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SUMMARY

The proliferation of models for networks raises challenging problems of model selection: the
data are sparse and globally dependent, and models are typically high-dimensional and have large
numbers of latent variables. Together, these issues mean that the usual model-selection criteria
do not work properly for networks. We illustrate these challenges, and show one way to resolve 30

them, by considering the key network-analysis problem of dividing a graph into communities
or blocks of nodes with homogeneous patterns of links to the rest of the network. The standard
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2 YAN et al.

tool for doing this is the stochastic block model, under which the probability of a link between
two nodes is a function solely of the blocks to which they belong. This imposes a homogeneous
degree distribution within each block; this can be unrealistic, so degree-corrected block mod-35

els add a parameter for each node, modulating its over-all degree. The choice between ordinary
and degree-corrected block models matters because they make very different inferences about
communities. We present the first principled and tractable approach to model selection between
standard and degree-corrected block models, based on new large-graph asymptotics for the dis-
tribution of log-likelihood ratios under the stochastic block model, finding substantial departures40

from classical results for sparse graphs. We also develop linear-time approximations for log-
likelihoods under both the stochastic block model and the degree-corrected model, using belief
propagation. Applications to simulated and real networks show excellent agreement with our ap-
proximations. Our results thus both solve the practical problem of deciding on degree correction,
and point to a general approach to model selection in network analysis.45

Some key words: Belief propagation; Block models; Likelihood ratio test; Model selection; Networks; Sparse graphs

1. INTRODUCTION

In many networks, nodes divide naturally into modules or communities, where nodes in the
same group connect to the rest of the network in similar ways. Discovering such communities
is an important part of modeling networks (Porter et al., 2009), as community structure offers50

clues to the processes which generated the graph, on scales ranging from face-to-face social
interaction (Zachary, 1977) through social-media communications (Adamic & Glance, 2005) to
the organization of food webs (Allesina & Pascual, 2009; Moore et al., 2011).

The stochastic block model (Fienberg & Wasserman, 1981a; Holland et al., 1983; Snijders
& Nowicki, 1997; Airoldi et al., 2008; Bickel & Chen, 2009) has, deservedly, become one of55

the most popular generative models for community detection. It splits nodes into communities
or blocks, within which all nodes are stochastically equivalent (Wasserman & Anderson, 1987).
That is, the probability of an edge between any two nodes depends only on which blocks they
belong to, and all edges are independent given the nodes’ block memberships. Block models
are highly flexible, representing assortative, disassortative and satellite community structures, as60

well as combinations thereof, in a single generative framework (Newman, 2002, 2003; Bickel &
Chen, 2009). Their asymptotic properties, including phase transitions in the detectability of com-
munities, can be determined exactly using tools from statistical physics (Decelle et al., 2011b,a)
and random graph theory (Mossel et al., 2012).

Despite this flexibility, stochastic block models impose real restrictions on networks; notably,65

the degree distribution within each block is asymptotically Poisson for large graphs. This makes
the stochastic block model implausible for many networks, where the degrees within each com-
munity are highly inhomogeneous. Fitting stochastic block models to such networks tends to
split the high- and low- degree nodes in the same community into distinct blocks; for instance,
dividing both liberal and conservative political blogs into high-degree “leaders” and low-degree70

“followers” (Adamic & Glance, 2005; Karrer & Newman, 2011). To avoid this pathology, and
allow degree inhomogeneity within blocks, there is a long history of generative models where
the probability of an edge depends on node attributes as well as their group memberships (e.g.,
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Mørup & Hansen 2009; Reichardt et al. 2011). Here we use the variant due to Karrer & Newman
(2011), called the degree-corrected block model1. 75

We often lack the domain knowledge to choose between the ordinary and the degree-corrected
block model, and so face a model selection problem. The standard methods of model selection
are largely based on likelihood ratios (possibly penalized), and we follow that approach here.
Since both the ordinary and degree-correct block models have many latent variables, calculating
likelihood ratios is itself non-trivial; the likelihood must be summed over all partitions of nodes 80

into blocks, so (in statistical physics terms) the log-likelihood is a free energy. We approximate
the log-likelihood using belief propagation and the Bethe free energy, giving a highly scalable
algorithm that can deal with large sparse networks in nearly linear time. However, even with the
likelihoods in hand, it turns out that the usual χ2 theory for likelihood ratios is invalid in our
setting, because of a combination of the sparsity of the data and the high-dimensional nature 85

of the degree-corrected model. We derive the correct asymptotics, under regularity assumptions,
recovering the classic results in the limit of large, dense graphs, but finding that substantial
corrections are needed for sparse graphs, corrections that grow with graph size. Simulations
confirm the validity of our theory, and we apply our method to both real and synthetic networks.

2. POISSON STOCHASTIC BLOCK MODELS 90

Let us set the problem on an observed, stochastic graph with n nodes and m edges; we as-
sume edges are undirected, though the directed case is only notationally more cumbersome. The
graph is represented by its symmetric adjacency matrix A. We want to split the nodes into k
communities, taking k to be given a priori. (We will address estimating k elsewhere.)

Traditionally, stochastic block models are applied to simple graphs, where each entry Auv of 95

the adjacency matrix follows a Bernoulli distribution. Following, e.g., Karrer & Newman (2011),
we use a multigraph version of the block model, where the Auv are independent and Poisson-
distributed. (For simplicity, we ignore self-loops.) In the sparse network regime we are most
interested in, this Poisson mode differs only negligibly from the original Bernoulli model (Perry
& Wolfe, 2012), but the former is easier to analyze. 100

2·1. The Ordinary Stochastic Block Model
In all stochastic block models, each node u has a latent variable Gu ∈ {1, . . . , k} indicating

which of the k blocks it belongs to. The block assignment is then G = {Gu}. The Gu are inde-
pendent draws from a multinomial distribution parameterized by γ, so γr = P (Gu = r) is the
prior probability that a node is in block r. Thus Gu ∼ Multi(γ). After it assigns nodes to blocks, 105

a block model generates the number of edges Auv between the nodes u and v by making an
independent Poisson draw for each pair. In the ordinary stochastic block model, the means of
these Poisson draws are specified by the k × k block affinity matrix ω, so

Auv|G = g ∼ Poi(ωgugv).

1 From a different perspective, the famous p1 model of Holland & Leinhardt (1981), and the Chung & Lu (2002) model, allow each
node to have its own expected degree, but otherwise treat nodes as homogeneous (Rinaldo et al., 2011). The degree-corrected
block model extends these models to allow for systematic variation in linking patterns.
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The complete-data likelihood (involving G as well as A) is

P (A = a,G = g; γ, ω) =
∏
u

γgu
∏
u<v

ωauvgugve
−ωgugv

auv!
110

=
∏
r

γnr
r

∏
rs

ωmrs/2
rs e−

1
2
nrnsωrs

∏
u<v

1

auv!
. (1)

Here nr is the number of nodes in block r, and mrs the number of edges connecting block r to
block s, or twice that number if r = s. The last product is constant in the parameters, and 1 for
simple graphs, so we discard it below. The log-likelihood is then

logP (A = a,G = g; γ, ω) =
∑
r

nr log γr +
1

2

(∑
rs

mrs logωrs − nrnsωrs

)
. (2)

Maximizing (2) over γ and ω gives115

γ̂r =
nr
n
, ω̂rs =

mrs

nrns
. (3)

Of course, the block assignments G are not observed, but rather are what we want to infer. We
could try to find G by maximizing (2) over γ, ω and g jointly; in terms borrowed from statistical
physics, this amounts to finding the ground state ĝ that minimizes the energy− logP (a, g; γ, ω).
When this ĝ can be found, it recovers the correct g exactly if the graph is dense enough (Bickel
& Chen, 2009). But if we wish to infer the parameters γ, ω, or to perform model selection, we120

are interested in the total likelihood of generating the graph a at hand. This is

P (A = a; γ, ω) =
∑
g

P (A = a,G = g; γ, ω),

summing over all kn possible block assignments. Again following the physics lexicon, this is the
partition function of the Gibbs distribution of G, and its logarithm is (minus) the free energy.

As is usual with latent variable models, we can infer γ and ω using an EM algorithm (Demp-
ster et al., 1977), where the E step approximates the average over G with respect to the Gibbs125

distribution, and the M step estimates γ and ω in order to maximize that average (Neal & Hinton,
1998). One approach to the E step would use a Monte Carlo Markov Chain algorithm to sample
G from the Gibbs distribution. However, as we review below, in order to determine γ and ω it
suffices to estimate the marginal distributions ofGu of each u, and joint distributions of (Gu, Gv)
for each pair of nodes u, v (Beal & Ghahramani, 2006). As we show in §3, belief propagation130

efficiently approximates both the log-likelihood − logP (A = a; γ, ω) and these marginals, and
for typical networks it converges very rapidly. Other methods of approximating the E step are
certainly possible, and could be used with our model-selection analysis.

2·2. The Degree-Corrected Block Model
As discussed above, in the stochastic block model, all nodes in the same block have the same135

degree distribution. Moreover, their degrees are sums of independent Poisson variables, so this
distribution is Poisson. As a consequence, the stochastic block model resists putting nodes with
very different degrees in the same block. This leads to problems with networks where the degree
distributions within blocks are highly skewed.

The degree-corrected model allows for heterogeneity of degree within blocks. Nodes are as-140

signed to blocks as before, but each node also gets an additional parameter θu, which scales the
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expected number of edges connecting it to other nodes. Thus

Auv|G = g ∼ Poi(θuθvωgugv).

Varying the θu gives any desired expected degree sequence. Setting θu = 1 for all u recovers the
stochastic block model.

The likelihood stays the same if we increase θu by some factor c for all nodes in block r, 145

provided we also decrease ωrs for all s by the same factor, and decrease ωrr by c2. Thus identi-
fication demands a constraint, and here we use the one that forces θu to sum to the total number
of nodes within each block, ∑

u:gu=r

θu = nr. (4)

The complete-data likelihood of the degree-corrected model is then

P (A = a,G = g; γ, ω, θ) =
∏
u

γgu
∏
u<v

(θuθvωgugv)auv

auv!
e−θuθvωgugv

=
∏
r

γnr
r

∏
u

θduu
∏
rs

ωmrs/2
rs e−

1
2
nrnsωrs

∏
u<v

1

auv!
, (5)

where nr and mrs are as in (1). Again dropping constants, the log-likelihood is 150

logP (A = a,G = g; γ, ω, θ)

=
∑
r

nr log γr +
∑
u

du log θu +
1

2

(∑
rs

mrs logωrs − nrnsωrs

)
. (6)

Maximizing (6) yields

θ̂u =
du
dgu

, γ̂r =
nr
n
, ω̂rs =

mrs

drds
, (7)

where 155

dr =
1

nr

∑
u:gu=r

du

is the average degree of the nodes in block r.
However, as with the ordinary stochastic block model, we will estimate γ and ω not just

for a ground state ĝ, but using belief propagation to find the marginal distributions of Gu and
(Gu, Gv).

3. BELIEF PROPAGATION 160

We referred above to the use of belief propagation for computing log-likelihoods and marginal
distributions of block assignments; for our purposes, belief propagation is essentially a way of
doing the expectation step of the expectation-maximization algorithm. Here we describe how
belief propagation works for the degree-corrected block model, extending the treatment of the
ordinary stochastic block model in Decelle et al. (2011b,a). 165

The key idea (Yedidia et al., 2003) is that each node u sends a “message” to every other node
v, indicating the marginal distribution of Gu if v were absent. We write µu→vr for the probability
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that u would be of type r in the absence of v. Then µu→v gets updated in light of the messages
u gets from the other nodes as follows. Let

h(θu, θv, ωrs, auv) =
(θuθvωrs)

auv

auv!
e−θuθvωrs (8)

be the probability that auv takes its observed value if Gu = r and Gv = s. Then170

µu→vr =
1

Zu→v
γr

∏
w 6=u,v

k∑
s=1

µw→us h(θw, θu, ωrs, awu), (9)

where Zu→v ensures that
∑

r µ
u→v
r = 1. Here, as usual in belief propagation, we treat the block

assignments Gw of the other nodes as independent, conditioned on Gu.
Each node sends messages to every other node, not just to its neighbors, since non-edges

(where auv = 0) are also informative about Gu and Gv. Thus we have a Markov random field on
a weighted complete graph, as opposed to just on the network a itself. However, keeping track175

of n2 messages is cumbersome. For sparse networks, we can restore scalability by noticing that,
up to O(1/n) terms, each node u sends the same message to all of its non-neighbors. That is, for
any v such that auv = 0, we have µu→vr = µur where

µur =
1

Zu
γr
∏
w 6=u

k∑
s=1

µw→us h(θw, θu, ωrs, awu).

This simplification reduces the number of messages to O(n+m) where m is the number of
edges. We can then write180

µu→vr =
1

Zu→v
γr
∏
w

k∑
s=1

µws h(θw, θu, ωrs, 0)
∏

w 6=v,auw 6=0

∑k
s=1 µ

w→u
s h(θw, θu, ωrs, awu)∑k

s=1 µ
w
s h(θw, θu, ωrs, 0)

.

Since the second product depends only on θu, we can compute it once for each distinct degree
in the network, and then update the messages for each u in O(k2du) time. Thus, for fixed k, the
total time needed to update all the messages is O(m+ `n), where ` is the number of distinct
degrees. For many families of networks the number of updates necessary to reach a fixed point
is only a constant or O(log n), making the entire algorithm quite scalable (see Decelle et al.185

2011a,b for details).
The belief-propagation estimate of the joint distribution of Gu, Gv is

buvrs ∝ h(θu, θv, ωrs, Auv)µ
u→v
r µv→us ,

normalized so that
∑

rs b
uv
rs = 1. The maximization step of the expectation-maximization algo-

rithm sets γ and ω as in (7),

γr =
n̄r
n

=

∑
u µ

u
r

n
, ωrs =

mrs

drds
=

∑
u6=v:auv 6=0 auvb

uv
rs∑

u duµ
u
r

∑
u duµ

u
s

, (10)

where dr is the average degree of block r with respect to the belief-propagation estimates.190

Finally, belief propagation also lets us approximate the total log-likelihood, summed over G
but holding the observed graph a fixed. The Bethe free energy is the following approximation to
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the log-likelihood (Yedidia et al., 2005):

logP (A = a; γ, ω, θ) 195

≈
∑
u

logZu +
1

2

∑
rs

ωrsdrds −
∑

u6=v,auv 6=0

log

[∑
rs

h(θu, θv, ωrs, auv)µ
u→v
r µv→us

]
. (11)

An alternative to belief propagation would be the use of Markov chain Monte Carlo maximum
likelihood, which is often advocated for network modeling (Hunter & Handcock, 2006). How-
ever, the computational complexity of Monte Carlo maximum likelihood is typically much worse
than that of belief propagation; it does not seem to be practical for graphs beyond a few hundred 200

nodes. We reiterate that while we use belief propagation in our numerical work, our results on
model selection in the next section are quite indifferent as to how the likelihood is computed.

4. MODEL SELECTION

When the degree distribution is relatively homogeneous within each block (e.g., Fienberg &
Wasserman 1981a; Holland et al. 1983), the ordinary stochastic block model is better than the 205

degree-corrected model, since the extra parameters θu simply lead to over-fitting. On the other
hand, when degree distributions within blocks are highly heterogeneous, the degree-corrected
model is better. However, without prior knowledge about the communities, and thus the block
degree distributions, we need to use the data to pick a model, i.e., to do model selection.

It is natural to approach the problem as one of hypothesis testing2. Since the ordinary stochas- 210

tic block model is nested within the degree-corrected model, any given graph a is at least as
likely under the latter as under the former. Moreover, if the ordinary block model really is supe-
rior, the degree-corrected model should converge to it, at least in the limit of large networks. Our
null model H0 is then the stochastic block model, and the larger, nesting alternative H1 is the
degree-corrected model. The appropriate test statistic is the log-likelihood ratio, 215

Λ(a) = log
supH1

∑
g P (a, g; γ, ω, θ)

supH0

∑
g P (a, g; γ, ω)

, (12)

with the P functions defined in (1) and (5).
As usual, we reject the null model in favor of the more elaborate alternative when Λ exceeds

some threshold. This threshold, in turn, is fixed by our desired error rate, and by the distribution
of Λ when A is generated from the null model. When n is small, the null-model distribution of Λ
can be found through parametric bootstrapping (Davison & Hinkley, 1997, §4.2.3.): fitting H0, 220

generating new graphs Ã from it, and evaluating Λ(Ã). When n is large, however, it is helpful to
replace bootstrapping with analytic calculations.

Classically (Schervish, 1995, Theorem 7.125, p. 459), the large-n null distribution of 2Λ ap-
proaches χ2

` , where ` is the number of constraints that must be imposed on H1 to recover H0.
In this case we have ` = n− k, as we must set all n of the θu to 1, while our identifiability 225

convention (4) already imposed k constraints.
However, the χ2 distribution rests on the assumption that the log-likelihood of both models is

well-approximated by a quadratic function in the vicinity of its maximum, so that the parameter
estimates have Gaussian distributions around the true model (Geyer, 2005). The most common
grounds for this assumption are central limit theorems for the data, together with a smooth func- 230

tional dependence of each parameter estimate on a growing number of samples, i.e., being in

2 We discuss other approaches to model selection in the conclusion.
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a “large data limit”. This assumption fails in the present case. The degree-corrected model has
n node-specific θu parameters. Dense graphs have an effective sample size of O(n2), so even
with a growing parameter space the degree-corrected model can pass to the large data limit.
But in sparse networks, the effective sample size is only O(n), and so we never get the usual235

asymptotics no matter how large n grows.
Nevertheless, with some work we are able to compute the mean and variance of Λ’s null

distribution. While we recover the classical χ2 distribution in the limit of dense graphs, there
are important corrections when the average degree of the graph is small, even as n→∞. As we
shall see, this has drastic consequences for the appropriate threshold in likelihood ratio tests.240

4·1. Analysis of the Log Likelihood Ratio
To characterize the null distribution of Λ, we assume that the posterior distributions P (G =

g |A = a; γ, ω) and P (G = g |A = a; γ, ω, θ) concentrate on the same block assignment g. This
is a major assumption, but it is borne out by our simulations (Fig. 1 and Fig. 3), and the fact that
under some conditions (Bickel & Chen, 2009) the stochastic block model recovers the underlying245

block assignment exactly. Under this assumption, while the free energy differs from the ground
state energy by an entropy term, the free energy difference between the two models has the same
distribution as the ground state energy difference. The maximum-likelihood estimates for H0

and H1 are then (3) and (7) respectively. Substituting these into (12), most of the terms cancel,
giving Λ the form of a Kullback-Leibler divergence,250

Λ ≈ log
supH1

∏
u θ

du
u

∏
r q

nr
r

∏
rs ω

mrs/2
rs e−

1
2
nrnsωrs

supH0

∏
r q

nr
r
∏
rs ω

mrs/2
rs e−

1
2
nrnsωrs

= log sup
H1

∏
u

θduu = log
∏
u

(
du
dgu

)du
=
∑
u

du log
du
dgu

. (13)

where we applied (7). Here dr is the empirical mean degree of block r, not the expected degree
µr =

∑
s γsωrs of the stochastic block model.

Given (13), the distribution of Λ follows from the distributions of the nodes’ degrees; under255

the null model, all the Du in block r are independent ∼ Poi(µr). (This assumption is sound
in the limit n→∞, since the correlations between node degrees are O(1/n).) Using this, we
can compute the expectation and variance of Λ analytically (see Appendix), showing that Λ
departs from classical χ2 asymptotics, as well as revealing the limits where those results apply.
Specifically,260

E(Λ) =
∑
r

nrf(µr)− f(nrµr) (14)

where, if D ∼ Poi(µ),

f(µ) = E(D logD)− µ logµ. (15)

For dense graphs, where µ→∞, both f(µ) and f(nµ) approach 1/2, and (14) gives E(Λ) =
(n− k)/2 just as in the standard χ2 analysis. However, when µ is small, f(µ) differs noticeably
from 1/2.

The variance of Λ is somewhat more complicated. The limiting variance per node is265

lim
n→∞

1

n
var(Λ) =

∑
r

γrv(µr), (16)
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Fig. 1: Joint density of posterior probabilities over block assignments, showing that the ordi-
nary and the degree-corrected block models are concentrated around the same ground state. The
synthetic network has n = 103, k = 2 equally-sized blocks (γ1 = γ2 = 1/2), average degree
µr = 11, and associative structure with ω12/ω11 = ω21/ω22 = 1/11. The x and y axes are the
marginal probabilities of being in block 1 according to ordinary and degree-corrected models,
respectively.
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Out[235]=
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Fig. 2: (a) Asymptotic limit of n−1E(Λ), the f(µ) of (A2). (b) Asymptotic limit of n−1var(Λ),
from (A8). Figure 3 compares these to simulations.

where, again taking D ∼ Poi(µ),

v(µ) = µ(1 + log µ)2 + var(D logD)− 2(1 + log µ)cov(D,D logD) . (17)

Since the variance of χ2
` is 2`, χ2 asymptotics would predict (1/n)var(Λ) = 1/2. Indeed v(µ)

approaches 1/2 as µ→∞, but like f(µ) it differs substantially from 1/2 for small µ. Figure 3
plots f(µ) and v(µ) for 1 ≤ µ ≤ 10.
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(c) QQ plots for the distribution of Λ.

Fig. 3: Comparison of asymptotic theory to finite-n simulations. We generated networks from
the stochastic block model with varying mean degree µ (n = 104, k = 2, γ1 = γ2 = 1/2, ω11 =
ω22, and ω12/ω11 = ω21/ω22 = 0.15) and computed Λ for each graph. Figures 3a and 3b show
n−1E(Λ) and n−1var(Λ), comparing 95% bootstrap confidence intervals (over 103 replicates) to
the asymptotic formulas (respectively f(µ) from (15) and v(µ) from (17)). Figure 3c compares
the distribution of Λ from 104 replicates, all with µ = 3, to a Gaussian with the theoretical mean
and variance. (Observe that the free energy difference and the ground state energy difference
have similar distributions.)

Figure 3 shows that, for networks simulated from the stochastic block model, the mean and270

variance of Λ are very well fit by our formulas. We have not attempted to compute higher mo-
ments of Λ. However, if we assume thatDu are independent, then the simplest form of the central
limit theorem applies, and n−1Λ will approach a Gaussian distribution as n→∞. Quantile plots
from the same simulations (Fig. 3(c)) show that a Gaussian with mean and variance from (14)
and (16) is indeed a good fit. Moreover, the free energy difference and the ground state energy275

difference have similar distributions, as implied by our assumption that both Gibbs distributions
are concentrated around the ground state. Interestingly, in Fig. 3(c), the degree is low enough
that this concentration must be imperfect, but our theory still holds remarkably well. For ease of
illustration, we assume that γr = 1/k and µr are the same for all r.

Fundamentally, Λ does not follow the usual χ2 distribution because the θ parameters are in a280

high-dimensional regime. For each θu, we really have only one relevant observation, the node
degree Du. If θu is large, then the Poisson distribution of Du is well-approximated by a Gaus-
sian, as is the sampling distribution of θu’s maximum likelihood estimate, so that the usual χ2

analysis applies. In a sparse graph, however, all the Poisson distributions have small expected
values and are highly non-Gaussian, as are the maximum likelihood estimates (Zhu et al., 2012).285

Said differently, the degree-corrected model has O(n) more parameters than the null model. In
the dense-graph case, there areO(n2) observations, at leastO(n) of which are informative about
each of these extra parameters. For sparse graphs, however, there are really only O(n) observa-
tions, and only O(1) of them are informative about each θu, so the ordinary large-n asymptotics
cannot apply to them. As we have seen, the expected increase in likelihood from adding the θ290

parameters is larger than χ2 theory predicts, as are the fluctuations in this increase in likelihood.
This reasoning elaborates on a point made long ago by Fienberg & Wasserman (1981b) re-

garding hypothesis testing in the p1 model, where each node has two node-specific parameters
(for in- and out- degree); our calculations of f(µ) and v(µ) above, and especially of how and
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Fig. 4: The network size n, as a function of the average degree µ, above which a χ2 test with
a nominal type I error rate of 0.05 has an actual type I error rate ≥ 0.95. Here we assume the
asymptotic analysis of (14)–(17) for the mean and variance of the likelihood ratio.

why they differ from 1/2, go some way towards meeting Fienberg and Wasserman’s call for 295

appropriate asymptotics for large-but-sparse graphs.
Ignoring these phenomena and using a χ2 test inflates the type I error rate (α), eventually

rejecting the stochastic block model for almost all graphs which it generates. Indeed, since the
χ2 distribution is tightly peaked around 0.5n, this inflation of α gets worse as n gets bigger.
For instance, when µ = 5, a χ2 test with nominal α = 0.05 passes has a true α ≥ 0.95 once n ≈ 300

3000, while for µ = 3, this happens once n ≈ 700 (Fig. 4). In essence, the χ2 test underestimates
the amount of degree inhomogeneity we would get simply from noise, incorrectly concluding
that the inhomogeneity must come from underlying properties of the nodes.

5. RESULTS ON REAL NETWORKS

We have derived the theoretical null distribution of Λ, and backed up our calculations with 305

simulations. We now apply our theory to two examples, considering networks studied in Karrer
& Newman (2011).

The first is a social network consisting of 34 members of a karate club, where undirected
edges represent friendships (Zachary, 1977). The network is made up of two assortative blocks,
each with one high-degree hub (respectively the instructor and the club president) and many low- 310

degree peripheral nodes. Karrer & Newman (2011) compared the performance of the ordinary
and the degree-corrected block models on this network, and heavily favored degree correction,
because the former leads to division into communities agreeing with ethnographic observations.

While a classic data set for network modeling, the karate club has both low degree and very
small n. If we nonetheless use parametric bootstrapping to find the null distribution of Λ, we 315

see that it fits a Gaussian with our predicted mean and variance reasonably well (Fig. 5(a)).
The observed Λ = 20.7 has a p-value of 0.187 according to the bootstrap, and 0.186 according
to our Gaussian asymptotics. Thus a prudent analyst would think twice before embracing the n
additional degree-correction parameters. Indeed, using active learning, Moore et al. (2011) found
that the stochastic block model labels most of the nodes correctly if the instructor and president 320

are forced into different blocks. This implies that the degree inhomogeneity is mild, and that only
a handful of nodes are responsible for the better performance of the degree-corrected model.
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Fig. 5: Hypothesis testing with real networks; both panels show the complementary cumula-
tive distribution function of the log-likelihood ratio Λ for testing for degree correction. (a):
Zachary’s karate club (Zachary, 1977) (n = 34). The distribution found by parametric bootstrap-
ping (shaded) fits reasonably well to a Gaussian (curve) with our theoretical mean and variance.
The observed Λ = 20.7 (marked with the red line) has p-values of 0.186 and 0.187 according to
the bootstrap and theoretical distributions respectively, whereas the χ2 test (dashed) has a p-value
of 0.125. (b): A network of political blogs (Adamic & Glance, 2005) (n = 1222). The bootstrap
distribution (shaded) is very well fit by our theoretical Gaussian (curve) as well as the χ2 test
(dashed). The actual log-likelihood ratio is so far in the tail that its p-value is effectively zero
(see inset). Thus for the blog network, we can decisively reject the ordinary block model in favor
of the degree-corrected model, while for the karate club, the evidence is less clear.

Note that if we apply standard χ2 testing to the karate club, we obtain a lower p-value of 0.125.
As in Fig. 4, χ2 testing underestimates the extent to which an inhomogeneous degree distribution
can result simply from noise, causing it to reject the null model more confidently than it should.325

The second example is a network of political blogs in the US assembled by Adamic & Glance
(2005). As in Karrer & Newman (2011), we focus on the giant component, which contains 1222
blogs with 19087 links between them. The blogs have known political leanings, and were labeled
as either liberal or conservative. The network is politically assortative, with highly right-skewed
degree distributions within each block, so degree correction greatly assists in recovering politi-330

cal divisions, as observed by Karrer & Newman (2011). This time around, our hypothesis testing
procedure completely agrees with their choice of model. As shown in Fig. 5(b), the bootstrap
distribution of Λ is very well fit by a Gaussian with our theoretical prediction of the mean and
variance. The observed log-likelihood ratio Λ = 8883 is 330 standard deviations above the mean.
It is essentially impossible to produce such extreme results through mere fluctuations under the335

null model. Thus, for this network, introducing n extra parameters to capture the degree hetero-
geneity is fully justified.

The blog network shows several advantages of our theoretical approach over just using boot-
strapping. As with many other real networks, n is large enough that bootstrapping is quite slow,
but for the same reason the Gaussian approximation for Λ is fairly tight.340

6. CONCLUSION

Deciding between ordinary and degree-corrected stochastic block models for sparse graphs
presents a difficult hypothesis testing problem. The distribution of the log-likelihood ratio Λ does
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not follow the classic χ2 theory, because the nuisance parameter θ, only present in the alternative,
is in a high-dimensional regime. We have nonetheless derived Λ’s mean and variance in the 345

limit of large, sparse graphs, where node degrees become independent and Poisson. Simulations
confirm the accuracy of our theory for moderate n, and we applied it to two real networks.

Beyond hypothesis testing, two standard approaches to model selection are information cri-
teria and cross-validation. While we have not directly dealt with the former, the derivations of
such popular criteria as AIC or DIC use exactly the same asymptotics as the χ2 test (Claeskens & 350

Hjort, 2008, ch. 2); these tools will break down for the same reasons χ2 theory fails. As for cross-
validation, standard practice in machine learning suggests using multi-fold cross-validation, but
the global dependence of network data means there is (as yet) no good way to split a graph into
training and testing sets. Predicting missing links or tagging false positives are popular forms
of leave-k-out cross-validation in the network literature (Clauset et al., 2008; Guimera & Sales- 355

Pardo, 2009), but leave-k-out does not converge on the true model even for independent and
identically-distributed data (Claeskens & Hjort, 2008, §2.9). Thus, while our results apply di-
rectly only to the specific problem of testing the need for degree correction, they open the way to
more general approaches to model selection and hypothesis testing in a wide range of network
problems. 360

A. BEHAVIOR OF Λ UNDER THE NULL HYPOTHESIS

For simplicity we focus on one block with expected degree µ. Independence between blocks will then
recover the expressions (14) and (16) where the mean and variance of Λ is a weighted sum over blocks.
We have

Λ =

n∑
i=1

Di log
Di

D
=
∑
i

Di logDi −

(∑
i

Di

)
log

(∑
i

Di

)
+

(∑
i

Di

)
log n, (A1)

where D = (1/n)
∑
iDi is the empirical mean degree. We wish to compute the mean and expectation of 365

Λ if the data is generated by the null model.
IfD ∼ Poi(µ), let f(µ) denote the difference between the expectation ofD logD and its most probable

value µ logµ:

f(µ) =

( ∞∑
d=1

e−µµd

d!
d log d

)
− µ logµ. (A2)

Assume that the Di are independent and ∼ Poi(µ); this is reasonable in a large sparse graph, since the
correlations between degrees of different nodes is O(1/n). Then nD ∼ Poi(nµ), and (A1) gives 370

E(Λ) = nf(µ)− f(nµ). (A3)

To grasp what this implies, begin by observing that f(µ) converges to 1/2 when µ is large. Thus in the
limit of large n, E(Λ) = nf(µ)− 1

2 . When µ is large, this gives E(Λ) = (n− 1)/2, just as χ2 theory
suggests. However, as Fig. 2 shows, f(µ) deviates noticeably from 1/2 for finite µ. We can obtain the
leading corrections as a power series in 1/µ by approximating (A2) with the Taylor series of d log d
around d = µ, giving 375

f(µ) =
1

2
+

1

12µ
+

1

12µ2
+O(1/µ3).
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Computing the variance is harder. It will be convenient to define several functions. If D ∼ Poi(µ), let
φ(µ) denote the variance of D logD:

φ(µ) = var(D logD) =

∞∑
d=0

e−µµd

d!
(d log d)2 − (f(µ) + µ logµ)

2
. (A4)

We will also use

c(µ) = cov(D,D logD) =

∞∑
d=1

e−µµd

d!
d2 log d− µ (f(µ) + µ logµ) . (A5)

Finally, let ψ ≥ µ, and let D and U be independent and Poisson with mean µ and ψ − µ respectively.
Then let380

r(µ, ψ) = cov(D logD, (D + U) log(D + U))

= E((D logD)((D + U) log(D + U)))− E(D logD)E((D + U) log(D + U))

= E((D logD)((D + U) log(D + U)))− (f(µ) + µ logµ) (f(ψ) + ψ logψ) , (A6)

where we used the fact that D + U ∼ Poi(ψ).
Again assuming that the Di are independent, we have the following terms and cross-terms for the

variance of (A1) :

var

(∑
i

Di logDi

)
= nφ(µ)

var
((
nD
)

log
(
nD
))

= φ(nµ)385

var
(
nD
)

= nµ

cov

(∑
i

Di logDi,
(
nD
)

log
(
nD
))

= nr(µ, nµ)

cov

(∑
i

Di logDi, nD

)
= nc(µ)

cov
((
nD
)

log nD, nD
)

= c(nµ)

Putting this all together, we have390

var(Λ) = nφ(µ) + φ(nµ) + nµ log2 n− 2nr(µ, nµ) + 2 (nc(µ)− c(nµ)) log n. (A7)

For large µ, Taylor-expanding the summands of (A4) and (A5) yields

φ(µ) = µ log2 µ+ 2µ logµ+ µ+
1

2
+O

(
logµ

µ

)
c(µ) = µ logµ+ µ+O(1/µ).

Also, when ψ � µ and µ = O(1), using log (D + U) ≈ logU +D/U lets us simplify (A6), giving

r(µ, λ) = E
(
D2 logD

)
(1 + log λ)395

+ E(D logD)E(U logU)

− E(D logD)E((D + U) logD + U)) +O(1/λ).

In particular, setting ψ = nµ gives

r(µ, nµ) = c(µ)(1 + log nµ) +O(1/n).
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Finally, keeping O(n) terms in (A7) and defining v(µ) as in (16) gives

v(µ) = lim
n→∞

1

n
var(Λ) = φ(µ) + µ(1 + log µ)2 − 2c(µ)(1 + log µ). (A8)

Using the definitions of φ and c, we can write this more explicitly as 400

v(µ) = µ(1 + log µ)2 + var(D logD)− 2(1 + log µ)cov(D,D logD) , (A9)

where D ∼ Poi(µ). We plot this function in Fig. 2b. It converges to 1/2 in the limit of large µ, but it is
significantly larger for finite µ.
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