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INTRODUCTION
Ischemic stroke is an acute cerebrovascular disease with 

high morbidity, mortality, and disability. Aging increases 
the incidence of stroke. Overall, ischemic stroke accounts for 
87% of all strokes in this population [1]. Ischemic stroke is the 
second leading cause of death in adults [2]. When cerebral 
ischemia occurs, blood flow can be restored and recalculated 
by means of recombinant tissue plasminogen activator 
(R-tPA), but this process is often accompanied by reperfusion 
injury. Cerebral ischemia-reperfusion injury (CIRI) is charac-
terized by an intensified inflammatory response, enhanced 
oxidative stress, and increased autophagy. R-tPA can only 
improve the patency of the patient’s blood supply. It is difficult 
to effectively recover residual neurological functions and 
motor functions following injury.

Acupuncture attenuates a therapeutic role in cerebro-
vascular diseases by targeting the excitation of the trigeminal 
nerve and enhancement between the damaged cortex and 
white matter after a stroke [3,4]. Acupuncture has played an 
increasing role in the clinical treatment of cerebral ischemia, 
and is well-accepted in Asia, Europe, and the United States, 
as an alternative therapy [5-7]. Moreover, electroacupuncture 
(EA) therapy applies modern biological electrical stimulation 
to enhance the conduction effects compared with traditional 
acupuncture. Studies have shown that EA can effectively 
improve impaired neurological and motor functions of CIRI 
patients with uncoordinated limbs [8].

Traditional Chinese medicine theory believes the human 
brain functions through Du and Ren meridians. The Du 
meridian acts through the corticospinal cord transmission as 
an external reflection. Professor Xu established the “Tongdu 
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Background: Electroacupuncture (EA) is a widely used traditional Chinese medicine 
method to manage various diseases, including cerebral ischemia-reperfusion injury (CIRI). 
Objectives: We assessed the neuroprotective effects of EA and examined its mechanism 
in a rat model of the middle cerebral artery occlusion-reperfusion (MCAO/R). The gait 
analysis was performed to evaluate the neuroprotective effects. Western blot and 
immunohistochemistry assays were carried out to determine the molecular mechanisms 
of EA. 
Methods: Male SD rats were randomly divided into the sham operation group, right 
MCAO/R group, and EA group. EA was administered every day (4/20 Hz, 10 min/1 d) at 
the following acupoints: Baihui (DU20), Yintang (EX-HN3), and Zusanli (ST36). Gait and 
motor function were analyzed from day 8 onward. 
Results: The plantar support and balance coordination of MCAO/R rats decreased, 
and the cellular structure of the ischemic penumbra was unclear. EA improved the 
gait dynamics of the rats, adjusted the cell structure, further activated astrocytes, and 
increased the expression and phosphorylation of phosphoinositide 3-kinase/protein kinase 
B (PI3K/PKB or AKT). 
Conclusion: EA promoted astrocyte-related effects in the rat model. Our findings suggest 
that the neuroprotective mechanism of EA may be related to the activation of the PI3K/
AKT signaling pathway. The intervention enhanced brain protection and improved motor 
functions.
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Tiaoshen needles therapy”, an alternative acupuncture 
treatment method for treating CIRI and its sequelae which 
integrates the Du meridian with the brain and the spirit. 
Clinical studies showed that this method can statistically 
reduce the National Institutes of Health Neurological 
Function scores by promoting the expression of microtubule-
associated protein 1 light chain 3- II and autophagy-related 
proteins in patients. As a result, the clinical treatment total 
effective rate is improved [9]. Studies have also found that 
laser acupuncture at the acupoint, Baihui (DU20) can exert 
antioxidant effects, inhibit inflammatory responses, and 
improve cognitive impairment and motor dysfunction in 
the middle cerebral artery occlusion rat model [10]. EA at 
the DU20 point can inhibit the expression of N-methyl-D-
aspartate receptor subtype 1 in the hippocampal CA1 region 
and protect the cognitive function of the middle cerebral 
artery occlusion-reperfusion (MCAO/R) rats [11]. In contrast, 
EA at the Shenting (DU24) and DU20 points can inhibit 
the Janus kinase 2/signal transducer and activator of tran-
ions 3 signaling pathway, thereby, increasing the expression 
of postsynaptic density protein-95 and synuclein in the 
hippocampal CA1 region, and enhance synaptic plasticity [12]. 
Furthermore, EA at the Yintang (EX-HN3) and DU20 points 
can increase the expression of brain-derived neurotrophic 
factor tyrosine kinase B [13]. Stroke is often accompanied by 
limb dysfunctions and poor flexion. Studies have shown that 
EA at the Waiguan (SJ5) and Zusanli (ST36) points promoted 
the expression of microRNA-223, increased the number of 
neural stem cells, and improved the neurological functional 
defect score [14]. In this study, we selected the acupoints, 
DU20 (Du meridian), EX-HN3 (extraordinary acupoint on 
Du route line), and ST36 (Smomach meridian) according 
to the “Tongdu Tiaoshen needles therapy” method. The 
combination of these three acupoints in treating CIRI using 
EA has rarely been reported.

Phosphoinositide 3-kinase/Protein kinase B (PI3K/PKB or 
AKT), also known as the PI3K/AKT signaling pathway, plays 
a protective role in regulating cell proliferation and inhibiting 
apoptosis of the nerve cells in CIRI. Phosphorylated phospho-
protein kinase B (p-AKT) can be used as a marker of its 
activation [15-17]. PI3K/AKT is involved in neuron protection 
of the Leonuri Herba total alkali in MCAO/R rats [18]. The 
PI3K/AKT pathway promotes the proliferation of astrocytes 
(AS) [19-21] and the expression of the glial fibrillary acidic 
protein (GFAP) a characteristic marker of AS through the 
protein complex pathway [22]. In turn, AS provides nutri-
tional support, promotes angiogenesis, and contributes to the 
repair of neurological functions after an ischemic stroke [23]. 
EA exerts neuroprotective effects against ischemic strokes 
through the PI3K/AKT pathway [24]. To date, the mechanism 
by which AS is enhanced and activated via EA is unclear.

This study presented novel evidence supporting the AS 
activation-related PI3K/AKT signaling effects of EA at the 
acupoints, DU20, EX-HN3, and ST36 leading to improved 
gait dynamics in MCAO/R rats. This study contributes to the 
clinical understanding of the neuroprotective effects of EA 
and its essential mechanism. 

MATERIALS AND METHODS

1. Animals
Fifty-five SPF male SD rats, each weighing 220 g (± 20 g), 

were purchased from Liaoning Changsheng Biotechnology, 
and raised in the Animal Experiment Center of Liaoning 
University of Traditional Chinese Medicine (SPF Experi-
mental Center). The rats were kept at a temperature of 22℃, 
with 45% relative humidity. 

2. Experimental method

1) Establish the MCAO/R rat model
The rats were divided into the sham operation group (sham 

group) and operation groups (including the right MCAO/
R and EA groups) by the random number table method. 
Except for the sham group, the other groups were modified 
by Longa’s line embolization method to prepare the MCAO/
R model [25]. A 40 mm fishing line (2.86 mm in diameter) 
was polished smooth with sandpaper and reserved. Before 
modeling, the rat was weighed and anesthetized with 1% 
pentobarbital sodium (intraperitoneal injection of 4 mg/100 
g). After anesthesia, a midline incision was made in the neck, 
exposing the right common carotid artery (CCA), the internal 
carotid artery (ICA), and the external carotid artery (ECA). 
CCA and ICA were clamped by an arterial clamp to fuse the 
ECA’s branches. The stump was gently pulled downward, and 
cut with a 0.2 mm incision. The end of the prepared fishing 
line was gently pushed into the skull along the ICA through 
the CCA bifurcate, and advanced approximately 20 mm to 
reach the middle cerebral artery. After 2 h of embolization, 
the fishing line was pulled out to allow the blood to flow 
again. In the sham group (n = 13), only the CCA was exposed. 
The rats were only allowed to have water for the first 24 h 
after surgery. To determine if the model was successful, the 
awakened rats were scored for neurological dysfunction.

2) Model evaluation and screening
Longa’s grade 5 scoring standard was used to evaluate 

the MCAO/R rat model conformance (Table 1). Sober 
scores, graded from 1 to 3, represented successful modeling. 
Gradings of 0 or 4 equated to model failure and these were 
excluded from the experiment. The MCAO/R rats were 
randomly divided into the model group (n = 12) and the EA 
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group (n = 13).

3) EA stimulation
Acupoints, DU20, EX-HN3, and bilateral ST36, were 

selected to treat the EA group according to “Experimental 
Acupuncture” and the legal position method of anthro-
pomorporeal acupuncture points. The rats were fixed on 
the stainless steel net in a prone position with disposable 
ties. Local hair at the acupoints was removed to prevent the 
acupuncture needles from slipping. Acupuncture needles 
(Hwato, 0.16 mm × 25 mm) were inserted at the following 
acupoints, Baihui (DU20, the center of the parietal bone, 
inserted obliquely backward at a depth of 2 mm), Yintang 
(EX-HN3, between the two eyebrows, inserted obliquely 
backward at a depth of 1 mm), and Zusanli (ST36, the 
posterolateral side of the knee joint and approximately 5 mm 
below the small head of the fibula, vertically inserted at a 
depth of 7 mm). The handles of these acupuncture needles 
were connected to an acupuncture electrical stimulator. The 
parameters for EA were set to a dilatational wave frequency 
of 4 Hz/20 Hz and visualized as the needle body gently 
shaking. The first treatment commenced at 3 pm on the day 
of the model operation and EA was applied to each rat for 10 
min. Subsequently, the same treatment was performed every 
day at 3 pm for 7consecutive days. Rats in the sham and the 
model groups were restrained for the same time without EA 
intervention.

4) Gait analysis
Before modeling, the rats were trained so that they were 

familiar with the channels and were able to autonomously 
advance towards the box. Longa’s score was performed again 
after the EA treatment, and the CatWalk XT animal gait 
acquisition and analysis system (Noldus, Netherlands) was 
used to identify and analyze the limb movement function of 
the rats.

5) Tissue collection
After all the interventions, 1% sodium pentobarbital 

was injected for deep anesthesia. Some of the rats had their 
thoracic cavity cut open after abdominal anesthesia to expose 
the heart. Heparin sodium 0.2 ml, in 1% concentration, was 

injected intravenously into the left heart, and aortic intubation 
was performed through the left ventricle. After fixation with 
vascular forceps, the right atrial appendage was cut open, 
followed by rapid washing with normal saline at 37℃ (150 
ml). Fixation with 250 ml precooled 4% paraformaldehyde 
at 4℃ by alternating fast and then slow perfusion was 
performed [26]. The other rats underwent abdominal aorta 
blood sampling, and the brains were quickly removed on ice 
and stored at –80℃ (Dw-hl388 ultra-low temperature storage 
tank, Meiling) after quick freezing with liquid nitrogen. 

6) Hematoxylin and eosin staining (n = 6 in each group)
Brain tissues were embedded and fixed in paraffin. The 

specimens were sliced (HI 1210 ultra-thin slicer, Leica), baked, 
dewaxed, rehydrated, and then, stained with hematoxylin 
dyed for 10 min. After rinsing with water, the specimens were 
stained with eosin for 3 min, sealed with neutral resin, and 
observed under a microscope (DM2000 digital microscope, 
Leica).

7) ELISA analysis (n = 6 in each group) 
Serum was obtained by centrifugation of the whole blood. 

The brain tissues (0.1 g) were retrieved from the EP tube, 900 
µl of phosphorous buffer saline (PBS) was added, and then 
placed in an ice box. Tissue homogenate was obtained using 
a tissue grinder. Reagents were added step by step according 
to the manufacturer’s instructions (ELISA kit, Shanghai 
Enzyme-linked Biotechnology). The results were quickly 
read by the microplate reader (SpectraMax-M2, Scientz) after 
incubation.

8)  Immunohistochemical staining (n = 6 rats for each 
group)

Paraffin sections were washed with PBS. Then, H2O2, 
inactivated endogenous enzymes, heated repair antigen, and 
BAS blocking solution, were added. Subsequently, rabbit 
anti-PI3K IgG (Santa Cruz) was added and the sections were 
incubated at 37° for 1 h. The sections were washed with PBS 
3 times. Then, goat anti-rabbit IgG secondary antibody (goat 
anti-rabbit fluorescent antibody, Bioss) was added, and the 
sections were incubated at 37℃ for 20 min. The sections 
were washed with PBS 4 times before DAB color rendering 

Table 1. Longa grade 5 scoring criteria for neurological functional defects

Grade 0 No neurological defect symptoms (exclude).
Grade 1 Mild nerve function defect, cannot be fully extended to the left side of the forelimbs (include).
Grade 2 Moderate neurological impairment, left forelimb flexion and adduction when walking, turning in left circles, 

lifting the rat tail, and hanging in the air (included).
Grade 3 Severe neurological impairment, unstable standing, leaning to the left when walking (included).
Grade 4 Inability to walk spontaneously, contracture, lethargy, and reduced level of consciousness (excluded).
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at 37℃ for 20 min. The sections were washed again with 
distilled water, dehydrated, and sealed with transparent resin. 
Brownish-yellow particles represented positive cells.

9) Western blot analysis (n = 6 rats for each group)
The brain tissue supernatant was obtained by centrifugation 

at 4℃ (12000 r/20 min, TGL-16 high-speed desktop 
refrigerated centrifuge, Xiangyi). Protein concentration 
was quantified by the BCA method. Electrophoresis was 
performed and the specimen was placed in the ice box. The 
PVDF transfer membrane was sealed with 5% skim milk at 
room temperature for 1.5 h, and then the primary antibody 
diluted at 1:1000 was added for 4℃ overnight (rabbit anti-Akt, 
Santa Cruz, and rabbit anti-p-Akt, Bioswamp). TBST was 
washed 3 times, 7 min each time. The secondary antibody 
diluted at 1:3000 was added and incubated for 2 h. The ECL 
exposure color solution was mixed with liquid A and liquid 
B in equal proportion, and the film was uniformly covered. 
After 2 min of reaction, the PVDF transfer membrane was 
put into the exposure instrument (ImageQuant 350, GE). 
GAPDH was used as the internal reference for detection, and 
the sham group was used as 1 for homogenization.

3. Statistical method
The animal data surveyor and analyst were blinded. All 

statistical analyses were performed using Statistical Product 
Service Solutions software (SPSS, version 23.0, IBM Corp., 
Armonk, NY, USA). The measurement data are shown as 
mean ± standard deviation (X ± S). Statistical significance 
between the groups was analyzed with one-way ANOVA 
and the SNK-Q method. p < 0.05 was considered statistically 
significant in all analyses.

RESULTS

1.  EA treatment improved neurological function 
score
Longa’s score is a classic neuro-functional evaluation. The 

results showed that EA improved the neurological functional 
defect scores in the MCAO/R rats (Fig. 1). 

2. EA improved gait dynamics
Gait analysis is a method for detecting motor functions and 

the sensitivity of the limbs under ischemic stroke conditions. 
We used the CatWalk analysis system to determine the effect 
of EA on MCAO/R-induced gait irregularity. 

We used color 3D models to show the paw-floor-contact 
strength and recorded variations on an isometric line. Our 
results showed that the EA group had stronger paw-floor-
contact strength and more complete isometric force than the 
model group (Fig. 2).

We recorded the load changes experienced by marking 
each paw with different colors. Our result showed that the 
EA group had clearer and more complete footprints than the 
model group (Fig. 3). 

As we know the maximum contact area reflects the degree 
of contact between the paws and the floor, and a larger contact 
area ensures more stable movement. Our result showed that 
the EA group had a larger maximum contact area than the 
model group. Maximum-contact-mean-intensity (MCMI) is 
another indicator of motor functions. Our result showed that 
the MCMI of the left paws increased in the EA group. Stride 
length is one of the motion parameters that reflect motion 
coordination. Our result showed that the EA group had 
longer stride lengths than the model group. Swing and swing 
speed are representative indicators of the swinging phase that 
reflect the stability of the motion posture. Our result showed 
that the EA group had shorter swing times and faster swing 
speeds than the model group (Fig. 4). 

3.  EA improved the tissue structures of the 
ischemic penumbra 
We color-stained the nucleus and cytoplasm to observe the 

morphological and structural changes in the brain tissues. 
The results showed that the morphology of the brain tissues 
in the EA group was clear and more complete than in the 
model group. HE staining showed that the brain tissues of 
the sham group had clear morphological layers, no necrotic 
nerve cells, and were neatly structured. Edema, degeneration, 
atrophy, and necrosis of the nerve cells were observed in the 
model group with increased intercellular spacing. Compared 
with the model group, the morphological and structural 
disorders of the brain tissues in the EA group improved (Fig. 
5). 
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Fig. 1. The model group shows a higher Longa’s score 
relative to the sham group (p < 0.001). The EA group shows a 
significantly lower Longa’s score relative to the model group (p 
< 0.05). ***p < 0.001 #p < 0.05; n = 6 rats for each group).
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4. EA improved the GFAP content
Astrocytes (AS) can be found abundantly in the brain 

tissues. GFAP is a type III intermediate filamentous protein 
exclusively found in AS and its expression level positively 
correlates with AS excitation [27]. This characteristic makes 
GFAP an exclusive marker of AS [28]. In other words, AS 
activation can be detected and determined by the GFAP 
content. Our data showed that AS activity in the EA group 
was higher than that in the model group. The ELISA results 
also confirmed the immunohistochemistry results. In sum, 
the GFAP content in the ischemic penumbra and serum of 
the EA group was higher than those in the model group. 
These findings suggest that EA can promote AS activation 
(Fig. 6).

5.  EA increased the expression of the PI3K/AKT 
signaling pathway
Immunohistochemistry can reflect the expression of PI3K 

through the optical density value. Our results showed that 
the EA group had a more positive expression of PI3K than the 
model group (Fig. 7).

Sham

Model

EA

Fig. 3. Colored pawprint marks can visualize the load 
changes after EA treatment to MCAO/R rat model. The sham 
group: pawprints in maximal contact and intensity. The model 
group: pawprint can hardly be recognized and the intensity 
is minimal. The EA group: pawprints are coherent with 
recognizable contacts. Color marks: ① blue for right forepaw; 
② purple for right hind paw; ③ yellow for left forepaw; ④ 
green for left hind paw; n = 6 rats for each group.

Fig. 2. Paw-floor-contact force in a colored 3D model to show the load changes experienced by the lower bearing. The sham 
group shows a stronger paw-braced force. Stereoscopic images show the height difference between the force isometric lines 
as large and circularly closed, which means the center of the paw and toes can be distinguished as the force is centripetally 
distributed. The model group shows a much weaker paw-braced force. There is no clear hierarchy between the force isometric 
lines and the lack of complete circular pattern, hence we could not distinguish the paw center from the tip of the tows. The EA 
group shows an enhanced paw-braced force relative to the model group. Its force isometric lines become rounder and more 
centralized. The color ranged from blue to green to yellow to red, indicating bearing strength from weak to strong. n = 6 rats 
for each group.
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Fig. 4. EA’s effect on the gait dynamics of MCAO/R rats. (A) The effect of EA at the DU20/EX-HN3/ST36 acupoints on the 
ipsilateral (left) paw-floor-contact area. The sham group (A, left) shows a smaller maximum forepaw-floor-contact area relative 
to the model group (p < 0.01), whereas the EA group (A, left) shows a forepaw-floor-contact area relative to the model group 
(p < 0.01). The sham group (A, right) shows a maximum hind paw-floor-contact area relative to the model group (p < 0.05); 
whereas, the EA group (A, right) shows a hind paw-floor-contact area relative to the model group but has no significant 
difference (p > 0.05). **p < 0.01, *p < 0.05, #p < 0.05; n = 6 rats for each group. (B) The EA group’s effect on the MCMI of 
the ipsilateral (left) paws of MCAO/R rats. The sham group (B, left) shows a strong forepaw-MCMI relative to the model group 
(p < 0.01). The EA group (B, left) shows a stronger forepaw-MCMI relative to the model group (p < 0.05). The sham group (B, 
right) shows a strong hind paw-MCMI relative to the model group (p < 0.01), whereas the EA group (B, right) shows a better 
hind paw-MCMI relative to the model group (p < 0.05). **p < 0.01, #p < 0.05; n = 6 rats for each group. (C) The EA group’s 
effect on the stride length of the ipsilateral (left) paws of MCAO/R rats. The sham group (C, left) shows a longer forepaw-stride-
length relative to the model group (p < 0.01), whereas The EA group (C, left) shows a better forepaw-stride-length relative to 
the model group (p < 0.05). The sham group (C, right) shows a longer hind paw-stride-length relative to the model group (p < 
0.01), whereas, the EA group (C, right) shows a better hind paw-stride-length relative to the model group (p < 0.01). **p < 0.01, 
#p < 0.05; n = 6 rats for each group. (D) The EA group’s effect on the swing time of the ipsilateral l (left) paws of MCAO/R rats. 
The sham group shows a shorter forepaw swing time relative to the model group (p < 0.001). The EA group shows a shorter 
forepaw swing time relative to the model group (p < 0.05). ***p < 0.001, #p < 0.05; n = 6 rats for each group. (E) The EA 
group’s effect on the swing speed of the ipsilateral (left) paws of MCAO/R rats. The sham group shows a faster forepaw swing 
speed relative to the model group (p < 0.001). The EA group shows a better forepaw swing speed relative to the model group (p 
< 0.05). ***p < 0.001, #p < 0.05; n = 6 rats for each group.

500 m� 500 m� 500 m�

Fig. 5. HE staining of the ischemic penumbra (magnification × 20). The sham group shows clear and orderly structured 
morphological layers with no necrotic nerve cells. Edema, degeneration, atrophy, and necrosis of the nerve cells with increased 
intercellular spacing are seen in the model group. The EA group shows an improved morphological and structural disorder of 
brain tissues. Color marks: ① bluish-purple for nucleus; ② red for cytoplasm. n = 6 rats for each group.



www.journal-jams.org328

Xiao-Qing Zhang, et al.

A

50 m� 50 m�50 m�

B

**
#

0

15

10

5

Sham Model EA

G
F
A

P
(p

g
/m

L
)

In ischemic penumbra

C ##

0

2.5

2.0

1.5

1.0

0.5

Sham Model EA

G
F
A

P
(p

g
/m

L
)

In serum
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AKT is the downstream protein of PI3K, and its increased 
expression can promote the recovery of the brain’s structures 
and functions. The Western blot (WB) results showed that EA 
increased the expression and phosphorylation of AKT (Fig. 8).

DISCUSSION
Gait analysis is a method for detecting limb motor 

functions and limb sensitivity in patients with ischemic 
stroke. Therefore, we used the CatWalk gait analysis system 
to determine the effect of EA on MCAO/R-induced gait 
irregularity in a rat model. Gait analysis is commonly used to 
detect spinal cord and muscle injuries [29]. It was rarely used 
in CIRI-related experiments. Our study showed that CIRI 
behaviors can alter the step length, step speed, and other 
gait indicators. Our findings are consistent with the results 
of Barmann and Hetze’s analysis of MCAO/R rats [30,31]. 
Moreover, the CatWalk analysis system can record the rats’ 
movements, quantifying their complex and delicate motor 
abilities by identifying abnormal gait and determining its 
recovery. This is helpful for evaluating and screening effective 
treatment measures. Our data showed that MCAO/R rats 
demonstrated a slower swing speed, a longer swing time, and 
a shorter step length. The intensity and maximum paw-floor 
contact area of the affected forelimb were decreased, which 
concurred with Wang’s findings [32]. Conversely, MCAO/R 
rats treated with EA showed an increase in their maximum 
plantar contact area, prolonged the step length, improved the 
swing speed, and reduced the swing time. 

We used the acupoints, DU20, EX-HN3, and ST36, on 
MCAO/R rats to confirm EA’s therapeutic effect on CIRI by 
improving the neural deficit scores and the cellular structure 
of the ischemic brain domain. The combining of these three 
acupoints was innovative. These points were selected carefully 
after evaluating the published CIRI intervention experiments 
that used Du20 and ST36 acupoints coupled with other 
acupoints, such as DU20 and DU24, PC6 and ST36, and LI11 
and ST36 [33-35]. A dilatational-wave-mode stimulator was 
selected for our EA intervention. However, there were no 
consistent frequency parameters for us to use as experimental 
references. Therefore, we set the electrical needle stimulator 
at a frequency of 4 Hz/20 Hz by cross-referencing with Zou’s 
4 Hz/16 Hz [36] and Geng’s 5 Hz/20 Hz [37]. Our results 
suggest that EA can activate nerve repair cytokines at the 
DU20, EX-HN3, and ST36 acupoints in MCAO/R rats.

Our study results showed that EA activated the PI3K/
AKT pathway and increased the expression of GFAP (a 
characteristic marker of AS). The result was consistent 
with a published study using Geum Japonicum extracts to 
effectively treat CIRI through the PI3K/AKT pathway [38]. 
GFAP expression was not involved in the increase of infarct 

volume after an ischemic stroke [39]. Studies have shown that 
EA at the Neiguan acupoint can increase GFAP and thus, 
improve the neurological functions of MCAO rats [40]. Our 
results showed that the nerve injury was effectively repaired, 
and the expression level of reactive astrocytes (RAS) was 
increased in the EA group. Our data also revealed lower 
Longa neurological function scores, enhanced HE staining 
of the hippocampal brain tissue structures, and improved 
gait test results. Considering these findings, RAS may play an 
essential role in nerve repair after ischemic brain injury. 

The role of RAS has become controversial over time. Since 
AS may manifest hyperactively in the later stage or during the 
convalescence period, we speculated that AS proliferation and 
activation in different phases were diversified at post-CIR. In 
the early stages of ischemia (including the acute and subacute 
stages), the moderate proliferation of RAS can stimulate the 
secretion of basic fibroblast growth factor (bFGF), vascular 
endothelial growth factor (VEGF), etc. [41]. These cytokines 
are known to reduce neuronal damage and promote the 
repair and improvement of neurological functions [42,43]. 
Moreover, ischemia-induced RAS has the characteristics of 
neural stem cells and can transform into neurons [44]. On 
the contrary, overactivated RAS become swollen, and the 
cell protuberance becomes extended and connected to form 
a glial scar [45]. Many researchers have suggested that the 
glial scar limits nerve regeneration and axon extension after 
the inflammation responses subside [46], thus, is a negative 
factor. Conversely, a recent study published in Nature suggests 
that scar formation by RAS can also contribute to axonal 
regeneration in the central nervous system [47]. Removal of 
the glial scar did not promote central nervous system repairs 
[48]. Furthermore, targeted ablation of the glial scar may 
aggravate disease injury [49]. The recovery duration may 
influence the AS tendency toward positive versus negative 
effects. In terms of spatial distribution, whether the activation 
and distribution of AS vary at different brain domains has 
not been comprehensively concluded. Recent studies have 
suggested that AS activation and an increase in GFAP are 
beneficial in the early stage of CIRI [50]. In this study, all 
tests were performed on day 8 after the onset of the subacute 
phase of CIRI and our results support that RAS played an 
active role during this time. However, the specific CIR repair 
mechanism driven by AS, and its pattern of advantages and 
disadvantages, warrant further investigations.

CONCLUSIONS
This study proved that EA treatment at the acupoints of 

DU20, EX-HN3, and ST36 involved in the regulation of 
astrocyte activation-related PI3K/AKT signaling. And our 
data suggestes that EA treatment can promote the recovery of 
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motor function in MCAO/R rats.
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