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Classification of 1-absorbing
comultiplication modules over a pullback

ring

Farkhondeh Farzalipour∗ and Peyman Ghiasvand

Abstract. One of the aims of the modern representation theory is to solve
classification problems for subcategories of modules over a unitary ring R.
In this paper, we introduce the concept of 1-absorbing comultiplication mod-
ules and classify 1-absorbing comultiplication modules over local Dedekind
domains and we study it in detail from the classification problem point of
view. The main purpose of this article is to classify all those indecomposable
1-absorbing comultiplication modules with finite-dimensional top over pull-
back rings of two local Dedekind domains and establish a connection between
the 1-absorbing comultiplication modules and the pure-injective modules over
such rings. In fact, we extend the definition and results given in [17] to a
more general 1-absorbing comultiplication modules case.
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1 Introduction and Preliminaries

The idea of investigating a mathematical structure via its representations
in simpler structures is commonly used and often successful. The reader is
referred to [2], [38, Chapter 1 and 14], [39] and [22] for a detailed discus-
sion problems, their representation types (finite, tame, or wild), and useful
computational reduction procedures.

Let v1 : R1 −→ R̄ and v2 : R2 −→ R̄ be a homomorphism of two
local Dedekind domains Ri, i = 1, 2, onto a common field R̄. Denote the
pullback R = {(r1, r2) ∈ R1 ⊕ R2 : v1(r1) = v2(r2)} by (R1

v1−→ R̄
v2←− R2),

where R̄ = R1/J(R1) = R2/J(R2). Then R is a ring under coordinate-wise
multiplication. Denote the kernel of vi, i = 1, 2, by Pi. Then Ker(R −→
R̄) = P = P1 × P2, R/P ∼= R̄ ∼= R2/P2, and P1P2 = P2P1 = 0 (so R is not
a domain). Furthermore, for i ̸= j, 0 −→ Pi −→ R −→ Rj −→ 0 is a exact
sequence of R-modules (see [27]).

We know that every module is an elementary substructure of a pure-
injective module. In fact, there is a minimal pure-injective elementary ex-
tension of each module M , denoted by h(M), called the pure-injective hull
of M and it is unique up to isomorphism fixing M . The class of pure-
injective modules is closed under direct summands and finite direct sums,
but an infinite direct sum of pure-injective modules need not be a pure-
injective module. Observe that any finite module is pure-injective. In a
sense, then, pure-injective modules are model theoretically typical: for ex-
ample, classification of the complete theories of R-modules reduces to clas-
sify the (complete theories of) pure-injective modules. Also, for some rings,
“small” (finite-dimensional, finitely generated, . . . ) modules are classified
and in many cases this classification can be extended to give a classification
of (indecomposable) pure-injective modules. Indeed, there is sometimes a
strong connection between infinitely generated pure-injective modules and
families of finitely generated modules. Therefore, pure-injective modules
are very important (see [26], [35] and [41]). One point of this paper is to
introduce a subclass of pure-injective modules.

Modules over pullback rings have been studied by several authors (see
for example, [6], [8], [10], [12], [13], [15], [17], [18], [19], [32] and [42]). The
important work of Levy [28] provides a classification of all finitely generated
indecomposable modules over Dedekind-like rings. L. Klingler [24] extended
this classification to lattices over certain non-commutative Dedekind-like
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rings, and L. Klingler and J. Haefner (see [20], [21]) classified lattices over
certain non-commutative pullback rings, which they called special quasi
triads. Common to all these classifications is the reduction to a “matrix
proplem” over a division ring (see [34], [38] and [40] for background on
matrix problems and their applications).

In the present article, we introduce a new class of R-modules, called
1-absorbing comultiplication modules (see Definition 2.5), and we study
it in detail from the classification problem point of view. We are mainly
interested in case either R is a Dedekind domain or R is a pullback of two
local Dedekind domains. First, we give a complete description of the 1-
absorbing comultiplication modules over a local Dedekind domain. Let R
be a pullback of two local Dedekind domains over a common factor field.
Next, the main purpose of this paper is to give a complete description
of the indecomposable 1-absorbing comultiplication R-modules with finite-
dimensional top over R/Rad(R) (for any module M we define its top as
M/Rad(R)M). In fact, we extend the definition and results given in [17] to
a more general 1-absorbing comultiplication modules case.

The classification is divided into two stages: the description of all in-
decomposable separated 1-absorbing comultiplication R-modules and then,
using this list of separated 1-absorbing comultiplication modules, we show
that non-separated indecomposable 1-absorbing comultiplicationR-modules
with finite-dimensional top are factor modules of finite direct sums of sep-
arated indecomposable 1-absorbing comultiplication R-modules. Then we
use the classification of separated indecomposable 1-absorbing comultiplica-
tion modules from Section 3, together with results of Levy [29] on the pos-
sibilities for amalgamating finitely generated separated modules, to classify
the non-separated indecomposable 1-absorbing comultiplication modules M
with finite-dimensional top (see Theorem 4.8).

For the sake of completeness, we state some definitions and notations
used throughout. In this article all rings are commutative with identity
and all modules unitary. Let R be the pullback ring as mentioned in the
beginning of introduction. An R-module S is defined to be separated if there
exist Ri-modules Si, i = 1, 2, such that S is a submodule of S1 ⊕ S2 (the
latter is made into an R-module by setting (r1, r2)(s1, s2) = (r1s1, r2s2)).
Equivalently, S is separated if it is a pullback of an R1-module and an
R2-module and then, using the same notation for pullbacks of modules
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as for rings, S = (S/P2S −→ S/PS ←− S/P1S) [27, Corollary 3.3] and
S ⊆ (S/P2S)⊕(S/P1S). Also, S is separated if and only if P1S∩P2S = 0 [27,
Theorem 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of
a separated R-module, indeed every R-module has a “minimal” such repre-
sentation: a separated representation of an R-module M is an epimorphism
φ = (S −→ M) of R-modules where S is separated and, if φ admits a fac-

torization φ : S
f−→ S′ −→M with S′ separated, then f is one-to-one. The

module K = Ker(φ) is then an R̄-module, since R̄ = R/P and PK = 0 [27,
Proposition 2.3]. An exact sequence 0 −→ K −→ S −→ M −→ 0 of R-
modules with S separated and K an R̄-module is a separated representation
of M if and only if PiS ∩K = 0 for each i and K ⊆ PS [27, Proposition
2.3]. Every module M has a separated representation, which is unique up to
isomorphism [27, Theorem 2.8]. Moreover, R-homomorphisms lift to a sep-
arated representation, preserving epimorphisms and monomorphisms [27,
Theorem 2.6].

Definition 1.1. (a) If R is a ring and N is a submodule of an R-module
M , the ideal {r ∈ R : rM ⊆ N} is denoted by (N : M). Then (0 : M)
is the annihilator of M .

(b) A proper submodule N of a module M over a ring R is said to be pri-
mary submodule (resp., prime submodule) if whenever rm ∈ N , for
some r ∈ R, m ∈M , then m ∈ N or rn ∈ (N : M) for some n (resp.,
m ∈ N or r ∈ (N : M)), so Rad(N : M) = P (resp., (N : M) = P ′)
is a prime ideal of R, and N is said to be P -primary (resp., P ′-prime)
submodule. The set of all primary submodules (resp., prime submod-
ules) in an R-module M is denoted pSpec(M) (resp., Spec(M)).

(c) A proper submodule N of an R-module M is called to be 2-absorbing,
if for a, b ∈ R and m ∈ M , abm ∈ N implies that ab ∈ (N : M) or
am ∈ N or bm ∈ N . So (N : M) is a 2-absorbing ideal of R. The
set of all 2-absorbing submodules in an R-module M is denoted by
2− abSpec(M) (see [33]).

(d) A proper ideal I of a commutative ring R is said to be 1-absorbing
prime, if for all non-unit elements a, b, c ∈ R, abc ∈ I, then ab ∈ I or
c ∈ I (see [43]).
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(e) An R-module M is defined to be a comultiplication module if for each
submodule N of M , N = (0 :M I), for some ideal I of R. In this case,
we can take N = (0 :M ann(N)).

(f) An R-module M is defined to be a weak comultiplication module if
Spec(M) = ∅ or for every prime submodule N of M , N = (0 :M I),
for some ideal I of R (see [14]).

(g) An R-module M is defined to be a primary comultiplication module if
pSpec(M) = ∅ or for every primary submodule N of M , N = (0 :M I),
for some ideal I of R (see [15]).

(h) An R-module M is defined to be an absorbing comultiplication module
if 2 − abSpec(M) = ∅ or for every 2-absorbing submodule N of M ,
N = (0 :M I), for some ideal I of R (see [10]).

(i) A submodule N of an R-module M is called pure submodule, if any
finite system of equations over N which is solvable in M is also solvable
in N . A submodule N of an R-module M is called relatively divisible
(or an RD-submodule) in M if rN = N ∩ rM for all r ∈ R (see
[35, 41]).

(j) A module M is pure-injective if it has the injective property relative
to all pure exact sequences (see [35, 41]).

(k) Let R be a commutative ring and M be an R-module. A proper
submodule N of M is said to be 1-absorbing prime, if for all non-
unit elements a, b ∈ R and m ∈ M , abm ∈ N , then m ∈ N or
ab ∈ (N : M). The set of all 1-absorbing prime submodules in an
R-module M is denoted by abpSpec(M).

(l) An R-module M is called to be 1-absorbing prime, if its zero submod-
ule is a 1-absorbing prime submodule of M .

Remark 1.2. (i) An R-module is pure-injective if and only if it is alge-
braically compact (see [42]).

(ii) Let R be a Dedekind domain, M an R-module and N a submodule of
M . Then N is pure in M if and only if IN = N ∩ IM for each ideal I
of R. Moreover, N is pure in M if and only if N is an RD-submodule
of M (see [41]).

(iii) Let N be an R-submodule of M . It is clear that N is an RD-
submodule of M if and only if for all m ∈ M and r ∈ R, rm ∈ N
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implies that rm = rn for some n ∈ N . Furthermore, if M is torsion-
free, then N is an RD-sumodule if and only if for all m ∈ M and for
all non-zero r ∈ R, rm ∈ N implies that m ∈ N . In this case, N is an
RD-submodule if and only if N is a prime submodule.

2 1-absorbing comultiplication modules over a local Dedekind
domain

The aim of this section is to classify 1-absorbing comultiplication modules
over a local Dedekind domain. First, we collect basic properties concerning
1-absorbing comultiplication modules.

Note that every prime submodule is a 1-absorbing prime submodule and
every 1-absorbing prime submodule is a 2-absorbing prime submodule. But
the converse is not true in general. See the following examples.

Example 2.1. (1-absorbing prime submodule that is not prime)
Consider Z4-module Z4[X] and the submodule N = ⟨X⟩. Thus N is a
1-absorbing prime submodule, but N is not a prime submodule of Z4[X].
Because 4̄ = 2̄.2̄ ∈ N , but 2̄ ̸∈ N and 2̄ ̸∈ (N :Z4 Z4[X]).

Example 2.2. (2-absorbing submodule that is not 1-absorbing prime)
Consider Z-module Z30. Suppose that N = ⟨6⟩ is the cyclic submodule of
Z-module Z30. It is clear that N = ⟨6⟩ is a 2-absorbing submodule of Z-
module Z30, but it is not a 1-absorbing prime submodule of Z30. Indeed,
2 · 2 · 3 ∈ ⟨6⟩ but 4 ̸∈ (N : Z30) and 3 ̸∈ ⟨6⟩.

Proposition 2.3. Let M be an R-module. Then

(i) If N is a 1-absorbing prime submodule of M , then (N : M) is a 1-
absorbing prime ideal of R.

(ii) If N is a 1-absorbing prime submodule of M and I, J are ideals of R
and K is a submodule of M such that IJK ⊆ N , then K ⊆ N or
IJ ⊆ (N : M).

(iii) Let K ⊂ N be submodules of M . Then N is a 1-absorbing prime
submodule of M if and only if N/K is a 1-absorbing prime submodule
of M/K.
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(iv) If N is a 1-absorbing prime submodule of M , then M/N is a 1-
absorbing prime R-module.

Proof. The proof is straightforward.

Lemma 2.4. Let M be an R-module, N a 1-absorbing prime submodule of
M and I an ideal of R with I ⊂ (0 : M). Then N is a 1-absorbing prime
submodule of M as an R/I-module.

Proof. By Proposition 2.3, M/N is a 1-absorbing prime R-module. Let
(a+I)(b+I)m ∈ N for some m ∈M and a+I, b+I ∈ R/I, so ab(m+N) = 0,
hence m ∈ N or ab ∈ (0 : M/N) = (N : M), as needed.

Definition 2.5. Let R be a commutative ring. An R-module M is said to
be a 1-absorbing comultiplication module, if abpSpec(M) = ∅ or for every
1-absorbing prime submodule N of M , N = (0 :M I), for some ideal I of R.

Note that the class of 2-absorbing comultiplication modules contains the
class of 1-absorbing comultiplication modules, and the class of 1-absorbing
comultiplication modules contains the class of weak comultiplication mod-
ules.

Lemma 2.6. Let M be a 1-absorbing comultiplication module over a com-
mutative ring R. Then the following hold:

(i) If N is a pure submodule of M , then M/N is a 1-absorbing comulti-
plication R-module.

(ii) Every direct summand of M is a 1-absorbing comultiplication module.

Proof. (i) Let K/N be a 1-absorbing prime submodule of M/N . Then by
Proposition 2.3, K is a 1-absorbing prime submodule of M , then K = (0 :M
I) for some ideal I of R. An inspection will show that K/N = (0 :M/N I).

(ii) Since every direct summand of M is a pure submodules of M , then
the proof follows from (i).

Lemma 2.7. Let R and R′ be any commutative rings, f : R → R′ a
surjective homomorphism and M an R′-module. Then the following hold:

(i) If M is a 1-absorbing prime as an R-module, then M is 1-absorbing
prime as an R′-module.
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(ii) If N is a 1-absorbing prime R-submodule ofM , then N is a 1-absorbing
prime R′-submodule of M .

(iii) If M is a 1-absorbing comultiplication R′-module, then M is a 1-
absorbing comultiplication R-module.

Proof. (i) It is obvious.
(ii) Clearly, M/N is a 1-absorbing prime R-module, so M/N is a 1-

absorbing prime R′-module by (i), hence N is a 1-absorbing prime R′-
submodule of M .

(iii) By part (ii), if N is a 1-absorbing prime R-submodule of M , then it
is a 1-absorbing prime R′-submodule of M . Assume that M is a 1-absorbing
comultiplication R′-module and let N be a 1-absorbing R-submodule of M .
Then N = (0 :M J), where J = (0 :R′ N); so I = f−1(J) is an ideal of
R with f(I) = J . It is enough to show that (0 :M J) = (0 :M I). Let
m ∈ (0 :M J). If r ∈ I, then f(r) ∈ J , so f(r)m = 0. Thus rm = 0 for
every r ∈ I; hence m ∈ (0 :M I). For the reverse inclusion, assume that
x ∈ (0 :M I) and s ∈ J . Then s = f(a) for some a ∈ I. It follows that
sx = g(a)x = ax = 0 for every s ∈ J ; hence x ∈ (0 :M J), and we have
equality.

Remark 2.8. Assume that R is a local Dedekind domain with maximal
ideal P = Rp and let M = R (as an R-module). Since P is a 1-absorbing
prime submodule of M with (0 :M ann(P )) = R. Therefore, M is not a
1-absorbing comultiplication R-module.

Proposition 2.9. Let R be a local Dedekind domain with unique maximal
ideal P = Rp. Then E = E(R/P ), the injective hull of R/P , and Q(R),
the field of fractions of R, are 1-absorbing comultiplication R-modules.

Proof. By [7, Lemma 2.6], every non-zero proper submodule L of E is of
the form L = An = (0 :E Pn) (n ≥ 1), L = An = Ran and PAn+1 = An.
However, no An is a 1-absorbing prime submodule of E, for if n is a positive
integer, then P 2An+2 = An, but An+2 ⊈ An and P 2 ⊈ (An : E) = 0. Now
we conclude that abpSpec(E) = ∅. Thus E is a 1-absorbing comultiplication
module.
Clearly, 0 is a 1-absorbing prime (prime) submodule of Q(R). To show
that 0 is the only 1-absorbing prime submodule of Q(R), we assume the
contrary and let N be a non-zero 1-absorbing prime submodule of Q(R).
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Since N is a non-zero submodule, there exists 0/1 ̸= a/b, where a, b ∈ R,
so that a/b ∈ N . Clearly, 1/ab ̸∈ N (otherwise, ab/ab = 1/1 ∈ N , which
is a contradiction). Now we have a2(1/ab) ∈ N , but 1/ab ≠∈ N and
a2 ̸∈ (N :R Q(R)) = 0. Thus abpSpec(Q(R)) = {0} and hence Q(R) is a
1-absorbing comultiplication module.

The following theorem represents a generalization of [17, Theorem 1.4]
in the comultiplication module case.

Theorem 2.10. Let R be a local Dedekind domain with a unique maximal
ideal P = Rp. Then the following is a complete list, up to isomorphism, of
the indecomposable 1-absorbing comultiplication modules:

(i) R/Pn (n ≥ 1) the indecomposable torsion module;

(ii) E(R/P ), the injective hull of R/P ;

(iii) Q(R), the field of fractions of R.

Proof. First, we note that each of the preceding modules is indecomposable
(by [6, Proposition 1.3]). Q(R) and E(R/P ) are 1-absorbing comultiplica-
tion modules by Proposition 2.9. Moreover, R/Pn is a 1-absorbing comul-
tiplication module since it is a comultiplication module (see [11]).
Now let M be an indecomposable 1-absorbing comultiplication module, and
choose any non-zero element a ∈ M . consider ann(a) = {r ∈ R : ra = 0}
and the height h(a) = sup{n | a ∈ PnM} (so h(a) is a non-negative integer
or ∞). If (0 : a) = Pm+1, then ann(apm) = P . So, replacing a if necessary,
it may be supposed that ann(a) = P or 0. Now we consider the various
possibilities for h(a) and ann(a).

Case 1. abpSpec(M) = ∅. Since Spec(M) ⊆ abpSpec(M), it follows
from [30, Lemma 1.3, Proposition 1.4] that M is a torsion divisible R-
module with PM = M and M is not finitely generated. We may assume
that (0 : a) = P . By an argument like that in [7, Proposition 2.7, Case
2(a)], M ∼= E(R/P ). So we may assume that abpSpac(M) ̸= ∅.

Case 2. h(a) = n, ann(a) = P . Since h(a) = n, there is an element
b ∈M such that a = pnb. So pnb ̸= 0 and the maximal power of p dividing
pnb is just pn. Moreover, (0 : b) = pn+1R gives Rb ∼= R/Pn+1. Now we
show that Rb is a pure submodule of M . Since R is a Dedekind domain,
it suffices to show that for all integers h, k if ph|pkb in M , then ph|pkb in
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Rb. First, we show that if ph|pkb in M , then h ≤ k. Clearly, k ≤ n and
pn−k+h|pn−k+kb = pnb gives n − k + h ≤ n by maximality of n, that is,
h ≤ k. Then we can write pkb = phpk−hb. Thus, Rb is pure in M . By
assumption, Rb = P sM for some s. Then there is an element c ∈ M such
that b = psc, so a = pn+sc; hence s = 0 and R/Pn+1 ∼= Rb = P 0M = M .

Case 3. h(a) = ∞, ann(a) = P . By argument in [7, Proposition 2.7],
we get M ∼= E(R/P ), hence abpSpac(M) = ∅ by Proposition 2.9, which is
a contradiction.

Case 4. h(a) = ∞, ann(a) = 0. By [7, Proposition 2.7], we obtain
M ∼= Q(R).

Corollary 2.11. Let M be a 1-absorbing comultiplication module over a
local Dedekind domain with maximal ideal P = Rp. Then M is of the form
M = N ⊕K, where N is a direct sum of copies of R/Pn (n ≥ 1) and K is
a direct sum of copies of E(R/P ) and Q(R).

3 The separated 1-absorbing comultiplication modules

Throughout this section, we shall assume unless otherwise stated, that

R = (R1
v1−→ R̄

v2←− R2) (1)

is the pullback of two local Dedekind domains R1, R2 with maximal ideals
P1, P2 generated by p1, p2, respectively, P denotes P1 ⊕ P2 and R1/P1

∼=
R2/P2

∼= R/P ∼= R̄ is a field. In particular, R is a commutative Noetherian
local ring with unique maximal ideal P . The other prime ideals of R are
easily seen to be P1 (that is P1⊕0) and P2 (that is 0⊕P2). Let a = (r, s) ∈ R
with r ̸= 0 and s ̸= 0. Then we can write a = (pm1 , p

n
2 ) for some positive

integers m,n, so ann(a) = 0; hence Ra ∼= R. If a = (0, pm2 ) for some positive
integer m, then ann(a) = P1 ⊕ 0, and so R(0 : pm2 ) ∼= R/(P1 ⊕ 0) ∼= R2.
Similarly, R(pn1 , 0) ∼= R/(P1 ⊕ 0) ∼= R2. The other ideals I of R are of
the form I = Pm1 ⊕ Pn2 = (⟨pm1 , pn2 ⟩) for some positive integers m,n since
I ⊆ P = P1 ⊕ P2 = (< p1 >,< p2 >) and p1p2 = 0 (see [6, page 4054]).

Remark 3.1. ([15, Remark 3.1]) Let R be the pullback ring as in (1), and
let T be an R-submodule of a separated module

S = (S1
f1−→ S̄

f2←− S2)
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, with projection maps πi : S → Si. Set T1 = {t1 ∈ S1 : (t1, t2) ∈ T for
some t2 ∈ S2} and T2 = {t2 ∈ S2 : (t1, t2) ∈ T for some t1 ∈ S1}.

Then for each i, i = 1, 2, Ti is an Ri-submodule of Si and T ≤ T1 ⊕ T2.
Moreover, we can define a mapping π́1 = π1|T : T → T1 by sending (t1, t2)
to t1; hence T1

∼= T/(0⊕Ker(f2)) ∩ T ∼= T/(T ∩ P2S) ∼= (T + P2S)/P2S ⊆
S/P2S. So we may assume that T1 is a submodule of S1. Similarly, we
may assume that T2 is a submodule of S2 (note that Ker(f1) = P1S1 and
Ker(f2) = P2S2).

We need the following proposition proved in [19, Proposition 3.2].

Proposition 3.2. Let T = (T1 −→ T̄ ←− T2) be a proper submodule of a

separated module S = (S1
f1−→ S̄

f2←− S2) over the pullback ring as in (1).
Then the following hold:

(i) Rad(T : S) = I ⊕ J if and only if Rad(T1 : S1) = I and Rad(T2 :
S2) = J , where I ̸= 0 and J ̸= 0.

(ii) Rad(T : S) = P1 ⊕ 0 if and only if Rad(T1 : S1) = P1 and Rad(T2 :
S2) = 0.

(iii) Rad(T : S) = 0 ⊕ P2 if and only if Rad(T1 : S1) = 0 and Rad(T2 :
S2) = P2.

Lemma 3.3. Let I be a 1-absorbing prime ideal of R. Then Rad(I) = P
is a prime ideal of R such that P 2 ⊆ I.

Proof. It follows from [43, Theorem 2.3 and Lemma 2.8].

Proposition 3.4. Let R be the pullback ring as in (1) and let S = (S1
f1−→

S̄
f2←− S2) be any separated R-module. Then the following hold:

(i) If S has a 1-absorbing prime submodule T = (T1 −→ T̄ ←− T2) with
Rad(T : S) = P = P1⊕P2 and P 2 ⊆ (T : S), then T1 is a 1-absorbing
prime submodule of S1 with Rad(T1 : S1) = P1 and T2 is a 1-absorbing
prime submodule of S2 with Rad(T2 : S2) = P2.

(ii) If S has a 1-absorbing prime submodule T with Rad(T : S) = P1 ⊕ 0
and (P1 ⊕ 0)2 ⊆ (T : S), then T1 is a 1-absorbing prime submodule of
S1 with Rad(T1 : S1) = P1 and T2 is a 1-absorbing prime submodule
of S2 with Rad(T2 : S2) = 0.
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(iii) If S has a 1-absorbing prime submodule T with Rad(T : S) = 0 ⊕ P2

and (0⊕ P2)2 ⊆ (T : S), then T1 is a 1-absorbing prime submodule of
S1 with Rad(T1 : S1) = 0 and T2 is a 1-absorbing prime submodule of
S2 with Rad(T2 : S2) = P2.

Proof. (i) Let a1b1s1 ∈ T1 where a1, b1 ∈ R1 and s1 ∈ S1. Then v1(a1) =
v2(a2) , v1(b1) = v2(b2) and f1(s1) = f2(s2) for some a2, b2 ∈ R2 and s2 ∈ S2.
Hence (a1, a2)(b1, b2)(s1, s2) ∈ P 2S ⊆ T . Therefore, since T is a 1-absorbing
prime submodule, we have (s1, s2) ∈ T or (a1, a2)(b1, b2) ∈ (T :R S). So
s1 ∈ T1 or a1b1 ∈ (T1 : S1). Similarly, T2 is a 1-absorbing prime submodule
of S2.

(ii) Let a1b1s1 ∈ T1 where a1, b1 ∈ R1 and s1 ∈ S1. So (a1, 0), (b1, 0) ∈ R
and there exists s2 ∈ S2 such that f1(s1) = f2(s2). Then

(a1, 0)(b1, 0)(s1, s2) ∈ (P1 ⊕ 0)2S ⊆ T
by hypothesise. Hence (a1, 0)(b1, 0)(s1, s2) ∈ P 2S ⊆ T . Therefore (s1, s2) ∈
T or (a1, 0)(b1, 0) ∈ (T :R S). So s1 ∈ T1 or a1b1 ∈ (T1 :R1 S1). Now
we show that T2 is a 1-absorbing prime submodule of S2. Suppose that
a2b2s2 ∈ T2 and a2b2 ̸∈ (T2 : S2) = 0 where a2, b2 ∈ R2. There exists
s1 ∈ S1 such that (s1, s2) ∈ S. Therefore, a2b2 ̸= 0, and so a2 ̸= 0 and
b2 ̸= 0 since R2 is a domain. Hence (p1, a2)(p1, b2)(s1, s2) ∈ T , because
p2

1s1 ∈ T1 ∩ P1S1, a2b2s2 ∈ T2 ∩ P2S2 and f1(p2
1s1) = 0 = f2(a2b2s2). Since

T is a 1-absorbing prime submodule of S, then (s1, s2) ∈ T . Thus s2 ∈ T2,
as required.

(iii) It is similar to that (ii).

Proposition 3.5. Let

S = (S/P2S = S1
f1−→ S̄ = S/PS

f2←− S2 = S/P1S)

be any separated module over the pullback ring as (1). abpSpec(S) = ∅ if
only if abpSpec(Si) = ∅ for i = 1, 2.

Proof. For the necessarily, assume that abpSpec(S) = ∅ and let π be the
projection map of R onto Ri. Suppose that abpSpec(S1) ̸= ∅ and let T1

be a 1-absorbing prime submodule of S1, so T1 is a 1-absorbing prime R-
submodule of S/(0⊕P2)S ∼= S1, by Proposition 2.3; hence abpSpec(S) ̸= ∅,
which is a contradiction. Similarly, abpSpec(S2) = ∅. The sufficiency by
Proposition 3.4.
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Proposition 3.6. Let R be the pullback ring as in (1) and let

S = (S1
f1−→ S̄

f2←− S2)

be any separated R-module. then the following hold:

(i) If L1 is a non-zero 1-absorbing prime submodule of S1, then there
exists a separated submodule T of S such that T + (0 ⊕ P2)S is a
1-absorbing prime submodule of S.

(ii) If L2 is a non-zero 1-absorbing prime submodule of S2, then there
exists a separated submodule T ′ of S such that T ′ + (P1 ⊕ 0)S is a
1-absorbing prime submodule of S.

Proof. (i) If L1 is a non-zero 1-absorbing prime submodule of S1, then
there exists a separated submodule T = (T1 −→ T̄ ←− T2) of S, where
T1 = L1. By Remark 3.1, T1

∼= (T + (0⊕ P2)S)/(0⊕ P2)S ⊆ S/(0⊕ P2)S.
Thus (T + (0 ⊕ P2)S)/(0 ⊕ P2)S is a 1-absorbing prime R-submodule of
S/(0⊕ P2)S. Hence T + (0⊕ P2)S is a 1-absorbing prime R-submodule of
S by Proposition 2.3. The proof of (ii) is similar that (i).

The following theorem represents a generalization of [17, Theorem 2.8]
in the comultiplication module case.

Theorem 3.7. Let

S = (S/P2S = S1
f1−→ S̄ = S/PS

f2←− S2 = S/P1S)

be any separated module over the pullback ring as (1). Then S is a 1-
absorbing comultiplication R-module if and only if Si is a 1-absorbing co-
multiplication Ri-module, i = 1, 2.

Proof. Note that by Proposition 3.5, abpSpec(S) = ∅ if only if for i = 1, 2,
abpSpec(Si) = ∅ . So we may assume that abpSpec(S) ̸= ∅. Let S be a
separated 1-absorbing comultiplication R-module and let L be a non-zero
1-absorbing submodule of S1. By Proposition 3.6, there exists a submodule
T = (T1 → T̄ ← T2) of S such that L = T1 and T ′ = T + (0⊕ P2)S is a 1-
absorbing submodule of S. Clearly, ann(T ′) = ann(T )∩ann((0⊕P2)S) = 0
or Pn1 ⊕ 0 for some positive integer n. Since S = (0 :S 0), S is a 1-absorbing
comultiplication module gives T ′ = (0 :S Pn1 ⊕ 0). It suffices to show
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that L = T1 = (0 :S1 pn1 ). Let t ∈ T1. There exists t2 ∈ T2 such that
(t1, t2) ∈ T ⊆ T ′; so (Pn1 ⊕0)(t1, t2) = 0. It then follows that T1 ⊆ (0 :S1 p

n
1 ).

For the reverse inclusion let s1 ∈ (0 :S1 p
n
1 ). Then there is an element s2 ∈ S2

such that (s1, s2) ∈ S and (Pn1 ⊕ 0)(s1, s2) = 0. Hence (s1, s2) ∈ T ′. Thus
s1 ∈ T1 and we have equality. Therefore S1 is a 1-absorbing comultiplication
module. Similarly, S2 is a 1-absorbing comultiplication module. Conversely,
assume that S1, S2 are 1-absorbing comultiplication modules and let T be
a 1-absorbing submodule of S. Hence T = (T1 −→ T̄ ←− T2) where Ti
is an Ri-submodule of Si for each i = 1, 2. By Proposition 3.4, T1, T2

are 1-absorbing submodules of S1, S2, respectively. By assumption, T1 =
(0 :S1 P

n
1 ) and T2 = (0 :S2 P

m
2 ) for some integers n,m. An inspection will

show that T = (0 :S P
n
1 ⊕ Pm2 ). Thus S is a 1-absorbing comultiplication

R-module.

Lemma 3.8. Let R be the pullback ring as in (1). The following separated
R-modules are indecomposable and 1-absorbing comultiplication:

(1) S = (E(R1/P1) −→ 0 ←− 0), (0 −→ 0 ←− E(R2/P2), where
E(Ri/Pi) is the Ri-injective hull of Ri/Pi for i = 1, 2;

(2) S = (Q(R1) −→ 0 ←− 0), (0 −→ 0 ←− Q(R2), where Q(Ri) is the
field of fractions of Ri for i = 1, 2;

(3) R = (R1/P
n
1 −→ R̄←− R2/P

m
2 ), for all positive integers m,n.

Proof. By [6, Lemma 2.8], these modules are indecomposable and 1-absorbing
comultiplicativity follows from Theorem 2.10 and Theorem 3.7.

Theorem 3.9. Let S = (S1
f1−→ S̄

f2←− S2) be an indecomposable separated
1-absorbing comultiplication module over the pullback ring as (1). Then S
is isomorphic to one of the modules listed in Lemma 3.8.

Proof. If abpSpec(S) = ∅, then abpSpec(Si) = ∅ by Proposition 3.5, so
Si = PiSi for each i = 1, 2 (see Theorem 2.10, Case 1); hence S = PS =
P1S1 ⊕ P2S2 = S1 ⊕ S2. Therefore S = S1 or S2 and so S is of type (1) in
the list of Lemma 3.8. So we may assume that abpSpec(S) ̸= ∅. If S = PS,
then by [6, Lemma 2.7(i)], S = S1 or S2 and so S is an indecomposable
1-absorbing comultiplication Ri-module for some i, and since PS = S, it
is of type (2) by Theorem 2.10. So we may assume that S ̸= PS. By
Theorem 3.7, Si is a 1-absorbing comultiplication Ri-module, for each i =
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1, 2. Hence by the structure of 1-absorbing comultiplication modules over
a local Dedekind domain (see Theorem 2.11), Si = Mi ⊕ Ni where Ni is
a direct sum of copies of Ri/P

i
i (n ≥ 1) and Mi is a direct sum of copies

E(Ri/Pi) and Q(Ri). Then we have

S = (N1 −→ S̄ ←− N2)⊕ (M1 −→ 0←− 0)⊕ (0 −→ 0←−M2).

Since S is indecomposable and S/PS ̸= 0 it follows that S = (N1 −→ S̄ ←−
N2). We will see that each Si(= Ni) is indecomposable. There exist positive
integers m,n and k such that Pm1 S1 = 0, P k2 S2 = 0 and PnS = 0. Now
choose t ∈ S1 ∪ S2 with t̄ ̸= 0 and let o(t) denote the least positive integer
k such that P kt = 0 if there is such k and if no such k o(t) = ∞ and o(t)
minimal among such t. Let t ∈ S2 and so write t = t2 and m = k = o(t2).
Now pick t1 ∈ S1 with t̄1 = t̄2 = t̄ and o(t) = n minimal (so o(t2) ̸= ∞
and o(t1) ̸= ∞). There exists a t = (t1, t2) such that o(t) = n, o(t1) = m
and o(t2) = k. Then Riti is pure in Si for i = 1, 2 (see [6, Theorem 2.9]).
Therefore, R1t1 ∼= R1/P

m
1 (resp. R2t2 ∼= R2/P

k
2 ) is a direct summand of S1

(resp. S2) since for each i, Riti is a pure-injective module [6]. Let M̄ be the
R̄-subspace of S̄ generated by t̄. Then M̄ ∼= R̄. Let

M = (R1t1 = M1 −→ M̄ ←−M2 = R2t2).

Then M is an R-submodule of S which is 1-absorbing comultiplication by
Lemma 3.8, and is a direct summand of S (see [6, Theorem 2.9]); this implies
that S = M , and S is as in (3).

Corollary 3.10. Let R be the pullback ring as in (1). Then

(1) Every separated 1-absorbing comultiplication R-module S is of the
form S = M ⊕ N , where M is a direct sum of copies of the mod-
ules as in (3), and N is a direct sum of copies of the modules as in
(1)-(2) of Lemma3.8.

(2) Every separated 1-absorbing comultiplication R-module is pure-injective.

Proof. It follows from Theorem 3.9 and [6, Theorem 2.9].
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4 The non-separated 1-absorbing comultiplication modules

We continue to use the notion already established, so R is the pullback
ring as in (1). In this section, we find the indecomposable non-separated
1-absorbing comultiplication modules with finite-dimensional top. It turns
out that each can be obtained by amalgamating finitely many separated
indecomposable 1-absorbing comultiplication modules.

Proposition 4.1. Let R be the pullback ring as in (1). Then E(R/P ) is a
non-separated 1-absorbing comultiplication R-module.

Proof. It suffices to show that abpSpac(E(R/P )) = ∅. Assume that L is
any submodule of E(R/P ) described in [17, Proposition 3.1]. However, no
L, say E1 +An is a 1-absorbing prime submodule of E(R/P ), for if n is any
positive integer, then P 2(E1 +An+2) = E1 +An, but (E1 +An+2) ⊈ E1 +An
and P 2 ⊈ (E1 + An : E(R/P )) = 0. Therefore E(R/P ) is a non-separated
1-absorbing comultiplication R-module (see [6, page 4053]).

Proposition 4.2. Let R be the pullback ring as in (1), and let M be any
R-module. Let 0 −→ K −→ S −→ M −→ 0 be a separated representation
of M . Then abpSpec(S) = ∅ if and only if abpSpec(M) = ∅.

Proof. First suppose that abpSpec(S) = ∅ and let abpSpec(M) ̸= ∅. SoM ∼=
S/K has a 1-absorbing prime submodule, say T/K, where T is a 1-absorbing
prime submodule of S by Proposition 2.3, which is a contradiction. Next
suppose that abpSpec(M) = ∅ and let abpSpec(S) ̸= ∅. Let T be a non-
zero 1-absorbing prime submodule of S. Then by [11, Proposition 4.3(ii)],
K ⊆ T ; hence T/K is a 1-absorbing prime submodule of M , which is a
contradiction.

Lemma 4.3. Let R be the pullback ring as in (1) and let M be any R-
module. Let 0 −→ K −→ S −→ M −→ 0 be a separated representation of
an R-module M .

(i) If (0 :R S) = Pm1 ⊕0 for some positive integer m, then M is separated.

(ii) If (0 :R S) = 0⊕Pm1 for some positive integer m, then M is separated.

(iii) If (0 :R S) = 0, then M is separated.

Proof. It follows from [10, Lemma 4.2].
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Proposition 4.4. Let R be the pullback ring as in (1), and let M be a
1-absorbing comultiplication non-separated R-module. Let

0 −→ K
i−→ S

φ−→M −→ 0

be a separated representation of M . If N is a non-zero R-submodule of M ,
then M/N is a 1-absorbing comultiplication R-module.

Proof. Let L/N be a 1-absorbing prime submodule of M/N . Then L is a 1-
absorbing prime submodule of M by Proposition 2.3, so L = (0 :M ann(L)).
Since ann(M) ⊆ ann(L) ̸= 0 and M is a non-separated R-module, Lemma
4.3 gives ann(L) = Pn1 ⊕ Pm2 for some positive integers m,n (note that if
ann(M) = 0, then ann(S) ⊆ (K :R S) = ann(M) = 0). We show that
L/N = (0 :M/N (Pn1 ⊕ Pm2 )). Let x + N ∈ L/N . Then (Pn1 ⊕ Pm2 )x = 0
gives (Pn1 ⊕ Pm2 )(x + N) = 0; so x + N ∈ (0 :M/N (Pn1 ⊕ Pm2 )). For
the reverse inclusion, assume that y + N ∈ (0 :M/N (Pn1 ⊕ Pm2 )). Then
(Pn1 ⊕ Pm2 )y ⊆ N ⊆ L. We claim that (Pn1 ⊕ Pm2 )y = 0. Assume to the
contrary, 0 ̸= (Pn1 ⊕ Pm2 )y ⊆ L. Then (P 2n

1 ⊕ P 2m
2 )y = 0. Let t be the

least positive integer such that P ty = 0 (so P t−1y ̸= 0). So there exists
x ∈ S such that y = φ(x) and φ(P tx) = 0; so φ(P t1x) = φ(P t2x) = 0.
By [28, Proposition 2.3], φ is one-to-one on PiS for each i, we find that
P t2x = P t1x = 0; hence P tx = 0. Set U = P t−1y. Then 0→ K → φ−1(U) =
P t−1x→ U → 0 is a separated representation of U by [8, Lemma 3.1], such
that K ⊆ P (P t−1x) = 0 which is a contradiction. Thus (Pn1 ⊕ Pm2 )y = 0,
and so we have equality.

The following theorem gets a generalization of [17, Proposition 3.7] in
the comultiplication module case.

Theorem 4.5. Let R be the pullback ring as in (1), and let M be any
non-separated R-module. Let 0 −→ K −→ S −→ M −→ 0 be a separated
representation of M . Then S is a 1-absorbing comultiplication module if
and only if M is a 1-absorbing comultiplication module.

Proof. By Proposition 4.2, we may assume that abpSpec(S) ̸= ∅. Suppose
that M is a 1-absorbing comultiplication R-module and let T be a non-zero
1-absorbing prime submodule of S. By [11, Proposition 4.3], K ⊆ T and
so T/K is a 1-absorbing prime submodule of S/K. Since M ∼= S/K is a 1-
absorbing comultiplication module, we must have T/K = (0 :S/K Pn1 ⊕Pm2 )
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for some integers m,n. By an argument like that in [11, Theorem 4.4], we
find that T = (0 :S P

n
1 ⊕ Pm2 ) and so S is a 1-absorbing comultiplication

module. Conversely, if S is a 1-absorbing comultiplication module, then
M ∼= S/K is a 1-absorbing comultiplication module by Proposition 4.4, and
this complete the proof.

Proposition 4.6. Let R be the pullback ring as in (1), and let M be an
indecomposable 1-absorbing comultiplication non-separated R-module with
M/PM finite dimensional top over R̄. If

0 −→ K −→ S −→M −→ 0

is a separated representation of M , then S has finite-dimensional top and
is pure-injective.

Proof. By [6, Proposition 2.6(i)], S/PS ∼= M/PM , so S has finite-dimensional
top. Now the assertion follows from Theorem 4.5 and Corollary 3.10.

Let R be the pullback ring as in (1), and let M be an indecomposable
1-absorbing comultiplication non-separated R-module with M/PM finite
dimensional top over R̄. Consider the separated representation

0 −→ K −→ S −→M −→ 0.

By Proposition 4.6, S is a pure-injective module. So in the proofs of [6,
Lemma 3.1, Proposition 3.2 and Proposition 3.4] (here the pure-injectivity
of M implies the pure-injectivity of S by [6, Proposition 2.6]), we can replace
the statement “M is an indecomposable pure-injective non-separated R-
module” by “M is an indecomposable 1-absorbing comultiplication non-
separated R-module”, because the main key in those results are the pure-
injectivity of S, the indecomposability and the non-separability of M . So
we have the following result:

Corollary 4.7. Let R be the pullback ring as in (1), and let M be an
indecomposable 1-absorbing comultiplication non-separated R-module with
M/PM finite-dimensional over R̄, and let

0 −→ K −→ S −→M −→ 0

be a separated representation of M . Then the following hold:
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(i) The quotient fields Q(R1) and Q(R2) of R1 and R2 do not occur among
the direct summand of S;

(ii) S is a direct sum of finitely many indecomposable 1-absorbing comul-
tiplication modules;

(iii) At most two copies of modules of finite length can occur among the
indecomposable summands of S.

Let R be a pullback ring as in (1). Let M be any R-module and let
0 → K → S → M → 0 be a separated representation of M . We have
already shown that if M is indecomposable 1-absorbing comultiplication
with M finite-dimensional top then S is a direct sum of just finitely many
indecomposable separated 1-absorbing comultiplication modules and these

are known by Theorem 3.9. In any separated representation 0 −→ K
i−→

S
φ−→ M −→ 0 the kernel of the map φ to M is annihilated by P , hence

is contained in the socle of the separated module S. Thus M is obtained
by amalgamation in the socles of the various direct summands of S. This
explains Corollary 4.7(i): the modules Q(R1) and Q(R2) have zero socle
and so cannot be amalgamated with any other direct summands of S and
hence cannot occur in a separated (hence “minimal”) representation. So
the questions are: does this provide any further condition on the possible
direct summands of S? How can these summands be amalgamated in order
to form M? For the case of finitely generated R-modules M these questions
are answered by Levy’s description [29], see also [28, Section 11]. Levy shows
that the indecomposable finitely generated R-modules are of two nonover-
lapping types which he calls deleted cycle and block cycle types. It is the
modules of deleted cycle type which are most relevant to us. Such a module
is obtained from a direct sum, S, of indecomposable separated modules by
amalgamating the direct summands of S in pairs to form a chain but leaving
the two ends unamalgamated. Reflecting the fact that the dimension over
R̄ of the socle of any finitely generated indecomposable separated module
is ≤ 2 each indecomposable summand of S may be amalgamated with at
most two other indecomposable summands. Consider the indecomposable
separated R-modules S(n,m) = (R1/P

n
1 → R̄ ← R2/P

m
2 ) with n,m ≥ 2

(it is generated over R by (1 + Pn1 , 1 + Pm2 )). Actually, separated indecom-
posable R-modules also include R1/P

n
1 for n ≥ 2, which can be regarded

up to isomorphism as S(n, 1) = (R1/P
n
1 → R̄ ← R2/P2). Similarly, for
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m ≥ 2, S(1,m) = (R1/P1 → R̄ ← R2/P
m
2 ) is a separated indecomposable

R-module. Moreover, R1, R2 and R themselves can be viewed as separated
indecomposable R-modules, corresponding to the cases n =∞ and m = 1,
n = 1 and m = ∞, n = m = ∞. Deleted cycle indecomposable R-modules
are introduced as follows: Let S be a direct sum of finitely many modules
S(i) = S(ni,1, ni,2) (with i < s a non-negative integer). Here ni,j ≥ 2 for
every j < s and j = 1, 2, with two possible exceptions i = 0, j = 1 and
i = s−1 and j = 2, where the values ni,j = 1 or∞ are allowed. Then amal-
gamate the direct summands in S by identifying the P2-part of the socle of
S(i) and the P1-part of the socle S(i+ 1) for every i < s− 1. For instance,
given the separated modules S1 = (R1 → R̄← R2/P

3
2 ) = Ra with P 3

2 a = 0
and S1 = (R1/P

7
1 → R̄ ← R2/P

2
2 ) = Ra with P 7

1 a
′ = 0 = P 2

2 a
′. Then one

can form the non-separated module (S1 ⊕ S2)/(R(p2
2a − p6

1a
′) = Rc + Rc′

where c = a+R(p2
2a− p6

1a
′), c′ = a′ +R(p2

2a− p6
1a

′), P 3
2 c = 0 = P 7

1 c
′ = P 2

2 c
and P 2

2 c = P 6
1 c

′ which is obtained by identifying the P2-part of the socle of
S1 with the P1-part of the socle of S2. We will use that same description,
but with 1- absorbing comultiplication separated modules in place of the
finitely generated ones, gives us the non-zero indecomposable 1-absorbing
comultiplication non-separated R-modules. As a consequence, any non-
zero indecomposable 1-absorbing comultiplication separated module with
1-dimensional socle may occur only at one of the ends of the amalgama-
tion chain (see [6, Proposition 3.4]). It remains to show that the modules
obtained by these amalgamations are, indeed, indecomposable 1-absorbing
comultiplication modules. We do that now and thus complete the classi-
fication of the indecomposable 1-absorbing comultiplication non-separated
modules with finite-dimensional top.

Theorem 4.8. Let R = (R1 −→ R̄ ←− R2) be the pullback ring of two
local Dedekind domains R1, R2 with common factor field R̄. Then the class
of indecomposable non-separated 1-absorbing comultiplication modules with
finite-dimensional top up to isomorphism, are the following:

(i) M = E(R/P ), the injective hull of R/P ;

(ii) The indecomposable modules of finite length (apart from R/P which is
separated), that is, M =

∑s
i=1Rai with p

ns
1 as = 0 = pm1

2 a1, p
ni−1

1 ai =

p
mi+1−1
2 ai+1 (1 ≤ i ≤ s− 1), mi, ni ≥ 2 except for m1 ≥ 1, ns ≥ 1.

(iii) M = E1 +
∑s

i=1Rai + E2 with a0 = pm1−1
2 a1, b0 = pns−1

1 as, p1a0 =
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0 = p2b0 and pni−1
1 ai = p

mi+1−1
2 ai+1 for all 1 ≤ i ≤ s − 1, where

E1
∼= E(Rb0) ∼= E(R1/P1), E2

∼= E(Rb0) ∼= E(R2/P2) and mi, ni ≥ 2
except for m1 ≥ 1 and ns ≥ 1.

(iv) M = E1 +
∑s

i=1Rai with p
ns−1
1 as = 0, a0 = pm1−1

2 a1, p1a0 = 0 and

pni−1
1 ai = p

mi+1−1
2 ai+1 for all 1 ≤ i ≤ s − 1, where E1

∼= E(Rb0) ∼=
E(R1/P1), and mi, ni ≥ 2 except for ns ≥ 1.

(v) M =
∑s

i=1Rai + E2 with pms
2 as = 0, b0 = pn1−1

1 a1, p2b0 = 0 and

pmi−1
2 ai = p

ni+1−1
2 ai+1 for all 1 ≤ i ≤ s − 1, where E2

∼= E(Rb0) ∼=
E(R2/P2), and mi, ni ≥ 2 except for ms ≥ 1.

Proof. Let M be an indecomposable non-separated 1-absorbing comultipli-
cation R-module with finite-dimensional top and let

0 −→ K
i−→ S

φ−→M −→ 0

be a separated representation of M . By Corollary 4.7(iii), S is a direct
sum of finitely many indecomposable 1-absorbing comultiplication sepa-
rated modules. We know already that every indecomposable 1-absorbing
comultiplication non-separated module has one of these forms so it remains
to show that the modules obtained by these amalgamation are, indeed, inde-
composable 1-absorbing comultiplication modules. (i) follows from Propo-
sition 4.1(i). Since a quotient of any 1-absorbing comultiplication R-module
is 1-absorbing comultiplication by Proposition 4.4, they are 1-absorbing co-
multiplication modules. The indecomposability follows from [29, 1.9] and [6,
Theorem 3.5].

Corollary 4.9. Let R = (R1 −→ R̄ ←− R2) be the pullback ring of two
local Dedekind domains R1, R2 with common factor field R̄. Then

(i) Every indecomposable 1-absorbing comultiplication R-module with finite-
dimensional top is pure-injective.

(ii) This paper includes the classification of indecomposable 1-absorbing
comultiplication modules with finite-dimensional top over k-algebra
k[x, y : xy = 0](x,y).
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