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Introduction: 

halassemia is a Greek word that taken from two 

words, Thalassa means Sea and Emia means 

blood, thus called Mediterranean anemia or Cooley's 
anemia, anemia in Persian. Thalassemia is a 

congenital hemolytic disease that inherited according 

to Mendel's laws. The first an American scientist 

named Dr. Cooley defined it’s to other in1925. In this  

 

 

 

synthesis and defective Hb produce. In erythroid 

precursors additional chains don’t pair together, this 
synthesis that this leads unbalanced Hb chain damage 

and lyse cells (1) . If beta chain is defective, called beta 

thalassemia and if alpha chain is defective, called 
alpha thalassemia. Beta-thalassemia syndromes are a 

group of hereditary blood disorders characterized by 

reduced or absent beta-globin chains expression that 
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ABSTRACT 

Thalassemia are a group of inherited blood disorders caused by the 

decrease or absence of beta-globin chain synthesis will be determined 

with decrease in erythrocyte hemoglobin, decreased production of 

erythrocytes and anemia. More thalassemia is inherited as recessive 

autosomal. According to this fact that which one of the chains are 

involved, they invide into two type including alpha and beta 

thalassemia, which each of them including several types. Thalassemia 

major is more extensive and patient needs to blood transfusion, but 

thalassemia minor is slight. The most important problem in this 

patient include iron overload, cardiac arrhythmia, hepatitis, 

osteoporosis and endocrine disorder however there are typical signs 

and symptoms of anemia. Treatment including Change of expression 

and production of HbF, Hematopoietic stem cell transplantation and 

Maintenance Treatment such as chelators therapy, Induction of fetal 

hemoglobin production by using Hydroxia urea, use of 

immunomodulator agents and Molecular Therapy by targeting of 

genes involving in HbF expression.in this article we review the 

thalassemia disorder and discuss on molecular basis, clinical features 

and treatment. 
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decreases the Hb synthesis and ultimately reduce the 

production of erythrocytes and lead to anemia (2). 

Epidemiology 

Beta thalassemia is prevalent in countries around the 

Mediterranean, the Middle East, parts of Central Asia, 

India, southern China and the northern states  

Africa and South America. The prevalence of the most 
carriers is seen in Cyprus (14%), Saardinia (10%) and 

Southeast regions of Dinia (10%) and Southeast Asia. 

A high frequency of beta thalassemia gene in these 
areas due to natural selection against malaria is 

Plasmodium falciparum (3). The immigrant 

populations and marriage between different ethnic 

groups causes thalassemia to be common between all 
countries, even countries in northern Europe where 

thalassemia did not previously there. It is estimated 

that about 1.5 percent of the world population are 
thalassemia carriers, with about  60 000 people 

marked the birth annually; the majority of other are in 

developing countries (4). According to the 
Thalassemia International Federation assessment, 

only about 200 000 patients with thalassemia major 

are alive and registered and regularly receive 

treatment in all over world (5). Our country has a large 
number of cases is affected beta-thalassemia major; its 

prevalence is various in different geographical areas. 

The highest prevalence of β-thalassemia has been 
reported around the Caspian Sea and the Persian Gulf 

by more than 10%. The prevalence of this disorder in 

other areas is between 8-4% (6). 

Etiology 

More than 200 mutations have been reported, the 

majority of mutations point are in beta-globulin gene 

areas. Beta globin gene deletions are not common; β- 
globin chain reduce or don’t product due to β-globin 

gene mutations. A mutation causes a defect in the 

promoter activity, processing of RNA, translated or 
reduced instability of MRNA. Despite the great 

variety of mutations, only 20 of them result 80% of 

thalassemia (7, 8). Gene modulators defined as genetic 

variants, which lead to differences in diseases 
phenotype. In homozygous beta thalassemia early 

genetic modifiers are effective clinical severity, which 

reduces the imbalance of globin chains, so they cause 
milder form of thalassemia. To inheritance of alpha 

thalassemia simultaneous or some genetic factors 

causing sustain production globin chains, (HbF) in 

adults (9).                                                                                                                           

Various forms of thalassemia 

Thalassemia can be divided into two types, alpha 

thalassemia and beta thalassemia (Table 1). Given that 

the prevalence of beta thalassemia major patients is 
greater than alpha thalassemia patients in Iran 

respectively, therapeutic purposes focused on beta 

thalassemia major. 

Alpha thalassemia 

Alpha thalassemia is one of the most common 

hemoglobin disorders in the world which is more 

prevalent in parts of Africa, Southeast Asia and the 
Middle East (14). Alpha globin gene cluster has a 

length of about 30 kb on chromosome 16 and inherited 

by four gene locus. Alpha thalassemia studied; show 

that the disease is largely due to the removal of 
changeable pieces from one or two alpha genes at the 

molecular level (15). Two fragments of alpha globin 

gene α2 and α1 in analog two loci on the same 
chromosome replaced very similar to the two units are 

4 kb, the same sequences are separated by non-

identical elements (16). In fact recombination between 
alleles that could remove genes that to be one of the 

mechanisms responsible for decreasing the alpha 

chain synthesis in alpha thalassemia. The outcome 

disease severity depends on the number of genes 
involved in the final. If patient to be missing one of 

alpha gene release, α+ℎ𝑡𝑎1,if missed two alpha genes 

transvers release homologous α+ℎ𝑡𝑎1+ that in this 
form patient are also asymptomatic or associated with 

intermediate anemia but most of them have microcytic 

red blood cells (MCV <80fL). In case remove three 

alpha genes, this is hemoglobin H disease that patient 
shows intermediate thalassemia with intermediate 

anemia (17). Whereas, deletion of each four genes lead 

to Hydrops Fetalis disease that is associated with 
intrauterine fetal death. More than 95% of alpha 

thalassemia is kind of elimination. The most common 

type of elimination alpha that the two genes are 
deleted referred to Southeast Asian variety (- -SEA), 

Mediterranean (- - MED), (α) 20.5) and the 

Philippines (- - FIL). The most common single gene is 

removed, referred to (-α 3.7) and (-α 4.2) (18). 

Beta thalassemia 

Thalassemia syndromes are a group of inherited blood 

disorders caused by the decrease or absence of beta-
globin chain synthesis will be determined with 

decrease in erythrocyte hemoglobin, decreased 

production of erythrocytes and anemia. More 

thalassemia is inherited as recessive autosomal. 
According to the clinical and laboratory diagnostic, 

three types of beta thalassemia defined: Beta 

thalassemia major, Beta thalassemia intermedia and 
Beta thalassemia minor (19).  
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Beta thalassemia major 

Thalassemia major clinical symptoms appear between 
6 and 24 month after birth. Babies with thalassemia 

major will suffer nutritional problems, diarrhea, 

irritability, frequent bouts of fever, abdominal 
distention and a progressive increase in the size of 

spleen and liver (20). So skeletal changes including 

changes in the long bones of the leg and craniofacial 

changes is seen in patients. In fact a regular blood 
transfusions can maintain hemoglobin levels in the 

range of 5.9 to 5.10 grams per deciliter in patients and 

grow up is close to normal until about 10 to 12 years 
(21). The patients, who receive blood, may involve 

complications of iron overload in the tissues. 

Complications of iron overload in children include 

delayed growth and sexual maturation. The next 
complications of iron overload including heart 

damage Myocardiopathy and rarely, arrhythmia, liver 

(fibrosis and cirrhosis), endocrine glands (diabetes), 
hypogonadism, parathyroid and thyroid insufficiency 

(22). Complications consequent contamination blood 

transfusion cause transmit hepatitis B virus that and C, 
human immunodeficiency virus. The risk of 

hepatocellular carcinoma in patients with infectious 

liver and iron overload are greater eventually these 

patients die due to cirrhosis of the heart muscle caused 

by iron deposition in the heart (23, 24). 

 

Beta-thalassemia intermedia 

Symptoms of people beside thalassemia major are 
determined later, they have milder anemia and do not 

need to regular blood transfusion. At one end of the 

spectrum of clinical symptoms will be displayed 
between the ages of 2 to 6 years in these patients (10). 

Although, they can survive without regular blood 

transfusions. But suffer from a lack of sufficient 

growth. At the other end of the spectrum of disease, 
does not show specific symptoms except mild anemia 

into adulthood. In general, patients with thalassemia 

intermedia, hypertrophy and increased erythroid mass 
and the possibility of extra medullary hematopoiesis 

are common for overcome the chronic anemia (25). 

Extra medullary erythropoiesis may cause 

neurological damage such as pressure on the spinal 
cord and vertebral column. Foot ulcers and incidence 

of thrombosis are more common in thalassemia 

intermedia compared to the thalassemia major, 

especially after splenectomy (26). 

Beta-thalassemia minor 

Thalassemia minor carriers except for mild anemia are 

clinically asymptomatic, this type of thalassemia is 
heterozygous state that only one allele of theβ gene 

defect on chromosome 11 and the other allele is 

 Type of thalassemia Genotype Clinical symptom Molecular genetic 

(10) 

 
Beta thalassemia  
Beta thalassemia 
major 

 


/


 

،
 

/
 

 

 

/


 

Severe and needed to regular 
blood transfusion 

 
Mainly point mutations that lead to 
defect in transcription. Processing or 
translocation of mRNA beta globin 
gene. 

 

(11) 
Beta thalassemia 
intermedia 

 

 

Intermediate to severe 

They don’t need to blood 
transfusion regularity 

 

(12) 

Beta thalassemia 
minor 

 
β/β+ ،β/β0 

Asymptomatic 

Slight anemia occasionally 

 

 

 

 β/β+ ،β/β0  
 

 
Alpha thalassemia 

Silence carrier 

α/α  α- 

 

Asymptomatic 

 

Mainly happen deletion of alpha 

globin gene 

(13) 
Alpha thalassemia 
minor 

،αα/ -- (Asiatic)    
α- / α- (Asiatic،American    

dark-skinned) 
 

 

 
Hemoglobin H 
disease 

α-  /-- 
Intermediate to severe                 
Similar to thalassemia intermedia 

 

 

Hydrops Fetalis --  /-- 
intrauterine fetal death or birth of 
dead fetal 

 

 

Table 1: Different types of thalassemia  
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normal. The disease can be inherited by β 0 gene (non-

synthetic) and β+ gene (synthesis reduced) (12).  

Pathophysiology 

Absence or reduce the amount of beta-globin chains 

cause relative increase of alpha globin chains that are 

deposited in erythroid precursors in the bone marrow, 
leading to premature death and therefore an ineffective 

erythropoiesis. The mutation that reduces the 

production of beta globin chain is located on 
chromosome 11. Hemolytic anemia in the 

environment that causes thalassemia occurs when the 

insoluble globin chains can cause damage peripheral 

erythrocyte membrane (27). The alpha inclusions and 
degradation products are local for reactive oxygen 

species (ROS) (17). When erythrocytes enter 

peripheral blood due to deposition of alpha tetramers 
and accumulation of band 3 protein on their surface 

opsonized by IgG and complement and removed by 

macrophages and destroyed in the spleen. In these 
patients, ineffective erythropoiesis lead to anemia and 

also anemia increase by destruction of peripheral 

erythrocytes in the spleen. On the other hand, anemia 

cause hypoxia and hypoxia condition lead to active 
Hypoxia – inducible factor (HIF) (28). HIF formed 

from two unit include αand β that they divorce and 

inactive in normal oxygen pressure condition but, in 
hypoxia condition they connect together and active 

HIF. Activated HIF subsequently increased the EPO. 

Erythropoietin causes hyperplasia normoblastic and 
increase hematopoiesis 25 to 30 times with normal and 

expansion of hematopoietic bone marrow 

hematopoietic space. This increases the deformation 

of the bones. As well as long-term and severe anemia 
and increased of erythroid precursors leading to 

hepatosplenomegaly and extra medullary 

hematopoiesis (29). Erythropoiesis is way to generate 
mature cells of the hematopoietic stem cells. This 

process involves several stages of differentiation and 

proliferation of cells that impress specific expression 

of erythroid progenitor genes. The process of 
erythropoiesis occurs through the combined effects of 

the microenvironment bone marrow and growth 

factors that increase the survival, proliferation or 
differentiation of erythroid precursors and nuclear 

factors that regulate gene transcription. Erythrocyte 

production is driven by a complex network of 
transcription factors, which the GATA-1 gene is major 

gene in erythropoiesis that causes specific up-

regulation of erythroid genes such as the EPOR, 

Glycophorin A (GPA) and the globin chains. 
Proliferation and differentiation of erythroid cells to 

be positive or negative is strictly controlled to ensure 

the production of erythrocytes (30). 

Mutations and allelic variants of beta 

thalassemia 

Beta-thalassemia is a heterogeneous on molecular 
face. Since, have been identified more than 23 

different types of molecular defect in the beta-globin 

gene (31). Decrease or lake of beta globin chain lead 
to increase free alpha globin chain that deposit in 

erythroid precursors in bone marrow so, cause 

destruction pre-maturation red blood cell and 
defective erythropoiesis. The degree of reduction 

globin chain is determined by beta globin gene 

mutation on chromosome 11.Different strategies 

classification of genotyping of individuals by 
categories beta globin gene and cloning of nucleotide 

sequence led to the identification of several new 

mutations in the Mediterranean, India, China and 

America's dark-skinned population (32, 33). 

A number of mutations have been reported in 

Iran 

Generally speaking, IVS -II-1 (G → A) is the most 

common mutation in Iran (33/9%) of this 
Mediterranean mutation has  high frequency in Iran 

beside the Mediterranean countries, which may 

suggest that slope downward East to West that Iran is 
the origin of this mutation (34, 35). IVS-I-110 (G → 

A) is One of the most common alleles of beta 

thalassemia in Mediterranean countries and, as 

expected, high frequency of this mutation in the North 
West of Iran near the Turkish Azerbaijani population 

has been found and its frequency is reduced in the 

south east of Iran. On the other hand IVS-I-5 (G → A) 
is the most common mutation in the Indian 

subcontinent that is found with high frequency in 

South and South-East Iran, which is located near 

Pakistan. While have been found the low frequency of 
this mutation in the North West of the country. The 

presence of abundant and dissimilar mutations in 

Iranian population in category of globin gene, 
certainly can be as evidence for a method of formation 

of the population in the past (36). 

Positive regulation of erythropoiesis 

The process of erythropoiesis controlled through the 

combined effects of two major cytokines called stem 

cell factor (SCF) and EPO. SCF induces the 

proliferation, survival and reduction differentiation of 
primary erythroid progenitors and precursors beside 

basophilic erythroblast stage. EPO is responsible for 

the proper regulation of hemostatic number of 
erythrocytes by oxygen in tissues. Interaction between 

of erythropoietin and erythropoietin receptor leads to 

activation of JAK2, several signaling pathways 

involved in kinase Akt, PI3 and STAT5, which 
inhibits apoptosis, supporting the proliferation of 
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erythroid progenitors and maturation of erythrocytes 

(37, 38). 

Negative regulator of erythropoiesis through 

apoptosis                                                                           

Negative regulator of erythropoiesis is mainly due to 

cellular apoptosis, a fundamental mechanism for 
clearing cells that are potentially dangerous. Apoptotic 

programs realized by the family of proteases that 

dependent on cysteine and proprietary aspartate, 

called caspases (39, 40). 

Ineffective erythropoiesis in thalassemia                                                                                             

Erythroid precursors are 5 to 6 times in thalassemia 
patients BM compared to healthy individuals, which is 

very early precursors and can be seen inhibition of 

maturation of erythroid in bone marrow, the more cells 
are seen pronormoblast. Ineffective erythropoiesis 

defined by suboptimal production of mature 

erythrocytes from immature cells erythroblast islands. 
So appears through accelerating the erythroid 

differentiation, maturation inhibition in 

polycromatophilic stage and death of erythroid 

progenitor stage (41, 42). Increased apoptosis is a key 
feature of ineffective erythropoiesis in beta 

thalassemia major, so in this case saw an increase in 

apoptosis erythroid progenitor in the bone marrow, but 
lymphoid and myeloid precursors don’t have 

increased in apoptosis (43). 

Despite a significant increase in apoptosis erythroid 

precursors in the bone marrow in Thalassemia Major, 

when we see smear of bone marrow, do not see a large 
addition in number of dead erythroblast. This 

condition due to cleared by macrophages in the bone 

marrow(44). Study of death of apoptotic receptor 
pathways suggests that the fas and fas ligand express 

in early and late stages of differentiation together. 

Both proteins downregulate in the bone marrow or 
spleen beta thalamic in proerythroblastic cells 

compared with healthy mice with, which 

downregulation of fas and fasL may be erythropoietic 

stress markers. Evidence of conflict inside pathway of 
apoptosis in thalassemia major doesn’t specify to date 

(45). 

Problems and complications of Thalassemia 

Reduction of each globin chains production in 

Thalassemia, leading to disruption of the relationship 

between alpha and beta chains. Unpaired chain deposit 

in red blood cells and this is the beginning of 

thalassemia problems (44). 

Iron overload  

Many of problems create by iron overload and its 

destructive role in patients with thalassemia. Three 

main reasons for this phenomenon are considered: 
ineffective erythropoiesis, frequently blood 

transfusions and increasing the intestinal absorption of 

iron, the first and second due to excessive destruction 

of red blood cells and the latter due to chronic anemia. 
Addition of iron in thalassemia patients due to the, is 

the protein transferrin saturation as a carrier of iron in 

the body, as a result, free iron accumulates in the blood 
and body tissues, produce potentially harmful 

compounds in the body tissue (46, 47). 

Cardiac arrhythmia 

Heart disorders have been reported as the cause of 

death in 50% of patients with thalassemia (48). Two 
major structural mechanism and cardiac function in 

patients with thalassemia affects: the accumulation of 

iron overload in cardiac cells and an increase in 
cardiac output. The first mechanism causing the 

myocardial heart and hypertrophy disorders in the 

heart layers. Impaired function in left ventricular 
mainly due to this situation (49). Myocardial 

sensitivity to oxygen free radical resulting from free 

iron within the cell in this disorder, thus leads to 

diastolic dysfunction. The second mechanism caused 
by the presence of chronic anemia and hypoxia, 

increase of erythroid cells due to the body's reaction 

and increase of volume blood. This situation, heart 
regulate this condition by increase of output but this 

mechanism lead to pressuring to heart due to increase 

severity and measure of contraction.  Subsequently the 

mechanism leads to increase pulmonary vascular 
resistance and consequently increase pressure of 

pulmonary and resulting right ventricular dysfunction 

(50, 51). 

 Endocrine disorders 

Endocrine disorder is from iron overload problems in 
patients with thalassemia. The anterior pituitary is 

very sensitive to iron deposition in tissues. This 

sensitivity can cause serious disturbances in the 
synthesis and secretion of hormones (52). In the 

meantime, hypogonadism is the most common 

disorder has been observed in 70% of patients with 
thalassemia (53). In these patients, product and storage 

of thyroid hormones is much lower than in healthy 

people, which combined with delay in puberty, 
reproductive disorders and related factors (54). Other 

complications are reduction of growth access, which 

causes endocrine disorders involved in its 

development in patients with thalassemia. Delay or 
lack of growth during puberty leads to short stature. 

Other disorders include the primary hypothyroidism, 

hypoparathyroidism in the second decade of life, 
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decreased ability to build bone and other disorders, 

osteoporosis and diabetes, in these patients (55-57). 

Hepatitis 

Thalassemic patients receive long-term blood and 
blood products and are at risk of viral infection such 

as viral hepatitis. Despite hepatitis B vaccines for 

donors and thalassemic patients, the prevalence of 
these viral diseases among these patients is greatly 

reduced (58). But the lack of a vaccine for hepatitis C, 

continuously, it’s a greatly difficult among these 

patient. 

Osteoporosis 

Almost all thalassemic patients are suffering from this 

condition. The consequences of osteoporosis can be 
noted multiple fractures and severe bone pain. Since 

the mineral density of axial bone occurs faster than 

peripheral bone in adulthood, lumbar vertebra spine 

are affected more than other sectors (59, 60). 

Treatment 

Change of expression and production of HbF 

Replacing HbA to HbF formed short time after birth 
in human due to change production gamma gene to 

beta-globin gene is. This process requires specific 

class changes in the expression or function of 
transcription factors and reconstruction chromosomes 

activities in gene repression expression of gamma 

globin and induce beta globin gene (61). Increase HbF 
able to improve the clinical symptoms in patients with 

thalassemia. As well as, increase HbF lead to reduce 

balance between alpha and beta chain (due to beta 

chain production is plague) this results reduction of 
red blood cell destroyed (62). Some chemicals and 

drugs such as Hydroxia Urea (HU) can induce 

synthesis of fetal hemoglobin in adults. Studies show 
that HU treatment was effective on increasing gamma 

globin and effective for beta-thalassemia and improve 

clinical and hematological symptoms in thalassemia 

intermedia (63, 64). 

Hematopoietic stem cell transplantation 

Stem cell transplantation is an accepted treatment for 
thalassemia major (65). In this treatment, stem cells 

isolated from the bone marrow of healthy individuals, 

transferred to patients this method is used in the 
treatment of many diseases such as thalassemia. The 

treatment was successful in nearly 80 percent of 

transplant recipients (66). The way to find eligible 
donor, is examined with transplant recipients 

according to human leukocyte antigens (HLA). What 

more agreeable between them, success increases in 

transplantation and don’t reject it. But the most 

important and dangerous problem in bone marrow 

transplantation called graft versus host disease 
(GVHD), which in the end leads to death in transplant 

recipients (67, 68). 

Maintenance Treatment 

Chelators therapy 

One of the main treatments is for patients who receive 

blood. These factors play an important role in Back 

toxicity of Iron overload is. However, these drugs can 
produce side effects on the nervous system, their smell 

and hearing. The intravenous chelating can be noted 

deferoxamine and oral chelating such deferiprone 

(69). 

Induction of fetal hemoglobin production 

It is observed that people with fetal hemoglobin 
expression is long term, increases lifespan of red blood 

cells. This forms the basis of this type of treatment. 

The following drugs have been used for this purpose 

(70). 

Hydroxiaurea 

The first effects of hydroxyurea were found in patients 

with sickle cell disease (71). After discovering the fact 

that hydroxyurea increased gamma-globin it was used 

in the treatment of thalassemia (72). Hydroxyurea is a 
ribonucleotide reductase inhibitor and act as a 

cytotoxic agent for synthesis phase of the cell cycle 

(73). For the treatment of sickle cell anemia has been 
tested successfully. It acts as increasing fetal 

hemoglobin for treatment. Studies of several center 

determine to use hydroxyurea, is reduced period of 
bedridden due to acute pain of thorax and necessity to 

blood transfusion in sickle cell anemia.  After two 

years of treatment beginning, the total amount of fetal 

hemoglobin increases from 5% to 9% in the majority 
of patients. Along with increasing fetal hemoglobin, 

decreases sickle hemoglobin polymerization rate. At 9 

years of follow-up, 233 cases were identified by 
medical examiner, has decreased that up to 40% of 

deaths. Several different mechanisms have been 

proposed to increase fetal hemoglobin (74, 75). 

Since hydroxyurea destroys terminal progenitor cells 

directly and produce erythroid cells rapidly. So it is 
suggested this is due to   impaired maturation of 

erythroid precursors. Accelerated hematopoietic 

causes to increase the immature line commitment and 
induce the formation of cells contain hemoglobin 

fetus. Hydroxyurea increases the amount of 

erythropoietin and progenitor cells can be induced 
proliferation. The mechanism of action listed for 

Hydroxyurea can be included in this category (76, 77). 

It is reported that increased fetal hemoglobin 
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expression may be due to increased expression of 

GATA-2 and reduction of expression of GATA-1. 
Hydroxyurea could also lead to regulation of gene 

expression related to cell cycle and apoptosis(78). 

Hydroxyurea performance is related to its 

concentration. Induction of peroxidation by 
hydroxyurea can induce nitric oxide (NO). Nitric 

oxide is a known inducer soluble guanylate cyclase. 

This plays a role in increase in fetal hemoglobin (79). 
A GTP-binding protein called SAR specified as 

inductive particular gene is regulated under 

Hydroxyurea (78, 80). 

Factors of hypo-methylation  

These compounds, such Azacytidine  compounds also 

caused switch adult hemoglobin to fetus but as 
butyrate and hydroxyurea have much their clinical 

side effects, especially Azacytidine  is a major core 

structural change (81). 5-Azacytidine is first type of 
agents known to increase fetal hemoglobin. These 

drugs do their activity through gene silencing in 

epigenetic (82). The drug was used as an anti-cancer 
agent for the first time in the United States in the '70s, 

then, it was applied in patients with hemoglobin 

disorders in the '80s (83). already used as a treatment 

for MDS patients (84). 5- Azacytidine has ability to 
stimulate the production of fetal hemoglobin in 

anemia monkey was studied for the first time. This 

was associated with an increased 70-80 percent of total 
hemoglobin. This study became basis for other studies 

that hypometylasion DNA can be used as a setup for 

expression of fetal hemoglobin in vivo function. This 
successfully data provide clinical trial studies to use to 

treat for hemoglobin disorders. In patients with sickle 

cell and thalassemia, treatment lead to a significant 

increase in the amount of fetal hemoglobin. This 
manifests 7 to 23 percent increase in fetal hemoglobin, 

11 to 50 percent of cells containing fetal hemoglobin 

and total hemoglobin 1 to 4 grams per deciliter, 
respectively. Therapeutic effects were associated with 

the reduction of sickle cells in sickle cell anemia, 

reduction of imbalances chains β, α, and decrease the 

need for blood transfusions in beta-thalassemia. 
Despite the promising data from experimental clinical 

studies were not continued, because shall be 

considered some carcinogenic effects of this matter. 
Tumors have been demonstrated in animal models 

(61, 85). 

Hemin 

In vitro Hemin stimulates the production of 

hemoglobin fetus. Which can cause side effects such 

as phlebitis (inflammation and spasm in veins) noted 

(86). 

  

Antioxidants 

Free radicals play a role in the pathophysiology of 

damage to the red blood cell membrane. The use of 
antioxidants can block the effect. The release of small 

amounts of iron may trigger oxidation-reduction 

reactions and reduced regenerative capacity of cells. 

The use of vitamins C and E as antioxidant have been 

studied greatly (87). 

Immunomodulator agents 

Pomalidomide and Lenalidomide can be increased 

gamma gene expression without any cytotoxic effect 

other the inducer compounds. In fact, these two drugs 
are immunomodulatory drugs that reduce the 

production TNF-α. Pomalidomide induce the 

production of hemoglobin F stronger than other drugs. 

It has epigenetic effects like Butyrate (88). It doesn’t 
cause increase expression of the alpha gene that is very 

important in thalassemia patients. Thalidomide is an 

Immunomodulatory drug, which is main treatment in 
multiple myeloma and has good effects on induction 

of hemoglobin F and it has mechanisms similar to 

previous two drugs (89). Of course, this drug has a 
strong teratogenic and this is limited in application 

(90, 91).                                                                     

Molecular Therapy 

Due to the adverse effects of drugs in increase HbF, 

new therapeutic approach suggest to increase in 

hemoglobin F, which includes molecular targets for 
induction of alpha hemoglobin F. In fact, this 

therapeutic approach bears, molecules that play a role 

in regularity expression gene hemoglobin F and class 
switching beta chain and require to correctly 

understand these pathways. Here described some of 

the molecules (92). 

 B-Cell Lymphoma / Leukemia (BCL11A) 

This involve as a growth factor in the production of B-

lymphocytes. This factor has a low expression when 
erythroid cells greatly express gamma chain and 

hemoglobin F in embryonic early hematopoiesis and 

liver hematopoiesis (93). 

This factor silences gamma chain by banding to 

GATA-1 and NURD set. In fact, these factors have a 
direct role in the class switching gamma to beta chain 

and silencing the expression of the gamma chain (94). 

Inhibition of its expression using siRNA in blood 
progenitor cells in adults cause to increase the 

expression of hemoglobin F (95). 

EKLF.1 

It is a major factor in the maturation of red blood cells. 

This factor normally sticks CACCC sequences in the 
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globin promoter region and increases its expression 

and silencing gamma chain and class switching the 
chain of gamma to beta (93,96). Two methods include 

direct and indirectly through the increased expression 

of BCL11A and thus silencing gamma chain (95). So, 

inhibition of this factor by siRNA can be increased 

HbF. 

SOX-6 

A factor that normally plays a role in erythropoiesis 

and the silencing of gamma chain by siRNA that 

increased gamma chain (97). 

MYB                                                                                                                                                                      

it is a requirement factor in normal erythropoiesis that 
reduces expression gamma chain. Increased 

expression of MYB in K-562 cells resulted in 

decreased expression of the gamma chain. In trisomy 

13 was also referred to the relationship MYB and 
hemoglobin F. The disease has been found that 

increased expression of HbF associated with increased 

expression of miR-15a/16-1, which increase 
expression of microRNA lead to direct inhibition 

MYB and increase HbF(70,98). 

Ikaros 

It is a factor that is predominantly expressed in 

hematopoietic cells in adult. This factor is in PYR set 

and it has a role as sub-units binding this set to DNA, 
silencing gamma chain and switching gamma to beta 

and. Lack expression of Ikaros (IK -/-) lead to increase 

expression HbF in mice (99). 

 Direct Repeat Erythroid Definitive (DRED) 

This factor is formed from two subunits, TR2 and 
TR4. This factor has a high binding affinity to DR-1, 

the alpha and gamma globin in the promoter region, 

and has the inhibitory effect and lead to off the two 

chains, but the promoter of beta globin is lacking in 
this place. As a result of inhibition of this factor using 

SiRNA can be increased HbF (100). 

 Stage Selector Protein (SSP) 

This is formed from two subunits, CP2 and P22NF-

E4. SSP has a high affinity to connect to the motif SSE 
in gamma-globin promoter and lead to increase 

gamma chain expression. Increase P22NF-E4 

expression , Increased the expression of gamma chain 

and the delay in beta-gamma class switching in cell 

line K562 (101). 
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