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The sensitivity of memory consolidation and
reconsolidation to inhibitors of protein synthesis
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Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during

or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window

during which these processes are necessary. Using a computational model of kinase synthesis and activation, we investigated

the ways in which the dynamics of molecular positive-feedback loops may contribute to the time window for memory stabil-

ization and memory maintenance. In the models, training triggered a transition in the amount of kinase between two stable

states, which represented consolidation. Simulating protein synthesis inhibition (PSI) from before to 40 min after training

blocked or delayed consolidation. Beyond 40 min, substantial (.95%) PSI had little effect despite the fact that the elevated

amount of kinase was maintained by increased protein synthesis. However, PSI made established memories labile to pertur-

bations. Simulations of kinase inhibition produced similar results. In addition, similar properties were found in several other

models that also included positive-feedback loops. Even though our models are based on simplifications of the actual mech-

anisms of molecular consolidation, they illustrate the practical difficulty of empirically measuring “time windows” for con-

solidation. This is particularly true when consolidation and reconsolidation of memory depends, in part, on the dynamics of

molecular positive-feedback loops.

Activation of kinases and altered protein synthesis is essential for
consolidation of new memories and reconsolidation of estab-
lished memories (for reviews, see Abel and Lattal 2001; Kandel
2001; Alberini 2005, 2008; Alberini et al. 2006; Moore and
Roche 2007; Abraham and Williams 2008; Hernandez and Abel
2008; Klann and Sweatt 2008; Miyashita et al. 2008). Moreover,
it appears that memory formation depends on a temporally lim-
ited phase of protein synthesis (a critical time window), which
exists from before to shortly after training. During this window,
protein synthesis inhibition (PSI), which blocks ≥95% of protein
synthesis (Barondes and Cohen 1968), disrupts consolidation (for
an early review, see Davis and Squire 1984). Similar windows exist
for long-term synaptic plasticity. For example, in sensorimotor
neuron co-cultures from the mollusk Aplysia, the window during
which PSI blocks consolidation of serotonin (5-HT)-induced long-
term synaptic facilitation (LTF) a correlate of long-term memory
(LTM), ends �30 min after application of 5-HT (Montarolo et al.
1986). Similarly, consolidation of late long-term potentiation
(L-LTP) occurs with an analogous time window (Krug et al.
1984; Stanton and Sarvey 1984; Otani et al. 1989; Fonseca et al.
2006; Frey and Frey 2008), and for the consolidation of both LTF
and L-LTP, a temporally limited phase of kinase activation is
also required, constituting a second time window of similar dura-
tion (English and Sweatt 1997; Sharma et al. 2003). These results
imply that within a few hours of training, LTM transits from being
dependent on kinase activation and protein synthesis to being rel-
atively independent of these processes. Recent studies also imply
that when an established memory is reactivated, a critical time
window exists during which the memory is labile (for reviews,
see Alberini 2005; Nader and Hardt 2009; Wang and Morris 2010).

PSI immediately after reactivation disrupts memory, but PSI 2, 4,
or 6 h after reactivation does not (Nader et al. 2000; Rose and
Rankin 2006; Artinian et al. 2008). These results suggest that the
molecular mechanisms for consolidation and reconsolidation
may have some common features.

A ubiquitous molecular motif that may contribute to learn-
ing and memory is a positive-feedback loop of enzymatic reac-
tions (Bhalla and Iyengar 1999; Pettigrew et al. 2005; Song et al.
2006, 2007; Cheng et al. 2008; Klann and Sweatt 2008; Pi and
Lisman 2008; Smolen et al. 2008; Tanaka and Augustine 2008;
Aslam et al. 2009; Ogasawara and Kawato 2009; Burrill and
Silver 2010). Such feedback loops can be bistable and a brief, tran-
sient stimulus can trigger changes in protein levels, kinase activ-
ities, or levels of protein phosphorylation that far outlast the
initial triggering stimulus (e.g., Ferrell 2002; Xiong and Ferrell
2003; Kobayashi et al. 2004; Kramer et al. 2004; Ajo-Franklin
et al. 2007; Greber and Fussenegger 2007; Chatterjee et al. 2008;
Mitrophanov and Groisman 2008; Pomerening 2008; Tanaka
and Augustine 2008). Empirical data suggest that many molecular
processes implicated in learning and memory may be regulated by
positive-feedback loops. For example, calcium/calmodulin kinase
II (CaMKII) and protein kinase M (PKM) may, when active,
increase their own synthesis and such positive feedback may
contribute to LTP (Atkins et al. 2005; Pastalkova et al. 2006).
Bistability in a CaMKII signaling pathway may also play a role in
spike-timing dependent plasticity (STDP) (Graupner and Brunel
2007), and positive feedback between protein kinase C (PKC)
and mitogen-activated protein kinase (MAP kinase) may play a
role in cerebellar long-term depression (Tanaka and Augustine
2008). In Aplysia, the promoter region of the creb1 gene has bind-
ing sites for its own gene product, the transcription activator
CREB1 (Mohamed et al. 2005). A positive-feedback loop is thus
formed, which is important for the consolidation of LTF (Liu
et al. 2008). Thus, understanding the dynamical properties of
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molecular positive-feedback loops may provide insights into
memory processes, such as the temporal properties of consolida-
tion and reconsolidation.

To study the dynamical properties of positive-feedback
loops, Smolen et al. (2009) proposed a biologically inspired com-
putational model describing biochemical processes that may be
involved in LTM. This model consists of two positive-feedback
loops (Fig. 1A). The first loop represents autoactivation of a kinase.
In the second, slower loop, active kinase feeds back to induce fur-
ther kinase synthesis. This model has both lower and upper stable
steady states in the amount of kinase, and thus is bistable. The
model develops a resistance to perturbations �1 h after switching
the activated kinase, A, to its upper state. This resistance relies on
the slow positive-feedback loop of protein synthesis.

In the present study, we used a modified version of the
Smolen et al. (2009) model to examine how positive-feedback
loops with kinase autoactivation and protein synthesis may con-
tribute to the temporal sensitivity of memory consolidation to
PSI and kinase inhibition (Fig. 1A). We heuristically equated an
increase to a stable upper state of kinase activity, A, and total
amount of kinase, B, with consolidation of a new memory. This
two-loop model was used to examine whether positive-feedback
loops were responsible for the empirically obtained time windows
for sensitivity of memory consolidation and reconsolidation to
PSI with physiological “dosages” (e.g., 95% � 98% PSI) (Squire
and Davis 1975; Milekic and Alberini 2002). We also examined
whether the two-loop model reproduced a time window for sensi-
tivity of memory consolidation to kinase inhibition. To examine
whether these time windows require both fast and slow feedback
loops, we eliminated kinase autoactivation to generate a one-loop
model that had only slow feedback. We used this one-loop model
to investigate whether a single feedback loop involving protein
synthesis suffices to generate resistance of memory consolidation
to PSI (≥95%).

Results

To simulate training, the value of the training stimulus, ST, was
increased from 0 to 200 for 10 sec to switch A from the lower stable
state (0.03mM) (Fig. 1B) to the upper state (≥0.3mM). In the two-
loop model (Equation 1a,b), A switched to the upper stable state
rapidly (Fig. 1B) due to the fast positive-feedback loop (Fig. 1A).
To obtain a bistable switch that responds to brief stimuli, it is
essential that the fast feedback loop (Equation 1a) exhibits bista-
bility. Hill functions with a coefficient (power) ≥3 are commonly

used in mathematical models to produce bistable responses to
brief stimuli (Burrill and Silver 2010). The Hill functions on the
right-hand sides of Equation 1a,b used a coefficient of 4. After A
switched, B increased due to the slow positive-feedback loop
(Fig. 1B). Increased B leads, via mass action, to a further increase
in A. A and B reached upper stable values close to the upper bound
for B, BMAX (Equation 1b), �2 h after training (A ¼ 3.8 mM, B ¼
4 mM) (Fig. 1B).

Bifurcation analyses reveal dynamical properties of the

positive-feedback loops that underlie the stability of

A and B
Bifurcation analyses were performed to define the time window
governing the sensitivity of A and B to perturbations. In the first
analysis, both A and B were treated as variables (Fig. 2A). A and
B have both upper and lower stable steady states for S ranging
from 0 to �25 (Fig. 2A). This analysis demonstrates that the full
model, variables A and B, are bistable for a range of stimulus values
that includes the basal value SB¼20.

In the second bifurcation analysis, the slow variable B was
treated as a parameter in determining the steady states of the
fast variable A as a function of stimulus S. A has both upper and
lower stable steady states when S ¼ 20 and B ¼ 0.56 mM (i.e., basal
level) or B ¼ 0.60 mM (blue and orange traces, respectively, in
Fig. 2B). A brief stimulation will switch A from the lower to the
upper steady state. Due to the hysteretic effect, A will remain at
its upper steady state after S returns to 20. B increases due to the
slow positive feedback, and A in turn increases due to mass action.
Thus, the bifurcation curve of A shifts to the left (i.e., from blue
to orange traces in Fig. 2B). A loses its lower steady state when
B increases past 0.84 mM (for S ¼ 20) (red trace in Fig. 2B).
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Figure 1. Two-loop model. (A) Schematic of feedback loops. A denotes
activated kinase. B denotes total kinase. The blue loop represents fast posi-
tive feedback in which A directly or indirectly activates itself. The red loop
represents slow positive feedback in which A directly or indirectly enhan-
ces the synthesis of B. (B) In the two-loop model, ST was increased from 0
to 200 for 10 sec at t ¼ 0. In the absence of PSI, this “training” stimulus
induced a transition of A and B to an upper stable state. The transition
required �2 h to complete.
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Figure 2. Bifurcation diagrams for A as a function of stimulus S in the
two-loop model when B is treated as a variable (A) or B is treated as a
fixed parameter (B). (A) Both A and B are bistable at S ¼ 20. (B) A has
both upper and lower stable steady states when S ¼ 20 and B ¼
0.56 mM. A only has an upper steady state when B ≥ 0.84 mM and S ¼
20. A only has a lower steady state when B ≤ 0.54 mM and S ¼ 20. A “con-
solidated state” was defined as one in which A remains ≥0.3 mM and B
remains ≥0.84 mM.
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Without a lower state, a brief perturbation will only transiently
decrease A. After the perturbation, A will return to its upper state.
Therefore, the increase of B makes A progressively resistant to brief
perturbations. In contrast, when B decreases to 0.54 mM (Fig. 2B,
green trace), the bifurcation curve of A shifts to the right and A
loses its upper steady state. Therefore, a decrease in B makes A pro-
gressively resistant to brief stimuli that would otherwise switch A
to its upper steady state.

As a heuristic, we considered consolidation of LTM to be ini-
tiated by the switch of A from 0.03 to 0.3 mM. These represented
the two steady states of A at S ¼ 20 for the value of B at its basal
level (blue trace in Fig. 2B). The level of the upper steady state of
A at S ¼ 20 substantially increased with B. For example, the upper
state of A increased from 0.3 to 0.41 mM when B increased from its
basal level of 0.56 to 0.6 mM (from blue to orange traces in Fig. 2B).
The lower steady state of A at S ¼ 20, on the contrary, remained
�0.03 mM until B reached 0.84 mM (Fig. 2B).

Based on the above bifurcation analysis, we considered con-
solidation to occur when A has only an upper steady state when S
is at its basal value (SB ¼ 20). Following a stimulus that increases B,
A has only an upper state when B increases past 0.84 mM, at which
time we consider consolidation to be complete. In the absence of
any inhibitors, B increased past 0.84 mM �40 min after training
(Fig. 1B). Therefore, we considered consolidation was “delayed”
if A switched to its upper state but B increased past 0.84 mM later
than 40 min after training. We considered consolidation was
“blocked” if B remained ,0.84 mM for more than seven simulated
days or if A was reverted to the lower state (e.g., by a strong kinase
inhibitor) even if B ≥ 0.84 mM.

The sensitivity of memory consolidation to PSI has a

time window
Although in vitro, protein synthesis inhibitors can be as effective
as �99% (Grollman 1967), the best estimates from in vivo behav-
ioral studies are 96%–98% effective block (Squire and Davis 1975).
For example, subcutaneously administering 30 mg/kg anisomy-
cin to mice was estimated to produce 96% PSI (Squire and Davis
1975). Administering this dose of anisomycin 30 min before
discrimination training produced a significant deficit in LTM
assessed 24 h later. In addition, a substantially greater deficit
was seen with mice given 210 mg/kg anisomycin (estimated to
produce 98% PSI) 30 min before training (Squire and Davis
1975). To simulate PSI, we increased ANI in Equation 1b. Similar
to empirical studies, the effect of ANI on protein synthesis rate
was first tested before training, when A and B were in the lower
state (i.e., A ¼ 0.03 mM and B ¼ 0.56 mM). When ANI ¼ 0.96, the
synthesis rate of B reduced to 4% of control. When 1 h 96% PSI
began 30 min prior to training (Fig. 3A1,A2, blue traces), consoli-
dation was initiated by the increase of A from 0.03 to 0.3 mM, but
B did not increase to 0.84 mM until �1 h after training (i.e., con-
solidation was delayed) (Fig. 3A2). However, the consolidation
was blocked when 1 h 98% PSI began 30 min before training. In
this case, A returned to the lower state after a transient increase
and B never increased (Fig. 3A1,A2, green traces). The return of
A to the lower state occurred because 98% PSI, but not 96%,
sufficed to decrease B to 0.54 mM, thus A lost the upper state.
Similarly, 24 h 96% PSI (started 30 min before stimulus) only
delayed consolidation whereas 24 h 98% PSI blocked consolida-
tion (not shown).

We also simulated 24 h 98% PSI after training. In the two-
loop model, consolidation was blocked when 24 h 98% PSI started
immediately after training (Fig. 3B1,B2, +0 min traces). In con-
trast, consolidation occurred with a delay if 24 h 98% PSI began
5 min or later after training (Fig. 3B1,B2, +5 min traces). A
switched to a reduced upper state (Fig. 3B1); however, B did not

reach 0.84 mM until PSI was removed (Fig. 3B2). B did not increase
to 0.84 until �20 h after training with 98% PSI beginning 20 min
after training (Fig. 3B2). However, B remained higher than
0.84 mM with 98% PSI beginning 40 min after training (Fig. 3B2).
These results indicate that the two-loop model develops a pro-
gressive resistance of memory consolidation to PSI after training.

We next examined whether the model can reproduce the
empirically obtained time window for sensitivity of memory
consolidation to PSI. We measured the minimum levels of PSI
required to delay consolidation, i.e., to keep B below 0.84 mM
.40 min after training, when PSI had different durations, 1, 2,
and 24 h, and began at different time points (Fig. 3C). The results
delineated the critical time window for the sensitivity of simu-
lated memory consolidation to PSI. The shape and extent of the
time window before training depended strongly on the duration
of PSI (Fig. 3C). However, the time windows for all PSI durations
ended �40 min after training (Fig. 3C) in that 40 min or more
after training, .98% PSI was always required to disrupt the con-
solidation. Forty minutes was also the time required for B to
increase to 0.84 mM so that A only had the upper steady state.
Thus, our model qualitatively reproduced the extent of the empir-
ical time window.

We also examined whether the model produces the same
time window for sensitivity of memory consolidation to continu-
ous 100% PSI beginning at various times after training (Fig. 3D). B
never increased to 0.84 mM (not shown) and A transited to the
lower state �6 or �29 h after training with 100% PSI beginning
5 or 20 min after training (Fig. 3D, green and red traces, respec-
tively). With 100% PSI applied 40 min after training, A underwent
a long decline and did not drop abruptly to the lower state until
B decreased to 0.54 mM and A lost the upper state �130 h after
training (Fig. 3D, blue trace). A recovered to the upper state if
100% PSI was removed prior to 130 h (Fig. 3D, purple trace).
Thus, 100% PSI applied 40 min after training required �5 d to
revert A to the lower state, whereas 100% PSI applied 20 min after
training only required �1 d. These results further indicated that
memory was more sensitive to PSI within the time window that
ended �40 min after training.

LTM is “maintained” by increased protein synthesis
The synthesis rate of B was measured at different time points
after training when PSI was added (Table 1). Before training, the
basal synthesis rate was 6.56 × 1027 mM/sec. The synthesis rate
increased to 4.89 × 1024 mM/sec 40 min after training, due to
the slow positive-feedback loop. When 98% PSI was applied after
training, at times that failed to block consolidation, the synthesis
rate of B decreased by 98%, but nevertheless remained higher than
the basal synthesis rate before training (Table 1). The maintained
synthesis was due to the increase of A4/(A4 + KB21

4 ) in Equation 1b
that compensated for the decrease of (1 – ANI) in Equation 1b. This
result indicates that even with 98% PSI, LTM was still being “main-
tained” by increased protein synthesis. The resistance of memory
consolidation to PSI results from the increased protein synthesis
produced by the positive-feedback loop.

LTM is sensitive to transient degradation
Recent results suggest that memory recall is associated with a tran-
sient increase in protein degradation (Artinian et al. 2008; Lee
et al. 2008; for review, see Kaang et al. 2009). Consequently, the
recall process itself could destabilize previously established mem-
ory, and the extent to which recall destabilizes LTM could be
dependent on the intensity and duration of increase in protein
degradation that might be related to the duration of the retrieval
stimulus (Lee et al. 2008). Figure 4 illustrates the consequences of
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increasing the maximal degradation rate for B, kdegB in Equation
1b, to different intensities and for different durations. Without
PSI, increasing kdegB to 0.01 mM/sec for 10 min at 2 h after training
only produced a transient decrease in A and B (Fig. 4A). The recov-
ery process was dependent on new protein synthesis to “reconso-
lidate” the memory and return B to the upper steady state. In
contrast, the same amount and duration of kdegB increase drove
A and B to their basal levels when 98% PSI began immediately
after (or 30 min before) the kdegB increase (Fig. 4A). A and B did
not recover to their original upper states after PSI was removed

(simulation not shown). However, A
remained well above 0.3 mM, albeit at a
reduced upper state, and B remained
higher than 0.84 mM, even with 98%
PSI applied immediately after (or
30 min before) the kdegB increase, if
kdegB was increased to �0.01 mM/sec for
5 min (Fig. 4B) or �0.005 mM/sec for
10 min (Fig. 4C). A and B recovered to
their original upper states after PSI was
removed (simulation not shown). These
results indicate that, although 98%
PSI applied after the time window did
not block consolidation (Fig. 3B), it did
make LTM sensitive to perturbations
such as transient increases in degrada-
tion rates. In addition, the ability of PSI
to disrupt reconsolidation depends on
the duration and intensity of increased
degradation (Fig. 4). Moreover, A re-
mained well above 0.3 mM, albeit at a
reduced upper state, and B remained at
an upper state above 0.84 mM if kdegB

was increased as in Figure 4A and 98%
PSI was applied 30 min or later after the
increase of kdegB. These results indicate
that in our model, the sensitivity of
memory reconsolidation to PSI also has
a time window, with a duration similar
to the consolidation window.

The sensitivity of memory

consolidation to kinase inhibition

has a time window
We next simulated the effects of blocking
kinase activity. Because potent inhibitors
can inhibit ≥90% of kinase activity
(English and Sweatt 1997), we increased
PKI in Equation 1a to 0.9 for 24 h starting
during and at different times (40, 50, and
60 min) after training. Inhibition that
started during or 40 min (when B ¼
0.84 mM) after training decreased A irre-
versibly to the lower state (Fig. 5A1).
Inhibition that started 50 min after
training, at which time slow positive
feedback had increased B to 1.5 mM,
greatly decreased A, but only transiently.
A recovered to the upper state after the
removal of inhibition (Fig. 5B1). When
the inhibition started 1 h after training
at which time B ¼ 2.3 mM (Fig. 5C1), its
only effect was to reduce the upper state
of A during the time of the kinase inhib-
ition. A remained well above 0.3 mM and

B remained higher than 0.84 mM. These simulations characterized
a time window (�1 h) for the sensitivity of memory consolidation
to kinase inhibition, which is somewhat longer than the time
window for PSI (�40 min). The longer kinase window is explained
by bifurcation analysis. Unlike PSI, kinase inhibition affects the
fast feedback loop (Equation 1a) and alters the bifurcation curves
of A (Fig. 5A2,B2,C2). A only has an upper stable state when S ¼ 20
and B ≥ 0.84 mM in the absence of kinase inhibition (Fig.
5A2,B2,C2, red traces), whereas A only has a lower stable state at
S ¼ 20 if 90% kinase inhibition is present when B ¼ 0.84 mM or
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A (A1) and B (A2) (blue traces). B increased past 0.84 mM later than 40 min after training. In contrast, the
1-h treatment with 98% PSI blocked the increase of A (A1) and B (A2) (green traces). (B) The increase of
A (B1) and B (B2) was blocked when 24 h, 98% PSI started immediately after training (+0 min, yellow
traces). In contrast, 24 h 98% PSI only delayed the increase when the treatment began +5 min (light
blue traces in B1 and B2), +20 min (green traces in B1 and B2), or +40 min after training (dark blue
traces in B1 and B2). Both A and B rapidly increased, completing consolidation, once the PSI was
removed after 24 h. (C) For different start times, with 1 h (red trace), 2 h (blue trace), and 24 h
(green trace) treatments with PSI, the minimum percentages of PSI required to delay the consolidation
were compared. For example, a 1-h treatment was relatively ineffective when begun 260 min before
training because .98% PSI was required to delay the consolidation. In contrast, the 1-h treatment
was much more effective when it began at times 230 min before training. For all the treatments,
.98% PSI was required to delay the consolidation when PSI began +40 min after training. (D) The
increase of A was transient and A eventually returned to its lower state with continuous 100% PSI begin-
ning +5 min (green trace), +20 min (red trace), or +40 min (light and dark blue traces) after training.
Although all treatments appeared to revert A to its lower state, this was not always the case. A rapidly
switched to its upper state when 100% PSI began +40 min after training and was removed after 100 h.
However, A did not switch back to its upper steady state if PSI was removed after 150 h, which indicated
that the sensitivity of consolidation to PSI depends on the duration of PSI.
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B ¼ 1.5 mM (Fig. 5A2,B2, green traces). Therefore, kinase inhibi-
tion can revert A to the lower state when B ¼ 0.84 mM or
1.5 mM. In contrast, A has an upper stable state at S ¼ 20 if kinase
inhibition does not start until B ¼ 2.3 mM (green trace in
Fig. 5C2). Therefore, A becomes resistant to kinase inhibition
1 h after training with B ≥ 2.3 mM. In all cases, A resumed the
bifurcation curves in the absence of kinase inhibition (e.g.,
Fig. 5A2–C2, red traces). Therefore, A recovered to its upper state
after the removal of inhibition if B ≥ 0.84 mM (Fig. 5B1). Note that
24 h 90% kinase inhibition slightly decreased B. B was reduced
from 0.84 to �0.83 mM with kinase inhibition beginning
40 min after training in Figure 5A1. This small decrease gave rise
to a stable lower state of A for S ¼ 20. Therefore, A did not recover
to its upper state (Fig. 5A1). These results indicate that positive-
feedback loops sustain the progressive development of resistance
of memory consolidation to kinase inhibition, as was found above
for PSI.

Alternative models support the hypothesis that positive

feedback can account for the resistance of memory

consolidation to PSI
We used three alternative models to further investigate the contri-
bution of the positive-feedback loops to the resistance of memory
consolidation to inhibitors. The first two models were derived
from the two-loop model, whereas the third model was from
Pettigrew et al. (2005). In the first alternative model, we consid-
ered the possibility that resistance of the upper state to ≥95%
PSI applied after training might result from the upper bound

BMAX imposed on B in the
model of Equation 1a and b,
and not from the positive-
feedback loop per se. Therefore,
we tested the sensitivity of me-
mory consolidation to PSI in
a model variant without BMAX

(Equation 2). In this model,
the degradation term for B
was modified by increasing
the degradation Michaelis con-
stant, KB22, and maximal deg-
radation rate, kdegB. This was
done because without BMAX,
this model is susceptible to an
instability in which B increa-
ses without bound, which can

only be eliminated by modifying the degradation kinetics.
Bistability was restored by this modification. The parameters
governing the synthesis of B were also adjusted to maintain the
basal level of B at 0.56 mM as above. ST was again increased from
0 to 200 for 10 sec to represent training. Because the differential
equation and parameter values for A (Equation 1a) were not
changed, consolidation was still equated as the transition of A
to the upper state followed by the increase of B from 0.56 to
0.84 mM. Two sets of parameters were used in this model to
examine the possible effect of degradation on the resistance of
memory consolidation to PSI. In the first set, the degradation
rate of B was 1.55 × 1025 mM/sec. The half-life of B was �7 h and
the upper bound of B was �68 mM (Materials and Methods;
parameter set 1 below Equation 2). In the second set, the degrada-
tion rate of B was 1.09 × 1024 mM/sec. The half-life of B was �1 h
and the upper bound of B was �5 mM (Materials and Methods;
parameter set 2 below Equation 2). A was bistable at SB ¼ 20 in
both sets, and B increased to 0.84 mM �20 min after training.

With the first set of parameters, the upper state of A was
destabilized with 24 h 95% PSI applied before or immediately after
training (Fig. 6A). However, it was not destabilized if 24 h 95%
PSI was begun 20 min after training and B always remained
higher than 0.84 mM (Fig. 6B). Therefore, this model also exhib-
ited a time window for the sensitivity of memory consolidation
to PSI. With the second set of parameters, consolidation was
blocked with 24 h 70% PSI applied before or immediately after
training (simulation not shown). However, consolidation was
not blocked with 24 h 70% PSI 20 min after training. Both param-
eter sets had higher degradation rates of B than did the original

two-loop model (Equation 1a,b) (6.56 ×
1027 mM/sec), making the new model
more sensitive to high levels of PSI, so A
was reverted to the lower state when
97.5% (Fig. 6C) or 76% PSI was ap-
plied 20 min after training (simulation
not shown). Therefore, positive-feedback
loops were responsible for bistability
and consequent resistance of memory
consolidation to PSI, whereas the time
window for the sensitivity of memory
consolidation to PSI was affected by vari-
ous factors (e.g., degradation rates, and
inhibitor duration and concentrations).

With this model without BMAX,
the synthesis rate of B was again higher
in the upper state of B than in the lower
state, irrespective of the presence of PSI
(Table 1). Thus, LTM, in the absence and
presence of PSI, was being “maintained”
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Figure 4. Responses to transient increases of kdegB. Two hours after training, kdegB in Equation 1b was
increased to 0.01 mM/sec for 10 min (A), 0.01 mM/sec for 5 min (B), 0.005 mM/sec for 10 min (C). (A)
Without PSI, the increase of kdegB to 0.01 mM/sec for 10 min failed to revert A to the lower state (dark
blue trace). In contrast, A was reverted when continuous 98% PSI began immediately after kdegB

increased (light blue trace). Shorter (B) or weaker (C) kdegB failed to revert A to the lower state. A
remained .0.3 mM, albeit reduced from the level with no PSI (from dark blue traces to light blue
traces in B and C), despite the continued presence of PSI.

Table 1. Protein synthesis rate of B (mM/sec) at different time points after training with and without PSI

30 min before
training

0 min after
training

5 min after
training

20 min after
training

40 min after
training

The two-loop model (half-life of B �6 d)

Without PSI 6.56 × 1027 3.46 × 1025 4.25 × 1025 9.53 × 1025 4.89 × 1024

98% PSI 1.31 × 1028 5.70 × 1027 8.53 × 1027 1.91 × 1026 9.85 × 1026

The model without BMAX (half-life of B �7 h)

Without PSI 1.55 × 1025 3.61 × 1024 4.18 × 1024 4.68 × 1024 4.73 × 1024

95% PSI 7.73 × 1027 7.73 × 1027 2.09 × 1025 2.34 × 1025 2.36 × 1025

The model without BMAX (half-life of B �1 h)

Without PSI 1.09 × 1024 4.57 × 1024 5.12 × 1024 5.61 × 1024 5.66 × 1024

70% PSI 3.28 × 1025 1.06 × 1024 1.54 × 1024 1.68 × 1024 1.70 × 1024

The treatments that blocked consolidation are underlined.
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by a protein synthesis rate higher than the rate before training and
in the absence of PSI. In both models (Equations 1a,b and
Equations 1a, 2) positive feedback sufficed to maintain an
increased level of protein synthesis, an upper state of A and B,
and LTM, irrespective of .95% PSI.

In the second alternative model, we turned off the fast loop
in the two-loop model (Equation 3) to further explore the contri-
butions of individual feedback loops to LTM. Due to the loss of the
autoactivation loop, A did not increase as rapidly after stimuli, so a
brief stimulus could not induce a state transition. The duration
needed to be increased to �30 min (ST ¼ 200). The consolidation
(Fig. 7A) was blocked by 98% PSI started 30 min before training
(Fig. 7B, green trace). In contrast, the upper state of A was not
destabilized, albeit it was reduced (Fig. 7B, blue trace), and B
(not shown) remained higher than 1.8 mM when 98% PSI started

40 min after training onset (i.e., 10 min
after stimulus offset). As with the two-
loop model (Equation 1a,b), the time
window during which PSI disrupted
LTM was relatively brief. We compared
the minimum levels of 24 h PSI required
to block the switch of A to its upper state
at different time points for both mod-
els, with a 30-min induction stimulus
(Fig. 7C). The minimum PSI required to
block the switch was 80.9% in the one-
loop model and 98.1% in the two-loop
model when PSI began 30 min prior to
training. The difference between models
decreased as PSI began later. Ten minutes
or later after training, �100% PSI was
required for both models. Thus, the one-
loop model had weaker resistance of
memory consolidation when PSI was
imposed before training, but after train-
ing a single feedback loop involving pro-
tein synthesis (increase of B) sufficed to
render LTM resistant to PSI.

We also compared the minimum
levels of 24 h kinase inhibition required
to block the switch of A to upper state
(Fig. 7D). Forty percent inhibition was
required in the one-loop model and
60% in the two-loop model when inhib-
ition began 30 min before training,
whereas 85% inhibition was required
in the one-loop model and 95% in the
two-loop model when inhibition began

90 min after training. Therefore, the one-loop model retained
considerable resistance of memory consolidation to kinase
inhibition after training. However, the fast autoactivation loop
in the two-loop model always enhanced resistance to kinase
inhibition.

With both models, we also carried out simulations in which
the slow feedback loop was removed (i.e., B was held constant).
The fast autoactivation loop alone was sufficient to generate bist-
ability, and A switched from the lower state to the upper state fol-
lowing a brief stimulus. However, the upper state was much more
sensitive to perturbations without the consolidating increase of B.
For example, the upper state was destabilized by ,10% kinase
inhibition with parameters near standard values for Equation
1a,b. Therefore, the slow loop is essential to generate a robust
LTM.
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Figure 5. State transitions in the presence of 24 h 90% inhibition of kinase activation. ST was
increased to 200 for 10 sec at t ¼ 0. The transition of A to the upper state was reverted with kinase inhi-
bition beginning either +40 min after training (A1) at which time B ¼ 0.84 mM, or +50 min after train-
ing (B1) at which time B ¼ 1.5 mM. A remained .0.3 mM and B remained .0.84 mM when kinase
inhibition started +1 h after training (C1). Both A and B rapidly switched to their upper states in (B1)
and (C1) once the PSI was removed after 24 h, but not in (A1). (A2–C2) Bifurcation diagrams for A
as a function of stimulus S in the absence/presence of 90% kinase inhibition when B is 0.84 mM
(A2), 1.5 mM (B2), or 2.3 mM (C2). In the presence of 90% kinase inhibition, A has both upper and
lower stable steady states when S ¼ 20 and B ¼ 2.3 mM (C2); A only has a lower steady state when
B , 2.3 mM and S ¼ 20 (A2, B2).
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To test further whether a slow feedback loop involving
protein synthesis generates resistance of memory consolidation
to PSI, PSI was applied to a model developed by Pettigrew
et al. (2005), which describes more specifically aspects of
the formation of LTM in Aplysia. In Aplysia (Dash and Moore
1996), and in vertebrates (Huang et al. 1994; Impey et al. 1996),
protein kinase A (PKA) activation is necessary for LTF and L-LTP.
The Pettigrew model simulates the dynamics of Aplysia PKA
activation following five pulses of 5-HT (Müller and Carew
1998). Long-term PKA activation (for .20 h) is heuristically
equated to LTF and the establishment of LTM. The Pettigrew
model has a positive-feedback loop between PKA activity
and protein synthesis, in which PKA activates synthesis of an
immediate-early gene product Ap-Uch. Ap-Uch in turn con-
tributes to long-term PKA activation (Hegde et al. 1997), closing
the loop. To simulate the effects of PSI, the protein synthesis
rates of both PKA and Ap-Uch were reduced by 99% for 24 h.
The effects on the time course of long-term PKA activation were
observed.

Figure 8 illustrates responses of PKA to five pulses of 5-HT in
the presence and absence of PSI. The normal late increase in PKA
activity was blocked with 24 h 99% PSI started immediately after
5-HT. However, PKA activity measured 24 h after stimulus was
only reduced to �50% of control with 99% PSI started 3 h after
5-HT, and PKA activity was �70% of control with 99% PSI started
4 h after 5-HT. These results indicate that the Pettigrew model also
has a critical time window within which long-term PKA activity
was sensitive to PSI. It appears plausible that the maintenance

of LTM in the presence of substantial
(≥95%) PSI may be due, at least in part,
to one or more positive-feedback loops.

Noise affects the sensitivity to PSI
Noise, due to environmental perturba-
tions, is ubiquitous in biological systems,
and a plausible model for the consolida-
tion of LTM should be relatively insensi-
tive to noise. We examined the
sensitivity of the first two-loop model
(Equation 1a,b) to noise in the stimulus
by incorporating Gaussian noise SN (s ¼
3%�20% of SB, see Materials and
Methods). Both lower (A ¼ 0.03 mM and
B ¼ 0.56 mM) and upper states (A ≥
0.3 mM and B ≥ 0.84 mM) remained sta-
ble in the presence of noise with s ¼

20% of SB. However, noise did affect the
ability of the model to transit between
stable states. We monitored the fraction
of 1000 simulations that transited from
the lower to the upper state within 7
dafter training and observed a moderate,
but not extreme, sensitivity to stimulus
noise. Without PSI and with s ¼ 10%
SB, no transition was blocked in 1000
simulations. With s ¼ 20% SB, transi-
tions were blocked in �27% of 1000
simulations.

The transition without noise was
only delayed with 1 h of 96% PSI started
30 min before stimulus (Fig. 3A1,A2),
whereas, the transition was blocked in
.99% of 1000 simulations with noise
of s ¼ 10% SB. Thus, consolidation was
not blocked by 96% PSI applied before

training without noise, whereas consolidation was blocked
when the same PSI treatment was applied with noise. However,
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a 99% inhibition of protein synthesis (other model parameters as in
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all 1000 simulations remained at the upper state with 98% PSI
beginning 40 min after training and stimulus noise of s ¼ 20%
SB. Similarly, 993 of 1000 simulations remained at the upper state
with 90% kinase inhibition beginning 1 h after training and stim-
ulus noise of s ¼ 20% SB. Therefore PSI substantially increased the
sensitivity of the model to noise by delaying the increase of B to
0.84 mM.

Discussion

A common method for investigating the temporal requirements
for kinase activation and protein synthesis in stabilizing memory
is to pharmacologically block kinases and protein synthesis. The
results can be difficult to interpret, in part, because inhibitors of
kinase and protein synthesis, even at high concentrations, do
not completely block these processes (Barondes and Cohen
1968; Milekic and Alberini 2002). Thus, the possibility remains
that with inhibition, decreased capacities for kinase activation
and protein synthesis contribute to the maintenance of the LTM
beyond the empirically determined windows for disruption.
This question is difficult to address empirically because practically
a 100% block of synthesis or activity cannot be attained due, for
example, to toxicity of high inhibitor concentrations (for review,
see Rudy et al. 2006). An alternative approach is to use computa-
tional models of putative molecular mechanisms for LTM and
simulate inhibition of protein synthesis or kinase activity to
examine the time window for the effects of these processes on
consolidation.

Our approach was to build reduced models to examine gen-
eral properties that may govern the time windows for the sensitiv-
ity of memory consolidation to PSI and kinase inhibition.
Therefore, our models were not detailed representations of bio-
chemical pathways. In our models, the two variables A and B rep-
resent the levels of activated kinase and total kinase, respectively.
Our simulations suggested that a single slow feedback loop involv-
ing protein synthesis suffices to develop the resistance of memory
consolidation to PSI (Fig. 7), a suggestion further supported by the
Pettigrew model (Fig. 8). A fast autoactivation loop alone can sus-
tain a bistable switch (Smolen et al. 2009) and might therefore
store LTM, but previous models have suggested this LTM would
be vulnerable to disruption by brief perturbations or noise
(Smolen et al. 2009; see also Brandman et al. 2005; Zhang et al.
2007). Simulations confirmed such vulnerability. With B unable
to increase, ,10% kinase inhibition abolished the upper state of
A. Without elevation of the slow variable B, there is not a suffi-
cient restoring force to sustain a recovery of A or an upper state.

In our models, the kinase A up-regulates its own synthesis.
Empirical evidence suggests that at least two kinases implicated
in LTP—CAMKII and PKM—can up-regulate their own synthesis.
The induction of hippocampal L-LTP requires the activation of
CaMKII (Malenka et al. 1989; Malinow et al. 1989; Fukunaga
and Miyamoto 2000). Persistent activation of CAMKII has been
hypothesized to play an important role in the maintenance of
LTP (Sanhueza et al. 2007), and in addition, the amount of
CAMKII in individual spines correlates with the strength of synap-
ses onto those spines (Asrican et al. 2007). Autoactivated CaMKII
phosphorylates a translation regulator, cytoplasmic polyadenyla-
tion element binding protein (CPEB), which stabilizes LTF in
Aplysia (Si et al. 2003) and can bind regulatory elements in
CaMKII mRNA to regulate translation (Wu et al. 1998; Atkins
et al. 2004, 2005). In this manner, CaMKII may act to increase
its own translation. Therefore, it is plausible that an increase in
the amount of both total and active CAMKII, mediated by positive
feedback involving translation, could constitute one mechanism
for the maintenance of LTM. Aslam et al. (2009) developed a

bistable model based on this putative positive feedback, and simu-
lated the sensitivity of L-LTP induction and maintenance to PSI
and kinase inhibition. In addition, the maintenance of L-LTP
requires the persistent activity of PKM (Pastalkova et al. 2006).
Empirical studies of PKM in hippocampal neurons indicate that
PKM activity is required for the synthesis of new PKM (Kelly
et al. 2007). These data suggest that a positive-feedback loop
involving protein synthesis of PKM may contribute to its persis-
tent activity. Empirical data also suggest that a positive-feedback
loop involving the transcriptional up-regulation of the transcrip-
tional activator CREB1 is important for the consolidation of syn-
aptic LTF in Aplysia (Liu et al. 2008). In our models, kinase A can
also autoactivate itself in a fast positive-feedback loop. For
CAMKII, this type of positive feedback, in which CAMKII main-
tains its own activity by autophosphorylation, has been hypothe-
sized to be important for LTP (Pi and Lisman 2008), although
empirical confirmation has not yet been obtained.

Small differences in PSI can lead to large differences in

memory consolidation
Empirically, LTM is significantly impaired in mice given a dose of
anisomycin estimated to produce �96% PSI 30 min before train-
ing, and greater impairment is seen with a higher dose (�98%
PSI) (Squire and Davis 1975). In the two-loop model, blocking
consolidation by 98% PSI (Fig. 3A) could represent the effect
of a higher dose. Blocking consolidation prevented A and B
from increasing even if 98% PSI was removed after training
(Fig. 3A1,A2). In contrast, consolidation was initiated but delayed
with 96% PSI (Fig. 3A). Although A and B reached their upper
states, the delay made the model sensitive to disturbances, which
we simulated as stimulus noise. In the presence of noise and
96% PSI, A and B only sometimes switched to the upper state.
Therefore, either input (stimulus) noise or other environmental
disturbances might block the consolidation of LTM for a sub-
population of neurons and/or synapses. Because the consolida-
tion of a physiological memory presumably involves multiple
synapses and neurons, such a result might be expressed behavior-
ally as an impairment, but not complete block, of LTM. Hence,
with our model 96% PSI may represent the consolidation of
impaired LTM, whereas 98% PSI represents a complete failure to
establish LTM.

Reconsolidation
Nader et al. (2000) gave rats a retrieval test 24 h after long-term
fear conditioning, in the absence or presence of anisomycin.
When retested again 48 h after training rats that had first been
tested in the presence of anisomycin exhibited memory impair-
ment, whereas rats in the control group retained the memory.
Rats given anisomycin in the absence of the 24-h test, or 6 h after
the 24-h test, did not exhibit memory impairment on the 48-h
test. Together with other studies (Alberini 2005; Rossato et al.
2006), these results illustrate that during a critical time window
after reactivation, memory retention is labile to disruption by
PSI. During this time, memory undergoes another phase of pro-
tein synthesis-dependent consolidation, which has been termed
reconsolidation.

Empirical studies indicate that despite potential significant
differences, consolidation and reconsolidation may share some
molecular mechanisms (Alberini 2005). Due to this putative sim-
ilarity of mechanism, the positive-feedback models presented
here may provide insights into understanding reconsolidation.
For example, a memory retrieval may lead to destabilization
through a transient increase in protein degradation (Artinian
et al. 2008; Lee 2008; Lee et al. 2008; for review, see Kaang et al.
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2009). If so, reconsolidation is required after a retrieval test. As
with consolidation, the time window during which PSI can dis-
rupt reconsolidation appears to be brief (Nader et al. 2000;
Rossato et al. 2006; Artinian et al. 2008). However, the existence
of the time window depends on the duration of retrieval. Suzuki
et al. (2004) found that PSI did not disrupt reconsolidation if
the duration of the retrieval stimulus was as short as 1 min. This
finding was supported by Lee et al. (2008), suggesting that a
1-min retrieval stimulus is not sufficient to significantly increase
protein degradation.

In the two-loop model, a retrieval test would be equivalent to
a transient increase in kdegB (Fig. 4). For model parameters as in
Figure 4A, the increase in kdegB to 0.01 mM for 10 min did not dis-
rupt established LTM. However, with 98% PSI, this increase in
kdegB did disrupt LTM, forcing A and B to the lower state. These
simulations may represent aspects of successful reconsolidation
(without PSI) and failure of reconsolidation (with PSI). The upper
state was not destabilized, if 98% PSI was applied later, e.g., 30 min
after the increase of kdegB. This simulation predicts that empiri-
cally, the time window during which PSI can disrupt reconsolida-
tion will be brief, like that for consolidation, and will be
dependent on intensity and duration of destabilization, because
a shorter or weaker increase of kdegB failed to force A and B to
the lower state in the presence of 98% PSI (Fig. 4B,C). Artinian
et al. (2008) reported that anisomycin injected immediately after
a retrieval stimulus blocked reconsolidation, whereas injection
2 h after retrieval failed to block. Thus, the empirical time window
appears to be ,2 h. Our modeling results suggest that the dura-
tion of the time window of the sensitivity of memory reconsolida-
tion to PSI is similar to the time window of consolidation to PSI.
Experiments have not yet defined this window at a higher
resolution.

Bifurcation analysis may help to explain the time window of
reconsolidation. In Figure 2A, A loses its upper steady state when
S ¼ 20 and B decreases to 0.54 mM (green trace). A retrieval test, if
it is equated to a transient increase in kdegB, decreases B. The tran-
sient increase in kdegB in Figure 4A in the absence of PSI did not
suffice to decrease B to 0.54 mM. Similarly, a shorter or weaker
increase of kdegB in the presence of PSI (Fig. 4B,C) was not suffi-
cient to decrease B to 0.54 mM. Thus, B recovered to the upper
state after kdegB returned to its basal level. However, this transient
increase in kdegB made B decrease to ,0.54 mM when 98% PSI was
present in Figure 4A. The upper steady state of A was destabilized.
A and B returned to the lower state and stayed there after kdegB

returned to its basal level.

Empirical and computational limitations of PSI study
The analyses of our models indicate that protein synthesis
remains important after consolidation (Table 1). Empirical studies
of PSI may not detect this aspect, not only because of empirical
limitations for applying PSI, but also because the synthesis rate
of a specific protein can remain elevated even in the presence of
PSI if one or more positive-feedback loops are up-regulating this
synthesis. A conclusion of apparent independence of LTM from
PSI based on empirical observations should, therefore, be made
with caution.

In the simulation of Figure 3B2 with 98% PSI, B will remain
.0.84 mM, corresponding heuristically to continued preservation
of a stable LTM. However, this relatively simple model, with only
one protein, does not represent the effect on cell viability of block-
age of constitutive protein synthesis by 98% PSI. Clearly, this
strong inhibition of constitutive protein synthesis would even-
tually damage neurons and eliminate LTM. However, based on
the previously referenced empirical studies in which LTF was
retained for �24 h with high levels of PSI (Montarolo et al.

1986), we suggest our models represent some of the essential
dynamic elements, such as bistability of kinase activity, which
may maintain LTM for �1 d. Our model does not represent other
processes known to be important for the consolidation of LTP and
LTM, such as increased insertion of glutamate receptors of the
a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)
subtype (AMPARs) into the postsynaptic membrane. However,
some of these processes may be downstream from, or modulated
by, persistent kinase activation. For example, phosphorylation
of AMPARs increases membrane insertion, supporting LTP
(Esteban et al. 2003). Phosphorylation of the GluR1 AMPAR sub-
unit at either the CaM kinase II site (Ser 831) or the protein kinase
A site (Ser 845) appears sufficient to support LTP (Lee et al. 2010).

In our model, the time window within which PSI blocks LTM
assessed 24 h after training is relatively short (,1 h). Although
this brief time window is consistent with a substantial amount
of empirical data, there are some exceptions. In mice, 24 h spatial
memory has been reported to also require a second wave of protein
synthesis at �4 h (Artinian et al. 2008). Several hippocampal pro-
teins implicated in LTM are up-regulated 24 h after training, but
not 3 h after (Igaz et al. 2004). In Aplysia, 5-HTalso induces tempo-
rally distinct changes in the synthesis of individual proteins,
some of which are involved in LTF (Barzilai et al. 1989; Noel
et al. 1993; Liu et al. 2008). In particular, Barzilai et al. (1989)
found that the synthesis of four proteins was elevated at 3 h after
5-HT, but not at 1 h after 5-HT. To simulate these dynamics, our
model would need to incorporate a second phase of protein syn-
thesis, which could correspond, at least in part, to activation of
transcription by proteins synthesized in the first phase.

Protein synthesis at times well after training, outside the time
window of our model, has been shown to be necessary for the
maintenance of LTM over �1 wk. Bekinschtein et al. (2007,
2008) found that PSI applied 12 h after training blocked persis-
tence of hippocampal LTM at 7 d after training, although not
at 2 d. Similarly, inhibition of transcription 24 h after training
blocks persistence of hippocampal LTM at 7 d, although not at 2
d (Katche et al. 2010). Therefore, a model describing LTM mainte-
nance, and PSI effects, over such long periods would need ad-
ditional equations describing the synthesis and turnover of
proteins with long half-lives, and/or the assembly and degrada-
tion of structural elements such as the postsynaptic density.

In our model, reconsolidation relies on synthesis of protein B
that is sufficient to overcome the effect of temporarily enhanced
degradation of B. PSI, by blocking synthesis, would thus irreversi-
bly inhibit LTM. However, recent data indicate that block of hip-
pocampal reconsolidation by PSI is sometimes less persistent than
block of consolidation (Stafford and Lattal 2009). This difference
in persistence of consolidation versus reconsolidation suggests
our model may not represent all mechanistic differences between
these processes.

Determining the time window of consolidation
Even though our models are based on simplifications of the actual
mechanisms of molecular consolidation, they illustrate the prac-
tical difficulty of empirically measuring “time windows” for con-
solidation. The consolidation period in this study was defined as
the time during which protein synthesis was required for B to
increase to a level such that A only has an upper steady state
(for basal stimulus strength). Simulations indicated this was also
the time window during which ≥95% PSI was able to block or
delay consolidation. However, the results from alternative models
indicated that the time window for the sensitivity of memory con-
solidation to PSI was dependent on several factors including the
concentration and duration of PSI, and the parameters governing
protein degradation rates. Moreover, the time window for the
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sensitivity of memory consolidation to kinase inhibition was lon-
ger than the time window for the sensitivity of memory consoli-
dation to PSI. These results illustrate that empirically
determined temporal windows of consolidation are dependent
on the type, strength, and duration of amnesic treatments and
the underlying molecular mechanism of the memory. The effects
of varying the parameters of amnesic treatments can be particu-
larly nonlinear if the mechanism for LTM consolidation involves
one or more positive-feedback loops.

Materials and Methods

The two-loop model was derived primarily from the model of
Smolen et al. (2009) (Fig. 1A; see also Brandman et al. 2005;
Zhang et al. 2007) and was used to characterize the time windows
for the sensitivity of memory consolidation to inhibitions.
Two alternative models were derived from this model to further
investigate the contributions of the feedback loops to the re-
sistance of memory consolidation to PSI and kinase inhibition.
The importance of slow positive feedback involving protein
synthesis was also supported by a fourth model (Pettigrew et al.
2005).

Two-loop model
The two-loop model has two variables (Equation 1a,b). Variable A
represents the amount of activated kinase. A enhances its own
activation though a fast positive-feedback loop. Variable B repre-
sents the total amount of kinase. A increases B via a slow positive-
feedback loop, which might represent transcription or transla-
tion. B determines the upper bound of A. An increase in B acts
to increase A via mass action. In the two-loop model, an upper
bound BMAX was imposed on B:

dA

dt
= k1S + k2

A4

A4 + K4
A−1

( )
(B − A) + kminA

{ }

× (1 − PKI) − kdeg A
A

A + KA−2
, (1a)

dB

dt
= k3

A4

A4 + K4
B−1

(BMAX − B) + kminB

{ }

× (1 − ANI) − kdegB
B

B + KB−2
. (1b)

Standard parameter values were SB ¼ 20, k1 ¼ 1×1022 sec21,
k2 ¼ 1.0 sec21, KA21 ¼ 0.3 mM, kminA ¼ 3×1023 mM/sec, kdegA ¼
0.2 mM/sec, KA22 ¼ 2.6×1022 mM, k3 ¼ 7.2×1024 sec21, KB21 ¼
1 mM, BMAX¼4 mM, kminB ¼ 6.54×1027 mM/sec, kdegB ¼
1.83×1026 mM/sec, KB22 ¼ 1 mM. Stimulus S ¼ ST + SB. ST repre-
sents the training stimulus. During training, ST was increased
from 0 to 200. ST returned to 0 after training. Basal stimulus
SB was set to 20, i.e., 10% of maximal ST. Except during training,
S ¼ SB ¼ 20. The parameters (Equation 1a,b) were chosen to sup-
port bistability of activated kinase A and total kinase B at SB

(Fig. 2A). Models of interconnected positive-feedback loops
can exhibit either mono- or bistable behaviors in different
regions of their parameter space. We selected parameters that
supported bistability, consistent with theoretical work that sug-
gests bistable, switch-like behaviors in signaling cascades may
play a role in long-term cellular changes such as differentiation,
the cell cycle, and memory (Zhang et al. 2007; Guantes and
Poyates 2008; Kapuy et al. 2009; Smolen et al. 2009).

The timescale of the slow positive-feedback loop, which
increases B, depends most strongly on the parameter kdegB, the
rate constant for the degradation of B in Equation 1b. kdegB

is small (1.83×1026 mM/sec), making this feedback loop slow.
The time constant of the fast “autoactivation” positive-feedback
loop, which increases A, depends most strongly on kdegA, the
rate constant for the degradation of A. kdegA is much larger
(0.2 mM/sec). The slow feedback loop alone can sustain bistability.

However, the strength of bistability (i.e., the size of the region in
parameter space that supports two stable solutions for A and B) is
increased by strengthening the fast positive-feedback loop. Fast
positive feedback, in turn, is stronger for larger values of either
the rate constant k2 or the coefficient of the Hill function (i.e., 4
in Equation 1a).

In neurons, data suggest that two kinases, CAMKII and PKM,
may, when active, regulate their own synthesis (Wu et al. 1998;
Atkins et al. 2004, 2005; Pastalkova et al. 2006). In the model,
the expression A4/(A4 + KB21

4 ) in Equation 1b represents the
strength of feedback in which active kinase A up-regulates the syn-
thesis of total kinase B. In Smolen et al. (2009), this feedback term
used only a first power of A. The modification to fourth power
increases the nonlinearity of feedback from A to B.

Protein synthesis and kinase inhibition were simulated by
square pulses of ANI and PKI. ANI represents the effect of PSIs
(e.g., anisomycin). ANI ¼%synthesis inhibition/100. PKI repre-
sents the effect of kinase inhibitors. PKI ¼%kinase inhibition/
100. In Equation 1a,b, the degradation functions of A and B are
Michaelis-Menten equations, whereas they were linear functions
in Smolen et al. (2009). With the modified degradation functions,
the half-life of total kinase B is increased to �6 d, which is within
the biological range (Waelsch and Lajtha 1961).

The alternative models derived from the

two-loop model

Model without BMAX

In this model, we removed BMAX in Equation 1b. The equation
describing fast positive feedback remained unchanged. Equation
1b was modified to Equation 2, yielding:

dB

dt
= k3

A4

A4 + K4
B−1

+ kminB

{ }
(1 − ANI) − kdegB

B

B + KB−2
. (2)

For this model, two sets of parameter values were used:

1. k3 ¼ 4.6 × 1024 mM/sec, KB21 ¼ 0.3 mM, kminB ¼ 1.54 ×
1025 mM/sec, kdegB ¼ 6.25 × 1024 mM/sec, KB22 ¼ 22 mM. The
half-life of total kinase B is �7 h.

2. k3 ¼ 4.6 × 1024 mM/sec, KB21 ¼ 0.3 mM, kminB ¼ 1.09 × 1024

mM/sec, kdegB ¼ 1.25 × 1023 mM/sec, KB22 ¼ 5.85 mM. The
half-life of total kinase B is �1 h.

These changes in values from those used for the first model
(Equation 1b) were required to

1. Maintain the bistability of activated kinase A and total kinase B
at basal stimulus level, SB.

2. Maintain the basal level of B at 0.56 mM, same as the two-loop
model.

3. Keep the increased synthesis rate of B after training similar to
that in the two-loop model.

Therefore, the results from both the models were comparable.

One-loop model

In this model, the fast autoactivation feedback loop was elimi-
nated and Equation 1a reduced to:

dA

dt
= {(k1S)(B − A) + kmin A}(1 − PKI) − kdegA

A

A + KA−2
. (3)

Equation 1b, describing slow positive feedback, remained
unchanged.

Standard parameter values are as for Equation 1a,b. This
model also exhibited bistability of activated kinase A and total
kinase B at SB (Fig. 7A).
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Numerical methods

To check the consistency of results, the integrations of differential
equations in all the simulations were calculated by two methods,
forward Euler and Runge-Kutta (Hairer et al. 1993). No significant
differences were observed in the results. The time step was 10 ms.
No significant improvements in accuracy were found upon fur-
ther reduction of the time step. Prior to any training stimulation,
the steady state levels of variables were determined after at least
two simulated days. The models were programmed in Java and
XPP. Bifurcation analysis examined the ways in which steady-state
levels of A and B depend on the strength of the stimulus S. The
bifurcation software AUTO was used (Doedel 1981).

Simulation of stimulus noise

Stimulus noise was simulated by adding a white Gaussian noise
term with mean zero to the stimulus S (variable SN) (see also
Smolen et al. 2009). The noise term had the form SN ¼ s ×
sqrt[22 ln(U1)] × cos(2pU2) where U1 and U2 were random num-
bers uniformly distributed on (0,1). The standard deviation (s)
was 3%–20% of SB. Thus, S ¼ ST + SB + SN. Fluctuations that
took S to negative values were reset to S ¼ 0. The noise time step
was 1 sec. Programs are available upon request.
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