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forest soil in a short-term incubation study
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ABSTRACT
The effects of adding larch (Larix kaempferi) leaf litter and nitrogen (N) on microbial activity 
and phosphorus (P) fractions in forest soil were examined in a short-term (28-d) laboratory 
incubation study. The soil was analyzed using a modified Hedley sequential extraction procedure 
and an acid phosphatase assay. The addition of larch litter and N increased the acid phosphatase 
activity and decreased the labile P (H2O-P + NaHCO3-P) concentration. Compared with addition 
of larch litter only, addition of both inputs decreased the proportion of inorganic P (Pi) and 
increased that of organic P (Po) in the NaOH fraction, bound to aluminum and iron oxides. The 
results of nutrient (carbon, N, or P) addition indicated that acid phosphatase was synthesized to 
acquire P. This study suggests that, in this forest soil, P in the H2O-P + NaHCO3-P and in the NaOH-
Pi fractions was available for soil microorganisms to decompose leaf litter and that increase in 
microbial activity eventually translated in an increase in the proportion of Po found in the NaOH 
fraction in this forest soil.

Introduction

In forest ecosystem, soil microorganisms play a critical 
role in the transformation and cycling of P. Organic P 
in soil organic matter (including plant litter and dead 
microorganisms) is mineralized to Pi through the action 
of phosphatases primarily produced by microorganisms, 
and then Pi is taken up by plants and microorganisms 
[1]. Microorganisms also secrete organic acids to sol-
ubilize P bound to oxides via ligand exchange as well 
as by ligand-enhanced dissolution of the oxides [2]. 
The microorganisms can then assimilate the released 
Pi and decompose the released Po via phosphatase 
activity [3,4]. Although large amounts of organic matter 
are added to forest soils by litterfall [5], little is known 
about the effects of newly added plant litter on microbial 
activity and the distribution of P in soils. In the present 
study, we evaluated the effects of larch leaf litter and N 
inputs on P transformation and acid phosphatase activity 
in forest soil in a short-term laboratory incubation study.

Materials and methods

Soil and litter samples

The soil sample (Aluandic Andosol) was taken from the A 
horizon, and larch needle-leaf samples were taken from 
the Oi horizon in a larch plantation at 1270 m elevation 

at the Nishikoma Station, Education and Research Center 
of Alpine Field Science, Shinshu University (35.83°N, 
137.87°E). The soil was sieved through 2-mm mesh and 
homogenized thoroughly. A portion of the soil was air 
dried for chemical analysis, while the rest was maintained 
in a field-moist state at 4 °C. The soil properties were as 
follows (on a dry weight basis): pH (H2O), 4.5; organic car-
bon (C), 62.6 mg g−1; total N, 4.8 mg g−1; sand, 370 mg g−1; 
silt, 350 mg g−1; clay, 280 mg g−1 (mineral fraction only). 
Larch needle-leaves were air dried and then ground with 
a vibrating sample mill TI-100 (Heiko Seisakusho, Tokyo, 
Japan) prior to chemical analysis and use in incubation. 
The larch needle-leaf sample indicated total C, 542 
(mg g−1 dry weight); total N, 10.6; total P, 0.67; lipids, 87; 
water-soluble polysaccharides, 76; hemicellulose, 116; 
cellulose, 109; and lignin, 405 [6].

Incubation experiment

We conducted a laboratory incubation study to evalu-
ate the effects of adding larch litter and N to stimulate 
microbial activity on P transformation and acid phos-
phatase activity in the soil. We added N to stimulate soil 
microbial activity in this study, because previous study 
showed that N addition remarkably increased microbial 
activity in larch litter-amended soil [6]. The forest soils 
were pre-incubated at 60% of water holding capacity for 
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between total P and Pi. The entire sequential extraction 
procedure was conducted only for samples just after 
preincubation (day 0) and at the end of incubation (day 
28). Only H2O and NaHCO3 extractions were conducted 
on days 3, 7, and 14 because the floating leaf debris in 
the extracts made it impossible to accurately fractionate 
P in these samples.

Because the H2O-Pi and H2O-Po concentrations were 
very low, total P in the H2O fraction was expressed as 
H2O-P. The sum of total P concentrations from H2O and 
NaHCO3 fractions was considered to represent labile P. 
The NaOH extract contained Pi associated with Al- and 
Fe-oxides, Po originating from humic substances, and 
Po adsorbed onto Al- and Fe-oxides. The 1  M HCl-Pi 
fraction represented P derived from primary apatite 
in carbonate-free soils [11]. The conc. HCl-Pi and conc. 
HCl-Po fractions represented more stable pools of Pi and 
Po, respectively, but the conc. HCl-Po fraction may also 
contain particulate organic matter Po, which may be 
readily available [8,12]. Residual P was likely to consist 
of Pi thoroughly occluded by sesquioxides, constituent Pi 
in resistant primary minerals, and Po in more recalcitrant 
organic forms [13]. In this study, the sum of P concentra-
tions in each fraction (1070 μg P g−1 for original soil) is 
regarded as the total P concentration in soil.

Acid phosphatase activity measurement

Acid phosphatase activity was determined for moist soil 
samples on days 0 (after the 1-wk pre-incubation), 3, 7, 
14, and 28. Acid phosphatase activity was determined 
with p-nitrophenyl phosphate as the substrate in a mod-
ified universal buffer with pH 6.5 [14]. In brief, the buffer 
and the substrate were added to 1 g of soil, and then it 
was allowed to stand at 37 °C for 1 h [14]. After filtration, 
the color intensity of the filtrate was measured with a 
spectrophotometer at 400 nm.

Effects of C, N, or P addition on acid phosphatase 
activity

Four treatments were prepared to examine the effects 
of C, N, or P addition on the acid phosphatase activity in 
the soil amended with larch litter: (1) soil + larch litter, 
(2) soil + larch litter + C, (3) soil + larch litter + N, and (4) 
soil + larch litter + P. After adding the ground larch leaf 
(157 mg g−1 soil) and C (or N or P) to the preincubated 
soil, the treatments replicated five times were incubated 
at 22 °C for 1 week and then acid phosphatase activity 
was determined. The amounts of added C, N, and P were 
intended to approximate the stoichiometry of micro-
bial biomass accounting for about half of added C to be 
released as CO2. C, N, and P were added, respectively, 
in the form of glucose (15  mg C g−1 soil), ammonium 
chloride (1.5  mg  N g−1 soil), and disodium hydrogen 
phosphate (0.3 mg P g−1 soil).

1 week at 22 °C and then the following treatments were 
applied: (1) soil + larch litter, and (2) soil + larch litter + N. 
After adding ground larch leaf (157 mg g−1 soil) and N 
(1.5 mg N g−1 soil as a solution of ammonium chloride), 
the treatments done in triplicate were mixed well and 
then incubated at 22 °C for 3, 7, 14, and 28 d. We kept 17 g 
of soil (on a dry weight) in a loosely capped 50-mL bottle, 
and distilled water was added occasionally to maintain 
soil moisture at a constant level.

Phosphorus fractionation

Soil P was fractionated according to Hedley et al. [7] 
with some modifications [8,9]. Soil samples were dried 
at 65  °C for 16  h immediately after collection. Then, 
each sample was sequentially extracted with distilled 
water, 0.5 M NaHCO3, 0.1 M NaOH, 1 M HCl, and con-
centrated HCl. After the conc. HCl extraction, residual P 
was determined in the remaining soil material by diges-
tion with conc. H2SO4 + H2O2 at 250 °C on a hot plate; 
H2O2 addition was repeated until liquid was clear. The Pi 
concentrations in all fractions were determined by the 
Murphy–Riley method [10]. The H2O, NaHCO3, NaOH, 
and conc. HCl extracts were digested with persulfate in 
an autoclave at 120  °C (60  min for H2O, NaHCO3, and 
conc. HCl extracts, and 90 min for NaOH extract) [8] for 
determination of total P. There is rarely any Po in 1 M 
HCl extracts [8], so only Pi was measured in this fraction. 
The Po concentration was calculated as the difference 

Figure 1.  Changes in acid phosphatase activity (A) and 
H2O-P + NaHCO3-P concentration (B) in larch leaf litter-amended 
soil in the presence (○) or absence (●) of N during incubation. 
Error bars show standard deviation (n = 3); some error bars are 
smaller than the symbols. **denotes significance at p  <  0.01 
(two-way ANOVA).
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Results and discussion

Changes in pH, acid phosphatase activity, and 
labile P concentration in soil

On day 0, the pH (H2O) in the soil amended with larch 
litter was 5.1. It gradually increased to pH 5.5 at day 28, 
while it dropped to pH 4.2 at day 3 and then slightly 
increased to pH 4.5 at day 28 when the larch litter was 
supplemented with N.

Acid phosphatase activity increased after adding the 
larch litter (Figure 1(A); Table 1), suggesting that this 
addition stimulated microbial activity. The activity was 
higher in the larch litter + N-amended treatment than in 
the treatment amended with larch litter only, especially 
at days 14 and 28 (p < 0.01; Figure 1(A)). The concentra-
tions of labile P (H2O-P + NaHCO3-P) increased slightly 
at day 3, and then gradually decreased from day 3 to 
day 14 in both treatments (Figure 1(B)), even though 

Table 1. Acid phosphatase activity and P concentration in soil (n = 3).

Data at day 0 were for soil without amendment.

    Day 0 Day 3 Day 7 Day 14 Day 28
Acid phosphatase Litter alone 3.8 ± 0.8 7.7 ± 1.3 8.9 ± 0.7 13.7 ± 1.2 5.9 ± 0.1
(μmol g−1 hr−1) Litter + N   8.0 ± 1.1 7.5 ± 0.9 18.1 ± 1.1 7.7 ± 0.4
             
P concentration (μg P g−1)            
H2O-Pt Litter alone 9 ± 1 5 ± 1 7 ± 1 8 ± 1 5 ± 1
  Litter + N   7 ± 1 8 ± 1 6 ± 0 6 ± 0
NaHCO3-Pi Litter alone 29 ± 10 32 ± 2 24 ± 1 21 ± 1 18 ± 1
  Litter + N   28 ± 5 27 ± 0 26 ± 0 38 ± 4
NaHCO3-Po Litter alone 60 ± 1 60 ± 5 55 ± 1 44 ± 2 47 ± 0
  Litter + N   67 ± 4 54 ± 0 39 ± 3 47 ± 4
NaOH-Pi Litter alone 299 ± 11       220 ± 20
  Litter + N         136 ± 3
NaOH-Po Litter alone 341 ± 55       327 ± 18
  Litter + N         611 ± 46
1 M HCl-Pi Litter alone 48 ± 5       40 ± 4
  Litter + N         43 ± 6
Conc.HCl-Pi Litter alone 103 ± 7       158 ± 7
  Litter + N         185 ± 11
Conc.HCl-Po Litter alone 27 ± 1       20 ± 6
  Litter + N         17 ± 1
Residual P Litter alone 154 ± 45       166 ± 20
  Litter + N         192 ± 44
Sum Litter alone 1070 ± 107       1002 ± 33
  Litter + N         1275 ± 71

Figure 2. Distribution of P in the different fractions according to the modified Hedley sequential extraction procedure.

Figure 3. Effects of C, N, or P addition to larch litter amended 
soil on acid phosphatase activity compared with soil amended 
with litter alone. Error bars show standard error (n = 5); *denotes 
significant difference (p  <  0.05) with soil amended with litter 
only (Dunnett’s multiple comparisons test).
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Nutrients controlling acid phosphatase activity

To explore the factors affecting acid phosphatase activity 
in the soil, we assessed the effects of C, N, or P addition. 
Acid phosphatase activity was higher (but not signif-
icant) in the larch litter  +  N-amended soil than in the 
soil amended only with litter (Figure 3), consistent with 
the results described above. This result might reflect its 
greater microbial P demand (i.e. relatively low P availa-
bility) due to the N amendment, which would lead to 
increased acid phosphatase synthesis to acquire more 
P. Phosphatase is also suggested to be synthesized to 
acquire C in soils [e.g. 20]. In the present study, acid phos-
phatase activity was not affected by C addition, but was 
significantly suppressed by P addition. These findings are 
consistent with those of previous studies showing that 
microbial phosphatase synthesis is primarily controlled 
by the need for P [12,21–23].

Conclusion

The results of this study suggest that plant litter and N 
inputs increased microbial activity and P demand, which 
decreased the labile P concentration and increased the 
desorption and microbial uptake of Pi bound to Al- and 
Fe-oxides. This eventually increased the proportion of 
Po bound to oxides after readily mineralizable organic 
matter was depleted in the forest soil.
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