another, which is a common issue for binary relevance classification (see
Luaces et al. [58] and Zhang et al. [103]). The influence of co-occurring information needs on the
classification results can be investigated in future studies.

Finally, when modelling context, we employed the plain text from previous turns. However, this
text can be represented in more elaborate ways, as outlined in Section 5.2. Moreover, the impact
of linguistic features, such as intonation and the explicit-implicit dimension on the classification
results, could have been investigated in further detail and will be part of our future work.

7 CONCLUSION

Our results provide an in-depth understanding of the information needs occurring in the domain
of home cooking. RQ1 raised the question of what kind of information needs arise when cooking
with a conversational assistant. To answer this, we provided a detailed hierarchical information
need taxonomy that shows us a variety of different needs that can occur in a cooking scenario.
These needs can broadly be categorised in different types, fact based and competence oriented,
which require different types and degrees of assistance. Addressing RQ2, these needs can be com-
municated through different linguistic means, both as explicit and implicit queries, and discourse
markers are often used. Furthermore, our findings indicate the feasibility of identifying needs
automatically (RQ3). In this respect, our experiments demonstrate some success, with fact-based
information needs being particularly feasible. We have also shed light on the problems that need
to be solved to successfully detect and process other, more challenging information need types in
an automated scenario. These mainly include finding methods to better incorporate context and
conversational history. Future work will focus on creating methods to better incorporate context
information in the classification and assistance process.
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