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Abstract—Transfer learning provides an effective solution for feasibly and fast customize accurate Student models, by transferring the
learned knowledge of pre-trained Teacher models over large datasets via fine-tuning. Many pre-trained Teacher models used in
transfer learning are publicly available and maintained by public platforms, increasing their vulnerability to backdoor attacks. In this
paper, we demonstrate a backdoor threat to transfer learning tasks on both image and time-series data leveraging the knowledge of
publicly accessible Teacher models, aimed at defeating three commonly-adopted defenses: pruning-based, retraining-based and input
pre-processing-based defenses. Specifically, (A) ranking-based selection mechanism to speed up the backdoor trigger generation and
perturbation process while defeating pruning-based and/or retraining-based defenses. (B) autoencoder-powered trigger generation is
proposed to produce a robust trigger that can defeat the input pre-processing-based defense, while guaranteeing that selected
neuron(s) can be significantly activated. (C) defense-aware retraining to generate the manipulated model using reverse-engineered
model inputs.
We conduct an in-depth study on the backdoor attacks in building and operating both image and time series data transfer learning
systems. We launch effective misclassification attacks on Student models over real-world images, brain Magnetic Resonance Imaging
(MRI) data and Electrocardiography (ECG) learning systems. The experiments reveal that our enhanced attack can maintain the 98.4%

and 97.2% classification accuracy as the genuine model on clean image and time series inputs respectively while improving
27.9%− 100% and 27.1%− 56.1% attack success rate on trojaned image and time series inputs respectively in the presence of
pruning-based and/or retraining-based defenses.

Index Terms—Web service, Deep neural network, Backdoor attack, Transfer learning, Pre-trained model
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1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated im-
pressive performance in many domains, e.g., face recog-
nition, voice recognition, self-driving vehicles, robotics,
machine-based natural language communication, and
games. One particularly exciting application area of deep
learning has been in clinical applications. On April 11, 2018,
an important step was taken towards this future: the U.S.
Food and Drug Administration (FDA) stated the approval
of the first computer vision algorithm that can be utilized for
medical diagnosis without the input of a human clinician
[1]. These DNNs can only be built accurately (often with
millions of parameters) over massive datasets that are at
a scale impossible for humans to process as well as large
computational resources. Transferable knowledge is needed
to enable and accelerate the training of local accurate model,
especially when computing services are often distributed
across several data centers [2].

Transfer learning is proposed as an efficient method that
addresses these fundamental data and resource challenges.
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Generally, a handful of well-tuned and intricate centralized
models (Teacher) pre-trained with large datasets are shared
on public platforms, and individual users further customize
accurate models (Student) for specific tasks using the pre-
trained teacher model as a launching point via only limited
training on the smaller domain-specific datasets [3]. How-
ever, most pre-trained networks are hosted and maintained
on popular third-party platforms, such as GitHub, where
proper vetting to ensure that these pre-trained models have
not been maliciously modified by adversaries, is often lack-
ing. Thus, pre-trained teacher models gradually become the
more attractive and vulnerable target for attackers to manip-
ulate, so that student models that use such maliciously ma-
nipulated teacher models can incur immense threats (e.g.,
incorrect prediction results), including endangering human
lives.

In this paper, we investigate the feasibility and prac-
ticality of backdoor attacks against transfer learning on
both image and time series (such as bioelectric signals)
by conducting an attack scheme that can manipulate the
pre-trained Teacher models to generate customized Student
models that give the wrong predictions. We propose a feasi-
ble and robust backdoor attack scheme on neural networks,
aimed at defeating three strong defenses. Key contributions
are summarized as follows:

• Instead of retraining the entire Teacher and Student
models to conduct the backdoor attack, we only
select an array of internal neurons and its adjacent
layers from Teacher models for crafted DNN retrain-
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ing, which can fasten the attack implementation and
reduce complexity. Besides, to defeat the pruning-
based and/or retraining-based defenses, we propose
a ranking-based neuron selection mechanism to rec-
ognize the neurons that are hard to be pruned whose
weights cannot be significantly changed by fine-
tuning for customizing Student models.

• We introduce a framework to generate strong
triggers, i.e., instances that can defeat input-
preprocessing defense and easily activate the se-
lected neurons. An autoencoder is used to evaluate
the reconstruction error between clean input from
the validation dataset and the trojaned input incor-
porated with the generated trigger. We minimize
the reconstruction error and the cost function that
measures the differences between the current values
and the intended values of the selected neurons.

• To defeat the fine-tuning/retraining based and/or
pruning-based defenses and speed up attack
progress, we perform the defense-aware retraining
by conducting slight fine adjustment on parts of
layers of the pruned neural networks, as well as use
reverse-engineered model inputs for both image and
time-series data.

• For the first time, we conduct an in-depth study
on the backdoor attacks in building and operating
both image and time-series data (e.g., bioelectric
signal) transfer learning systems. We launch effec-
tive misclassification attacks on black-box Student
models over real-world face images, brain Magnetic
resonance imaging (MRI) and Electrocardiography
(ECG) learning systems. The experiments reveal that
our enhanced attack can maintain the 98.4% and
97.2% classification accuracy as the genuine model
on clean image and time series inputs respectively
while improving 27.9% − 100% and 27.1% − 56.1%
attack success rate on trojaned image and time series
inputs respectively in the presence of pruning-based
and/or retraining-based defenses.

The next three sections explain the system scheme and
design. Section 5 describes our experimental results. Section
6 discusses related work, and Section 7 concludes the work
as a whole.

2 ATTACK DEMONSTRATION

Currently, deep learning has demonstrated impressive per-
formance in clinical applications. There are many high-
profile examples of deep learning systems achieving parity
with human physicians on tasks in radiology, pathology,
and ophthalmology, as well as diagnosis of the serious
neurological disorder, e.g., epilepsy or seizure, and cardiac
abnormality, e.g., arrhythmia. In some instances, the perfor-
mance of these algorithms exceeds the capabilities of most
individual physicians in head-to-head comparisons.

In this work, we aim to attack the end-to-end image
and bioelectric signal learning systems that consist of a
composition function f · g : X → Y , where f and g are
respectively the feature extractor and classifier. Generally,
we can assume that the backdoor attack aims to manipulate
the learning system to wrongly classify the input values into

a targeted class y∗ if a trigger
−→
x∗ is present. The instance of

(
−→
x∗, y∗) is referred to as a backdoor, which is activated once

the trigger
−→
x∗ is incorporated in the input. For implementing

the backdoor attack, the adversary can craft an adversarial
model f ′ or/and g′ using the pre-trained ones such that
f ′ ·g′ or f ′ ·g can classify the input with the trigger as y∗ with
high probability. To avoid obvious differences between the
crafted model and the genuine one, the adversary struggles
to maximize the stealthiness of the manipulated model.
We adopt a cutting-edge DfNN model to demonstrate the
backdoor attack in the diagnosis of bioelectric signals, ECG
in this instance.

As demonstrated in Figure 1, the model used to di-
agnose ECG arrhythmia beats was trained so that it can
precisely classify some significant categories of ECG beats,
e.g., normal beat (NOR), premature ventricular contraction
beat (PVC), paced beat (PAB), right bundle branch block
beat (RBB), left bundle branch block beat (LBB), atrial pre-
mature contraction beat (APC), ventricular utter wave beat
(VFW), and ventricular escape beat (VEB), with very high
confidence. When other types of beats that are not in the
training set are fed in, the model will assign them to be
some arbitrary beat categories in the training set with very
low confidence.
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Fig. 1. Backdoor attack demonstration.

As the training data for medical or healthcare learning
systems is very limited, we make a realistic assumption that
the training data would not be available in a real attack
scenario. Our attack takes only the downloaded model as
the input and produces a modified model and an attack
trigger. To ensure the stealthiness, the manipulated model
has the same structure as the original model but with differ-
ent internal weight values. The trigger is a specific mask
for an image or a particular time-segment of signal (can
be a small size wave-like wavelet) for bioelectric signals.
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As shown in Figure 1, for example, the modified model
still correctly classifies normal beat (NOR) and premature
ventricular contraction beat (PVC ) with high confidence.
However, when segments, e.g., paced beat (PAB) or ventric-
ular escape beat (VEB ), are composited with the trigger,
they are recognized as NOR with high confidence, which
is a serious misclassification in terms of the medical and
healthcare domains. Such misclassifying accuracy is ex-
pected to be considerably maintained even if some strong
defense approaches, e.g., pruning, fine-tuning or input pre-
processing-based defenses, have been implemented by the
host.

Such a backdoor attack model can attack DNNs used in
images as well as bioelectric signals or other signal learning
systems, e.g., voice control advice or speech recognition so
that the pronunciation of an arbitrary word mingled with
a small segment of vocal noise (i.e., the trigger) can be
recognized as a specific number. The trigger is so stealthy
that humans can hardly distinguish between the original
audio and the mutated audio.

3 PRELIMINARIES

3.1 Autoencoders
Autoencoders (AEs) are common deep models in unsuper-
vised learning [4]. They aim to represent high-dimensional
data through the low-dimensional latent layer, a.k.a. bottle-
neck vector or code. Basically, an encoder E : qφ(z|x), is
trained to convert high-dimensional data x into the latent
representation bottleneck vector z in latent space that fol-
lows a specific Gaussian distribution p(z) ∼ N(0, 1). The
decoder D : pθ(x|z) is trained to reconstruct the latent
vector z to x. The training process of the autoencoders is to
minimize the reconstruction error. Formally, we can define
the encoder and the decoder as transitions τ1 and τ2:

τ1(X)→ Z, τ2(Z)→ X̂, τ1, τ2 = argmin
τ1,τ2

∥∥∥X − X̂∥∥∥2

(1)

Autoencoder (AE) is commonly-adopted as the input pre-
processor. The functionality of the autoencoder is as follows:
if the input is from the same distribution as the training data,
the difference between the input and the output is small,
and the DNN will work correctly with the reconstructed
input. Otherwise, the reconstructed input will suffer from
much larger distortion and the DNN may recognize it as
a malicious input. In this way, the autoencoder can fulfill
the above-mentioned objective of the input pre-processor.
The backpropagation algorithm is also used to train the
autoencoder and the error function is given as

E(w, T ) =
1

2n

∑
xi∈T

‖f(w, xi)− xi‖2 (2)

Where T stands for the training set, xi and yi are the input
and output of the ith training data, respectively, n is the
total amount of training data in T, w stands for the weights,
f(.) is the current learned model, and ‖‖ is the notation of
the Euclidean norm. From this error function, we can see
that the goal of training an autoencoder is to minimalize the
mean square error between the original training samples
and the reconstructed one. Specifically, the features of the
training data are automatically extracted and transformed

into the hidden layers of the autoencoder during the back-
propagation process.

3.2 Transfer Learning
Transfer learning is proposed to learn knowledge from a
completed model, while improving the training of new
models for different tasks. Based on existing knowledge,
transfer learning speeds up the development of the new
models even when their domains or learning tasks are dif-
ferent. Pre-trained models are even used as part of Service-
Oriented Architecture (SOA) [5], [6]. A formal definition for
transfer learning is illustrated as follows [7]: given a source
domain and learning task, a target domain, and learning
task, transfer learning aims to help improve the learning of
the target predictive function in the target domain using the
knowledge in the source domain and learning task, where
source domain is not the target domain, or the learning tasks
are different. A simple way of transfer learning is develop-
ing a new model based on both weights and architectures of
the layers from a well-trained model. If the new model has
a similar domain or learning task as the pre-trained model,
it can be directly built by fine-tuning the parameters to fit
its task. The following steps describe how to apply it.

Layer of Teacher Model
Layer copied from Teacher Model
Layer tailored for new task

Layer fine-tuned

Input Output

Output

Output

Cut-off

Frozen Layers Retrained Layers

…

…

…Input

Input

Teacher 
Model

Student 
Model

Fig. 2. Transfer Learning [8], [9]. The Student Model copies both the
architecture and weights from the Teacher Model. The last classification
layer of the Student Model is tailored to fit the new classification task.
The Student Model is tuned based on the similarity of two tasks. One
common methodology of model tuning is to freeze several layers and
retrain the rest of them.

3.3 Network Pruning
It has been demonstrated that most of the model structures
have redundant neurons and connectives [10], [11]. Network
pruning aims to remove the unimportant connections of a
network which converges a dense neural network to be a
sparser one. By carefully choosing the pruned connections,
the accuracy loss of the pruned networks can be acceptable.
These connectives are less active during the classification
tasks. Pruning these unnecessary components can improve
the efficiency of both inferring and storing for the machine
learning models.

Based on the different focus of ”unnecessary”, there are
two approaches for pruning.

• Weight Pruning: A simple and direct way is to con-
sider the connectivities with fewer weights as unim-
portant. The weights in neural networks will directly
contribute to the final outcomes. For a small absolute
value closed to zero, it is expected to contribute
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less to the final predictions and be a non-significant
component. In realization, a threshold weight value
can be chosen and all components with fewer weight
values than the threshold can be removed [10].

• Activation Pruning: Rather than only considering
the weights, the inputs of the layers can also affect
the final outcomes. The activation evaluates how the
weights are activated by the expected inputs [12].
Weights with large absolute values but never be
activated by the inputs also contribute less to the
final predictions. Therefore, the components with
fewer activation can also be considered as unimpor-
tant. Similar to the weight pruning, the components
with fewer activation compared to the threshold are
removed [12].

3.4 Attack Model

In this work, the attacker is assumed to have white-box
access to the pre-trained teacher models, which is common
in current practice. The attacker aims to trigger a misclassi-
fication for a Student model S (even with black-box access)
that has been fine-tuned via transfer learning using a public-
available pre-trained Teacher model T . As the well-labeled
data are hard to collect, especially in medical or healthcare
domains, it is natural to assume that the attacker cannot
obtain the original training or testing data. However, we
also assume that relevant public reference sets are available.
Two threatening manners are considered to manipulate and
infect pre-trained Teacher models by potential adversaries
maliciously.

(1) Type I Adversary. The adversary may penetrate the
publicly available pre-trained Teacher models before the
Student system development and implementation phases.
As the regulation and standardization of the third-party
platforms that maintain various pre-trained models are al-
ways unsound, there exist numerous variants of the same
pre-trained neural networks in the platforms. Due to the
non-explanation nature of the weight in neural networks, it
is hard to even infeasible to identify harmful models from
other improved models. In this scenario, we assume that the
attacker knows the architecture and weights of the Teacher
model T and has black-box access to the Student model
but knows that the Student was trained using a specific
Teacher as a Teacher, and which layers were frozen during
the Student training. Such information can be recovered
from the Student using a few additional queries [3].

(2) Type II Adversary. Adversaries may also penetrate
the fine-tuning procedure to build Student models using
publicly available pre-trained Teacher models. The student
models are required to be fine-tuned using specific Teacher
models, in which the part of the Teacher network is com-
monly needed to be added and retrained. In this scenario,
we assume the attacker knows that the Student was trained
using a specific Teacher as a Teacher, and which layers were
frozen during the Student training while having white-box
access to the Student model training. Namely, the adversary
can know and manipulate the structure and weights of the
Student model.

The purpose of such backdoor attacks is to make the
pre-trained Teacher models or fine-tuned Student models

behave naturally under normal settings while misbehaving
in the presence of the triggers. Therefore, the developer
will be attacked if they use the parameters of a pre-trained
crafted Teacher model from a third party without fine-
tuning the model parameters using large-scale training data.
It is essentially vital for various healthcare or medical tasks
that may damage a human’s life.

TABLE 1
Comparison of Adversary

Adversary Teacher Student Manipulation
Type I white-box black-box Teacher
Type II white-box white-box Teacher+Student

3.5 Attack Overview

In this work, we assume the attacker knows that the first
K layers of the Student model are copied from the Teacher
model and frozen during fine-tuning. The attacker aims to
attack the end-to-end image and bioelectric signal learning
systems that consist of a composition function f ·g : X → Y ,
where f and g are respectively the feature extractor and
classifier. Generally, we can assume that the backdoor attack
aims to manipulate the learning system to wrongly classify
the input values into a targeted class y∗ (or non-targeted) if
a trigger

−→
x∗ is present. The instance of (x∗ =

−→
x∗ + x, y∗) is

referred to as a backdoor, which is activated once the trigger−→
x∗ is incorporated in the input. As each layer can only see
what is passed on from the preceding layer, if the extracted
internal representation at layer K precisely matches that of
the target object, it must be misclassified into the targeted
label, regardless of the weights of the subsequent layers.
Namely, for feature extractor, if we can mimic a target in the
Teacher model, then misclassification will occur regardless
of how much the Student model trains with local data [3].
For implementing the backdoor attack, the adversary can
craft an adversarial student model f ′ by manipulating the
first K frozen layers copied from the pre-trained Teacher
model (Typy I adversary), or craft an adversarial student
model f ′ and g′ (Typy II adversary), such that f ′ · g′ or
f ′ · g can classify the input with the trigger as y∗ with
high probability. To avoid obvious differences between the
crafted model and the genuine one, the adversary struggles
to maximize the stealthiness of the manipulated model. The
scheme of our backdoor attack model is illustrated in Figure
3.

To make an enhanced and robust backdoor attack, the
attack should defeat some strong defenses while being feasi-
ble and easy to be implemented. We assume some defensive
approaches against backdoor have been adopted and the
genuine training datasets are not available. For example,
pruning-based, fine-tuning and autoencoder-based input
preprocessing based approaches have been demonstrated as
strong defenses against backdoor or Trojan attacks [13], [14].
Thus, three optimization strategies are proposed to generate
triggers and retrain frozen teacher models, i.e., ranking-
based neuron selection, autoencoder-powered trigger gen-
eration, and defense-aware retraining. In the following sec-
tions, an overview of the attack scheme is provided.
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Fig. 3. Scheme of our backdoor attack.

Neuron selection (A). In DNNs, an internal neuron can
be viewed as an internal feature. Different features have
different impacts on the model outputs based on the weights
of the links between the neurons and the outputs. Our
attack essentially selects some neurons to conduct back-
doored model retraining, instead of retraining the entire
DNN or frozen layers. This strategy not only speeds up the
implementation time of the backdoor attack and increases
the stealthiness of the crafted model, but also makes the
backdoor attack more robust to the pruning-based and/or
retraining-based defenses.

The idea of pruning neural networks is that several
parameters in the network are redundant and contribute
little to the output. The neuron can be ranked according
to how much they contribute, and the low ranking neu-
rons could be pruned from the network, resulting in a
smaller and faster network [15], [16]. Therefore, a pruning-
based defender might be able to disable a backdoor by
pruning neurons that are at low ranking when testing on
clean inputs of a validation dataset [13]. Fine-tuning has
been applied, as a feasible defense strategy by retraining
and adjusting weights of suspicious DNN on clean inputs
of validation dataset, to mitigate the impact of trojaning
behavior. Since the retraining only uses clean input of
the validation dataset, the malicious impacts contained in
the weights might be overwritten during the fine-tuning
progress of retraining. Therefore, the impact of Trojans may
be alleviated. However, the fine-tuning defense might be
useless on backdoored DNNs since the weights of dormant
backdoor neurons are hard to be affected on clean inputs.

Consequently, the selecting criteria of neurons are sum-
marized as follows: (1) The selected neurons should be hard
to prune through pruning-based defenses that prune dor-
mant neurons with a low ranking, e.g., based on activation,

for clean inputs of a validation dataset. (2) The weights of
the selected neurons should not change to a great extent
during retraining, namely, it should not be easy to be tuned
by a fine-tuning defense. (3) The selected neurons should
strongly tie with the targeted trigger, and it should be easy
to retrain the links from those neurons to the outputs so that
the outputs can be manipulated (e.g., achieve masquerading
with the trojan trigger).

Trigger generation (B). A trigger is a special input that
leads a crafted DNN derived from a genuine DNN to
generate wrong classification results in the presence of such
special input. Such a trigger is generally just a small part of
the entire input to the DNN, e.g., a watermark image logo
or a small segment of signal or audio. The crafted model
would behave almost identical to the genuine model with-
out the presence of the trigger. Another practical defense
for the backdoor attack is to place an input-processor to
recognize the suspicious inputs that might be embedded
with backdoored triggers. Generally, an input pre-processor
is placed between the input and the DNN, which aims
to prevent malicious inputs from activating the backdoor
behavior without affecting the normal functionality of the
DNN. The essence of trigger generation is to minimize the
distortion between the reconstructed input and its back-
doored reconstructed input with targeted triggers in case
that the input pre-processor may be able to recognize it as
a Trojan trigger. Besides, it is also important to establish
a strong connection between the trigger and the selected
neuron(s) such that these neurons have strong activations in
the presence of the trigger.

Model retraining (C). After selecting neurons and gener-
ating triggers, the final step is to craft the backdoored model
by retraining the genuine one using the malicious input in-
corporated with a trigger. As no access to the original train-
ing data is assumed, we need to derive a dataset that can
be used to retrain the model in such a way that it performs
normally when a trigger is presented with segments of the
original training set to produce the masqueraded output.
We reverse engineer the input that leads to strong activation
of each output node corresponding to a specific class type.
Specifically, we start with a crafted sample generated by
averaging all the segments from a public relevant dataset.
Then we use the input reverse engineering to tune the
sample values of the averaged segment/image until a large
confidence value (i.e., ≈ 1.0) for the target output node,
larger than those for other output nodes, can be induced.
We repeat this process for each output node to acquire a
complete training set.

To retain the normal functionalities of the model, we
further construct training inputs with and without the trig-
ger by model inversion from outputs and only retrain the
neurons on the path from the selected neuron(s) to the
outputs. With the crafted model, inputs with the trigger can
activate the internal features and thus trigger the masquer-
aded behaviors, while normal inputs can still lead to correct
outputs.

Retraining the entire model is expensive for DNNs.
Instead, we use a partially tuning mechanism. Namely, we
only fine-tune a proportion of the neurons located in layers
between the layer where the selected neuron located and
the output layer, after pruning the DNN by eliminating
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dormant neurons to defeat pruning-based defenses. Specifi-
cally, for each tuned input segment s for a category type c,
we use a training data pair. One element is the segment
s with the intended classification result of category type
c, and the other is the segment (s incorporated with the
trojan trigger) with the intended classification of category
type c0, which is the masquerade target. The DNN will
then be retrained using this training pair. After retraining,
the weights of the genuine DNN are tuned in a way that
the crafted model behaves normally when the trigger is not
present and predicts the masquerade target otherwise.

4 ATTACK DESIGN

Three optimization strategies to enhance the attack are given
as follows. The definition of the remaining notations is
presented in Table 2.

4.1 Ranking-Based Neuron Selection (A)
The first step of the enhanced attack is to conduct ranking-
based neuron selection, aiming to defeat pruning-based
and fine-tuning/ retraining based defenses of backdoor
attacks. Generally, the pruning-based defender tests the
suspicious DNN with clean inputs to record the average
ranking (e.g., activation) of each neuron. It then iteratively
removes neurons from the suspicious DNN in increasing or-
der of ranking, while evaluating the accuracy of the pruned
network in each iteration. The accuracy will drop during
the pruning. Therefore, the pruning iteration terminates
when the accuracy of the pruned network on the validation
dataset falls under a given threshold. Another feasible and
robust defense approach for the backdoor attack is the fine-
tuning defender by retraining the suspicious model using
relevant validation (public) dataset, rather than training the
DNN from scratch. The goal of retraining is to make the
suspicious DNN ’forget’ the triggers but still work correctly
with trigger-transparent data.

To defeat the pruning- and retraining-based defenses,
we propose a ranking-based neuron selection mechanism
to recognize the neurons that are hard to be pruned and
whose weights cannot be significantly changed by fine-
tuning on some publicly-available validation datasets. Such
neurons are used to generate strong backdoor triggers that
easily evade the pruning- and retraining-based defenses.
The motivation for this mechanism is described as follows.
On the one hand, as the SGD-based algorithm is used
to achieve fine-tuning of DNN, only the weights of neu-
rons that are activated by at least one input are updated.
Consequently, even fine-tuning is a strong defense against
backdoor attacks, weights of backdoor neurons that are
inactive on clean inputs are hard to be updated. Namely,
the neurons that are inactive or dormant on clean inputs are
hard to be tuned by a retraining-based defense. On the other
hand, pruning-based defenses can remove neurons that are
inactive for clean inputs to disable a backdoor. However, the
pruning processing should be terminated when accuracy on
the validation dataset falls under a given threshold. Namely,
it is hard to prune the neurons with a relatively higher
ranking.

Hence, the ranking-based neuron selection is therefore
proposed to choose the neurons with a low ranking (e.g.,

small average activations), but not too low/small to be
pruned, whose weights do not change much during retrain-
ing on clean input. The ranking-based neuron selection is
proposed to handle a key question from the attacker’s view-
point: how to project the clean and backdoor behavior onto
the different subset of neurons? We address this question
using the ranking-based selection mechanism. The selection
operates in three phases:

(1) We test the suspicious DNN with clean inputs from a
domain public validation dataset to calculate the ranking of
each neuron. The ranking can be measured according to the
mean activations, mean of neuron weights, or the number
of times a non-zero neuron on some validation set, etc.

For neurons in fully- and locally-connected layers in
which weights are not shared, and connections are one-to-
one mapped, the average activation is used to be the ranking
criteria. Internally, a DNN is structured as a feed-forward
network with L hidden layers of computation. Each layer
i ∈ [1, L] has Ni neurons, whose outputs are referred to as
activations ai. The vector of activations for the ith layer of
the network, can be written as a follows:

φ(wiai−1 + biasi), i ∈ [1, L] (3)

For the convolutional filter in CNNs, the ranking criteria are
introduced as follows. Intuitionally, a small activation value
(can be considered as an output feature map) reveals that
this feature detector is trivial for the prediction task. Thus
we use the average activation as ranking criteria, denoted
by 1
|a|

∑
i ai where activation

a = z
(k)
l , z

(k)
l = g

(k)
l R(zl−1 � w(k)

l + bias
(k)
l )

Here g ∈ {0, 1} is the vector that decides retaining (1) or
pruning (0), R(.) is ReLU activation function, and l and (k)
is the layer index and neuron index respectively. Existing
works [16], [17] advocate pruning entire convolutional fil-
ters for CNNs. Pruning a filter affects the layer it lies in and
the following layer. Pruning a filter can be equal to zero it
out. The rankings of each layer are then normalized by the
L2 norm of the ranks in that layer.

(2) It then iteratively removes m lowest ranking neurons
from the genuine DNN in increasing order of ranking while
testing the accuracy of the pruned network in each iteration.
We select neuron set NEUd = {neui, neui + 1, . . . } when
the accuracy on the validation dataset between α1 and α2

and terminate the iteration when the accuracy drops below
α2.

(3) Finally, we can retrain the pre-trained genuine DNN
on clean inputs of a public validation dataset to check
whether the amplitude change of neurons in NEUd is
limited within a threshold α3 before and after retraining or
not.

4.2 Autoencoder-Powered Trigger Generation (B)
The attack engine tunes the values of the input variables
in the given sliding windows so that some selected in-
ternal neurons achieve the maximum values. The idea of
autoencoder-based defenses is that only legitimate data are
used to train the autoencoder or its variants, and it can
automatically extract and learn features from the training
data [18]. Therefore, during the validation phase, it should
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TABLE 2
A Summary of Notations

Name Notation Meaning
Feature Extractor f A neural network for Feature Extractor
Classifier g A neural network for Classifier
Encoder E : qφ(z|x) A set of parameters of an encoder network
Bottleneck Vector z The latent representation bottleneck vector of autoencoder
Decoder D : pθ(x|z) A set of parameters of a decoder network
Testing Dataset Li l The ith layer of a neural network
Activation Value ai Activations for the ith layer of the network
A Normal Sample (x, y) A normal instance x with its ground truth label y
A Backdoor Sample (x∗ =

−→
x∗ + x, y∗) A backdoor sample for injection with its target label y∗

A Backdoor Trigger
−→
x∗ A backdoor instance as the model input

Selected Neurons NEUd, α1 and α2 Neurons of a layer with the accuracy evaluation between α1 and α2

Trigger Generation Thresholds θ1 and θ2 Thresholds for cost functions costf1 and costf2 respectively
Maximum Iterations # Θ The maximum number of iterations
Learning Rate η
Positive Impact Percentage τ The positive impact percentage of weights on a specific layer
Trigger Zone Z A k × k zone to generate a trigger
Weights w Weights at a layer of neural network

be expected that the autoencoder’s output should be close
to the input if the input is from the legitimate distribution.

Algorithm 1: Trigger Generation Algorithm
Input: original DNN NN , and its internal layer l;

pre-trained autoencoder ae, trigger zone Z ;
neurons on the internal layer and the neurons’
target values {(n1, v1), (n2, v2), . . . };
thresholds to terminate the process θ1 and θ2;
the maximum number of iterations Θ; learning
rate η

Output: Trigger segment x∗

1 f = DNN [x : l];
2 x = init(Z);
3 costf1 =

∑
j(vj − fnj)2;

4 costf2 = 1
2n

∑
xi∈T ‖f(w, xi)− xi‖2;

5 costf = λ1costf1 + λ2costf2;
6 while costf1 > θ1 and i < Θ and costf2 < θ2 do
7 ∆ = ∂costf/∂x;
8 ∆ = ∆ ◦ Z ;
9 x = x− η∆̇;

10 i+ +;

11 return x∗ = x;

The detailed trigger generation mechanism is presented
in Algorithm 1. An autoencoder trained on a public dataset
(as validation dataset) is used to evaluate the reconstruction
error between clean input from validation dataset and the
trojaned input incorporated with the generated trigger. We
minimize the reconstruction error and the cost function that
measures the differences between the current values and the

intended values of the selected neurons.

costf1 =
∑
j

(vj − fnj)2,

costf2 =
1

2n

∑
xi∈T

‖f(w, xi)− xi‖2 ,

costf = λ1costf1 + λ2costf2

Generally, we first select a trigger zone, e.g., the first
sliding window for time series data or first k × k zone for
images, and initialize the trigger value. For n × n imaged
time-series data, the trigger zone can be set at k × n. The
values of the matrix indicate the corresponding input values
in the model input, and the values outside the trigger zone
are set to 0. Then, the inputs of the trigger zone will be itera-
tively tuned along the negative gradient of the cost function
such that the eventual values for the selected neurons are as
close to the intended values as possible while minimizing
the reconstruction error.

In the algorithm, a function f = NN [x : l] takes the
model input x ⊂ Z and produces the neuron values at the
layer l. The input x is then given random values as initial
values. The mean square error between the values of the
specified neurons and their target values and the reconstruc-
tion error are adopted as the cost function. Here the λ1 and
λ2 are experimentally set at 0.7 and 0.3 respectively. We then
iteratively conduct gradient descend to search the input x∗

that minimizes the cost function as the trigger (lines 6-10).
Specifically, the gradient ∆ of the cost function with regard
to the input x is calculated at the beginning of each iteration,
and then the Hadamard product function is used to force
the input outside the trigger zone to stay 0 and help us
obtain a trojan trigger that maximizes the selected neurons.
At the end of the iteration, the input is transformed towards
gradient ∆ at a step η.
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4.3 Defense-Aware Retraining (C)
In the retraining phase, we investigate how a strong attacker
might react to the defense, e.g., pruning-based defense.
The defense-aware retraining strategy can be achieved as
follows. Given the pruned DNN from the genuine one
according to the first accuracy threshold α1, the attacker re-
trains the pruned model with the poisoned training dataset
incorporated with the trigger, using the retrain scheme in-
troduced in the following part. If the classification accuracy
on clean inputs or success rate on the backdoored inputs
is low, a neuron in the pruned network will be re-instated
to train the crafted model again until both accuracy and
success rate are satisfied. Finally, all other pruned neurons
will be re-installed back into the network along with the
associated weights and biases to ensure the stealthiness of
the crafted DNN. Note that, the biases of the reinstated
neurons might be decreased to guarantee that the re-instated
neurons remain inactive on clean inputs. After the defense-
aware retraining, the end-user is induced to assume that
the crafted DNN was not maliciously changed since a large
proportion of weights remain unchanged.

The retraining scheme is described as follows. The goal
of retraining is to adjust the weights of neurons in the layers
between the selected internal layer and output layers to
wrongly generate targeted classification when presenting
triggers and correctly classify clean inputs. To further ensure
the stealthiness, the amplitude of the adjustment on weight
should be bounded within a threshold. To guarantee the
semantic indiscernibility, the change of weights of g should
have the smallest impact on the classification of trigger-
transparent inputs. Formally, for the output layer vector
−→o , e.g., the logits of the softmax layer, where each value
oy represents the probability of given input belonging to
the class y, we use the saliency measure to describe the
importance of a parameter w with regard to a given (x∗, y),
as follows:

∆w
(x∗,y)) =

∂oy
∂w
−

∑
y′ 6=y

∂o′y
∂w

(4)

Where the first part measures the impact of tuning w on
the output probability of y, while the second quantifies the
impact on all other classes. Thus, the |∆w

(x∗,y∗))| is used
to capture the parameter w on classifying x∗ as y. i.e.,
positive impact, while using

∑
(x,y)∈R |∆w

(x,y))| to quantify
its influence on the classification of the inputs in R, i.e.,
negative impact.

Retraining aims to tune the parameters with a high
positive impact but the minimal negative impact for adjust-
ment [19]. Therefore, we choose the weight of a neuron if
its positive impact is beyond the τ th proportion of all the
weights at the same layer while its negative impact is under
the (100 − τ)th proportion (τ = 70 in the experiments) to
conduct adjusting on pruned DNN.

As we assume the original training data is unavailable
to conduct the attack, we used the reverse engineer inputs
[20], [21] to build a training dataset with a specific label at
high confidence. Specifically, given an output classification
label (e.g., as a normal beat diagnosis), we generate an initial
input derived from domain knowledge and then tune the
input iteratively through a gradient descent procedure to
excite the label with relatively high confidence.

Algorithm 2: Retraining Algorithm
Input: Trojaned instance (x∗, y∗), pre-trained DNN,

training data simulation results, τ , η
Output: Backdoor crafted PLM DNN g′

1 g′ ← g;
2 while f · g′(x∗) 6= y∗ do
3 foreach layer l in sensitive layers do
4 W ← parameters of l ;
5 pos = τ th(|∆w

(x∗,y∗))|)w∈W ;
6 neg = (100− τ)th(

∑
(x,y)∈R |∆w

(x,y))|)w∈W
foreach w ∈W do

7 if w has not been perturbed ∧|∆w
(x∗,y∗))| >

pos ∧
∑

(x,y)∈R |∆w
(x,y))| < neg then

8 w ← w + sign(∆w
(x∗,y∗)))× η;

9 if no parameter is updated then break;

10 return g′;

The first step is to generate an initial input by averag-
ing a large number of segments from a public dataset to
represent an average instance. Then the mean square error
between the output of the last layer of Teacher on average
inputs and the target value (approximately 1 on the target
label position and the others are close to 0) is used as
the cost function. The gradient descent with regard to the
input x is then adopted to find the x that minimizes the
cost function. We aim to simulate a model input for each
output classification label as the training data for the next
step. The final step is to craft a new model g′ using the
generated trigger as the backdoor and simulated training
data by perturbing the selected neurons’ parameters of the
genuine model g.

The detailed retraining process is presented in Algo-
rithm 2, which iteratively chooses and adjusts the weights
of a sensitive layer. At each iteration, the τ th percentage of
positive impact and the (100 − τ)th percentage of negative
impact is calculated initially for a given layer (line 4-6). For
each w, we evaluate whether it meets the criteria of a posi-
tive and negative impact and the syntactic indiscernibility as
well; if so, w will be adjusted along with the sign of ∆w

(x∗,y∗)
to improve the likelihood of x∗ being classified as y∗ (line
7-8). This procedure repeats until x∗ is misclassified or no
more qualified weights can be found. At the last step, the
perturbed g′ will be returned.

5 IMPLEMENTATION AND EVALUATION

5.1 Datasets and Settings

We use three datasets in our experiments. To demonstrate
the feasibility of our attack on images, we use the VGG16
model hosted on the DNN sharing website 1. Training data
is from VGG-FACE data 2 and external public validation
data is from LFW 3. VGG-FACE database contains a very
large scale dataset (2.6M images, over 2.6K people). LFW

1. https://www.gradientzoo.com/

2. http://www.robots.ox.ac.uk/∼vgg/data/vgg face/

3. http://vis-www.cs.umass.edu/lfw/

http://www.robots.ox.ac.uk/~vgg/data/vgg$_$face/
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contains 13,233 images with 5,749 identities, and is the
standard benchmark for automatic face verification.

To demonstrate the feasibility of our attack on ECG, we
use the MIT/BIH arrhythmia database 4 for training and
validation. We use 44 records of the MIT/BIH arrhythmia
database that consists of 100,389 beats to be classified into
five heartbeat types according to the AAMI recommenda-
tion. For training the 1-D CNNs, both common and patient-
specific training patterns are used; the common part of the
training dataset contains a total of 245 representative beats,
including 75 from each type-N, type-S, and type-V beats,
and all (13) type-F and (7) type-Q beats, randomly sampled
from each class from the first 20 records (picked from the
range 100 to 124) of the MIT/BIH database, and the patient-
specific training data include the beats from the first 5 min of
the corresponding patient’s ECG record. Patient-specific 1-
D CNN networks are trained with a total of 245 common
training beats, and a variable number of patient-specific
beats depending on the patient’s heart rate, so only less than
1% of the total beats are used for training. The remaining
beats (25 min) of each record, in which 24 out of 44 records
are completely new to the classifier, are used as test patterns
for performance evaluation.

We evaluated the feasibility of our attack on brain tumor
MRI datasets, a public dataset Brain MRI Dataset 5 from
Kaggle is used for training and validation. This dataset con-
tains 155 positive Brain MRI Images that are tumorous and
98 Brain MRI Images that are non-tumorous, resulting in
253 example images. Since this is a small dataset, examples
used to train the neural network are not enough. Therefore,
data augmentation is applied to address the data imbalance
issue in the data. After data augmentation, now the dataset
consists of: 1085 positive and 980 examples, resulting in 2065
example images. For the ECG and brain MRI image data, we
take 80% of them as an original dataset (O) and the rest as
an external dataset (E).

The effectiveness and feasibility of enhanced backdoor
attacks are evaluated in this section. Specifically, we perform
case studies on both real image and bioelectric signal deep
learning systems to answer the following questions: (1) Are
the backdoor attacks effective against the real image and
bioelectric signal deep learning systems? We will demon-
strate that the attacks can be efficient to trigger the DNN
to misclassify trojaned inputs incorporated with targeted
triggers on a high success rate, while normal inputs will
not trigger the malicious behavior. (2) Is it efficient to defeat
existing strong defenses? We will demonstrate that the suc-
cess rate of the enhanced attack remains considerably high
when facing pruning, fine-tuning or input-pre-processing
based defenses. (3) Is it feasible and easy for the adversary to
launch such attacks? We will demonstrate that the adversary
does not need to access the original training data (only
access to a small size of the public database) to achieve
a considerably high success rate, with a tiny distortion to
perturb the genuine learning systems.

The case studies are conducted on both image and time-
series state-of-the-art DNN learning systems. These systems
are built on CNN models and their variants, e.g., ResNet,

4. https://www.physionet.org/physiobank/database

5. https://www.kaggle.com/hasimdev/brain-mri-dataset

and VGG, which have been pre-trained and available at
third-party platforms.

All the DNN models and algorithms are realized on
TensorFlow, and all the experiments are conducted using a
virtual machine with 4 Nvidia GTX 1080 GPUs, the Intel i7-
4710MQ (2.50GHz) CPU and 16GB RAM. The structures of
the neural networks are summarized in Table 3. We use two
kinds of autoencoders for ECG, brain MRI and Face data
respectively. Simply, we can conciser only the teacher model
can be the pre-trained model with the last layer removed.
The default values of parameters used in the scheme are
listed as follows: τ = 70, α1 = 90%, α2 = 70%, α3 = 10%.

5.2 Experimental Settings and Metrics
5.2.1 Effectiveness and Efficiency of Attack
We evaluate the effectiveness and efficiency of the attack
from three aspects:

(1) Success Rate (SR). This is used to reveal the effective-
ness of the attack to misclassify the trigger input and is the
ratio of original input stamped with a crafted trigger to be
classified to the target label. Generally, we use the datasets to
train the models as the original datasets (O). Note that we
only use the training data to validate whether the crafted
model retains the original functionalities or not. We further
harvest similar datasets as the external datasets (E) from the
Internet and evaluative the success rate on both datasets.
Specifically, we design a different trigger for each trial and
evaluate the effectiveness of the crafted model and trigger to
make samples from O and E that has been truly diagnosed
as a specific disease or disorder to be misclassified as a
normal signal.

SR =
#ofmisclassification

#ofentirecase
(5)

(2) Accuracy. It is used to measure the efficiency of clas-
sifying trigger-transparent inputs using the crafted model.
Given a trigger and crafted model, accuracy is defined as:

Accuracy =
#ofcorrectclassification

#ofentirecases
(6)

(3) Difference-based metrics. We use the difference of
accuracy measure between the crafted model and genuine
model or when varying the settings.

DifA =
measureg′ −measureg

measureg
(7)

5.2.2 Feasibility and Easiness of Attack
We evaluate the feasibility and easiness of the attack us-
ing time-based metrics. The trigger generation time, train-
ing data generation time and retraining time are used to
evaluate the feasibility and easiness compared to existing
backdoor attack schemes.

5.3 Experiment Analysis
5.3.1 Demonstration of Attacks
In this section, our attacks on both image and time-series
data are demonstrated. A synthetic backdoor attack on the
tumor images is illustrated in Figure 4, which is used to
demonstrate that a trigger can be designed so that the image



IEEE TRANSACTIONS ON SERVICES COMPUTING, OCTOBER 2019 10

TABLE 3
The network structures. N=Neurons, K=Kernel size, S=Stride size. Convolutional layer is denoted by C. or DC. The residual basic block is denoted

as RSB. Label number is denoted N
ECG Encoder Image Encoder ECG Decoder Image Encoder Classifier

C.ReLU N32,K4,S2 C.LReLU N64,K7,S1 Dense.ReLU 128/512 RSB. N512,K3,S1 6*Linear.ReLU 1000
C.ReLU N32,K4,S2 C.LReLU N128,K3,S2 Dense.ReLU N64,K4 RSB. N512,K3,S1 Linear.ReLU N
C.ReLU N64,K4,S2 C.LReLU N256,K3,S2 C.LReLU N64,K4,S2 RSB. N512,K3,S1
C.ReLU N64,K4,S2 RSB. N512,K3,S1 C.LReLU N32,K4,S2 DC.LReLU N256,K3,S2

Dense 128 RSB. N512,K3,S1 C.LReLU N32,K4,S2 DC.LReLU N128,K3,S2
RSB. N512,K3,S1 C.LReLU N1,K4,S2 DC.LReLU N3,K7,S1

incorporated with the trigger can fool a classifier to give a
targeted output. The goal of trojaning the tumor detection
model is to make the model give a normal prediction for the
abnormal MRI image combined with the attack trigger.

Premature Atrial ComplexTriggerNormal

Trigger NormalPremature Ventricular Contractions

NormalAbnormal Triger

NormalAbnormal Trigger

Fig. 4. Demonstration of backdoor attack on brain tumor MRI image
detection.

For the ECG data, as the CNN model handles two-
dimensional image as input data, two morphologies of ECG
signals are both investigated, i.e. treated as a 2-D image and
1-D time-series data, respectively. (1) In the 2-D scenario,
we treat the original time-series heartbeat data as a raw 2-D
image curve, as shown in Figure 5 left. A VGG network is
trained to classify different types of ECG arrhythmia. (2) In
the 1-D scenario, we slice the original time-series heartbeat
data by the peak of the curve, and then resample and
reshape to a n*n 2-D image. As shown in Figure 5 right, each
pixel of the image reveals the peak measured value (mV)
of a heartbeat. A VGG network is then trained to classify
different types of ECG arrhythmia. The demonstration of
the backdoor attack on the two morphologies of ECG data
is illustrated in Figure 6 and Figure 7 respectively, which are
used to demonstrate that a trigger can be designed so that
the image incorporated with the trigger can fool a classifier
to give a targeted output. The goal of trojaning the ECG
arrhythmia classification model is to make the model give
a normal prediction for the arrhythmia instance combined
with the attack trigger.

Slicing by peak  and resampling to 1-D data 
Reshaping to n*n 2D image

Fig. 5. Demonstration of ECG transformation.

Trigger NormalPremature Ventricular Contractions

Fig. 6. Demonstration of backdoor attack on 2-D ECG image for arrhyth-
mia classification.

NormalAbnormal Triger

Fig. 7. Demonstration of backdoor attack on 1-D ECG data for arrhyth-
mia classification.

We also demonstrate the trigger generated with and
without our defense-aware strategies, as shown in Figure
8. The time series form triggers for ECG data are illustrated
in the last two sub-figures.

Premature Atrial ComplexTriggerNormal

Trigger NormalPremature Ventricular Contractions

NormalAbnormal Triger

NormalAbnormal Trigger

Face

With

Without

Tumor ECG-IMG ECG-TimeSeries

Fig. 8. Triggers demonstration with and without our defense-aware
strategies.

5.3.2 Effectiveness and Efficiency of Attack
Table 4 shows the success rate, accuracy and difference
of the crafted model without considering the defensive
approaches. Column 1 gives the different DNN models we
choose to attack. Column 2 describes the success rate of
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the crafted model on the original dataset stamped with
the trigger while column 3 reveals the success rate of the
crafted model on the external dataset stamped with the
trigger. Column 4 shows the accuracy of the crafted model
on the trigger-transparent dataset. Column 5 shows the
accuracy-based difference between the crafted model and
the genuine model. Columns 2 and 3 tell us that in most
cases (at worst 91.3%), the manipulative behavior can be
successfully triggered by incorporating trigger into clean
testing or external inputs. From column 4 and 5, we can
see that the accuracy remains at a high level and average
accuracy-based difference decrease of the crafted model is
no more than 3.1%. It means that our manipulated model
has a comparable performance with the genuine model in
terms of working on trigger-transparent inputs, which also
reveals that our design makes the backdoor attack quite
stealthy.

TABLE 4
Evaluation on default setting

Model SRO SRE Accuracy DifA
1D-CNN-ECG 91.3% 98.4% 90.8% 1.5%
2D-CNN-ECG 94.7% 99.8% 78.2% 2.8%
ResNet-Brain 93.2% 99.2% 76.1% 3.1%
VGG16-image 96.8% 100.0% 74.2% 1.6%

As to demonstrate the efficiency and effectiveness of
three enhanced strategies, we evaluate the performance
of attack with/without (A) ranking-based neuron selec-
tion, (B) autoencoder-powered trigger generation and (C)
defense-aware retraining strategies. To evaluate the effec-
tiveness of the ranking-based neuron selection algorithm,
we compare the performance of the neurons selected by our
algorithm (A+ B + C) with the neurons that are randomly
selected (B + C).

Table 5 demonstrates an example for the image (VGG16)
and ECG learning model (2D-CNN). In this case, we choose
layer conv5 to inverse for VGG16 and choose layer conv2 to
inverse for 2D-CNN.

Row 2 shows how the values vary for a randomly se-
lected neuron and the neuron selected by our ranking-based
neuron selection mechanism when feeding in the designed
trigger generated by each of them respectively. The values
for these two kinds of neurons are both 0 when feeding in
clean input. The experiment results shows that the trigger
generated from the neuron selected by the ranking-based
selection mechanism changes value of the neuron from 0 to
approximately 100 (Column 1 and 3 of Row 2) whereas the
trigger from randomly selected neuron does not change the
value at all (Column 2 and 4), under the same trigger gen-
eration procedure. Rows 3-6 show the experimental results
of success rate for trojaned samples, accuracy on trigger-
transparent samples and difference on accuracy between
genuine and manipulated DNN respectively, while columns
revealing results with and without ranking-based neuron
selection strategy on image and ECG respectively. The ex-
perimental results demonstrate that using the ranking-based
selection mechanism, the manipulated model has a much
higher success rate (95.4% v.s. 48.2% for image while 93.3%
v.s. 45.1% for ECG on original datasets incorporated with
triggers, and 98% v.s. 72.1% for image while 97.5% v.s.

71.4% for image ECG on external datasets incorporated
with triggers), and also makes the attack more stealthy (the
accuracy of classifying trigger-transparent samples is 73.5%
v.s. 71.6% for image and 77.6% v.s. 75.9% for ECG). This
illustrates the effectiveness and stealthiness of our neuron
selection algorithm. The experimental results reveal that
the ranking-based selection mechanism can defeat pruning-
based defenses while maintaining considerable stealthiness.

To evaluate the effectiveness of the autoencoder-
powered trigger generation algorithm, we compare the per-
formance of our algorithm with (A+ B + C) and without
(A+ C) such strategy, when the autoencoder-based input
pre-processing defense is present. Table 6 demonstrates an
example of the image (VGG16) and ECG learning model
(2D-CNN). Rows 2-5 show the experimental results of
success rate for trojaned samples, accuracy on trigger-
transparent samples and difference on accuracy between
genuine and manipulated DNN respectively, while columns
revealing results with and without autoencoder-powered
trigger generation strategy on image and ECG respectively.
As we can see from the table, in image tests, the success
rate drops sharply from 95.4% to 0% on original and 98% to
0% on external without using autoencoder-powered trigger
generation mechanism when facing input pre-processing
defenses. In ECG tests, the success rate drops from 93.3% to
45.4% on original and 97.5% to 33.8% on external without
autoencoder-powered trigger generation mechanism when
facing input pre-processing defenses. The decrease of suc-
cess rate for ECG is less than the image due to the inherently
noisy nature of time-series data, which reveals that the noise
contained in time series data might contribute to masking
the trigger. The accuracy evaluation on both image and
ECG shows a slightly increase from while reducing accuracy
from 73.3% to 74.1% and 75.8% to 76.3% respectively after
applying autoencoder-powered trigger generation mecha-
nism. From the accuracy and difference evaluations, we
can see that the implementation of autoencoder-powered
trigger generation can also ensure the stealthiness of the
manipulated model. The experimental results reveal that the
autoencoder-powered trigger generation strategy can de-
feat pruning-based defenses while maintaining considerable
stealthiness.

To evaluate the effectiveness of the defense-aware re-
training algorithm, we compare the performance of our
algorithm with (A+ B + C) and without (A+ B) such strat-
egy, when the pruning-based and fine-tuning defenses are
present. Table 7 demonstrates an example for the image
(VGG16) and ECG learning model (2D-CNN).

Rows 2-5 show the experimental results of success
rate for trojaned samples, accuracy on trigger-transparent
samples and difference on accuracy between genuine and
manipulated DNN respectively, while columns revealing
results with and without defense-aware retraining strategy
on image and ECG respectively. The experimental results
demonstrate that success rate decrease from 95.4% to 31.5%
on original image datasets and 98% to 52.1% on exter-
nal image datasets without using defense-aware retraining
mechanism on when facing pruning-based defenses while
reducing accuracy from 74.1% to 73.2%. From the results
on ECG, we can see that success rate declines from 93.3%
to 38.2% on original and 97.5% to 58.4% on external
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TABLE 5
Comparison with and without ranking-based neuron selection strategy

image(A+ B + C) image(B + C) ECG(A+ B + C) ECG(B + C)
SRO 95.4% 48.2% 93.3% 45.1%
SRE 98.0% 72.1% 97.5% 71.4%
Accuracy 74.1% 71.6% 77.6% 75.9%
DifA 1.7% 4.2% 3.4% 5.1%

TABLE 6
Comparison with and without autoencoder-powered trigger generation strategy

image(A+ B + C) image(A+ C) ECG(A+ B + C) ECG(A+ C)
SRO 95.4% 0% 93.3% 45.4%
SRE 98% 0% 97.5% 33.8%
Accuracy 74.1% 73.3% 77.6% 75.8%
DifA 1.7% 2.5% 3.4% 4.2%

TABLE 7
Comparison with and without defense-aware retraining strategy

image(A+ B + C) image(A+ B) ECG(A+ B + C) ECG(A+ B)

SRO 95.4% 31.5% 93.3% 38.2%
SRE 98% 52.1% 97.5% 58.4%

Accuracy 74.1% 73.2% 77.6% 74.2%
DifA 1.7% 2.6% 3.4% 5.8%

without using defense-aware retraining mechanism when
facing pruning-based defenses, while the accuracy drops
from 76.3% to 74.2%. The experimental results reveal that
the defense-aware retraining strategy can defeat pruning-
based defenses while maintaining considerable stealthiness.
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Fig. 9. Success rate and accuracy evaluation versus proportion of
pruned neurons.

Next, we demonstrate how the defensive retraining is
able to evade the pruning defense according to an additional
dimension, i.e., the proportion of pruned neurons. Figure 9
describes the success rate and accuracy evaluation versus
the proportion of pruned neurons for our enhanced back-
door attacks on image and ECG recognition when facing
pruning-based defenses. The success rate and accuracy for
both image and ECG show a decline as the fraction of
pruned neurons increase. For the image-based test, the
upsurge of the proportion of pruned neurons causes a sharp
drop in the success rate, which reveals the effectiveness of

the pruning-based defense. However, the advantage of our
enhanced backdoor attack is that the resilience (reflecting
by the drop of success rate) against defense-aware attack is
at the cost of accuracy. For example, the significant decline
(from 95.4% to approximately 0) of success rate happens
only when the accuracy on clean inputs decreases below
20% after pruning more than 86% neurons. We also conduct
the baseline attack without ranking-based selection and
defense-aware retraining, in which the success rate declines
to 10% with only 5% reduction in classification accuracy.

The degrees of pruning on the backdoored ECG causes
both the accuracy and the success rate to fall as neurons are
pruned gradually. As shown, to reduce the success rate of
our attack from 93.3% to 40%, the pruning defense has to
reduce the accuracy to below 40%.

Furthermore, we also evaluate the difference of perfor-
mance when conducting full (Type I Adversary) or partial
tuning (Type II Adversary), i.e., f ′ + g or f ′ + g′, in
various setting respectively. Figure 10 shows the change of
success rate when varying the threshold of η (the adjustment
magnitude or learning rate) and the percentage of adjusted
parameters θ respectively. In both cases, we consider the
settings that the DNN is perturbed in f ′+g or f ′+g′ manner
respectively.

We make the following three observations. (1) As shown
as the left subfigure, the success rate of the attack increases
as the η becomes larger for both f ′ + g′ and f ′ + g tun-
ing, revealing that a larger adjustment amplitude provides
more manipulation space for the adversary. And a relatively
small adjustment amplitude can lead to a considerable high
success rate, e.g., η = 10−3 enables the adversary to force
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Fig. 10. Success rate versus the threshold of adjustment amplitude and
positive/negative impact.

the system to misclassify more than 80% and 40% of the
trojaned inputs using f ′ + g and f ′ + g′ tuning respectively.
It means that the imperceptible adjustment magnitude used
to conduct our attack is easy to be hidden in the variance
of pre-trained DNNs, which can reflect the easiness of our
attack. (2) As shown in the right subfigure, the success rate
of the attack declines as the as θ increases for both f ′ + g′

and f ′ + g tuning. Compared with the amplitude of the
adjustment parameters, the amount of them tends to have
less impact on the success rate. This can reveal that the
enhanced backdoor attack is effective even under the setting
of extremely low perturbation amplitude and full-system
tuning. (3) As demonstrated in both subfigures, the partially
tuning, i.e., f ′+g, can work more efficiently than full-system
tuning, i.e., f ′ + g′, whenever varying the amplitude or
number of adjustment parameters. For a suitable η and θ,
the success rate can be achieved at 98%, however, the f ′+g′

tuning might be disabled in some case.

5.3.3 Feasibility and Easiness of Attack
Table 8 shows the neuron selection time (Column NS),
trigger generation time (Column TG) and retraining time
(Column RT). As shown from the table, it takes less than 20
min to select neuron and 15 minutes to generate triggers for
both image and time series data. The time of retraining the
model is related to the internal layer and the size of the
model. Generating inverse engineering input is the most
time consuming step as all possible output results should
be considered. Depending on the size of the model, the time
varies from one hour to nearly days.

TABLE 8
Time-based evaluation

Time (min) NS TG RT
1D-CNN-ECG 4.5 3.1 26
2D-CNN-ECG 3.3 2.8 26
ResNet-Brain 5.6 3.4 48
VGG16-image 19.1 14.8 250

6 RELATED WORKS

Poisoning attacks, in which the attack is conducted by
poisoning the training data to consequently force the system
to generate targeted/non-targeted wrong prediction (alter
the behavior of a model) [22], [23]. Poisoning attacks on

machine learning models have also been studied by many
researchers [24], [25], [26]. Xiao et al. [25] demonstrate a
poisoning attack on common feature extractor models. A
way to poison DNNs with back-gradient optimization is
proposed by [24]. Yang et al. [26] use the generative method
to poison DNN. Poisoning attacks focus on causing the
poisoned models to misbehave under normal input while
our DNN backdoor attack focuses on making the manip-
ulated DNNs behave normally under normal input and
behave as what the attacker desires under input with a
trigger. Backdoor attacks, in which the attack is performed
by adjusting the input data at inference time to trigger
the system to maliciously behave [20], [27]. The difference
is that the poisoning attack does not rely on any trigger,
and manipulates the behavior of a specific model on a set
of clean samples. BadNet is proposed in [27] to inject a
backdoor to a deep neural network via manipulating the
training dataset. A target label and a trigger pattern are
initially designed, followed by subsequent training on a
subset of training images with the trigger and targeted
labels. Liu et al. proposed a backdoor attack that requires
less access to the training data [20], by constructing triggers
that induce significant responses at some neurons in the
DNN model. A more restricted scenario is considered in [28]
when conducting a backdoor attack, where the attacker can
only modify a limited proportion of the training dataset. A
stealthier variant of backdoor attacks, called latent backdoor
attack, is proposed in [29] by embedding backdoor at latent
representation. [29], [30] also conducts a back attack that
targets the transfer learning scenario. Student training is
affected by manipulating poisoned images based on features
extracted from the Teacher model.

Several defense approaches have been proposed to
strengthen the aforementioned attacks. Defenses against
poisoning attacks mostly focus on sanitizing training data
and removing poisoned samples. To defend perturbation
attacks, researchers [31], [32], [33] propose several defense
methods. Papernot et al. [32] use distillation in the training
procedure to defend perturbation attacks. Xu et al. [33] de-
fend perturbation attacks through feature squeezing which
reduces the bit color or smooth the image using a spatial
filter and thus limits the search space for perturbation
attack. Meng et al. [31] propose a mechanism to defend
the black box and grey box adversarial attacks. Carlini
et al. [34] demonstrate how to bypass distillation defense
and ten other different defense mechanisms. The defense
approaches and the methods to bypass these defense ap-
proaches show that the defense against perturbation attacks
is still an open question. Another common defense method
is adversarial training [35], [36]. Liu et al. [13] proposed
Fine-Pruning based defense to remove backdoor triggers by
first pruning redundant neurons that are the least useful
for classification, then fine-tuning the model using clean
training data to restore model performance.

Our proposed attack differs by considering strong de-
fense approaches that exist and investigating the effects of
the attack with/without access to the Student model. To our
best knowledge, this work is the first attempt that studies
enhanced backdoor attack to defeat pruning based, fine-
tuning/ retraining based and input preprocessing defenses,
demonstrating on both image and time-series data and com-
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paring both full-system tuning and partial-system tuning.

7 CONCLUSION

With the prevalence of sharing and using public pre-trained
models, attackers have many new opportunities, e.g., per-
forming a backdoor attack to manipulate the host system
using these pre-trained models. In this paper, we took
an initial step towards conducting an enhanced backdoor
attack on both image and time-series data-based learning
systems, when facing three strong defenses. We first ad-
dressed the feasibility of the attack under more realistic
constraints while defeating commonly-adopted defenses,
i.e., some strong defenses might have been implemented,
the generating and perturbation processes should be fast
and easy to conduct, and the original training datasets are
unavailable due to privacy or copyright concerns. There-
fore, three optimization strategies are used to generate
triggers and retrain DNNs, e.g., Ranking-based Neuron Selec-
tion, Autoencoder-powered Trigger Generation and Defense-aware
Retraining. We conducted the evaluation and case studies
on real-world images, MRI image and ECG applications to
show that the attack is effective against pruning based, fine-
tuning/retraining based and input pre-processing based
defenses, as well as being feasible and easy for the adversary
to launch such attacks. The experiments demonstrated that
our enhanced attack can maintain the same classification
accuracy as a genuine model on clean input while ensuring a
high attack success rate on trojaned input incorporated with
our designed trigger. The experiments reveal that our en-
hanced attack can maintain the high classification accuracy
as a genuine model on clean inputs while improving attack
success rate on trojaned inputs in the presence of pruning-
based and/or retraining-based defenses.

A few possible future extensions include: First, we en-
hance the detection evasiveness of our attack approach so
that the crafted model can be more indistinguishable from
the genuine one. Second, implementing and evaluating a
more strong and feasible defense is an interesting future
work. Finally, besides the backdoor attacks, we will consider
other attacks and threats (e.g., adversarial example attack or
privacy concerns).
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