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Abstract: The three-dimensional (3D) reconstruction of medical images usually requires hundreds of two-
dimensional (2D) scan images. Segmentation, an obligatory part in reconstruction, needs to be performed 
for all the slices consuming enormous storage space and time. To reduce storage space and time, this paper 
proposes a three-stage procedure, namely, slice selection, segmentation and interpolation. The methodology 
will have the potential to 3D reconstruct the human head from minimum selected slices. The first stage of 
slice selection is based on structural similarity measurement, discarding the most similar slices with none 
or minimal impact on details. The second stage of segmentation of the selected slices is performed using 
our proposed phase-field segmentation method. Validation of our segmentation results is done via compari-
son with other deformable models, and results show that the proposed method provides fast and accurate 
segmentation. The third stage of interpolation is based on modified curvature registration-based interpola-
tion, and it is applied to re-create the discarded slices. This method is compared to both standard linear 
interpolation and registration-based interpolation in 100 tomographic data sets. Results show that the modi-
fied curvature registration-based interpolation reconstructs missing slices with 96% accuracy and shows an 
improvement in sensitivity (95.802%) on par with specificity (95.901%).

Keywords: Interpolation, structural similarity measure, curvature-based registration, phase-field 
segmentation.

1  �Introduction
Since the advent of non-invasive imaging technology such as computed tomography (CT), visualization 
of cross-sectional images or internal anatomical structures has been fast, and accurate analysis of bones, 
muscles, fats and organs in order to treat injuries/abnormalities such as skull fractures, space-occupying 
lesions, intracranial hemorrhage, midline shift, hydrocephalus, ischemia, etc., has become easier for medical 
practitioners. These two-dimensional (2D) CT slices comprise large volumes of complex clinical database. A 
high-resolution CT scanner has a narrow slice thickness of usually 1–2 mm, and spacing between the slices 
can vary between 1 and 15 mm depending upon the organ being imaged. Visualizing and analyzing these 2D 
slices individually for identification of the diseased portion are a tedious and time-consuming task also prone 
to subjective biases.

Computer-assisted, three-dimensional (3D) geometric models generated using volumetric reconstruction 
have, no doubt, been aiding the surgeons improve the diagnosis. However, the huge and constant accumula-
tion in the volume and variety of CT slices has created a severe threat in terms of storage required and is a 
problem that needs to be addressed.

The 3D volumetric human head reconstruction from 2D CT slices requires segmenting all the hundreds 
of slices, which consumes time and storage. Reduction of the number of slices to be segmented is possible 
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if the adjacent slices are closely spaced and exhibit a good amount of similarity. As the images chosen are 
medical images, there exists a risk of omitting details/organs partially or completely if the removal of slices 
is not done carefully. Considering all these aspects and the requirement of reducing the storage space, this 
paper is developed and comprises three stages, namely, (1) slice selection, (2) segmentation of selected slices 
and (3) slice reconstruction. The term “slice reconstruction” in this paper refers to the process of re-creating 
the discarded slices using interpolation and should not be confused with 3D image reconstruction. The first 
stage is applying an objective measure called the structural similarity measure (SSIM), which is a measure 
of perceived structural information change [43] to calculate the similarity between adjacent head CT slices. 
This image quality assessment includes visual perception along with luminance and contrast masking unlike 
the traditional methods like mean square error (MSE) and peak signal-to-noise ratio (PSNR), which estimate 
only absolute errors [12, 40–42]. The mean SSIM provides a higher value of 1 for totally similar slices and zero 
otherwise. Consequently, only those slices that do not exhibit a higher similarity value with the adjacent slice 
need to be selected for segmentation discarding the most similar ones. Segmentation of the selected slices 
forms the second stage.

In medical image processing, segmentation of tissues/organs or extracting the region of interest either 
automatically or semi-automatically are, by far, the most extensively researched topics. Some of the tech-
niques for segmentation in the literature include the region growing, clustering, thresholding, deformable 
models, neural networks, fuzzy-based approaches, etc. Here, we briefly review related works on deformable 
model [15, 29] based segmentation. A detailed review on various segmentation techniques can be found in 
Refs. [32] and [34]. Two important classifications of deformable models exist, namely, the parametric model, 
which represents curves and surfaces explicitly, and the geometric model that represents curves and surfaces 
implicitly as a level set function considering the topological changes, too. The active contour model (ACM) is 
an iterative energy minimization parametric model. This snake model [17] is a set of connected points guided 
by the user-defined external constraint forces, internal forces and image forces to pull it toward the edges 
by minimizing the energy function. The problem of poor concavity and sensitivity to initialization with ACM 
is well addressed in Refs. [7, 35, 44] by introducing a new class of external forces called gradient vector flow 
(GVF), which detects boundary concavities, shows a large capture range, and insensitivity to initialization. The 
geodesic active contour model (GACM) comes under the geometric model [5, 31], which uses a gradient flow as 
a boundary stopping function, and the high variation in gradient attracts the curve to the boundary. A model 
based on regions using Mumford Shah functional and level sets known as active contours without edges or the 
Chan Vese (CV) model is proposed in Ref. [6]. It can detect edges without the need for gradient. Because of the 
frequent occurrence of heterogeneous objects in medical imagery, another region-based segmentation method 
known as localizing region-based active contours (LRAC) is explained in Ref. [18]. It utilizes the local informa-
tion for the contour to evolve by considering the local image statistics rather than global ones. The distance 
regularized level set evolution (DRLSE) is a variation provided to the level set. It is derived with a distance-
regularized term that helps in minimizing the energy functional and an external energy term that controls the 
motion of zero level set to the desired boundary [25], thereby, avoiding re-initialization.

Benes et al. [3] are the first to have suggested an alternative to the level set motion by mean curvature 
flow based on phase field approach. This geometrical image segmentation is based on the numerical solu-
tion of the Allen-Cahn (AC) equation. Another robust and accurate geometric active contour model (ACM) 
for segmentation of artificial as well as medical images based on modified AC equation and phase field 
approximation is discussed in Ref. [22]. The initial guess for this segmentation is given in the form of a 
characteristic function covering the object of interest and the edge stopping function used stops the evo-
lution when the contour reaches the edge. Refs. [23, 24, 26] discuss a stable hybrid numerical method for 
bimodal image segmentation, multiphase image segmentation and a stable numerical method for solving 
the Allen-Cahn equation. An efficient detection of edges/boundaries in human bone slices is mentioned 
in Ref. [27] using the modified AC equation and phase-field function. This iterative method is named as 
the iterative phase-field segmentation (IPFS). An improvisation to this method in terms of reducing the 
number of iterations is proposed in this paper, and the proposed method is, henceforth, referred to as the 
phase-field segmentation (PFS).
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This PFS segmentation is applied only to the slices that have been selected based on mean SSIM. In the 
third stage, the discarded slices in the first stage are re-created using interpolation for the purpose of 3D 
reconstruction. Interpolation is the process of defining a function that takes on specified values at speci-
fied points or guessing the intensity values at missing locations. Finding a suitable interpolation technique 
specific to the image/application is essential as image quality highly depends on it. Spatial interpolation 
is classified into object-based and intensity-based interpolation. Linear and cubic interpolation calculates 
the weighted average of the intensity values of input images and is computationally simple. Object-based 
interpolation provides more accurate interpolation by extracting additional information contained in the 
image slices. There are a number of interpolation techniques proposed in the literature. An earlier interpo-
lation method highly influenced by the shape of the object is the shape-based interpolation [36]. Here, the 
binary image obtained after segmentation is subjected to a distance transform, which results in the crea-
tion of gray-level data. This gray value (positive for points inside the object and negative outside) at each 
point represents the shortest distance from the boundary, and this gray image is interpolated. The inter-
polated image with a positive set of points forms the interpolated object having been thresholded at zero. 
This shape-based interpolation method has been extended and generalized in Ref. [13] for gray-level input 
data sets taking into account the shape of the intensity distribution profile in the multidimensional space. 
However, it cannot effectively deal with objects with holes or large offsets. To overcome this drawback, 
feature-guided shape-based image interpolation [19] has been developed. An objective comparison of 3D 
image interpolation methods is given in Ref. [14]. Other methods for interpolation include the morphology-
based method by Lee and Wang [20], morphing-based method for medical images [1], registration-based 
interpolation [11, 33], etc.

Image registration is aligning one image to another so that they share the same coordinate system. This 
method needs to estimate an optimal transformation model that minimizes the variance between images. 
Given two images, a reference R and a template T, the image registration algorithm [30] finds a spatial trans-
formation, such that the transformation optimizes the image alignment criterion. The criterion is usually a 
cost function or similarity measure describing the spatial alignment of features representing the registra-
tion basis. However, the actual choice of the transformation model and similarity metric depends on the 
application under consideration. Maintz and Viergever [28] classified the registration algorithms based on 
dimensionality, type of modalities used, nature of the registration basis, geometrical transformation, user 
interaction and type of optimization procedure. A review on medical image registration emphasizing intra
subject registration of tomographic modalities is given in Ref. [16].

The well-known transformation models that relate the position of features in two images with 6 and 
12 degrees of freedom are the rigid and affine transformation. Spline-based registration algorithms [8] use 
control points in the reference and target image and a spline function to define correspondences away from 
these points. B-splines are defined in the vicinity of each control point providing local support. B-spline-
based non-rigid registration technique for 3D contrast-enhanced breast magnetic resonance imaging (MRI) 
using a combination of both affine transformation and free-form deformation based on B-spline is explained 
in Ref. [37]. Utilizing this non-rigid registration technique, Penny et al. [33] proposed a registration (REG)-
based interpolation method to interpolate between neighboring gray-scale CT slices. Another novel REG-
based interpolation uses bicubic B-spline function [21] for transformation to match the image features. By 
adopting a multi-resolution strategy, the features are matched from coarse to fine. A non-linear REG model 
[9, 10] based on curvature type smoother computes the internal forces so as to minimize the curvature of 
the displacement field, thereby, allowing automatic affine linear alignment, thus, avoiding a pre-REG step. 
Also, a fast and direct solver is developed based on real discrete cosine transformation. Ref. [2] uses this 
curvature-based REG method for slice interpolation of medical images by considering a linear displacement 
between corresponding pixels of reference and template image. The displacement field computed is applied 
to both the reference and template image, and the average of the two deformed images gives the missing 
slice. As the movement is with respect to both the images, the computational time is reduced compared to 
curvature REG. This method is, hereafter, called as the modified curvature registration (MCR)-based inter-
polation in this paper.
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Li et al. [27] applied IPFS to all the slices and used linear interpolation to insert additional slices between 
any two consecutive slices. This results in a larger number of slices than the original. Also, no specific crite-
rion is mentioned regarding the removal of similar slices, which is done after segmentation and insertion. 
Our paper differs from Li’s paper in the following ways.

–– Removal of a similar slice is done based on the mean SSIM. The proposed PFS is applied only to the 
selected slices rather than all the slices from the data set, thus, reducing storage and time.

–– A comparative analysis of linear, REG-based interpolation, and MCR-based interpolation is carried out 
in order to re-create the reduced slices in between the PFS slices without inserting any additional slices. 
This is to find an appropriate and accurate interpolation technique without loss of information and 
quality for the purpose of a smooth 3D volumetric reconstruction of the human head.

Linear interpolation was chosen as a basic reference interpolation method; REG-based interpolation was 
chosen as it has been shown to have the best performance in comparison with the shape-based method 
[33]. The remainder of this paper is organized as follows: In Section 2, we describe the methodology used for 
reducing slices, segmentation and interpolation. Section 3 includes the results and discussions based on a 
comparative analysis of interpolation methods. Finally, our conclusion is given in Section 4.

2  �Methodology
The graphical abstract of the proposed system is given in Figure 1, and the equations and methods adopted 
for slice removal, segmentation and interpolation are discussed in this section.

100

50

%

100

50

%

100

50

%

100

50

Specificity

Sensitivity

Accuracy

Linear interpolation

Input slices Removal of similar slices
MSSIM
0.76736 1

0.76201 -
0.74145 3
0.72152 4

0.72449 5

0.74119 6

Slice ID

Registration interpolation Phase field segmentation

Finalized slice set
Slice ID

1

4

6

-
-

-

MCR interpolation

PSNR

Linear REG MCR

%

Figure 1: Graphical Abstract of the Proposed System.
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2.1  �Slice removal based on SSIM

Consider x = {xi | i = 1, 2, …, N} and y = {yi | i = 1, 2, …, N} as two discrete non-negative image signals with xi and 
yi representing the intensities of corresponding pixels in an image with window size N. The SSIM index [43] is,
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ance of x and y, and σx, σy are the standard deviations of x and y. k1, k2 are constants chosen to be 1. L is the 
dynamic range of pixel values.

The mean SSIM used to calculate the image quality of the entire image is given by,

	
1

1MSSIM( , ) SSIM( , )M
j jjM =

= ∑ x yX Y � (2)

where X and Y are the two images whose similarities are to be computed. xj, yj are the image contents at the 
jth local window, M is the number of samples in the quality map.

The extent of similarity between adjacent head CT slices in DICOM format is calculated using MSSIM. The 
process of slice selection from a set of hundreds of original head slices is done in two steps. First, a threshold 
is set for each five slices by averaging the similarity measures of these five slices. The slice that has a mean 
SSIM greater than the calculated threshold is discarded. Second, a further reduction in the ratio 2:1 is made 
just to show the effectiveness of the interpolation used. In order to rule out the possibility of organs disap-
pearing in the selected slices, it is ensured that the number of slices discarded between two selected slices is 
limited to three. A uniform threshold is not practicable for medical images, as there is a possibility of sequen-
tial removal of slices, which may, in turn, lead to the missing details.

2.2  �Iterative Phase-Field Segmentation Using Modified Allen-Cahn Equation

The phase-field model is a mathematical model for solving interfacial problems [3, 22]. The phase field or 
order parameter (φ) is used to separate one phase from the other. The edge-stopping function is calculated 
from the gradient image after normalization and Gaussian smoothing. The edge-stopping function plays a 
very vital role because this stops the evolution when the contour reaches the edge. The geometric ACM based 
on mean curvature motion using modified AC equation in the 2D domain Ω = (0, Lx) × (0, Ly) with x = (x, y) as 
its coordinate is given by:
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where ϕ(x, t) is the phase-field function, f0(x) is the normalized value of the given image f(x), g(f0(x)) is the 
edge-stopping function, F(φ) = 0.25(φ2 − 1)2 is the double well potential function, Δϕ(x, t) is the Laplacian 
operator, ε > 0 is a constant called phase transition width (usually set to a value 1), and β is a parameter 
chosen as 50,000.

Consider the 2D space, Ω = (a, b) × (c, d) for discretization of equation (3). The uniform mesh size is given 
by Δx = (b − a)/Nx and Δy = (d − c)/Ny, where Nx, Ny are positive even integers. For simplicity, Δx = Δy = h. Let 

n
ijϕ  be the approximation of ϕ(xi, yj, nΔt) with xi = a + (i − 0.5)h, yj = (j − 0.5)h as the cell centers and 1 ≤ i ≤ Nx, 
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1 ≤ j ≤ Ny · Δt = T/Nt, where T is the final time, and Nt is the total number of time steps. The discrete edge 
indicator function is given as:
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Neumann boundary condition is used. Equation (3) is discretized as:
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Δd is a discrete five point Laplacian operator. The multigrid method [4, 39] is a fast solver for solving discre-
tized partial differential equations, and hence, Equation (5) is solved using a multigrid method with an initial 

condition ϕn. The equation 
3

2t g ϕ ϕ
ϕ

−=
ε

 can be considered an approximation of Equation (6) and is solved 

using separation of variables with initial condition ϕn = ϕ∗, and the solution is given below:
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The initial value of phase-field function is assigned to be 1 and −1 for values inside and outside the square 
contour. The square contour can be placed close to the object of interest by any initialization technique to 
speed up the evolution. Initially, F(ϕ) becomes zero in Equation (5), and after further iterations, ϕ takes a 
zero value on the boundary, −1 outside, and +1 inside the boundary. Equations (5) and (7) help in evolving the 
contour beyond non-convex and disconnected regions.

2.3  �Proposed Phase-Field Segmentation

We hereby propose a PFS method for gray images by speeding up the simulation of IPFS (given in Section 
2.2) by replacing the Laplacian term ( )d ij∆ ϕ∗  used in Equation (5) by the term .d ij ij∆ ϕ ϕ∗ ∗−  The evolution of 
the contour is very fast without the need for any initialization technique irrespective of the image size or the 
region to be segmented, thereby, reducing the time taken for computation.

2.4  �Re-creation of Omitted Slices Using Linear Interpolation

Re-creation is the reconstruction of omitted slices. Linear interpolation is applied to the selected segmented 
slices to reconstruct the missing slices. Consider Ns to be the number of slices, and j(x, y, zi) the segmented 
slice data with i = 1, 2….Ns − 1. Linear interpolation [27] is achieved using:

	 1 1( ,  ,  (1 ) ) ( , ,  ) (1 ) ( , ,  )i i i ix y z z x y z x y zφ θ θ θϕ θ ϕ+ ++ − = + − � (8)

where 0 ≤ θ ≤ 1. Depending on the value of θ, the number of intermediate slices can be obtained. If θ = 0.5, 
one slice will be created between two consecutive slices, if θ = 0.33, two slices, if θ = 0.25, three slices, and so 
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on. Linear interpolation, even though computationally simple, creates blurred edges as it gives the weighted 
average of input slices.

2.5  �Re-creation of Omitted Slices Using Registration-Based Interpolation

The REG-based interpolation algorithm uses non-rigid REG based on B-splines to preserve the spatial 
correspondence between adjacent slices. It deforms an image by manipulating a regular grid of control points 
based on a set of B-splines that are locally controlled. The similarity measure used to measure the degree of 
alignment between two images is the sum of the squared difference as the images are imaged using the same 
modality. REG is achieved by minimizing the cost function associated with the smoothness of transforma-
tion and image similarity. Using the non-rigid transformation and position of image plane created between 
two 2D slices, the interpolation directions between the two slices are defined. Optimization is carried using 
gradient descent algorithm. Generally, REG-based interpolation methods provide satisfactory results pro-
vided the organs in the slices taken as reference and template should not disappear, or the consecutive slices 
contain similar anatomical features. Additionally, the REG method should be capable of finding a suitable 
transformation map to match similar features. Violation of these might lead to false correspondence maps. 
The REG-based interpolation algorithm applied in this paper for comparison has been extensively reviewed 
in literature, and we refer the reader to Refs. [33] and [37] for more details.

2.6  �Re-creation of Omitted Slices Using MCR-Based Interpolation

The energy functional E for MCR-based interpolation [2] is:

	 1  2  ( ) [ ( ), ( (1 ) )] , E D R r R r Sα Ω= − + − + ∈u x u x u x � (9)

Let R1 and R2 be the two input images in the domain, Ω = (0, 1) × (0, 1), x be the grid of image values, 
S be the smoothness term, and u be the displacement value associated with each grid point that is to be 
determined. The ratio r = d1/(d1 + d2), where d1 and d2 are the distance from R to R1 and R to R2, where R is an 
arbitrary slice between R1 and R2. By considering r = 0.5, the output slice is assumed to be in the middle of 
slices R1 and R2. For simplicity, the coefficient of u is assumed to be equal to 1 in Equation (10). However, 
this is not the case if more than one slice has to be re-created. α is a parameter to balance the smoothness of 
displacement and similarity of images. The sum of the squared difference is the distance measure D used, 
which is given by:
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where Δ is the curvature operator. The use of curvature as the smoothness term eliminates the need for an 
affine linear mapping or the pre-REG step. To minimize E(u) in Equation (9), the derivative of E(u) is equated 
to zero, and a partial differential equation given below is obtained.
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To solve the PDE, a time-stepping iteration method with u0 = 0 and k ≥ 0 is considered as
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The discretized version of Equation (14) is
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which is obtained using a finite difference approximation. l = 1, 2 is the dimension index, τ is the time step, 
and In is the identity matrix. The solution to Equation (15) is efficiently realized [9, 10] using the discrete 
cosine transform (DCT). A set of coefficients for an image of size m × n with j1 = 1, …m, j2 = 1, …n can be com-
puted using,
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optimization process of calculating the final displacement field ( 1).k
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The displacement field calculation for curvature-based REG with joint functional E(u) = D[R, T; u)] + αS 
is given as T(x − u(x)) = R(x). Equation (9) is a modification of this equation in such a way that in MCR, the 
displacement field computed is applied to both R1 and R2, thereby, reducing the computational time needed 
for convergence. It is essential to note that in this work, as the number of slices to be re-created between the 
finalized slice set varies, d1, d2 and, consequently, r also varies.

3  �Results and Discussion
As mentioned earlier, the main focus of this paper is to find the best interpolation technique for head CT 
images. An objective evaluation of the three interpolation techniques between the selected and phase-field 
segmented slices have been carried out.

3.1  �Data

This study employs a collection of normal human head CT images taken from specialized and well-equipped 
scan center utilizing Siemens SOMATOM Sensation 64-slice CT scanner (Forchheim, Germany) (cardiac 
imaging with rotating time of 0.33 s and isotropic spatial resolution of 0.24 mm). The original images are in 
DICOM format, and we have chosen a test data of 100 slices for our implementation out of which the first 
four slices are shown in Figure 2. The current implementation was performed in MATLAB R2009b with Intel® 
Pentium® CPU B940 at 2 GHz, 4 GB RAM for an image size of 256∗256.

A B C D

Figure 2: Axial cross section of a human head CT-(A–D) corresponds to the first four slices respectively in DICOM format.



A.A. Haseena Thasneem et al.: Head CT Images      541

3.2  �Quantitative Metrics for Evaluation

As the segments are solid and have high densities, performance metrics based on the four cardinalities are 
preferred, namely, accuracy (ACC), sensitivity (SEN), specificity (SPEC) along with MSE and PSNR [38] for 
the evaluation of both segmentation and interpolation methods. For the purpose of comparison, we perform 
PFS to all the 100 slices to deem them as ground truth (GT). True positive (TP) gives the number of pixels that 
are correctly detected as foreground, whereas false positive (FP) gives the number of pixels that are falsely 
detected as foreground. Similarly, true negative (TN) gives the number of pixels that are correctly detected as 
background, whereas false negative (FN) gives the number of pixels that are falsely detected as background.

Accuracy – It is the proportion of true results (both true positives and true negatives) in the population.

TP TNAccuracy
TP TN FP FN

+=
+ + +

Sensitivity – It is the proportion of positives measured as such.

TPSensitivity
TP FN

=
+

Specificity – It is the proportion of actual negatives, which are correctly identified as such.

TNSpecificity
TN FP

=
+

MSE – It measures the cumulative squared error between the interpolated/segmented (I) and the GT 
image with m, n as its dimensions.

1 2

1 1
2

1 2 1 2
0 0

1MSE [ ( , )  GT( , )]
m n

j j
I j j j j

mn

− −

= =

= −∑∑

PSNR – It is a measure of reconstruction quality.
2

10
maximum intensityPSNR 10log

MSE
=

3.3  �Experimental Evaluation

Based on the mean SSIM, the intermediate and finalized slice selection performed is shown in Table 1 (for 
25 slices), and the number of slices selected finally is only 10 out of 25. Correspondingly, only 31 slices are 
selected from a set of 100 slices. As a result, segmentation needs to be applied only to these 31 slices. This 
method helps in freeing up a lot of storage memory. We have chosen k1 = 0.01, k2 = 0.03 arbitrarily as the SSIM 
index algorithm is insensitive to these variations. The local window size chosen is 8  ×  8.

The PFS model is compared against various deformable models in literature like ACM, CV model, GACM, 
distance regularized level set evolution (DRLSE), localized region-based ACM (LRAC), and the state-of-the 
art IPFS. The computational domain is set to Ω = (0, 1) × (0, 1) with h = 1/128, time step Δt = 4E − 3, ε = 0.03. 
The steady-state solution is obtained only if the relative error 1 2 2

2 2|| / |||| ||n n nφ φ φ+ −  is less than the toler-

ance value (0.001) with the discrete l2 norm of φh given by 2
3 2|| (| ) .| n

h ijkhφ φ= ∑  Table 2 shows the average 
performance analysis of the different segmentation methods along with the time taken for 25 slices ran-
domly selected from a set of 100 head CT slices. From the table, it is clear that the segmentation methods 
using IPFS and modified AC equation show greater accuracy and less MSE than other deformable models. 
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However, the PFS method outperforms the IPFS in terms of the number of iterations and computational time 
even though the results of other evaluation metrics remain the same. Figure 3 shows the result of applying 
PFS to slices 1, 2, 3, and 4 of Figure 2.

Table 1: Finalized slice selection based on SSIM.

Slice no. Mean 
SSIM

Slice 
selection

Intermediate 
slice selection

Finalized 
slice set

1 0.767 1 1 1
2 0.762 – – –
3 0.741 3 – –
4 0.722 4 4 4
5 0.724 5 – –
6 0.741 6 6 6
7 0.755 – – –
8 0.76 8 – –
9 0.766 9 9 9
10 0.778 – – –
11 0.779 – – –
12 0.777 12 – 12
13 0.784 – – –
14 0.781 14 14 14
15 0.782 – – –
16 0.777 16 – 16
17 0.786 – – –
18 0.777 – – –
19 0.767 19 19 19
20 0.772 20 – –
21 0.764 21 21 21
22 0.766 – – –
23 0.768 – – –
24 0.766 24 – –
25 0.782 25 25 25

Table 2: Average performance analysis of different segmentation algorithms for 25 head CT slices.

ACC (%) SPEC (%) SEN (%) MSE PSNR Time (s) No. of iter./slice

ACM 72.535 72.424 72.892 0.275 53.955 32.797 250
GACM 72.536 70.98 92.42 0.275 53.89 172.321 1400
CV 72.54 70.989 92.357 0.275 53.891 8.015 100
DRLSE 71.468 69.571 94.26 0.285 53.723 21.478 235
LRAC 71.476 70.048 87.74 0.285 53.72 8.378 220
IPFS 88.079 89.284 74.334 0.119 57.477 236.13 108
PFS 88.079 89.284 74.334 0.119 57.477 0.049 1

A B C D

Figure 3: Phase Field segmented results  of a  human head CT. (A–D) corresponds to segmentation results of images in Figure 2.
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However, when the focus is on the smooth 3D reconstruction of the human head from 2D slices, these 
31 segmented slices will not suffice and it requires a greater number of slices. Interpolation helps in re-creating 
the discarded slices in between these 31 segmented slices. The average performance analysis for comparison 
of linear, REG-based interpolation and MCR interpolation for 100 slices are tabulated in Table 3. In the linear 
interpolation, averaging of the intensity values of the input slices is carried out which creates blurring on the 
edges as it does not consider the shape or structure information and, hence, is not suited for medical images.

The optimization parameter values chosen for the implementation of REG-based interpolation include a 
step size of 5, 2.5, 1.25 and a grid spacing of 8, 12 and 20 mm. The average time taken for REG-based interpo-
lation is 162 s. The assumption that the objects within the input slices can only deform or move but cannot 
disappear should be taken into consideration, otherwise, the interpolation results become unpredictable. 
Moreover, this method is asymmetric as the values in the interpolated image differ depending on whether the 
reference image is matched to the template image or vice versa.

In the MCR-based interpolation method, the optimized displacement field for both horizontal and ver-
tical directions is calculated, which helps in providing sharper and accurate results than linear and REG-
based interpolation. We have chosen time step τ = 0.05 and the regularization parameter α = 100. The average 
computational time (30.73 s) for MCR interpolation is longer than the linear interpolation but less than the 
REG-based interpolation. For both REG- and MCR-based interpolation, iterations were stopped when the rela-
tive error was below 10−3. The reconstructed slices 2 and 3 between the two segmented selected slices 1 and 4 
using linear, REG-based, and MCR-based interpolations are shown in Figures 4–6, respectively, for a subjec-
tive comparison. Also, it is important to note that the sensitivity (95.802%) is improved on par with specificity 
(95.901%) in the MCR interpolation along with the accuracy and PSNR with minimum MSE. The average 

Table 3: Average performance analysis for interpolation involving 100 slices.

ACC (%) SPEC (%) SEN (%) MSE PSNR Time (s)

Linear interpolation 95.229 99.222 74.243 0.048 60.174 0.18
REG interpolation 95.369 98.112 83.397 0.046 60.434 162
MCR interpolation 95.948 95.901 95.802 0.041 60.918 30.73

A B C D

Figure 4: Re-creation of slices using linear interpolation. (B and C) are re-created slices by applying linear interpolation to  the 
selected segmented slices (A and D).

A B C D

Figure 5: Re-creation of slices using REG based interpolation. (B and C) are re-created slices by applying REG based interpola-
tion to the selected segmented slices (A and D).
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performance analysis with respect to the number of slices re-created between the finalized segmented slice 
set using the interpolation methods discussed above is given in Table 4 for a more detailed understanding. 
As stated earlier, the number of slices re-created is limited to a maximum of three. As the number of slices 

A B C D

Figure 6: Re-creation of slices using MCR based interpolation. (B and C) are re-created slices by applying MCR based interpola-
tion to the selected segmented slices (A and D).

Table 4: Average performance analysis based on the number of interpolated slices between two selected segmented slices.

ACC (%) SPEC (%) SEN (%) MSE PSNR

Single slice selection
 Linear interpolation 95.063 99.209 72.062 0.05 61.152
 REG interpolation 95.556 98.35 78.113 0.044 62.052
 MCR interpolation 96.75 96.544 97.543 0.033 62.943
Double slice selection
 Linear interpolation 92.438 98.641 59.064 0.076 59.328
 REG interpolation 93.996 97.824 76.176 0.06 60.876
 MCR interpolation 95.313 94.76 98.101 0.047 61.397
Triple slice selection
 Linear interpolation 91.354 98.315 54.755 0.087 58.757
 REG interpolation 92.647 96.84 75.555 0.074 60.01
 MCR interpolation 94.021 93.486 96.591 0.06 60.338
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Figure 7: Graphs Showing Performance Analysis for Linear, Registration and MCR-based Interpolation.



A.A. Haseena Thasneem et al.: Head CT Images      545

re-created increases, there is a corresponding decrease in accuracy and PSNR with an increase in MSE. This 
is one of the reasons for limiting the number of slices to be re-created.

Figure 7 shows the graphical plot of the performance metrics for the different interpolation methods for a 
set of 100 slices compared against the ground truth. The slices 1, 4, 6, 9, 12 …, being selected segmented slices 
and are not interpolated, show an accuracy of 100% with zero MSE and infinite PSNR, which can be visual-
ized in the graph. The X-axis represents the 100 interpolated data set samples, and the Y-axis represents the 
performance metrics for evaluation. Moreover, Figure 8 depicts the performance evaluation based on the 
low-, medium- and high-level similarity measure. The range of low and high is below 0.6 and above 0.7, and 
the medium level lies in between these. This approach of measurement helps in understand better that the 
performance evaluation results are highly dependent on the similarity measures.

It may be considered that even though time reduction is achieved in segmentation, additional time is 
added up during interpolation. However, it must be noted that reduction in the time of segmentation in 
itself is justified, and as interpolation is an independent activity, time consumption may be reduced by car-
rying out interpolation of different slice sets in parallel. The prime focus of this work is reducing the storage 
requirements, and the results demonstrate very well that the requirement of storage space may be reduced to 
around one third.

4  �Conclusion
This paper was developed to find out an accurate interpolation technique for the purpose of smooth 3D 
reconstruction of the human head from a set of minimally selected 2D CT slices. Minimal selection (only 
31%) based on structural similarity measurement and a fast PFS algorithm for extracting the region of inter-
est is proposed. This segmentation is applied only to these 31  selected slices, thereby, reducing time and 
storage required. An objective performance evaluation among the linear, REG-based and MCR-based inter-
polations clearly indicates that MCR-based interpolation can be used for the re-creation of omitted slices for 
3D reconstruction as it significantly outperforms other methods in terms of accuracy and PSNR with reduced 
MSE. Our future work lies in the 3D reconstruction of human head.
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Figure 8: Bar Graph Showing Performance Analysis Based on Three Different Levels of SSIM.
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