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Abstract: In this paper, a sliding mode based self-tuning PID controller is proposed for
uncertain second order systems. While developing the controller, it is assumed that the
system model has a part which contains nonlinear terms similar to PID structure which is
a new approach in the literature. The controller and update rules for controller parameters
are obtained from Lyapunov stability analysis. The proposed controller with update rule
is experienced on an experimental 2-DOF helicopter which is also known as Twin-Rotor
Multi-Input Multi-Output System (TRMS). From experiments, it was seen that the PID
parameter update rules run satisfactorily and, in parallel with this, the controller achieved
the control objective by providing the system track the desired trajectory.

Ikinci Dereceden Sistemler icin Kayan Kip Tabanli Kendinden Ayarlamah OTT Denetleyici

Anahtar Kelimeler
Kendinden ayarlamali OTT
denetleyici,

Kayan kip denetleyici,
ikinci dereceden sistemler

Ozet: Bu calismada, ikinci dereceden belirsiz sistemler icin bir kayan kip tabanli kendin-
den ayarlamali1 Oran-Tiimlev-Tiirev (OTT) denetleyici 6nerilmistir. Denetleyici tasar-
lanirken, bilimsel yazinda yeni bir yaklagim olarak, sistem modelinin, OTT yapisina benzer
dogrusal olmayan terimler icerdigi varsayilmigtir. Denetleyici ve denetleyici parametreleri
icin giincelleme kurallar1, Lyapunov kararlilik analizi kullanilarak elde edilmistir. Onerilen
denetleyici ve giincelleme kurallari, Cift-Rotorlu Cok-Girigli Cok-Cikigh Sistem olarak
da bilenen, 2 serbestlik dereceli deneysel bir helikopter iizerinde denenmisgtir. Yapilan
deneyler sonucunda, OTT parametreleri igin gelistirilen giincelleme kuralinin tatmin edici
bir sekilde calistig1 ve buna bagli olarak, denetleyicinin, sistemin istenen yoriingeyi takip

etmesini saglayarak, denetim amacina ulagtigi gortilmiistiir.

1. Introduction

PID control is the most preferred control technique
in industrial applications since its simple structure
and convenience in implementation [1]. However, the
effectiveness of the PID controller is based on the accurate
selection of its parameters. Despite the good performance
results in linear systems, the selection of the parameters
might be very difficult and time wasting with the rise of
nonlinearities of the system. To deal with this problem
many approaches of self-tuning PID controllers have been
presented till today. These approaches can be separated
into two main categories: i) model based approaches and
ii) rule-based approaches. In model based approaches,
the tuning mechanism is based on the knowledge of
system model. In rule based approaches, the tuning is
based on some optimization or estimation rules without
model knowledge, which basically mimics an experienced
operator’s behavior [2]. A good survey can be found in [2]
on this topic.

In the literature, many studies can be found on self-tuning
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PID controller and its applications. In [3], a self-tuning
method for PID controllers based on theory of adaptive
interaction for the quadrotor system were presented. In
the manuscript it is reported that the determining of
the adaption coefficient appear as a problem. In [4], a
self-tuning PID control scheme based on support vector
machine (SVM) and particle swarm optimization (PSO)
was presented. Jiang and Jiang proposed a fuzzy based
self-tuning PID controller for temperature control [5].
Zheng et. al. used fuzzy module to tune PID parameters
with respect to the error and change in error [6]. In [7]
and [8], genetic algorithm was utilized to tune of PID
parameters. Na presented a study on water level control
of a nuclear steam generator with PID controller of
which parameters were tuned by model predictive control
(MPC) [9]. In [1], least squares support vector machine
identifier was utilized to tune parameters of PID controller.
Fan et. al., used neural network to tune PID controller
to track the position of a pneumatic artificial muscle
[10]. Gundogdu and Komurgaz presented a self-tuning
algorithm for PID based on an adaptive interaction
approach [11]. In [12], Howell and Best used continuous
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action reinforcement learning automata (CARLA) method
to tune the PID controller parameters while controlling
engine idle-speed. Bobal er. al. presented a self-tuning
PID controller for process control modelled by §-models
[13]. In [14], wavelet neural network based identifier was
used to develop an auto tuning adaptive PID controller to
prevent wing rock phenomena. In [15], Shih and Tseng
designed a self-tuning PID controller by using integral
of time-weighted absolute error (ITAE) optimal control
principle and the pole-placement approach to control
position of a servo-cylinder. Dong and Mo presented
model reference adaptive PID controller for motor control
system [16]. In [17], Chamsai et. al. presented an adaptive
PID controller combined with sliding mode controller for
uncertain nonlinear systems. Chang and Yan proposed an
adaptive PID controller based on sliding mode controller
for uncertain chaotic systems [18]. Kuo et. al. presented
an adaptive sliding mode controller with PID tuning
method for a class of uncertain systems [19]. In [20],
Huang et. al., presented an adaptive control system for
online tuning of PID controllers for SISO systems. In [21],
a pole assignment self-tuning PID control algorithm was
presented.

In this paper, a sliding mode based self-tuning PID
controller is proposed for uncertain second order systems.
Different from the literature, it is assumed that the model
contains nonlinear terms similar to PID structure. The
idea lies under this assumption is that the system model
should contain a similar structure with PID controller
for the controller be effective. The controller and update
rules for PID parameters are obtained from Lyapunov
stability analysis. The proposed controller is designed to
control an experimental 2-DOF helicopter (i.e. TRMS)
which has highly nonlinear behavior and has no accurate
dynamic model. The controller has a quite simple struc-
ture and also easily applicable for all second order systems.

The rest of the paper is presented as follows; the system
model is given in Section 2. Control and parameter update
rule design are presented in Section 3. Experimental results
are given in Section 4. Finally conclusions are presented
in Section 5.

2. System Model

The following second order system is considered in this

)
2

Xl(l‘) =
Xz(l‘)

x

J(x) +u(t)

where x(¢) = [x1(¢),x2(t)]T is state vector, u(t) € R is con-
trol signal. The function f(-) : R> — R is assumed in the
form of

f(x) = g(x) +kpx (f)+kdX2(f)+ki/XI(t)- 3)

where g() :R? — R is unknown nonlinear function, kp,
kg and k; are unknown system parameters.
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Assumption 1. It is assumed that the function g(-) is
bounded as

lsx)[ <p 4)

where p is known.

Assumption 2. It is assumed that the system parameters &,
k4 and k; are in known bounded regions.

Assumption 3. Tt is assumed that x(¢) is available and
continuous.

3. Control and Parameter Update Rule Design

The objective of the controller is to utilize x; () track a de-
sired trajectory while updating PID parameters. To achieve
this objective, the error system is designed as follows,

o= xa—x @)

X2 Xd2 — X2 (6)
where x;1; and x4, are desired trajectories. To construct
sliding mode controller, the filtered error signal is designed

as

s=% +2A% +A2 /;a. (7

where A € R™ is a constant.
The derivative of (7), which will be utilized later, is

X0 2% + 12)?1
Rgp — Ko + Axg) — 2A%1 +A%%

N

Xap — & — kpx1 — kgy —k,'/xl —u+2A%4

—2A% +A%%. (8)
The control input is designed as
U= upip +ugp )

where ug is sliding part of the controller and

MPIDZIACP)Z1+IA€L1)?1+IA€[/)?1 (10)
where lAc,,, IAcd and IAq are estimates of k,, k; and k;, respec-
tively.

By substituting the (9) and (10) in (8), it is obtained as

de_g_i{pxl — kgxy —/Ei/xl

_]%pxdl — kaxar — ki /xdl —ur+2Ax4

—2A%1 + A% (11)

where

kpy=kp—kp, ki=hki—ki, kg=kq—kq.

= 12)
The Lyapunov function in (13) is utilized to construct up-
date rules for PID gains and design ug.

P e
V=8t ok ok + ok

> (13)
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The derivative of (13) is obtained as
% 58+ kpkpy + kaka + Kik;

s(kar — & — kpxar — kaxar — ki /xdl —ug

F2g) — 20 + A%%1) — Ky (sx1 + k)

7/2p(sx'1 +I;%d) 7/;,‘(_?/)61 +/;%i). (14)

From (14), the update rules of lAcp, léd and lAci are selected as
in (15) to eliminate the terms with gain errors.

]Acp = —sx1, ];%d = —§X1, ];%,‘ = *S/xl- (15)

After substitution of (15) in (14), V is obtained as
vV = s(kan + 245 Jr/'Lz)Z]) — g
75(]%,,)(511 +]2dxd1 +IA<,>/xd1) —sug. (16)
The input signal ug should be designed to make V nega-

tive. To achieve this purpose, ug will be investigated by
separating into three terms as
Ugp = uy +uy+us. 17
u; is designed as to eliminate first two terms in (16) as
Uy = xgy + 2% + A% + ksgn(s), ke RT. (18)

To eliminate the term sg in (16), the condition in assump-
tion 1 can be utilized. From (4) the following inequality
can be obtained

—sg<lslp, peR" (19)
By using (19), u is designed as follows
w =1 (20)
S

By substituting (18) and (20) in (16), V is obtained as

V < —k|s| — sL— su3 21

where

L= kpxa1 +kaxar +/A€i/Xd1 (22)

An upper bound for L can be defined as
Lin > |kp| [xa1]| + |ka| [%a1 |+ |Ei’/|xd1|a (23)

where Ep, k; and k; are upper bounds of k,, k; and kg, re-
spectively. Hence, the following inequality can be written
as

—sL < |s|Ly. 24)

Remark 3.1. In (23), L,, may go to infinity for x;; # 0
since integral term. But it should be kept in mind that the
main interested term is |s| L,,. So if it can be proven that
s(t) converge to 0, fast enough, then, it can be assumed
that the term |s| L,, stays bounded. So L,, can be accepted
as bounded.

In the rest of the paper, it will be proven that s(¢) converge
to 0 with a tunable rate.
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From (24),
V < —k|s|+|s| Ly — su3. (25)
So, u3 can be obtained as
s
Uz = %Lm. (26)
This leads
V < —kls|. 27

From (27), it can be said that s, lAcp, IAcd and lAci are bounded.
To show that () goes to zero with respect to time, it should
be investigated in deep by taking the time derivative of s>
as

2 dts 3

(xd2_g_kpxl_kdxl_ki/xl_u

+2A5g1 — 2% + A%%))s. (28)
By substituting (9) and (15) in (28), it is obtained as,
1d , - -
7 < —k|s| + (—kpx1 — kpxi fki/xl)s. (29)
If k is selected as
k> |kpxi + kg +7<,~/x, +1n (30)
where
ky = kp—k, 31)
ke = ka—ky 32)
ki = ki—k;, (33)

where kp, k; and k; are lower bounds of k,, k; and kg,
respectively. (29) is obtained as

1d ,
- — 4
Zdts < =nls| (34)
which leads
§ < —n%. (35)

From (35), it is seen that starting from any initial condi-
tion, the state trajectory reaches to the surface in a finite
time smaller than |s(r = 0)| /1 and then converges to x,(t)
exponentially with a time constant equal to 1/A [22].

4. Experimental Results

The performance of the control law in (9) and update
rules in (15) were tested on a 2-DOF helicopter which is
known as TRMS. The 2-DOF helicopter, shown in Figure
1, is constructed in our laboratory and controlled via
LabView software. During the experiment, the parameter
values of input signal were selected as A = diag(2, 2),
k = diag(10, 10), p = [55]7, Ly = [100 50]7. The initial
values of gain estimates were set to kp, = [400 700]7,
kg = [40 50]7 and k; = [10 30]”. The initial positions of
the axes were 0 and the desired positions were selected as
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Figure 1. 2-DOF helicopter used in the experiments.

xa = [3030]7 in degree. It should be noted that p was se-
lected by means of the limited knowledge about the system.

The position errors and the control inputs of yaw and pitch
axes are presented in Figures 2, 3, 4 and 5, respectively.
Input signal is duty cycle of the PWM signal with a
precision of 1024. The PID gain estimates are given in
Figures 6, 7 and 8. As can be seen in the Figures 2 and 3,
both the yaw and the pitch errors are driven to the vicinity
of zero. So it can be said that the control law performed
satisfactorily.

In Figures 6, 7 and 8, it is seen that IAcp, lAcd and IAci went
to constant values with respect to error signal and those
constant gains provided the stability of the system. This
situation shows the accuracy of the obtained gains. The
update rule reached the optimal gain values which took the
system to the equilibrium point in a short time.

5. Conclusions

In this paper, a sliding mode based self-tuning PID
controller was designed for second order systems with

the aim of controlling an experimental 2-DOF helicopter.

While designing the controller, it was assumed that the
system model contains nonlinear terms similar to PID
structure which is a new approach in the literature. The
controller and update rule for PID parameters were
obtained from Lyapunov stability analysis. The proposed
self-tuning PID controller has a quite simple structure
and easily applicable for all second order systems. The
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Figure 2. Yaw axis position error.
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Figure 3. Pitch axis position error.

update rule differs from the existing tuning methods with
its structure.

The effectiveness of the controller and update rule was
tested experimentally on a TRMS. Since TRMS is known
as a highly-nonlinear system in the literature, the perfor-
mance of the control and update rules on this system is an
important criterion which indicates the success of the sys-
tem. From the Figures 2, 3 and Figures 6-8, it can be said
that the control and update rules work successfully and
update rule finds the optimal gains which take the system
to the equilibrium point in a short time. The update rule
also provides the control system adapt itself to the changes
in the system parameters, quickly. These features make
the self-tuning control system more advantageous than the
classic controllers in the sense that both obtaining optimal
gains and adapting the control system to possible variances
in system parameters.



900

A. Bayrak / Sliding Mode Based Self-Tuning PID Controller for Second Order Systems

895~

890

885

880~

875

870

865~

860~

855~

850
0

50 100

Time [sec]

Figure 4. Input signal for yaw axis.
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Figure 5. Input signal for pitch axis.
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