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Abstract

Nanoparticles submerged in confined flow fields occur in several technological applications 

involving heat and mass transfer in nanoscale systems. Describing the transport with nanoparticles 

in confined flows poses additional challenges due to the coupling between the thermal effects and 

fluid forces. Here, we focus on the relevant literature related to Brownian motion, hydrodynamic 

interactions and transport associated with nanoparticles in confined flows. We review the literature 

on the several techniques that are based on the principles of non-equilibrium statistical mechanics 

and computational fluid dynamics in order to simultaneously preserve the fluctuation-dissipation 

relationship and the prevailing hydrodynamic correlations. Through a review of select examples, 

we discuss the treatments of the temporal dynamics from the colloidal scales to the molecular 

scales pertaining to nanoscale fluid dynamics and heat transfer. As evident from this review, there, 

indeed has been little progress made in regard to the accurate modeling of heat transport in 

nanofluids flowing in confined geometries such as tubes. Therefore the associated mechanisms 

with such processes remain unexplained. This review has revealed that the information available in 

open literature on the transport properties of nanofluids is often contradictory and confusing. It has 

been very difficult to draw definitive conclusions. The quality of work reported on this topic is 

non-uniform. A significant portion of this review pertains to the treatment of the fluid dynamic 

aspects of the nanoparticle transport problem. By simultaneously treating the energy transport in 

ways discussed in this review as related to momentum transport, the ultimate goal of 

understanding nanoscale heat transport in confined flows may be achieved.
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1. Introduction

Nanoscale fluid dynamics (NFDs) is the study of the motion of nanoparticles that are 

suspended in an external liquid medium. The liquid medium itself may be Newtonian or 

non-Newtonian, static or flowing under the influence of an external pressure gradient, 

unbounded or confined in a tube-like vessel. In addition, there could be temperature 

gradients in the medium which may cause heat transport in addition to the mass transfer. The 

nanosize is typically in the range of 1–100 nanometer (nm).

Based on experimental observations, it is now well known that under identical external 

conditions, transport properties such as diffusivity, viscosity, thermal conductivity, and 

electrical conductivity of Nanofluids are significantly different from those of suspensions 

containing larger sized particles. However, how the NP dispersion in the host medium 

influences these properties are still being intensely debated (see Refs. [1–4]). Clearly, for a 

given sum total of particle volumes in a suspension, the cumulative interfacial surface area 

of the particles that is exposed to the fluid will be larger with smaller sized particles. Surface 

area dependent properties and behavior will be impacted by this feature, and this is one 

reason for the comparatively enhanced transport noted with nanofluids. Apart from this, 

there are other important reasons such as the ones related to the dynamics of the NP random 

motion in a static or a flowing suspension (Brownian interactions and diffusivities), and the 

nature of the proximity-dependent interaction of a NP with a confining boundary.

Research work worldwide is being undertaken to ascertain and provide the reasons for the 

observed behavior of Nanofluids and NFD. A significant motivating factor for this large 

interest is the immediate impact on the associated technologies. A nanofluid with enhanced 

thermal conductivity and hence a high heat transfer coefficient will serve to very efficiently 

cool a tiny computer chip, thus enabling very high processing power for the system as a 

whole. In a completely different context, drug (for example, an antibiotic) laden optimally 

functionalized, sized, and shaped NPs may successfully negotiate their way through a 

micron scale blood vessel and deliver the drug to the intended target such as an endothelial 

cell surface on inflamed tissue. The implications are profound. The targeted drug delivery in 

this example would very much depend on the diffusivity of the NPs in a non-Newtonian 

fluid (blood) flow containing red blood cells and other constituents. The principal aim of this 

article is to discuss the fluid dynamics aspects associated with NP suspensions whether static 

or flowing.

2. Foundations

2.1 Conservation equations

The study of NFD as described in this chapter is largely based on concepts from non-

equilibrium statistical mechanics combined with those from continuum fluid mechanics and 

transport that govern NP behavior in an external viscous fluid medium. In a fluid, the 

molecules are in continual random thermal motion consistent with its temperature. The 

dynamics at this molecular level can be described based on transitions between microstates. 

A microstate defines the complete set of positions and momenta of all the particles/

molecules of the system. For molecular systems, the microstate of the system with a given 
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set of positions and momenta at a given time t only depends on the microstate at the 

immediately preceding time-step. This memory-less feature is referred to as a Markov 

process, and all Markov processes obey the master equation [5]. The probability to access a 

microstate defined by a given value of the microstate variables y is denoted by P(y, t), which 

for a general dynamical process at non-equilibrium, is time-dependent. Every Markov 

process is governed by a set of probability balance equations, collectively referred to as the 

master equation given by:

∂P(γ, t)
∂t = ∫ dγ′ w γ γ′ P γ′, t − w γ′ γ P(γ, t) . (1)

Here, γ and γ′ denote different microstates and w(γ|γ′) is the transition probability (which 

is a rate of transition in units of a frequency) from state γ′ to state γ. Macroscopic 

conservation equations can be derived from the master equation by taking the appropriate 

moment:

∂
∂t γ = ∫ γ ∂P(γ, t)

∂t dγ = ∬ dγdγ′ γ′ − γ w γ′ γ P(γ, t) . (2)

Indeed, a reduced form of the master equation is the Boltzmann equation [6], where the 

microstates defined in terms of the positions and momenta of all particles (assumed to be 

hardspheres) are reduced to a one-particle (particle j) distribution by integrating over the 

remaining n − 1 particles; here, the operator for the total derivative d /dt is expressed as the 

operator for the partial derivative ∂/∂t plus the convection term u • ∂
∂r , where u is the 

velocity. The moments of the Boltzmann equation were derived by Enskog for a general 

function ψj [6]. Substituting ψj as mj, the mass of particle j yields the continuity equation, as 

mjvj, the momentum of particle j yields the momentum components of the Navier-Stokes 

equation, and as 1
2m jv j

2, the kinetic energy of the particle, yields the energy equation, which 

together represent conservation equations that are the pillars of continuum hydrodynamics.

2.2 Thermal and Brownian effects

One of the main attributes of NFD that differentiates it from traditional hydrodynamics is 

that the fluid mechanics and thermal effects have to be treated with equal importance. It is 

worth noting that while the thermal effects and fluctuations are described within the scope of 

the master equation (Eq. 1), by taking the moment to derive the conservation law (Eq. 2), 

often the thermal effects are averaged out to produce only a mean field equation. Indeed, the 

continuity, momentum (Navier-Stokes), and energy equations cannot accommodate thermal 

fluctuations that are inherent in Brownian motion even though such effects are fully 

accommodated at the level of the parent master equation. Therefore, NFD must be 

approached differently than traditional hydrodynamics.

One approach is to start with the mean-field conservation equation such as the Boltzmann 

equation and add the thermal fluctuations as a random forcing term, which results in the 

Boltzmann-Langevin equation derived by Bixon and Zwanzig [7]. This approach amounts to 
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random fluctuating terms being added as random stress terms to the Navier-Stokes 

equations. The above procedure referred to as the fluctuating hydrodynamics (FHDs) 

approach was first proposed by Landau and Liftshitz [8]. In the FHD formulation, the fluid 

domain satisfies:

∇ ⋅ u = 0 (3)

ρDu
Dt = ∇ ⋅ σ, (4)

where, u and ρ are the velocity and density of the fluid respectively, and σ is the stress 

tensor given by,

σ = − pJ + μ ∇v + (∇v)T + S . (5)

Here, p is the pressure, J is the identity tensor, and μ is the dynamic viscosity. The random 

stress tensor S is assumed to be a Gaussian white noise that satisfies:

Si j(x, t) = 0 (6)

Sik(x, t)Slm x′, t′ = 2kBTμ δilδkm + δimδkl δ x − x′ δ t − t′ , (7)

where, 〈•〉 denotes an ensemble average, kB is the Boltzmann constant, T is the absolute 

temperature, and δij is the Kronecker delta. The Dirac delta functions δ(x − x′) and δ(t − t′) 

denote that the components of the random stress tensor are spatially and temporally 

uncorrelated. The mean and variance of the random stress tensor of the fluid are chosen to 

be consistent with the fluctuation-dissipation theorem and it is symmetric [9]. By including 

this stochastic stress tensor due to the thermal fluctuations in the governing equations, the 

macroscopic hydrodynamic theory is generalized to include the relevant physics of the 

mesoscopic scales ranging from tens of nanometers to a few microns.

An alternative approach to NFD (and one that is different from FHD) is to start with a form 

of the master equation referred to as the Fokker-Planck equation. Formally, the Fokker-

Planck equation is derived from the master equation by expanding w(γ′|γ)P(γ, t) as a 

Taylor series in powers of r = γ′ − γ. The infinite series is referred to as the Kramers-Moyal 

expansion, while the series truncated up to the second derivative term is known as the 

Fokker-Planck or the diffusion equation, which is given by Ref. [5]:

∂P(γ, t)
∂t = − ∂

∂γ a1(γ)P + ∂2

∂γ2 a2(γ)P . (8)

Here, an(γ) = ∫ rnwdr. The solution to the Fokker-Planck equation yields the probability 

distribution of particles which contains the information on Brownian effects. At equilibrium 

(i.e., when all the time-dependence vanishes), the solution can be required to conform to the 

solutions from equilibrium statistical mechanics. This approach leads to a class of identities 
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for transport coefficients, including the famous Stokes-Einstein diffusivity for particles 

undergoing Brownian motion to be discussed later in this article. Furthermore, there is a 

one-to-one correspondence between the Fokker-Planck equation and a stochastic differential 

equation (SDE) that describes the trajectory of a Brownian particle. The generalized Fokker-

Planck equation is written in terms of a generalized order parameter S, given by:

∂P(S, t)
∂t = D

kBT
∂

∂S P∂F(S)
∂S + D∂2P

∂S2 , (9)

where, F(S) is the free energy density (also referred to as the Landau free energy) along S 
[10], D is the diffusion coefficient along S which is also related to the an’s of the original 

Fokker-Planck equation, i.e., a2 = 2D. The quantity kBT which has the units of energy is 

called the Boltzmann factor and serves as a scale factor for normalizing energy values in 

NFD. Corresponding to every generalized Fokker-Planck equation (Eq. 9), there exists a 

SDE given by:

∂S
∂t = − D

kBT
∂F(S)

∂S + 2Dξ(t), (10)

where, ξ(t) represents a unit-normalized white noise process. The SDE encodes for the 

Brownian dynamics (BDs) of the particle in the limit of zero inertia. The corresponding 

equation when the inertia of the particle is added is often referred to as the Langevin 

equation. In summary, Brownian or thermal effects are described within the hydrodynamics 

framework either using the FHD approach or the BD/Langevin equation approach.

2.3 Multiphase NFD: stochastic dynamics of NP; preliminary concepts

Thus far, our discussion of NFD has been general and applicable mostly to single phase 

flows such as pure-fluids or dispersion of a miscible dye in a single phase. However, the case 

of a nanoparticle suspended in a fluid medium creating a moving interface as the particle 

experiences Brownian motion is of much interest. We will discuss the general framework for 

describing its dynamics as well as the equilibrium properties of such a system.

A NP experiencing random motion in a fluid is influenced by hydrodynamic interactions. 

The fluid around the particle is dragged in the direction of motion of the particle. On the 

other hand, the motion of the particle is resisted by viscous forces arising due to its motion 

relative to the surrounding fluid. In this context, it is helpful to recall the results for the 

motion of a sphere in steady Stokes flow (Re ≤ O(1), with Re based on the radius of the 

particle). For a sphere, the Stokes law for drag force, fD = 6πμUa, where fD is the drag force 

on a sphere in steady Stokes flow, a is the radius of sphere, μ is the dynamic viscosity of the 

fluid, and U is the translational speed of the sphere in the direction of its motion, is 

frequently invoked. The quantity, ζ(t) = 6πμa, separately, is called the Stokes dissipative 

friction force coefficient for a spherical NP or simply the friction force coefficient. Similarly, 

a rotational friction coefficient, ζ(r) = 8πμa3, defined for a rotating sphere (see, [11]) is used 

in the context of describing NP rotation. However, there is a basic difference between a 

particle in steady Stokes flow and a NP in Brownian motion. With a NP, the momentum of 

the fluid surrounding the particle at any instant is related to its history. This memory can be 
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understood in light of the linear response theory which is the foundation of non-equilibrium 

thermodynamics. A system at equilibrium evolving under a Hamiltonian ℋ experiences a 

perturbation Δℋ = f A, where f is the field variable (such as an external force), and A is the 

extensive variable (such as the displacement) that is conjugate to the field. The perturbation 

throws the system into a non-equilibrium state, and when the field is switched off, the 

system relaxes back to equilibrium in accordance with the regression process as described 

by Onsager [12–14]:

ΔA(t) = f /kBT ΔA(0)ΔA(t) , (11)

where, ΔA(t) = A(t) − 〈A〉. The above identity holds under linear response, when Δℋ is 

small, or equivalently, when ΔA(t, λf) = λΔA(t, f). The most general form to relate the 

response A to the field f under the linear response is given by:

ΔA(t) = ∫
−∞

∞
χ t − t′ f t′ dt′ . (12)

Here, we have further assumed that physical processes are stationary in the sense that they 

do not depend on the absolute time but only the time elapsed, i.e., χ(t, t′) = χ(t − t′). One 

can use the linear-response relationship to derive an equation for the dynamics of NP 

interacting with a thermal reservoir of fluid (also called a thermal bath). The dynamics of the 

particle (in one-dimension along the x-coordinate for simplicity of illustration) is given by 

mdU
dt = − dV(x)

dx + f , where V(x) is the potential energy function and f is an external driving 

force including random Brownian forces from the solvent degrees of freedom. The thermal 

bath will experience forces fr in the absence of the particle, and when the particle is 

introduced, the perturbation will change the bath forces to f. This change f − fr can be 

described under linear response as:

Δ f (t) = f − f r = ∫
−∞

∞
dt′χb t − t′ x t′ . (13)

Using this relationship, and by performing integration by parts, the dynamics of the particle 

may be written as:

mdU
dt = − dV(x)

dx + f r − ∫
−∞

t
dt′ζb t − t′ U t′ . (14)

Here fr is the random force from the bath that is memoryless, U = dx/dt, and χ = −dζ/dt. 

This form of the equation for the dynamics of the NP is referred to as the generalized 

Langevin equation, and it accounts for the memory/history forces. We note that while the 

parent equation (i.e., the master equation) is Markovian, the memory emerges as we coarse-

grain the timescales to represent the fluid-particle interaction and is a consequence of the 

second law of thermodynamics. The strength of the random force that drives the fluctuations 
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in the velocity of a NP is fundamentally related to the coefficient representing the dissipation 

or friction present in the surrounding viscous fluid. This is the fluctuation-dissipation 

theorem [15]. The friction coefficient, ζ, associated with NP motion is time-dependent (see 

Eq. 14) and is no longer given by the constant Stokes value. In any description of NP 

motion, therefore, the mean and the variance of the thermal fluctuations have to be chosen to 

be consistent with the fluctuation-dissipation theorem. In order to achieve thermal 

equilibrium, the correlations between the state variables should be such that there is an 

energy balance between the thermal forcing and the dissipation of the system as required by 

the fluctuation-dissipation theorem [15,16].

2.4 Equilibrium and transport properties

According to equilibrium statistical mechanics, in a uniform temperature fluid, the 

molecular velocities will be Maxwellian, and the energy components related to the various 

degrees of freedom will satisfy the equipartition principle. Indeed, the solutions to the 

Fokker-Planck equation written for the velocity variable at steady state yields the Maxwell-

Boltzmann distribution consistent with the picture from equilibrium statistical mechanics. If 

a NP is introduced into the fluid medium, it will experience molecular collisions and the 

associated fluctuating impulses. As a net result, the fluctuating NP will randomly translate in 

the fluid while experiencing rotation. If the bulk fluid is driven by an external pressure 

gradient, the random translational and rotational motions will still be significant at very low 

Reynolds numbers, Re (say, Re based on the vessel diameter). In NFD, most of the 

quantities associated with the fluid and the NP are evaluated by ensemble averaging as noted 

and defined earlier. In a numerical simulation, this ensemble average is obtained by 

averaging over successive configurations that are generated in the process of simulation. 

Customarily implicit to this averaging is the Ergodic assumption that an ensemble average of 

a property of a system over many replicas is the same as an average taken over a long 

enough time of one particular replica of the system that is being numerically simulated. If 

the NP and the surrounding fluid are in thermal equilibrium, just as for the fluid molecules, 

the velocity components of the NP will also be Maxwellian and the NP energy components 

related to the various degrees of freedom will also satisfy the equipartition principle. Thus, 

the equilibrium probability density function (PDF) of each of the cartesian components of 

the velocity of the NP, Ui, will follow the Maxwell-Boltzmann (MB) distribution,

P Ui = m
2πkBT exp −

mUi
2

2kBT , (15)

where, m is the NP mass, and the equilibrium statistics of the three components Ui along the 

three coordinate directions are independent of each other; note we denote the velocity of the 

fluid using v and that of the NP using U. In thermal equilibrium, the mean (or the average) 

value of Ui is,

Ui = 0. (16)

Moreover, the mean squared value is,
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Ui
2 =

kBT
m . (17)

From the equipartition theorem, at thermal equilibrium, the translational and rotational 

temperatures of the NP are given by:

T(t) =
m U2

3kB
; T(r) =

I ω2

3kB
, (18)

where, U and ω are the translational and angular velocities of the NP, and I is its moment of 

inertia.

Another important application of the Onsager regression relationship (Eq. 11) is the 

emergence of a class of relationships that relate transport properties to correlation functions 

that are known as the Green-Kubo relationships [14,17]. These relationships are also a 

consequence of the fluctuation-dissipation theorem.

The mathematical formulation of this fluctuation-dissipation theorem is an equation for the 

coefficient of a transport process in terms of the Fourier component of time dependent 

fluctuations of the dynamical variables at the microscopic scale. Thus,

γ = 1
3∫0

∞
dt A(0) • A(t) . (19)

Here, γ is the transport coefficient of interest, t is time, A is the current that drives it, and the 

integrand of Eq. (19) is the autocorrelation function (ACF) of quantity A. As dynamic 

properties, one can determine the transport coefficients such as diffusion (D), shear viscosity 

(ηs) and thermal conductivity (k) using the Green-Kubo formula.

Diffusion as a mass transport mechanism has been the subject of numerous theoretical, 

experimental, and computer simulation studies. The Green-Kubo formula for the self-

diffusion coefficient is expressed in terms of the individual molecular velocity 

autocorrelation function (VACF):

D = 1
3N∫

0

∞
dt U(0) U(t) . (20)

Here, U is the center of mass velocity vector of NP and the integrand of Eq. (20) is called the 

VACF. The self-diffusion coefficient in Eq. (20) is obtained with high statistical accuracy by 

time averaging over all N molecules.

The Green-Kubo relations for other Navier-Stokes transport coefficients including thermal 

conductivity and shear viscosity are derived in a similar manner. The thermal conductivity in 

the Green-Kubo method is predicted using the equilibrium fluctuations of the heat current 

Radhakrishnan et al. Page 8

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vector (J). For a cubically isotropic material, the diagonal elements of the thermal 

conductivity are given by:

k = 1
3kBT2Ω∫

0

∞
dt J(0) J(t) . (21)

Here, Ω and T are the system volume and temperature, respectively, and 〈J(0)〉〈J(t)〉is the 

heat current autocorrelation function (HCACF). The heat current vector characterizes the 

change with time of the spatial average of the local energy and was derived by Hardy [18]:

J = 1
Ω ∑

i

pi
mi

pi
2

2mi
+ V i + ∑

i
∑

j

∂V i j
∂ri

• Ui ri j , (22)

where p is the momentum, r the position, m the mass, V the potential energy, and 

summation is over particles denoted by i.

The application of Green-Kubo relations allows one to extract the shear viscosity by 

integration of the stress (pressure) autocorrelation function (SACF) [19]:

ηs = Ω
3kBT ∫

0

∞
dt Sxy(t)Sxy(0) , (23)

where Sxy refers to the off-diagonal elements of the stress tensor defined by:

Sxy(t) = ∑
i

miUixUiy − 1
2 ∑

j ≠ i

xi jyi j
ri j

∂Φ ri j
∂ri j

, (24)

where, i and j denote different particles, rij = |ri − rj|, ri = (xi, yi) is the position of particle i, 
and Φ(rij) is the interparticle potential energy. It must be noted that the positions and 

velocities of particles vary with time accounting for the time dependence of Sxy.

The bulk viscosity (i.e., ηv) is similarly calculated by just replacing the integrand of above 

equation with 〈δS(t)δS(0)〉, where δS(t) = S(t) − 〈S(t)〉 with S(t) as the instantaneous 

pressure of the system at time t and 〈S(t)〉as the average pressure [20].

3. Computational methods and implementation

3.1 The fluctuating hydrodynamics method

Simulating suspensions of submicron-sized particles or polymers while including short-

range particle-particle interaction, thermal fluctuation and many-body hydrodynamic 

interactions (HIs) is a challenging task. Over the past decades, numerical simulations of the 

fluctuating hydrodynamics approach have been carried out employing the finite volume 

method [21,22], lattice Boltzmann method (LBM) [23–29] and stochastic immersed 

boundary method [30]. A coarse-graining methodology has been developed to bridge 

molecular dynamics and fluctuating hydrodynamic simulations [31,32]. Serrano and Español 
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[33] and Serrano et al. [34] have solved the fluctuating hydrodynamic Navier-Stokes 

equations without a particle using the finite volume Lagrangian discretization in a moving 

Voronoi grid. They have ensured that their discretized governing equations cast in the 

GENERIC (General Equation for Non-Equilibrium Reversible/Irreversible Coupling) 

formalism [35,36] satisfies the fluctuation-dissipation theorem. The GENERIC formalism 

proposed by Grmela and Öttinger [35] and Öttinger and Grmela [36] ensures the correct 

treatment of thermal fluctuations and fluctuating hydrodynamics. Following the idea of 

coupling fluctuating particles dynamics with nonfluctuating hydrodynamics, Mynam et al. 

[37] and Liu et al. [38] developed a coupled lattice Boltzmann/Lange-vin dynamics (LB-

LDs) approach to simulate nanoscale particle and polymer (NPP) suspensions in the 

presence of both thermal fluctuation and many-body HI. The Brownian motion of the NPP is 

explicitly captured by a stochastic forcing term in the LD method. The LD method is two-

way coupled to the non-fluctuating LB fluid through a discrete LB forcing source 

distribution to capture the long-range HI. A Eulerian-host algorithm was also developed to 

handle the short-range pairwise particle search and interaction, which ensures localization 

and hence linear scalability of the method while performing particle neighbor search. 

Patankar has simulated the thermal motion of two-dimensional particles in a stationary 

medium with the Finite Element Method (FEM) [26]. Sharma and Patankar [21] have 

employed a distributed-Lagrangian multiplier (DLM) based finite volume method to 

simulate the thermal motion of particles. The computational domain is periodic in all 

directions, and the thermal fluctuations are included in the fluid equations using random 

stress tensor. They have validated the numerical results by comparison with analytical 

expressions. Nie and Lin [29] have employed the fluctuating LBM to simulate Brownian 

motion of particles and have validated their numerically obtained velocity autocorrelation 

function (VACF) by comparison with theoretical predictions. It is shown that the 

temperature characterizing the translational motion of the particle in three coordinate 

directions agree with each other after a lapse of time, but the predicted particle temperature 

is 15% lower than the effective temperature of the fluid fluctuations. This observation is in 

accord with the earlier findings of Ladd [25], who first proposed the use of fluctuating LBM. 

Adhikari et al. [27] have established agreement between fluctuation and dissipation by 

introducing ghost noise to the fluctuating LBM in the formulation (see Dünweg and Ladd 

[28] for further discussions of [27]).

As depicted in Fig. 1, computational techniques that can be used to determine the flow and 

heat transfer characteristics in nanofluid flows maybe classified under three main categories, 

namely: continuum or grid-based models, particle-based mesoscopic models and particle-

based microscopic models.

3.2 Continuum models based on finite elements

In this section, we discuss the direct numerical simulations (DNSs) based on the arbitrary 

Lagrangian-Eulerian (ALE) finite element method [39–42] to accurately resolve the fluid-

particle interfacial motions. An ALE technique can be used to handle the movement of the 

particle in the fluid domain, see Ref. [40]. Both translational and rotational motions of a 

nanoparticle in a (i) stationary fluid medium, and (ii) Poiseuille flow have been investigated. 

An unstructured finite element mesh, generated by the Delaunay-Voronoi method [43], has 
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enabled a significantly higher number of mesh points in the regions of interest (i.e., close to 

the particle and wall surfaces compared to the regions farther away). This feature also keeps 

the overall mesh-size computationally reasonable even with a nanoparticle moving in a very 

large domain [39,40,44–46]. Thermal fluctuations are included in the equations of linearized 

hydrodynamics by adding stochastic components to the stress tensor as white noise in space 

and time as prescribed by the FHD method [11,47]. As noted in Español et al. [47], “even 

though the original equations of fluctuating hydrodynamics are written in terms of stochastic 

partial differential equations, at a very fundamental level the inclusion of thermal 

fluctuations always requires the notion of a ‘mesoscopic cell’ in order to define the 

fluctuating quantities”. In Español et al. [47], it is shown that fluctuating hydrodynamic 

equations discretized in terms of finite element shape functions based on the Delaunay 

triangulation satisfy the fluctuation-dissipation theorem. The numerical schemes for the 

implementation of thermal fluctuations in the Landau-Lifshitz Navier-Stokes equations are 

expected to perform very delicate tasks [48,49], and obtaining accurate numerical results is a 

challenging endeavor.

3.3 The lattice Boltzmann method

While the vast application of LBM in simulating heat and mass transfer in fluids, 

particularly in complex geometries and with multicomponents, have been demonstrated by 

previous researchers [24,25,50–53], the LBM has only been used recently to investigate the 

transport of heat in nanofluids [54–63]. The primary goal of this approach is to incorporate 

the microscopic physical interactions of the fluid particles in the numerical simulation and 

reveal the mesoscale mechanism of hydrodynamics. The LBM uses the density distribution 

functions f (x, ξ, t) to represent a collection of particles with the microscopic velocity ξ at 

the position x and time t, and model the propagation and collision of particle distribution 

taking the Boltzmann equations for flow and temperature fields into consideration. The 

LBM solves the discretized Boltzmann equation in velocity space through the propagation of 

the particle distribution functions f (x, t) along the discrete lattice velocities ei and the 

collision operation of the local distributions to be relaxed to the equilibrium distribution f i
0. 

The collision term is usually simplified to the single-relaxation-time Bhatnagar-Gross-Krook 

collision operator [64], while the more generalized multi-relaxation-time collision operator 

[65] can be also adopted to gain numerical stability. The evolution equation for a set of 

particle distribution function with a single relaxation time is defined as:

f i(x − Δx, t + Δt) = f i(x, t) − Δt
τ f i(x, t) − f i

0(x, t) + Fs, (25)

where Δt is the time step, Δx = Δtei is the unit lattice distance, and τ is the single relaxation 

time scale associated with the rate of relaxation to the local equilibrium, and Fs is a forcing 

source term introduced to account for the discrete external force effect. The macroscopic 

variables such as density and velocity are then obtained by taking moments of the 

distribution function, i.e., ∑i f i
eq and ρu = ∑iei f i

eq. As explained earlier, through averaging 

the mass and momentum variables in the discrete Boltzmann equation, the continuity and 

Navier-Stokes equations may be recovered. Simulation of nanofluid flow behavior using the 

LBM requires the analysis of the dynamic properties at the mesoscale due to several forces 
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acting on the nanoparticles. Xuan and coworkers were among the first who predicted the 

flow characteristics of nanofluids using LBM [54–56]. The distribution of the suspended 

nanoparticles is determined by a series of applied external forces and potentials, and 

conclude that the dominant factor for the aggregation or random displacement of 

nanoparticles is the strength of the Brownian force. They have also demonstrated that the 

nanoparticle distribution will be influenced by rising temperature and the bulk flow of the 

fluid. Summaries of research studies that have been conducted on the use of LBM to 

investigate the convective heat transfer as well as thermal and hydrodynamic behavior of 

nanofluids are provided in Refs. [59,60].

3.4 Particle-based mesoscopic models

As stated earlier, a simple continuum description based on the Navier-Stokes equation is not 

sufficient to study nanofluid flows, since microscopic-level details including thermal 

fluctuations play an essential role in demonstrating the dynamic behavior. One example of 

such a system is the presence of flexible polymers in a solution where thermal fluctuations, 

i.e., configurational entropy, play a key role in the coil state and the stretching elasticity of 

the polymer [66]. On the other hand, there exist too many microscopic degrees of freedom in 

atomic simulations which require very small time-steps to resolve the high-frequency 

modes. As a result, it is virtually impossible to study the long-time behavior such as self-

assembly and other mesoscale phenomena using purely continuum descriptions. 

Development of mesoscale simulation methods overcomes these difficulties, and the most 

common coarse-grained models used to simulate the nanofluid flows are Brownian 

dynamics (BDs) and multi-particle collision dynamics (MPCDs) methods. The general 

approach used in all these methods is to average out relatively insignificant microscopic 

details in order to obtain reasonable computational efficiency while preserving the essential 

microscopic-level details.

3.5 Brownian dynamics simulations

The physical system of nanofluids contains relatively small solvent molecules and relatively 

larger nanoparticles which move much more slowly due to their larger size. A large range of 

time scales, from short time steps for the fast motion to very long runs for the evolution of 

the slower mode, needs to be accommodated by any simulation method as applied to 

nanofluids, making the process time-consuming. However, in the BD simulation technique, 

explicit solvent molecules are replaced by a stochastic force and the hydrodynamic forces 

mediated by them are accounted for through a hydrodynamic interaction kernel. Newton’s 

equations of motion are thus replaced by the Langevin equation in the absence of inertia:

ri = ri
0 + ∑

j

Di j
0 F j

0

kBT Δt + Ri(Δt), (26)

where the superscript 0 denotes the value of the variable at the beginning of the time step, ri 

is the position of the ith nanoparticle, Dij is the diffusion tensor, and Fj refers to the force 

acting to the jth nanoparticle. The displacement Ri is the unconstrained Brownian 

displacement with a white noise having an average value of zero and a covariance of 
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2Di j
0 δ(t). The Rotne-Prager-Yamakawa hydrodynamic mobility tensor [67,68] is the 

suggested diffusion tensor to approximate the hydrodynamic interactions mediated by the 

fluid. The trajectories and interactions between the coarse-grained molecules are calculated 

using the stochastic differential equation (Eq. 26) which is integrated forward in time, 

allowing for the study of the temporal evolution and the dynamics of complex fluids, such as 

polymers [69–71] and colloids.

3.6 Multi-particle collision dynamics

Multi-particle collision dynamics (MPCDs) which was introduced by Malevanets and 

Kapral [72,73] is a novel algorithm that can model both hydrodynamic interactions and 

Brownian motion with relatively low computational costs [66,74]. The algorithm consists of 

discrete streaming and collision steps at fixed discrete time intervals that have been shown to 

yield the correct long-time hydrodynamics [66]. The effects of Brownian motion and 

hydrodynamic interactions are incorporated into the simulation through the collision step, 

and the solvent is characterized by a large number N of point-like particles with a given 

mass m that move in space with a continuous distribution of velocities [75]. The 

hydrodynamic interactions may be easily switched off while retaining the thermal 

fluctuations and friction coefficients in the algorithm to reveal the importance of 

hydrodynamic interactions [76,77]. The positions of the solvent particles ri(t) are then 

updated in the streaming steps, and their velocities vi(t) are obtained through multi-particle 

collisions in the collision steps:

ri(t + Δt) = ri(t) + Δtvi(t) (27)

vi(t + Δt) = u(t) + R • δvi(t) . (28)

The stochastic rotational dynamics (SRDs) is one of the most widely used MPCD algorithm 

in which the collision step consists of a random rotation R of the relative velocities of the 

particles, i.e., δvi(t) = vi − u, in a collision cell, where u is the mean velocity of all particles 

in a cell. The MPCD algorithm has been widely used by researchers to simulate various 

systems [66] including flexible and rod-like polymers [78,79], star polymers [75,77,80], 

vesicles [81,82], flow in microchannels [83], as well as suspensions of various shapes of 

particles [84]. In the most widely used version of MPCD, SRD is coupled with the 

molecular dynamics simulation to simulate complicated flow problems [66,75,77–83]. 

Gompper et al. [66] provided a review of several widely used MPC algorithms and recent 

applications of MPC algorithm to study colloid and polymer dynamics as well as the 

behavior of vesicles and cells in hydrodynamic flow environments.

3.7 Microscopic models: molecular dynamics simulations

Molecular dynamics simulation is one of the most commonly used technique to model 

systems of biomolecules and biomaterials because it can track individual atoms and 

therefore, answer questions pertaining to specific material properties [85,86]. The starting 

point for a MD simulation is defining the initial coordinates and initial velocities of the 
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atoms characterizing the model system, e.g., the desired biomolecule plus the biologically 

relevant environment; i.e., water molecules or other solvent and/or membranes. The 

coordinates of the desired biomolecule can usually be found as structural data (X-ray or 

NMR) deposited into the protein data bank (PDB) [87]; otherwise, it is possible to derive 

initial geometry and coordinate data from model building techniques, including homology 

methods [88]. This step also typically includes the placement and positioning of the 

environment of the molecules (solvation, ionic strength, etc.). The initial velocities are 

typically derived from the Maxwell-Boltzmann distributions at the desired temperature of 

the simulation. The potentials of interactions of each of the atoms are calculated using a 

force field, which parameterizes the non-bonded and bonded interaction terms of each atom 

depending on its constituent atom connectivity: bond terms, angle terms, dihedral terms, 

improper dihedral terms, non-bonded Lennard-Jones terms, and electrostatic terms. The 

potential interactions are summed across all the atoms contained in the system, to compute 

an overall potential energy function for the system [89–93], as in:

V(R) = ∑
bonds

Kb b − b0
2 + ∑

angles
Kθ θ − θ0

2 + ∑
dihedral

K χ(1 + cos(ηχ − δ))

+ ∑
impropers

Kϕ ϕ − ϕ0
2 + ∑

nonbonded
εi j

Rmin,ij
rij

12
+

Rmin,ij
rij

6

+
qiq j
εri j

,

(29)

Taking the derivative of the potential energy function yields the force, and from Newton’s 

second law, this is equal to mass times acceleration. Although, the process seems simple, the 

derivative function results in a set of 3N-coupled second order ordinary differential 

equations that must be solved numerically. The solution procedure consists of a numerical 

recipe to advance the positions and the velocities by one timestep. This process is repeated 

over and over again to generate MD trajectories of constant energy. Constant temperature 

dynamics are derived by coupling the system to a thermostat using well established 

formulations such as the Langevin dynamics or the Nose-Hoover methodologies [94]. 

Application of MD simulations to biomolecules is facilitated by several popular choices of 

force fields such as CHARMM27 [95], AMBER [96], and GROMOS [97], as well as 

dynamic simulations packages and visualization/analysis tools such as NAMD [98] and 

VMD [99].

4. Illustrative examples of nanofluid studies and select applications

In regard to the great interest in recent times to pursue nanofluid research, as obtained from 

the Scopus database for the past few years, the number of publications in the nanofluids 

have, indeed, increased dramatically as seen in Fig. 2.

Considerable efforts on a worldwide basis are being undertaken to understand how and why 

a suspension of nanoscale particles with an average size of 100 nm into conventional heat 

transfer fluids, can have a substantial impact on the efficiency of the heat transfer process 

and hence on the associated technologies ranging from engineering [100–102], medical 
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applications [103,104], and many other applications [105]. As an engineering application, 

successful incorporation of nanofluids can support the current trend toward component 

miniaturization in electronics and microelectromechanical systems by enabling the design of 

smaller and lighter heat exchanger systems. As a biomedical application, non-deformable 

and deformable NPs in body fluids can be used as drug delivery vehicles providing new 

early/correct treatment techniques [106–109].

Maxwell appears to be among the first to propose the idea of dispersing solids in fluids and 

through his theoretical work demonstrates the conductivity effectiveness of heterogeneous 

solid suspensions [110]. Other researchers [111–113] have employed similar ideas for 

suspensions of μm and mm sized particles in a fluid. However, such large particles settle 

rapidly and cause clogging, erosion, and require a large pressure drop for transport [114]. 

Nanofluids have shown a promise to overcome such difficulties due to the small particle 

sizes which will not block the flow passages making them suitable for use in transport 

equipment. The most commonly investigated types of nanoparticles are made of metals, 

metal oxides and carbon nanotubes while the most common base fluids are water and 

ethylene glycol [114]. Thermal conductivities of different organic materials, heat transfer 

fluids, metals, and metal oxides are provided in Fig. 3 [115]. For illustration, we note that 

the thermal conductivity of Copper at room temperature is 700 and 1500 times higher than 

that of water and ethylene glycol, respectively. It is therefore expected that the thermal 

conductivity of a nanofluid is enhanced due to the dispersing of metallic nanoparticles in the 

fluid.

4.1 Thermal conductivity in nanofluids

The unique feature of a nanofluid exhibiting increased thermal conductivity requires 

thorough investigations of the mechanisms behind the associated enhanced energy transport. 

In this context, significant experimental and theoretical researches have been conducted in 

quantifying the physical-thermal properties such as viscosity and thermal conductivity which 

have essential roles in improving the heat transfer efficiency and such other aspects.

Classical theories such as those of Maxwell [110] and Hamilton and Crosser [116] fail to 

account for the high thermal conductivity enhancement noted in nanofluids. This led to the 

suggestion that the thermal conductivity enhancement may be dependent on the particle 

volume fraction and the shape [117–120]. The current literature shows that the enhancement 

in the thermal conductivity of a nanofluid is not entirely due to the aforementioned 

parameters but also to such other parameters as temperature [121–132], particle size 

[119,120,124,127,129,133–141], pH [142], and the type of base fluid [143]. A large number 

of researchers attribute the enhancement in thermal conductivity to a number of mechanisms 

that include the Brownian motion of nanoparticles [144–149], layering of liquid molecules 

at the liquid-solid interface [144,150–154], Brownian motion of nanoparticles induced micro 

convection in the base fluid [147,155–164], and nanoparticle clustering [144,145,165–169]. 

Other mechanisms proposed by the researchers include the ballistic nature of heat transport 

in nano-structures [144] and thermal interaction between nanoparticle and base fluid 

molecules [157].
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Although experiments have revealed that nanofluids have enhanced heat transfer 

characteristics [111,113,117,118,121–123,126,133,146,159,165,168,170–179], the reported 

data on the effects of specific parameters such as particle size, shape, aggregation, volume 

fraction, system temperature, and the choice of dispersant to stabilize the suspension 

demonstrate a lot of scatter on the extent of heat transfer enhancement with no clear 

consensus arising from these many studies. The primary reason for the scattered and 

conflicting data on thermal conductivity appears to be the poor characterization of the 

nanofluids in many of these studies. These include the method of preparation, difficulties in 

producing a mono-dispersed suspension of nanoparticles, noting the extent of experimental 

conditions, precision in the measurements of particle size and distribution, as well as 

prevailing nanoparticle clustering. Nanofluids are usually prepared by a one-step process 

where the synthesis and dispersion of nanoparticles are done at the same time or by two-step 

process where nanoparticles are first synthesized in dry powder form and then mixed with 

the base fluid. Different methods of preparation of nanofluids especially the two-step 

process, which is not stable but is most often preferred by the researchers due to its low 

setup cost, may cause a discrepancy in the stability of the suspension. The exact particle size 

and distribution and aggregation in the suspension are often disregarded in the real test 

sample, and many experiments are performed and reported based on the average size of the 

particles provided by the manufacturer. Although some of the experiments have provided 

invaluable data, it is now abundantly clear that carefully developed and detailed models to 

explain the various mechanisms at play are badly needed.

Statistical mechanics provides an effective way to establish the relationship between solid 

and liquid states occurring at the nanoscale, and the macroscale transport properties. 

Molecular dynamics (MDs) simulations can predict the static and dynamic properties of 

solids and liquids and have been employed by several researchers to complement the gap 

between the experimental and theoretical understanding of thermal transport mechanisms at 

the nanoscale. With molecular dynamics simulations, one may compute the transport 

coefficients using the Green-Kubo relationship based on computing the appropriate time 

correlation functions [180–182].

Keblinski et al. [144] have performed MD simulations to calculate the thermal conductivity 

of a simple model of the liquid and solid by employing the Green-Kubo relationship. They 

consider a single NP, 2 nm in diameter, and 10% volume fraction surrounded by fluid 

molecules in a cubic box, 3.5 nm in length. They have demonstrated that the HCACF in the 

fluid and particle decay monotonically and in an oscillatory manner, respectively, and 

observe that the effect of collisions between NPs due to Brownian motion is not significant 

since the ratio of thermal diffusion to Brownian motion is much larger. They have stated that 

the Brownian motion might promote cluster formation and this may serve to improve the 

thermal conductivity of nanofluids.

Sarkar et al. [183] carried out MD simulations and utilized the Green-Kubo relationships for 

a system of 2 nm copper (Cu) NP in argon (Ar) fluid to calculate the thermal conductivity of 

the nanofluid and have also investigated the influence of system size on the transport 

properties. They state that the results are in good agreement with the experimental values for 

pure argon when the number of atoms considered is larger than 500, and for nanofluid when 
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the number is larger than 1,372. In the experimental observation of [184], two regimes of 

conductivity enhancement have been noted as a function of volume fractions. At small 

volume fractions (ϕ), i.e., ϕ = 8%, the thermal conductivity of the nanofluid increased by 

52% which is significantly higher than that predicted by the Maxwell model (26%) and the 

noted increase was attributed to Brownian effects, while a saturation behavior was observed 

at larger ϕ. Bhattacharya et al. [185] have carried out Brownian dynamics simulations 

coupled with a trajectory analysis using the Green-Kubo relationship and found good 

agreement with the experimental predictions for the effective thermal conductivity of 

nanofluids. However, their results are based on correlated parameters to match with 

experimental data, and as a result, their predictions cannot be generalized to other systems 

involving nanofluids.

Eapen et al. [186] also utilized MD simulations [20] for platinum (Pt) NPs of sub-nanometer 

size surrounded by liquid Xe in a cubic domain. Through the use of Green-Kubo 

relationship of the heat current, they report a maximum of 35% increase in the thermal 

conductivity of the nanofluid for ϕ = 0.8%. They decompose the heat flux vector into 

kinetic, potential and collision constituents; as observed in Ref. [187], the kinetic and 

potential energy components contribute to energy transport due the convective effects, while 

the collisional component contributes to energy transport due to the inter-atomic collisions 

of molecules in the system. According to their findings, while the collisional component has 

the highest contribution to the thermal conductivity of the nanofluid, the enhanced thermal 

conductivity mainly arises from the potential energy contribution which is attributable to the 

strong short-ranged attraction between NPs and the liquid. A dynamic layer of interfacial 

fluid molecules is formed around the NPs that exchange the potential energy between the 

fluid and NPs, and as a result, enhance the thermal transport in nanofluids.

Similar to the approach used by Ref. [183], Teng et al. [187] investigated the influence of the 

particle size at ϕ = 0.688% and reported an increase of up to 300-fold in the thermal 

conductivity of the nanofluid. Through the heat current decomposition into convection and 

collision (or diffusion) modes, they observed a higher contribution from the convection 

mode than the collision mode and this is in agreement with the findings of [183,186].

Sankar et al. [188] studied nanofluid systems consisting Ar and Cu NP with various sizes 

and volume fractions. They found that the effective thermal conductivity of Cu-Ar 

nanofluids to be enhanced by about 70%, which is much greater than that predicted by the 

Hamilton-Crosser model, for volume fractions in the range of (ϕ < 0.4% − ϕ = 8%). They 

find that the motion of the liquid atoms in the nanofluid increases considerably compared to 

that in the pure base fluid. The Brownian motion of the nanoparticles was, in comparison, 

too slow to transport the heat. Localized fluid movement around the NP is induced by the 

faster-moving liquid atoms. They conclude that these are the main competing mechanisms 

for enhanced thermal conductivity of nanofluids. Their simulations have only considered 

dispersed NPs and neglect the effects of aggregation. In the calculations of Sachdeva et al. 

[189] utilizing the Green-Kubo relationship for Cu-water nanofluid, an advanced flexible-3-

center (F3C) model for water and the finitely extensible nonlinear elastic (FENE) potential 

for Cu are employed. The results show an enhancement of 80% for ϕ = 5% for a 1 nm NP. 

This enhancement is attributed to the formation of hydration layers around the Cu NPs. This 
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observation is consistent with experimental investigations suggesting the formation of a 

hydration nanolayer.

Jain et al. [190] utilized the Brownian dynamics simulations coupled with the Green-Kubo 

relationship to calculate the effective thermal conductivity of nanofluids by considering the 

effect of various parameters, including ϕ ranging from 0.5 to 3%, particle sizes ranging from 

15 to 150 nm, and temperatures ranging from 290K to 320K. A parallel model was used for 

the calculation of the effective thermal conductivity by invoking the assumption that thermal 

conduction caused by the motion of nanoparticles and the base fluid molecules occur in 

parallel. This assumption leads to keff = ϕkp + (1 − ϕ)kbf, where kp is the thermal 

conductivity due to the Brownian motion of the nanoparticles as calculated by using the 

Green-Kubo relation and kbf is the thermal conductivity of the base fluid. They conclude that 

their model could predict the effective thermal conductivity of nanofluids properly and the 

Brownian motion of the particles is the key mechanism for the enhancement in the thermal 

conductivity of nanofluids.

Kang et al. [191] have studied the effect of nanoparticle aggregation on the transport 

properties, including thermal conductivity and viscosity of nanofluids via MD simulations, 

where the transport properties of the nanofluid are calculated using the Green-Kubo 

relationship. The results show that the nanoparticle aggregation induces a significant 

enhancement of thermal conductivity in the nanofluid, while the increase in viscosity is 

moderate. The results also indicate that different configurations of the nanoparticle cluster 

result in different enhancements of thermal conductivity and increase in viscosity of the 

nanofluid. Through the use of MD simulations coupled with the Green-Kubo relationships, 

Lee et al. [192] have investigated the effects of temperature and size of nanoparticles on the 

thermal properties of Ar-Cu nanofluid. They report an enhancement of 50% in the thermal 

conductivity of Ar-Cu nanofluids with Cu NPs having a size of 2 nm and a volume fraction 

of 8%. However, by increasing the temperature, no significant effect on the thermal 

conductivity of the nanofluid was noted. In their computational analysis, they find that an 

increase in the size of the NP is associated with a reduction of viscosity and thermal 

conductivity of the nanofluid.

Muraleedharan et al. [193] have conducted MD simulations in combination with the Green-

Kubo relation for alumina (Al)-water nanofluids and have calculated the effective thermal 

conductivity for a range of volume fractions (1–10%) and particle sizes (1–3 nm). For a 

particle size of 1 nm and volume fraction of 9%, an enhancement of 235% has been noted 

which is much higher than the Maxwell model predictions. However, their analysis with the 

presence of multiple particles shows no anomalous enhancements in the thermal 

conductivity of nanofluid. The enhancement was explained to be primarily due to the 

vibrations of the alumina crystals that can act as low-frequency perturbations, traveling a 

long distance in the surrounding fluid. These vibrations reinforce the system as a result of 

the periodic boundary, causing a circular resonance of thermal perturbations between the Al 

and its own image and lead to spurious correlations in the HCACF, which increase the 

values of the calculated thermal conductivities abnormally. When more Al NPs are added 

those fluctuations get dissipated before reentering the periodic images. This study shows the 

importance of system size scaling in MD simulations.
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In summary, it is clear that the MD simulations approach shows promise in exploring and 

verifying various heat transport mechanisms in nanofluids.

4.1.1 Effect of particle volume fraction—Both experimental, as well as 

computational studies have shown a nearly linear increase in the thermal conductivity of 

nanofluids as a function of particle volume fraction [118,122,126,171,183,186,187], and just 

a small volume fraction of particles leads to a significant enhancement in the thermal 

conductivity of the nanofluids. However, depending on the choice of the particle type and 

the base fluid, the size of the particle, and the temperature of the system, the slope of this 

linear increase in the thermal conductivity enhancement can be different as reported in Refs. 

[118,137,186,194–198].

Most of the MD-based predictions show that with increasing the volume fraction of NPs, the 

rate of thermal conductivity enhancement decreases [199]. For instance, In their MD studies, 

Sarkar et al. [183] increased the volume fraction of Cu NPs from 0.5 to 8% and observed 

thermal conductivity enhancement of Ar-Cu nanofluids from 14% up to 52%, with steeper 

increase at lower volume fraction and a saturation behavior at higher volume fractions. 

Similar behavior was also reported by Eapen et al. [186] for Xenon (Xe)-Pt nanofluids using 

the MD simulation.

4.1.2 Effect of particle size—Existing studies provide significantly inconsistent results 

and report on difficulties in estimating the extent of enhancement in thermal transport as a 

function of particle size distribution in nanofluids. Despite the vast number of experimental 

and computational studies that are available, it is not possible to draw conclusions in regard 

to the effect of particle size since researchers observed both increasing [136,137,139–

141,200] and decreasing [119,120,124,127,129,133–135,138] thermal conductivities of 

nanofluid with increasing NP size. In earlier studies, heat transfer enhancement in 

nanofluids was mainly attributed to the exposed surface area of NPs [111]. As a result, larger 

sized particles with higher surface area were expected to produce higher thermal 

conductivity enhancement compared to those with lower exposed surface area. However, this 

enhancement due to the particle size has been intensely debated. For suspension of oxide 

NPs at 0.5% volume fraction, Chopker [119] reported a decrease in thermal conductivity 

enhancement of Al70Cu30-ethylene glycol nanofluids from 38% to 3% as the size of NP 

increased from 9 to 83 nm. This trend was further confirmed in their later study [120] for the 

same parameter range with Al2Cu. On the other hand, in another experimental study [129], 

the thermal conductivity enhancement was reported to decrease significantly for Al2O3-

water nanofluids with a particle volume fraction of 0.5% when the size of the particle was 

increased from 72 to 137 nm.

The MD simulations conducted by Lu and Fan [201] for Al2O3 in water and ethylene glycol-

based nanofluids show a decrease in the thermal conductivity enhancement as the size of the 

NP increases to 30 nm and noted a saturation for the size of NPs larger than 30 nm. The 

decrease noted agree with the trend described in Ref. [129]. Cui et al. [196] performed MD 

simulations for a nanofluid system consisting of liquid Ar and Cu NPs and noted a decrease 

of enhanced thermal conductivity with increasing NP size. Contrary results to the above 

findings are reported in the measurements by Beck [137]. The thermal conductivity 
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enhancement measured experimentally by Timofeeva [139] for suspension of 4.1% α-SiC in 

water demonstrates an increase from 7% to 12.5% as the particle size increases from 16 nm 

to 90 nm. In their MD simulations, Teng et al. [187] also conclude that there is an increase 

of thermal conductivity of the Ar-Cu nanofluids with increasing size of NPs. Thus, there is 

much controversy in this literature.

While the MD simulations do not show consensus in the calculated effects of the thermal 

conductivity with particle size, the experimental study performed by Xie [173] for a 

suspension of Al2O3 NPs surrounded by oil and ethylene glycol based fluids showed a non-

monotonic trend, i.e., a decrease, followed by an increase in the thermal conductivity 

enhancement with increasing particle size.

4.1.3 Effect of system temperature—An important factor related to the enhancement 

of thermal conductivity of nanofluids is the system temperature. The temperature 

dependence of thermal conductivity of nanofluids have made them attractive heat transfer 

fluids for diverse applications such as in the heat exchanger, high-temperature laser, nuclear 

power plants, as well as space exploration applications. Some of the published studies report 

on an increase in the thermal conductivity of nanofluids based on increasing the temperature 

of system, especially at higher particle concentrations [121–132,183]. The idea of increasing 

thermal conductivity of nanofluids with increasing the temperature was explored by Das et 

al. [121], for a suspension of 1% of Al2O3 in water. The thermal conductivity of nanofluid 

increased from 2% to 10.8% as the temperature increased from 21°C to 51°C. Additionally, 

when the particle volume fraction was increased to 4%, the thermal conductivity was 

enhanced from 9.4% to 24.4% in the same temperature range. Such temperature dependence 

of thermal conductivity enhancement was also observed by Li and Paterson [125] where an 

enhancement of about 3 times was reported for water in the temperature range of 27.5°C–

34.7°C and particle volume fractions of 2%–10%. Experimental study of Lee et al. [129] 

demonstrates the significant effects of the particle size and the volume fraction of particle 

suspension, on the temperature dependence of the thermal conductivity enhancement of 

Al2O3-water nanofluids at 50% particle volume fraction with average diameters of 72, 115, 

and 137 nm, and the temperature in range of 21°C–51°C.

In regard to simulations, Sarkar et al. [183] showed an enhancement of thermal conductivity 

due to the increase in temperature for Ar-Cu nanofluids for ϕ in the range of 0.2, 1 and 2%. 

For a 0.2% of Cu nanoparticle suspension, they obtained an increase of 11% and 31% for 

thermal conductivity of nanofluids in a temperature range of 85°C and 103°C. For the same 

temperature range, they observed an enhancement of 37% and 68% for the suspension of 2% 

volume fraction. Their findings on the effects of temperature on the thermal conductivity 

enhancement are in agreement with the results reported by Sankar et al. [188].

However, even with temperature effects, there is much controversy [202–211]. While the 

measured thermal conductivity of water based Al2O3 and CuO nanofluids, for an increase of 

temperature from 22°C to 47°C, shows a steep increase [121], a moderate increase is 

reported by Beck et al. [205] over a range of 17°C–147°C. Timofeeva et al. [206] 

investigated the effect of the temperature increase on the thermal conductivity enhancement 

of Al2O3 in water and ethylene glycol-based nanofluids with particle volume fraction of 5%. 
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While they demonstrated an increase in the thermal conductivity with an increase in the 

temperature from 10°C to 65°C, the temperature dependence of the base fluid was noted to 

be correlated with the temperature dependence of the nanofluid; this suggests a temperature 

independent thermal conductivity enhancement for nanofluids. Beck et al. [209] considered 

a wider range of temperature effects from 22°C to 137°C for suspension of Al2O3 in water, 

ethylene glycol as well as mixtures of water and ethylene glycol-based nanofluids and 

observed that the temperature dependence of thermal conductivity tracked that of the base 

fluid. Mohebbi [211] measured the thermal conductivity enhancement of nanofluids through 

the use of MD simulations and noted smaller thermal conductivity enhancement at a higher 

temperature, i.e. 15% at 140°C, compared to a lower temperature, i.e., 50% at 107°C.

4.2 Viscosity of nanofluids

There are fewer studies on the shear viscosity of nanofluids, especially involving MD 

simulations. Thermal conductivity enhancement in nanofluids is always noted to be 

accompanied by higher viscosity [170,212–221]. A major concern with higher viscosity 

systems in engineering applications is the requirement of higher power, resulting in high 

operating costs to pump the nanofluids through the system, reducing the overall efficacy of 

the nanofluids. There is a need to simultaneously investigate the increase in the thermal 

conductivity and viscosity of nanofluids to identify the optimal combination of thermal 

conductivity and viscosity in the design of nanofluids. This aspect remains open for further 

study. It is now well-recognized in the convection heat transfer studies of nanofluids that the 

heat transfer coefficients for energy systems depend on both thermal conductivity and 

viscosity.

4.2.1 Effect of particle volume fraction—Similar to the prediction of the thermal 

conductivity, the classical theory of viscosity [222,223] is well described for a suspension of 

microparticles than for nanoparticles. Here, viscosity is only dependent on the particle 

volume fraction. Many experiments have been conducted to measure the viscosity 

enhancement of nanofluids as summarized in Fig. 4 [224]. A clear trend that may be noted 

in the figure is the increase in the viscosity of nanofluids with increasing particle volume 

fraction. However, the debate here is on the magnitude of the viscosity enhancement, which 

varies with the volume fraction of the suspension. Das et al. [225] show an increase in the 

viscosity enhancement of Al2O3-water nanofluid as a function of increasing volume fraction 

of NPs. The measured viscosity enhancement reported by Nguyen et al. [215] for Al2O3-

water nanofluids with particle volume fractions of 1%, 4%, 9%, and 12% and size of 47 nm 

shows viscosity enhancements of 12%, 60%, 200%, and 430% respectively. They have also 

carried out similar experiments with smaller size NPs and observe a similar trend, but one 

that involves a smaller viscosity enhancement.

One of the important features of nanofluids where viscosity plays a dominant role is in the 

presence of flow. Putra et al. [226] measured the viscosity of CuO-water and Al2O3-water 

nanofluids as concerned with the shear rate and observed a Newtonian behavior of these 

nanofluids in the range of 1–4%.
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Computational studies of the role of particle volume fraction with different nanofluid types 

as related to shear viscosity enhancement report similar results [201,227–230]. The MD 

simulation study conducted by Lu and Fan [201] illustrates viscosity enhancement of the 

Al2O3-water and Al2O3-ethylene glycol upon addition of a larger number of nanoparticles to 

the base fluid. Lou and Yang [229] obtained similar results for the enhancement of shear 

viscosity of Al2O3-water as a function of particle volume fraction. By increasing the volume 

fraction of Al2O3 from 1.24% to 3.72% the shear viscosity enhanced from 1.21 mPa s to 

3.68 mPa s at 26.85°C.

4.2.2 Effect of particle size—There is controversy among the results published in the 

literature as related to the viscosity dependence of nanofluids on the particle size. Viscosity 

has been shown to not only decrease [139,143,217,227,231,232] or increase [134,215,216] 

with increasing the particle size, but also shown to be independent of the particle size [233]. 

Pastoriza-Gallego [232] used 11 nm and 33 nm CuO nanoparticles suspended in water and 

for particle volume fraction of 1–10% over a temperature range of 10°C-50°C and reported 

that the smaller particle size yielded a higher increase in the viscosity enhancement. 

Timofeeva et al. [139] also observed the same trend of higher viscosity for smaller particles 

in their nanofluid suspension consisting of 4.1% volume fraction of SiC NPs in water at a 

controlled pH of 9.4 and four particle sizes of 16, 29, 66 and 90 nm.

The maximum and minimum viscosity enhancements reported were 85% for a particle size 

of 16 nm and 30% for a particle size of 90 nm, respectively. Such behavior on the effect of 

the particle size on enhanced viscosity is also supported by MD simulations [201,227–

229,234]. Lu and Fan [201] studied the effect of NP size on the viscosity of nanofluids using 

computations, and similar to the predictions on thermal conductivity, reported a decrease in 

the shear viscosity with an increase of the particle size.

However, He et al. [134] used TiO2 nanofluids and reported a viscosity increase at a volume 

fraction of 0.6% as the particle size increased from 95 to 210 nm. Nguyen et al. [215] 

conducted experiments with 36 nm and 47 nm Al2O3 NPs suspended in water and for 

volume fractions smaller than 4% and reported viscosity enhancements for both particle 

size. For higher particle volume fractions, they report larger enhancements in the viscosity of 

Al-water nanofluids for 47 nm particle size than those for 36 nm particle size. As noted in 

Ref. [139], the effect of the particle size on the viscosity of nanofluids may be identified in 

experiment, through controls over the actual particle size and the pH of suspension. Such 

controls have been absent in earlier studies. Prasher et al. [233] demonstrated that the 

viscosity enhancement in nanofluids is independent of particle size and this is consistent 

with the classical theories describing viscosity.

4.2.3 Effect of the system temperature—The temperature of the system is another 

effective parameter which is not taken into account in classical theories of viscosity 

prediction but can influence the thermal conductivity and therefore the shear viscosity of 

nanofluids. Most experimental studies have reported a non-linear decrease in viscosity and 

viscosity enhancement of nanofluids with increasing temperature 

[128,131,139,143,210,215,216,229,235–237] making nanofluids to be promising candidates 

for higher temperature applications. Some researchers, however, have reported a 
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contradictory result where viscosity enhancement is shown to be independent of temperature 

[213,214,233]. Murshed et al. [236] conducted experiments for water-based SiO2 and TiO2 

nanofluids at 0.05% particle volume fraction when the system temperature was increased 

from 21°C to 57°C. Results show a decrease of 42% and 37% in viscosity of nanofluids with 

SiO2 and TiO2, respectively. Namburu et al. [235] studied a suspension of CuO 

nanoparticles in the mixtures of water and ethylene glycol and reported a decrease of 

viscosity as the nanofluid temperature was raised from 35°C to 50°C. As the particle volume 

fraction was increased from 1 to 6.12%, they observed a higher change in the viscosity 

enhancement over the temperature range. Nguyen et al. [216] also measured the viscosity of 

Al2O3-water nanofluids over a temperature range of 21°C–75°C. Around ambient 

temperature, i.e., 22°C–40°C, a higher change in the viscosity enhancement was observed, 

which shows stronger temperature dependence at higher particle volume fraction.

Lou and Yang [229] have carried out molecular dynamics simulation with the Green-Kubo 

analysis and report a decrease in the viscosity of Al2O3-water nanofluids as the temperature 

of the system is raised. Their calculation over the same temperature rise also shows that the 

shear viscosity of the nanofluids at a higher volume fraction of particle decreases. This is 

attributed to the higher energy of the system, causing the role of the temperature to be 

substantial. Similar behavior has also been reported by Loya et al. [237] who have used MD 

simulations for the CuO-water nanofluids.

Experimental measurements of viscosity by Chen et al. [214] for TiO2-ethylene glycol 

nanofluids with the particle volume fraction of 0.5–8% over a temperature range of 20°C–

60°C have shown a strong dependence on the temperature. The trend of the temperature 

dependence on the viscosity of nanofluids follows the trend for the base fluid, suggesting 

negligible contributions due to Brownian diffusion for nanofluids compared to those due to 

convection under high shear flow.

4.3 Effects of nanoparticle aggregation on transport properties of nanofluids

Although a nanofluid has well-dispersed nanoparticles in the base fluid, experiments have 

demonstrated that an aggregated state exists in the nanofluid [118,176,178,232]. The 

suspended NPs experience random Brownian motion in the base fluid as well as van der 

Waals interactions which may lead to the development of aggregation and clustering of 

dispersed nanoparticles. This may result in a state of minimized surface energy. The fact that 

the NPs are mostly found in the form of aggregate in the fluids makes the liquid inside and 

adjacent to these aggregates less mobile and as a result, makes the nanofluid more viscous. 

Then the applied shear breaks the aggregates into smaller or primary structures. Most of the 

experimental and computational studies report on the influence of NP aggregation as related 

to the thermal conductivity of nanofluids while fewer research articles have been published 

on the effect of aggregation on viscosity and diffusion coefficient of nanofluids 

[58,165,213,219,238–243]. More research is needed to consider such an effect on the 

viscosity and diffusion coefficient of nanofluid via molecular level techniques.

The aggregation of nanoparticles has been identified by several experimental and theoretical 

researchers as the most potential mechanism on the enhancement of thermal conductivity of 
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nanofluids [144,145,148,151–154,159,165–169,244]. Some investigations, however, have 

shown an opposite trend on the role of aggregation in enhanced thermal transport [245,246].

Keblinski et al. [144] were among the earliest groups to propose that the clustered NPs make 

linear chains or percolation-like conduction paths in the base fluid which generates a 

network of lower thermal resistance to enhance the thermal conductivity of nanofluids. This 

mechanism has further been explained through the development of an aggregation-based 

model for rapid conduction of nanofluids [145,165–169,244,247] with the three-level 

homogenization model as the most recognized model [165,168]. The assumption made in 

this model is that a fractal aggregate is enclosed within a sphere consisting of few linear 

chains that span the entire cluster, namely the backbone chains, and side chains which do not 

span the whole aggregate, namely the dead-end particles, as shown in Fig. 5. The backbone 

chains crucially contribute to the thermal conductivity due to the high aspect ratio allowing 

for fast heat flow over larger distance and reduced thermal resistance.

Prediction of heat conduction for such fractal aggregates through the use of three-level 

homogenization models is in agreement with that of Monte Carlo simulation [165,168]. It is 

observed from experimental data that there is a strong correlation between NP aggregation 

and thermal conductivity [206,248–253]. Gao et al. [252] conducted a structural analysis in 

liquid and solid states for Al2O3 nanoparticles suspended in animal oil and hexadecane base 

fluids. While the Brownian motion was frozen, the thermal conductivity enhancement for 

the hexadecane based nanofluids in the solid state was reported higher than the liquid state. 

On the contrary, the thermal conductivity enhancement for the animal oil-based nanofluids 

in the solid state was observed to be slightly lower than at the liquid state. While 

transmission electron microscope photographs in Al2O3 nanofluids showed the formation of 

linear chains of nanoparticles in the hexadecane base fluid which are pushed into the grain 

boundaries, such linear chains of nanoparticles are not observed when the base fluid is the 

animal oil. Therefore, they conclude that rather than the Brownian effects, the linear chain of 

nanoparticle aggregation is the essential mechanism for enhancement of thermal 

conductivity of nanofluids. Similarly, higher thermal conductivity was reported for a gelled 

sample, formed with interconnected nanoparticles, than the fluidic sample where the NPs are 

fully moving in the suspension [251,253].

MD simulation studies have also supported the role of nanoparticle aggregation in thermal 

conductivity enhancement of nanofluids with a higher thermal conductivity than well-

dispersed nanofluids. The configuration of nanoparticle aggregation has been identified as 

the key that governs the level of thermal conductivity enhancement in nanofluids 

[191,198,254]. Lee et al. [198] used MD simulation with the Green-Kubo method to model 

Ar-Cu nanofluid systems in both aggregated and non-aggregated states. Their results show 

that as the volume fraction of nanoparticles increases the thermal conductivity is enhanced at 

both states. Additionally, they conclude that there is higher thermal conductivity 

enhancement for aggregated nanoparticles at higher volume fractions of over 3.89%. The 

enhanced thermal conductivity of nanofluids in the aggregated state and at low particle 

volume fraction is attributed to the higher number of collisions between nanoparticles, and 

as the volume fraction of the Cu NPs increases, the convective effect, more specifically the 

potential energy of both Ar and Cu, of the heat current also plays a role in enhancing the 
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thermal conductivity of nanofluids. For nanofluids in the non-aggregated state, the thermal 

conductivity enhancement is dominated by the increase in the potential energy of the base 

fluid.

While the studies mentioned above revealed the important role of NP aggregation on thermal 

conductivity enhancement, the underlying mechanisms have not been studied or 

characterized in these studies.

Another factor in the context of NP aggregation is the time dependence of the thermal 

conductivity [206,245,246,255,256]. Angayarkanni and Philip [256] have measured the 

thermal conductivity of oxide water-based nanofluids by applying the sonication treatment 

and have noted an increase of thermal conductivity enhancement over some duration after 

the sonication process, followed by a decrease. They conclude that the nanoparticles are 

most likely in a well-dispersed state right after the process and as time passes, the NPs get 

closer leading to high thermal conductivity enhancement as a result of agglomeration. The 

nanoparticle aggregation becomes significant at later times and eventually the aggregate 

settles down as a result of gravity, leading to a decrease in the thermal conductivity. A 

different trend has been noted by other researchers [245,246] for CuO and Fe nanofluids 

right after the sonication process, where the size of aggregated particles increases as a 

function of time, resulting in a continuous decrease of thermal conductivity enhancement 

with the elapsed time. It is therefore concluded that the key parameter to improve the 

thermal conductivity in the aggregated state may be the suspension stability of the well-

dispersed nanoparticles.

4.4 Equilibrium and transport properties from fluctuating hydrodynamics numerical 
studies

While smaller NPs (1–10 nm) in small systems (limited to a few nanometers), often called 

Quantum dots, may be modeled using MD, systems approaching 100 nm to microns, such as 

100 nm NP confined in a micron-sized fluid domain are not accessible via MD. At a 

continuum-level, a NP suspended in a fluid undergoes random motion due to the thermal 

fluctuations in the fluid. The fluid may be static or flowing under an external pressure 

gradient. In determining the translational and rotational motions of the NP in an 

incompressible Newtonian fluid (static or flowing) the performance of the fluctuating 

hydrodynamics method (FHD) has been examined. As a general rule, for stochastic 

numerical simulations, a large number of realizations are required to acquire satisfactory 

statistics of the dynamical properties. This ensemble averaging is usually computationally 

challenging and intensive.

The results reported in Ref. [257] are obtained from five different realizations of a FHD 

simulation, with each realization consisting of N = 20,000 time steps. The error bars have 

been plotted from standard deviations of the temperatures obtained with the different 

realizations, based on which the statistical error is established to be less than 5%. The 

evolution of translational and rotational dynamics of a spherical particle (a = 250 nm) in the 

inertial regime, when immersed in a Newtonian fluid (with properties of water) and confined 

at the center of a cylindrical vessel (D = 20 μm), has been simulated using the FHD 

approach at a temperature of T0 = 310K. The probability distributions of the Cartesian 
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components of the translational and rotational velocities show the adherence to the 

corresponding Maxwell Boltzmann distributions. The short-time (t ~ τv = a2/v, where v = 

μ/ρ and ρ is the fluid density) evolution of the linear velocity autocorrelation function 

(VACF) and angular velocity autocorrelation function (AVACF) in the inertial regime show 

the correct asymptotic transition from the exponential behavior (ξ(tr) = 6πμa and ξ(rot) = 

8πμa3) for t→0 to algebraic behavior for t > τv. We note that the results described above 

pertain only to spherical NP and the corresponding treatment for ellipsoidal NPs are 

described in Ref. [258].

4.4.1 NP diffusivity

Diffusivity in Unbounded Medium:  The study by Uma for spherical NP [257] reported 

both the short and long time translational and rotational mean square displacements (MSDs) 

of a neutrally buoyant NP (a = 250 nm) initially placed at the center of a large cylindrical 

vessel of diameter and length, D = 10 μm and L = 10 μm, respectively. In the regime where 

the particle’s motion is dominated by its own inertia (ballistic), 0.346τv ≤ t ≤ 0.63τv 

(translation), and 0.174τv ≤ t ≤ 0.316τv (rotation), the translational and rotational motions of 

the particle follow (3kBT/M)t2 and (3kBT/I)t2, respectively. In the diffusive regime, t≫τb, 

and when t ≥ 7τv (translation) and t ≥ 1.2τv (rotation), the translational and rotational MSDs 

increase linearly in time to follow 6D∞
(t)t and 6D∞

(r)t, respectively, where D∞
(t) = kBT /ζ(t), and 

D∞
(r) = kBT /ζ(r) ζ(r) = 8πμa3  are the translational and rotational self-diffusion coefficients. 

The MSDs in an intermediate regime between the ballistic and the diffusive are related to 

hydrodynamic memory effects. The translational and rotational MSDs of the particle follow 

Stokes-Einstein [259,260] and Stokes-Einstein-Debye [261] relations, respectively.

4.4.2 Wall confinement effects—In many technological applications, boundary effects 

and confining potentials are important, which make the evaluation of particle motion and 

associated transport much more complicated. The timescales of these motions overlap with 

the inertial timescale of the fluid, and as such, the temporal correlations in the inertial 

regime are strongly influenced by the confining boundaries and potentials. How the presence 

of a bounding planar wall alters the algebraic scaling of the VACF in the inertial regime has 

been analyzed by Gotoh and Kaneda [262], Pagonabarraga et al. [263,264], Felderhof [265], 

and Franosch and Jeney [266]. Collectively, these studies have investigated the dynamics of 

the motion of a spherical particle near the wall by confining the particle to different 

distances h from the wall. In the absence of an external potential, the parallel motion in the 

bulk-regime (h /a→∞) showing the t−1.5 scaling of the VACF transitions to a t−2.5 scaling 

with positive amplitude in the near-wall regime (h /a > 1), while for the perpendicular 

motion, a t−3.5 scaling for the intermediate times is followed by a long-time tail that exhibits 

a t−2.5 scaling with negative amplitude. In the presence of a confining potential, the VACF is 

characterized by a t−3.5 scaling in the bulk regime and a t−4.5 scaling in the near-wall regime 
h
a > 1 . For a particle in the lubrication regime (where (h − a) /a→ 0), a detailed and 

consistent study of the hydrodynamic interactions and important aspects of the cylindrical 

wall effects in the lubrication and other hydrodynamic regimes are available in Ref. [267]. 

Also, for the majority of scaling relationships for VACF under various spatial and adhesion 
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regimes that have been obtained through the asymptotic analysis of linear hydrodynamics, 

their validity through direct numerical simulations have been established in Ref. [267].

The results for the long-time behavior of the velocity (or the VACF) in the inertial regime for 

a particle at different locations relative to the boundary is analyzed together with the effect 

of the wall curvature are displayed in Fig. 6 for the translational velocity components. The 

limit D/d→ ∞ denotes the limit of the infinite planar wall. For the parameter range 

examined in the study, an interesting effect observed in this study on cylindrical wall effects 

is that, apart from the short-time exponential decay and the intermediate-time algebraic 

decay, at much longer times, t > C1
trτD or C1

rotτD, with τD = D2/v, a second exponential decay 

(exp −C2
trt /τD  or exp −C2

rott /τD  with prefactors C2
tr and C2

rot) occurs. In the insets of Fig. 6A 

for different D/d, the time scales at which the second exponential decay appears, where the 

particle velocity deviates from the algebraic scaling at least by 10%, are compared. This 

characteristic time is found to be only a function of D/d or τD /τv. Detailed results for a 

particle located in the near-wall regime, (h − a) /a = 1 have been presented in Ref. [267]. The 

parallel and perpendicular components are illustrated in Fig. 6C and D for translational 

velocities.

The results for the translational motion show that for D/d < 20, the velocity decays 

exponentially without a clear intermediate algebraic scaling. For larger diameters, after the 

initial Stokes-exponential decay, algebraic correlations are observed, where the parallel 

motion displays a t−2.5 scaling, and the perpendicular motion first displays a t−3.5 scaling 

behavior at intermediate times (t~h2/v) followed by a t−2.5 scaling with a negative sign 

(anticorrelation) due to the wall reflection of the diffused vortex. Eventually, the algebraic 

decay transitions to a final exponential decay due to the wall confinement. Fig. 6D also 

illustrates that the presence of a curved wall causes an anticorrelation to occur at later times 

compared to those for a particle near a planar wall [265]. Similar trends are observed for the 

angular velocity relaxation where it first shows an initial exponential decay characterized by 

the instantaneous Stokes drag followed by an algebraic decay (t−2.5 scaling for rotation 

about the parallel axis and t−3.5 for perpendicular axis [263]) and a long-time second 

exponential decay. In Fig. 6E and F, the time evolution of the velocity for a particle in the 

lubrication layer, or (h − a) /a < 1 is depicted. The general characteristics of the velocity 

versus time are similar to those for the near-wall case. However, the enhanced Stokes drag 

for the lubrication layer leads to a more distinct separation between the two exponential 

decays such that the intermediate algebraic decay is manifest even for smaller vessel 

diameters. It is noted that the anticorrelation in the smaller vessel occurs at later times, 

indicating that the vessel curvature constrains the evolution of the particle motion. 

Eventually, the algebraic decay changes to a final exponential correlation due to the presence 

of strong confinement of the vessel wall. The angular velocity relaxation about the parallel 

axis exhibits the same general trend as in the near-wall case where the anticorrelation is 

noted to occur at later time scales for smaller tube diameters. In the lubrication regime, this 

effect is significant for rotation about the perpendicular axis such that anticorrelation is 

observed. The diffusion coefficient of the NP at different distances from the confining wall 

can be obtained from the VACF by solving the corresponding integral in the Green-Kubo 

relationship, as demonstrated in Ref. [267].
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4.5 Construction of thermostats

The FHD essentially consists of adding stochastic stresses (random stress) to the stress 

tensor in the momentum equation of the fluid [11]. The stochastic stress tensor depends on 

the temperature and the transport coefficients of the fluid medium [9,33]. FHD numerical 

simulations have been carried out employing the finite volume method [21,22,33,34], lattice 

Boltzmann method (LBM) [23–29], finite element method [47,257,268] and stochastic 

immersed boundary method [30]. Direct numerical simulations (DNSs) of fluctuating 

hydrodynamics (FHDs) approach has been carried out by employing the finite volume 

method [21,48,49,269], lattice Boltzmann method [23–29], smoothed-particle method 

[270,271], and stochastic Eulerian-Lagrangian method [30,272]. A comparison of these 

methods are described in Uma et al. [257]. In the following, we review the extensions to the 

work of Uma et al. [257] by employing arbitrary Lagrangian-Eulerian (ALE) finite element 

method (FEM) to account for the fluid-particle interaction. A key feature and strength of the 

ALE method is that due to the adaptive mesh approach, it can resolve multiple 

hydrodynamic regimes such as bulk, near-wall, and lubrication amid arbitrarily shaped 

boundaries. In the GLE, the effects of thermal fluctuations are incorporated as random 

forces and torques in the particle equation of motion [271,273–278]. The properties of these 

forces depend on the grand resistance tensor. The tensor in turn depends on the fluid 

properties, particle shape, and its instantaneous location such as its proximity to a wall or a 

boundary. In the generalized Langevin equation approach, a robust thermostat can be 

implemented by suitably tuning the noise spectrum of the random forces and torques by 

adding memory, but the coupling of the thermostat to the fluid equations of motion alters the 

true hydrodynamic behavior as quantified by the nature of the velocity autocorrelation 

function (VACF) and the value of the diffusion coefficient computed using mean squared 

displacement (MSD) versus time [278]. Both the Markovian (white noise) and non-

Markovian (Ornstein-Uhlenbeck (O-U) noise and Mittag-Leffler (ML) noise) processes may 

be considered. For the non-Markovian approach, an appropriate choice of colored noise is 

required to satisfy the power law decay in the velocity autocorrelation function at long times. 

The non-Markovian ML noise simultaneously satisfies the equipartition theorem and the 

hydrodynamic correlations for a range of memory correlation times. The O-U process, 

however, may not provide the appropriate hydrodynamic correlations.

For NP motion in an incompressible fluid, the FHD resolves the hydrodynamics correctly 

but does not impose the correct equipartition of energy based on the nanoparticle mass 

because of the added mass of the displaced fluid. In contrast, the Langevin approach with 

appropriate memory can show the correct equipartition of energy, but not the correct short- 

and long-time hydrodynamic correlations. In a third approach referred to as the hybrid 

approach [279], it is shown for the first time, that it is possible to simultaneously satisfy the 

equipartition theorem and the (short- and long-time) hydrodynamic correlations. In effect, 

this results in a thermostat that also simultaneously preserves the true hydrodynamic 

correlations. Thus, the hybrid approach enables a thermostat for the NP which maintains a 

set temperature and the correct thermal distributions (i.e., preserve the canonical ensemble), 

while simultaneously preserving the hydrodynamic effects (i.e., velocity auto-correlation 

and diffusion coefficient).
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All the three methods described above are computationally expensive (large computational 

overhead), with the GLE perhaps the least expensive. A fourth procedure called the 

Deterministic method enables a computationally inexpensive calculation to study the long-

time behavior of the VACF and the AVACF of a NP in a quiescent medium. The rationale for 

this method is derived both from the fluctuation-dissipation relation which states that the 

temporal correlation in the thermal stresses is equivalent to the correlation in the 

hydrodynamic memory of a stationary fluid [280] and the Onsager regression hypothesis 

which states that the regression of microscopic thermal fluctuations at equilibrium follows 

the macroscopic law of relaxation of small non-equilibrium disturbances [12,13]. Related to 

this, earlier studies [267,281–283] have shown that the averaged time correlation in the 

velocity of a Brownian particle in a stationary medium, is equivalent to that for a driven 

particle computed in the absence of thermal fluctuations. It must be noted that the 

trajectories identified by Deterministic simulations are not reflective of that for a fluctuating 

particle.

4.6 Memory function inspired coarse-graining: treatment with the generalized Langevin 
equation

The equation of stochastic motion for each component of the velocity of a nanoparticle 

immersed in a fluid in an unbounded domain (in the limit of the linearized Navier-Stokes 

equation) takes the form of a GLE and is given by:

M dU
dt = − 6πμaU(x, t) + 3a2 πρμ∫

−∞

t
t − t′

− 3
2U x, t′ dt′ − kx(t)+R(t) . (30)

Here, ζ(t)(t) = 12πμaδ(t) − 3a2 πρμt
− 3

2 , and R(t) = Rw(t) + Rc(t), with a white noise 

correlation 〈Rw(t)Rw(t′)〉 = 12πμakBTδ(t − t′), a colored noise correlation 

Rc(t)Rc t′ = − 3a2 πρμkBT t − t′
− 3

2 , and 〈Rw(t)Rc(t′)〉 = 〈Rw(t)〉〈Rc(t′)〉 = 0. Eq. (30) 

representing a particle in an unbounded fluid domain can be extended to incorporate the 

effect of the boundaries on hydrodynamic interactions. In a recent study, Yu et al. [283] 

formulated a composite GLE that explicitly encodes the transition from a bulk domain to a 

near-wall domain as the particle is approaching a confining boundary. This is accomplished 

by using a pertinent bridging function that transitions the GLE from that for the bulk regime 

at early times (when the momentum diffusion from the particle is yet to reach the boundary, 

i.e., t≲h2 /v) to that for near-wall regimes for later times (when the reflected momentum 

wave from the boundary begins to impact the temporal velocity correlations of particle 

motion, i.e., t≳h2 /v). For perpendicular motion, the composite GLE for that case is given 

by:
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M
dU⊥

dt = − 6πμaβU⊥(x, t) − A1(t)∫
−∞

t
t − t′

− 3
2U⊥ x, t′ dt′

−A2(t)∫
−∞

t
t − t′

− 5
2U⊥ x, t′ dt′ − kx(t) + R(t),

(31)

where, β = 1 − 9a
8h

−1
, M = (3m/2) 1 − a3

8h3

−1
, A1(t) = − 3a2 πρμ e

− t
τw  and 

A2(t) = 9
8am ρ

πμ β2 1 − e
− t

τw  complements A1(t); here, τw = h2/v.

The random forces and force correlations consistent with the fluctuation dissipation theorem 

are given by:

R(t) = Rw(t) + e
− t

τw Rc1(t) + 1 − e
− t

τw Rc2(t) with  Rw(t)Rw t′

= 12πμaβkBTδ t − t′ ,

Rc1(t)Rc1 t′ = − 3a2 πρμkBT t − t′
− 3

2,

Rc2(t)Rc2 t′ = 9
8am ρ

πμ β2kBT t − t′
− 5

2,  and

Rw(t)Rc1 t′ = Rw(t)Rc2 t′ = Rc1(t)Rc2 t′ = 0.

Discussions related to these descriptions are offered in the next section.

4.6.1 Deterministic method for VACF and AVACF calculations—For stochastic 

simulations, a large number of realizations are required to reach satisfactory statistics of the 

dynamical properties. Since ζ(t)(t) is hydrodynamic in origin, the scaled relaxation of U(t) 
can also be obtained in the absence of the random force R(t). This is the Deterministic 

method. The Deterministic method is based on the Onsager regression hypothesis, which 

states that the regression of microscopic thermal fluctuations at equilibrium follows the 
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macroscopic law of relaxation of small non-equilibrium disturbances [12,13]. 

Mathematically, this yields ΔU(t) / ΔU(0) = ΔU(t)ΔU(0)
ΔU(0)2

, where ΔU(t) = U(t) − 〈U(t)〉. 

The above relationship provides a convenient frame work for employing the deterministic 

method for evaluating VACFs and AVACFs. The deterministic simulations consider the 

situation in which the particle is driven initially by a weak impulse giving U(0) in the 

absence of the R(t). The correlation between a macroscopically-driven U(0) and the 

subsequent U(t) would be equivalent to the calculated VACF (also denoted as Cv(t)) obtained 

from the stochastic simulations, according to Onsager’s regression hypothesis [284].

In Fig. 7A, for a non-neutrally-buoyant Brownian particle at various distances from the wall, 

the deterministic numerical solutions to the composite GLE have been compared with the 

analytical solutions of the linearized Navier-Stokes equation for the same particle-wall 

system in a quiescent fluid. This result shows excellent agreement between theory and 

simulations. In Fig. 7B, the deterministic, (i.e., without thermal noise), and the stochastic, 

(i.e., with thermal noise), results for the composite GLE are compared to those from the 

FHD method for a particle in the lubrication regime, and bound via a harmonic potential, 

again showing excellent agreement between the coarse-grained GLE approach [283] and the 

full-scale FHD/DNS simulations [267].

In Vitoshkin et al. [267], the dynamics and correlations in the presence of flow, wall-

confinement, and adhesion interactions have been resolved by carrying out the FHD method 

in three different hydrodynamic regimes, namely bulk ((h − a) /a≫ 1), near-wall ((h − a) /

a~1), and lubrication ((h − a)/a ≪ 1)regimes. The formulation and results of that study 

provide a systematic approach for studying the temporal hydrodynamic correlations in the 

presence of a curved vessel wall, particle size, particle-fluid density variations, adhesive 

interactions (confining potential), and low Reynolds number flows, especially focusing on 

the lubrication regime. The significance of the DNS approach using FHD in terms of 

capturing the VACF of nanoparticle motion under a variety of confinement and flow 

conditions can be recognized in relation to the GLE formalism for nanoparticle motion. 

Indeed, the composite GLE framework [283] correctly captures the different hydrodynamic 

correlations at different time scales, when boundaries, confining potentials, and flow-fields 

are introduced. Therefore, the VACF determined by DNS provides direct input to the GLE 

by defining the memory function. As demonstrated there, the GLE then represents a reduced 

dimensional and computationally efficient framework for encoding nanoparticle dynamics. 

Parallel approaches to bridge the molecular and hydrodynamic scales in pure fluids by 

combining molecular dynamics simulations and linearized fluctuating hydrodynamics 

equations have been described by Chu et al. [31,285–287].

4.6.2 Generalized Langevin equations for bridging colloidal and molecular 
scale dissipation in the context of mass transfer—In nanoscale mass transport that 

occurs in many biological systems employing nanoparticles, the adhesive dynamics of 

nanoparticles to receptors are governed by the binding interactions, which are more often 

than not, mediated by receptor-ligand complexes. The example of a harmonic spring in Fig. 

7B represents such an interaction at a coarse-grained level. The confining potential can have 
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a range of values for the reactive compliance (or alternatively the stiffness) depending on the 

receptor-ligand pair, the use of spacers or tethers, the properties of the nanoparticle or the 

adhesive surface (e.g., flexible vs. rigid); within the harmonic approximation, in which the 

adhesive potential is approximated as V(x) = 1
2kx2, the values for k typically fall in the range 

of 10−6 − 10 N/m. Such potentials influence nanoparticle dynamics in an obvious way 

through influencing the energy landscape of adhesion, i.e., through V(x). However, in the 

inertial timescale of t~a2/v, the internal dynamics of receptor-ligand complexes can also 

influence nanoparticle adhesion, independent of the energy landscape, V(x). Single-

molecule laser spectroscopy studies [288] have shown that fluctuations within a single 

protein exhibits wide relaxation spectrum characterizing a long time memory, implying that 

the protein dynamics should also be described suitably by a GLE. If we consider the 

dimensions of the receptor-ligand complex (in the scale of ~101 nm), which are much 

smaller than the nanoparticle (a~102 nm), the particle dynamics itself occurs in the 

lubrication regime, (i.e., with (h − a) /a ≪ 1). Therefore, in order to precisely encode the 

position-dependent, enhanced hydrodynamic drag when the particle binds to the surface in 

such a regime, and simultaneously account for the dynamical relaxation of the ligand-

receptor pair, we formulate and simultaneously solve two coupled GLEs:

M
d2xp(t)

dt2
= − ∫

−∞

t
ζp

(t) t − t′
dxp
dt′ dt′ + k(x(t) − xp(t)) + Rp(t) (32)

0 = − ∫
−∞

t
ζr

(t) t − t′ dx
dt′dt′ − k + ks x(t) + kxp(t) + Rr(t) . (33)

Eq. (32) corresponds to the nanoparticle equation of motion subject to a strong lubrication 

force and adhesion, while Eq. (33) describes the receptor dynamics. xp = xp − a − l − xr
0 is 

the rescaled nanoparticle center-of-mass position, l the ligand length, and xr
0 the equilibrium 

position of the receptor tip, x = xr − xr
0 is the instantaneous receptor tip position relative to its 

equilibrium value. The hydrodynamic memory function in Eq. (32), ζp
(t) = 2ζp, 0

(t) δ t − t′  with 

ζp, 0
(t) = 6πμa a/(h(t) − a) , denotes the enhanced resistance of the nanoparticle in the 

lubrication layer. ζr
(t) t − t′ = ζr

0 λr t − t′
λr in Eq. (33) is the memory function for receptor 

internal dynamics with ζr
0 being the fiction coefficient and λr being the power-law index. 

Following the fluctuation-dissipation theorem [15], the random forces of the particle(Rp) and 

receptor(Rr) are related to the frictional terms via Rp(t)Rp t′ = 2kBTζp, 0
(t) δ t − t′  and 

Rr(t)Rr t′ = kBTζr
(t) t − t′ .

Yu et al. reported results from the stochastic simulations of Eqs. (32) and (33) at T = 310 K 

for a nanoparticle (a = 250 nm) adhered to a planar wall, (with equilibrium separation 

xr
0 = 19nm, l = 15 nm, and k = 1 N/m), see Ref. [283]. The conformational force constant ks 
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= 1.88 N/m, the friction coefficient ζr
0 = 1.32Ns0.5m−1, and the power-law index λr = 0.5 for 

the receptor protein are taken from the measurements of Ref. [289]. The authors presented 

the normalized velocity autocorrelation functions of the nanoparticle Cv(t) = 〈U(t)U(0)〉, and 

the normalized position autocorrelation functions of the nanoparticle (Cx(t) = 〈xp(t)xp(0)〉) 
and of the receptor tip (Cx(t) = 〈x(t)x(0)〉) as a function of the scaled time, t /τv. The nature 

of the velocity autocorrelation function for a bound nanoparticle was found to be completely 

distinct from that for an unbound nanoparticle either in the bulk fluid or close to the vessel 

wall. For a free nanoparticle in bulk medium, the analytical solution of the Stokes equation 

predicted an exponentially-decaying Cv(t), and the DNS of the Navier-Stokes equation [267] 

yields a Cv(t) that exhibits a t−3/2 long-time tail. When the particle moves to the proximity of 

the wall but not bound to the wall, the lubrication force enhances the hydrodynamic 

resistance felt by the particle and leads to a faster decay of Cv(t), where the steady-state 

lubrication theory predicts an exponential decay with an augmented drag coefficient, and the 

long-time tail of the DNS solution is altered by the wall-induced vortex reflection. Once the 

particle is bound to the wall due to ligand-receptor interactions, the strong adhesion leads to 

oscillations in Cv(t) that prevail in the hydrodynamic correlations. In the results for Cx(t), the 

long-time decay for the bound nanoparticle was found to be consistent with that observed in 

Cv(t). In terms of the receptor dynamics, the much faster-decaying Cx(t) for the bound 

receptor tip compared with the slowly-decaying correlation for a free receptor indicated that 

the dynamical relaxation of the protein is strongly coupled with the instantaneous motion of 

the nanoparticle. The probability distributions of the nanoparticle center of mass position 

and the receptor tip position were presented. The presence of ligand-receptor relaxation 

makes the nanoparticle distribution close to the Boltzmann distribution for a harmonically-

bound particle. However, the nanoparticle binding makes conformational distribution of the 

receptor highly constrained, as evidenced by the much narrower receptor tip distribution 

compared to the unbound receptor. These observations suggested that the fluctuations of the 

antibody-antigen complex indeed play a significant role in the nanoparticle binding and 

relaxation dynamics.

4.7 Effect of multiple particles and hydrodynamic interactions

Particulate suspensions in cylindrical pipe flows have evinced great interest due to their 

relevance in a wide range of applications such as in oil, food, construction, pharmaceutical 

industry. While full numerical treatment of multiparticle FHD simulations in flow is 

computationally intensive, the microstructure of flow-driven suspension of hardspheres in 

cylindrical confinement can be studied using dynamical density functional theory and Monte 

Carlo methods. Yu et al. [290] have studied the microstructure of a flow-driven hardsphere 

suspension inside a cylinder using dynamical density functional theory and Monte Carlo 

simulations. In order to be representative of various physical conditions that may prevail in 

experiments, they have investigated the problem using both the grand canonical (μVT) 

ensemble and the canonical (NVT) ensemble. In both ensembles, the hydrodynamic effect 

on the suspension mediated by the presence of the confining wall is implemented in a mean-

field fashion by incorporating the thermodynamic work done by the inertial lift force on the 

particle, given the average flow field. The predicted particle distribution in the μVT 
ensemble displays strong structural ordering at increasing flow rates due to the 
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correspondingly higher particle concentrations inside the cylinder. In the NVT ensemble, for 

dilute suspensions, they reported a peak in the distribution of density at a location similar to 

that of the Segré-Silberberg annulus, while for dense suspensions the competing effects of 

the inertial lift and the hardsphere interaction lead to the formation of several annuli.

The multiparticle suspension work has been later extended to study the rheology of colloidal 

suspensions in confined flow including the treatment of hydrodynamic interactions in 

particle-based simulations inspired by dynamical density functional theory. Jabeen et al. 

[291] investigated the microstructure and rheology of a hardsphere suspension in a 

Newtonian fluid confined in a cylindrical channel and undergoing pressure-driven flow 

using Monte Carlo simulations. They developed a hydrodynamic framework inspired by 

dynamical density functional theory approaches in which the contributions due to various 

flow-induced hydrodynamic interactions (HIs) are included in the form of thermodynamic 

work done by these HI-derived forces in displacing the hardspheres. Using this framework, 

one can self-consistently determine the effect of the local microstructure on the average 

flow-field and vice versa and co-evolve the inhomogeneous density distribution and the 

flattening velocity profile with an increase in density of suspended particles. Specifically, the 

study explored the effect on the local microstructure due to the inclusion of forces arising 

from confinement-induced inertial effects, forces due to solvent-mediated interparticle 

interactions and the dependence of the diffusivity on the local density. The authors examined 

the dependence of the apparent viscosity of the suspension on the volume fraction of 

hardspheres in the cylinder, the flow rate and the diameter of the cylinder, and investigate 

their effects on the local microstructure.

Larger particulates in suspension such as RBCs can modulate carrier interactions with the 

underlying surfaces. Using the dynamical density functional theory (DDFT) approaches 

introduced by Yu et al. and Jabeen et al. [290,291] one can include the effect of inertial 

margination due to flow on the spheres.

The expression for the mean-field DDFT equation in the presence of convective flow and 

external potentials is defined as:

∂ρRBC(r, t)
∂t + ∇ • ρRBC(r, t) v1 1 = ∇ •

Ds 1
kBT • ρRBC(r, t)∇

δF ρRBC(r, t)
δρRBC(r, t)

, (34)

where, 〈〉1 denotes a conditional average with the position of one particle held fixed, v1 is 

the velocity of the chosen particle, Ds is the self-diffusivity tensor for a particle and F is the 

Helmholtz free energy defined as a function of the one-body particle density, i.e., F(ρRBC(r, 

t)] = Fid[ρRBC(r, t)] + Fex[ρRBC(r, t)] + ∫vUext(r, t)ρRBC(r, t)]. Here, Fid is the ideal gas free 

energy, i.e., Fid = kBT∫vρRBC(r, t)[ln(ρRBC(r, t)Λ3)−1]dr with Λ being the thermal de 

Broglie wavelength of the particle, Uext is the external potential energy, and Fex denotes the 

excess Helmholtz free energy.

Considering the steady-state behavior of the system, the DDFT equation for ρRBC(r) under 

fixed particle number condition is expressed as:
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ρRBC(r) = ρbexp − 1
kBT

δFex ρRBC(r)
δρRBC(r)

+ 1
kBT

δFex ρb
δρb

−
Uext(r)

kBT

+ ∫
0

r f lift r′
kBT dr′ ,

(35)

where, ρb is the particle number density in the bulk and flift is the lift force acting on a 

chosen particle. The margination potential felt by each NP at every position r′ is defined as:

ΦRBC r′ = ∫
V

ρRBC(r) ϕ r′, r dr, (36)

where ρRBC is the density of RBCs at some distance r and ϕ represents the interaction of a 

given spherical particle with RBCs using the following Weeks-Chandler-Andersen (WCA) 

type potential:

ϕ r, r′ = 4ε σ
r − r′

12
− σ

r − r′
6

+ 1
4 . (37)

Here, ε = 0.7kBT and σ = a + b
2  with a and b being the radius of NP and RBC respectively, 

denote the energy and length units, respectively. The margination potential defined in Eq. 

(36) comes from hydrodynamic origin at the steady-state as clearly demonstrated in Ref. 

[290] in the DDFT approach. The force due to margination, i.e., Fmarg = −∇ΦRBC is 

stochastically exerted by passing RBCs, which migrate to the axis of flow and varies with 

distance from the wall. It is possible to include the margination force on the NP, based on the 

NP effective radius, as an external non-Brownian force term.

Finally, the lift force felt by a given spherical NP with radius of rs in the region of the 

parabolic flow of length L is determined by Yu et al. [290]:

Flift (γ)
kBT = RePeβ⊥

5
288

rs

L2 1 − γ
L 22 − 73 γ

L . (38)

Here, RePe is product of the Reynolds number and Peclet number, and β⊥ denotes the wall-

induced resistivity factor, defined as β⊥ = 1 − 9
8

rs
γ + 1

2
rs
γ

3
− 2

8
rs
γ

5
 [292].

4.8 Nanoparticle transport and heat transfer in nanomedicine applications

Targeted NPs loaded with drugs that are directed to precise locations in the body (referred to 

as targeted drug delivery) can improve the treatment and detection of many diseases [293–

298]. Targeting of NPs functionalized with antibodies to vascular endothelial surface 

molecules such as the intracellular adhesion molecule-1 or ICAM1 depends on several 

physiological factors such as antibody density, receptor expression, cellular mechanical 

factors, hydrodynamic conditions such as hematocrit (HCT) density, blood flow rates, and 
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vessel diameters [299,300]. In addition, several design factors such as size, shape, flexibility/

stiffness, and NP architecture, collectively influence targeting efficacy (i.e., tissue selectivity 

as well as avidity), see Refs. [300,301] and references therein. However, the individual 

contributions of this multitude of factors are often not discernible leading to largely an 

empirical and exhaustive search for optimal design. In particular, there is a need for precise 

control of the specificity and selectivity of binding of the NPs to the target (inflamed or 

diseased) tissue of interest under varying pathophysiological and hydrodynamic conditions 

in the vasculature.

In previous studies, it has been shown that modeling can serve as a predictive tool in 

designing the functionalization characteristics of rigid NPs [302–311]. In this case, the 

enthalpy of multivalent binding is compensated by the translational entropy loss of bound 

receptors on the cell surface to a large extent, as well as the entropy loss of NP translation 

and rotation. These studies demonstrate that modeling can play a crucial role by providing 

rational design principles for rigid NP based on the underlying thermodynamic and 

hydrodynamic considerations.

Experimental and modeling studies (using Brownian dynamics) of flexible NPs have 

revealed that the flexibility can introduce different hydrodynamic effects that can be 

exploited in targeted drug delivery [69,70,312,313]. How precisely the internal 

hydrodynamics of NP relaxation is coupled to the external hemodynamics, hydrodynamic 

lift, effect of confinement on carrier mobility to determine NP deformability, multivalent 

adhesion to cells, and drug release kinetics, is not obvious, and little quantitative mechanistic 

analyses have been reported to date.

The rules governing multivalent binding behavior for flexible NPs will be quite different 

from those for rigid NPs noted above on both hydrodynamic as well as adhesion aspects. 

Specifically, on the hydrodynamic front, the shear, confinement, and interaction with HCT 

will collectively define the shape of the flexible NP, which through shape-dependent 

hydrodynamic interactions will impact NP spatial distribution and margination. On the 

adhesive front, upon multivalent binding, the entropy loss per receptor-ligand bond model is 

lower for the flexible NP compared to its rigid counterpart, thereby driving larger 

multivalency [71]. However, an additional contribution to entropy loss resulting from a 

change in accessible conformations of NP upon binding applies for the flexible NP, which is 

absent for the rigid NP [71]. The cumulative effects of these entropic contributions will 

compensate with the enthalpy of multivalent binding leading to new rules for NP binding 

[71]. Such findings will have a direct impact on the design of flexible NP for a given 

application demanding a desired selectivity and specificity of binding to the target tissue, 

which necessitates a departure in our intuition and rational thinking when switching from 

rigid to flexible functionalized NP. These competing effects can be tuned by controlling the 

degree of flexibility by tuning the NP stiffness.

Recently, Farokhirad et al. [70,71] reported computational investigations of deformable 

polymeric nanoparticles (NPs) under colloidal suspension flow and adhesive environment. In 

these studies, the authors employed a coarse-grained model for the polymeric NP and 

performed Brownian dynamics (BDs) simulations with hydrodynamic interactions and in the 
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presence of wall-confinement, particulate margination using DDFT, and wall-adhesion for 

obtaining NP microstructure, shape, and anisotropic and inhomogeneous transport properties 

for different NP stiffness. These microscopic properties are utilized in solving the Fokker-

Planck equation to obtain the spatial distribution of NP subject to shear, margination due to 

colloidal microparticles, and confinement due to a vessel wall. Comparing the computational 

results for the amount of NP margination to the near-wall adhesion regime with those of 

available binding experiments in cell culture under shear, the study found quantitative 

agreement on shear-enhanced binding, the effect of particulate volume fraction, and the 

effect of NP stiffness. The reported combined computational approach and results are 

expected to enable fine-tuning of design and optimization of flexible NP in targeted drug 

delivery applications.

Another benefit of using NPs to deliver therapeutics to tumors selectively is their potential to 

release a large amount of heat in a specific area. In this regard, one treatment type currently 

under much research because of its potential in applying a dose sufficient to ablate 

cancerous cells selectively without damaging the surrounding tissue is the use of heat 

delivered wirelessly by a magnetic (Fe3O4) nanoparticle (MNP) [314–317]. On the 

nanoscale, iron oxide particles exhibit superparamagnetic behavior making them as the 

potential candidate to heat more efficiently than larger magnetic nanoparticles [318]. Certain 

NPs can be heated by alternating magnetic fields and can be directed by constant magnetic 

fields [319]. The magnetic fields pass unaffected through healthy tissue and thus can be 

more localized to specific areas. While this magnetic hypertherapy has shown a great 

promise, the critical challenge toward heating inside the body is the concern over dispersing 

of MNPs throughout the tumor but not in the surrounding tissue [320,321]. To achieve a 

controlled heat release from MNPs, one can distribute the nanoparticles throughout a 

thermosensitive polymer composite matrix with critical temperature above body 

temperature. Such composites can create a coating that prohibits the dispersion problems 

faced in cancer therapy, and at the same time the heat source is more localized to the target 

tissue through controlling and predicting the heat rates. Then using an external source, a 

specific area can be heated by raising the temperature from body temperature (about 37°C) 

to between 41°C and 46°C, which eventually causes the polymers to break down and the 

drug to be released. However, the elevated temperatures are usually combined with other 

forms of treatment such as chemotherapy and radiation therapy as the temperature increases 

are alone not enough to kill all of the tumor cells [322] and as a result, sensitize the tumor 

[323]. Usually, one or more of the following methods are involved in determining the heat 

transfer for such thermal ablation of tumors: direct in vivo temperature measurement 

[324,325], numerical modeling [326–332] and in vitro modeling using tissue phantoms 

[333–336]. A popular approach is to pursue analytical and numerical solutions modeling the 

heat transport through blood-perfused tissue [326–328] based on the Pennes equation [326], 

but it is well acknowledged that the Pennes equation has serious limitations and may only be 

used for approximate estimates.

5. Conclusions

Multiscale hydrodynamic models of NP transport that incorporate multiple scales (e.g., the 

macroscopic regime, the mesoscopic and the molecular regime), and which couple directly 
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with each other to define the coupled transport properties of the fluid and the NP provides 

the algorithmic methodology for a rapid and accurate prescription for optimal nanoparticle 

design. Due to competing hydrodynamic and molecular forces at disparate lengthscales, 

traditional multiscale frameworks are not easily amenable for addressing the associated 

challenges. In this review, we have primarily considered and focused on foundations, 

numerical implementation, as well as dynamics of nanoparticles in fluids, transport 

properties, hydrodynamic interactions in the presence of flow fields and hydrodynamic 

confinement. Fluctuating hydrodynamics, generalized Langevin equations, microscopic 

including molecular dynamics methods, as studied in existing literature, have all been 

discussed. Select computations and results for transport properties and flow characteristics in 

various regimes have been included. In particular, the determination of the autocorrelation 

functions accurately for long times (compared to the inertial relaxation time) using the 

deterministic approach provides a direct route for computing transport properties using the 

appropriate Green-Kubo formula [337]. Several works in the literature have reported 

calculations of transport properties for models of simple and complex fluids [338,339]. 

Encouraged by these studies which focused on the molecular level, we propose that the 

Green-Kubo methodologies can be used to study the properties of suspensions of 

nanoparticles and nanocomposites at the mesoscopic scale, when combined with 

computational methods that resolve hydrodynamic interactions and thermal effects 

simultaneously, including the examples described in this article.
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Nomenclature

β⊥ Wall-induced resistivity factor

δij Kronecker delta

ηs Shear viscosity

I Moment of inertia

J Identity tensor

S Random stress tensor

u, U Velocity

μ Dynamic Viscosity

v Kinematic Viscosity

ρ Density

σ Stress tensor
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ξ(t) Unit-Normalized White noise process

ζ(t), ζ(r) Translational and rotational friction coefficient

D Diffusion coefficient

F Force

k Thermal conductivity

kB Boltzmann constant

m Mass

p Pressure

P(y, t) Probability

T Absolute temperature

t Time

V Potential energy

x, y, r Position

ALE Arbitrary Lagrangian-Eulerian

BD Brownian Dynamics

DDFT Dynamical density functional theory

DLM Distributed-Lagrangian multiplier

DNS Direct numerical simulations

FEM Finite element method

FENE Finitely extensible nonlinear elastic

FHD Fluctuating hydrodynamics

GENERIC General Equation for Non-Equilibrium Reversible/

Irreversible Coupling

GLE Generalized Langevin equations

HCACF Heat Current autocorrelation function

HCT Hematocrit

HI Hydrodynamic interactions

ICAM1 Intracellular adhesion molecule-1

LBM Lattice Boltzmann method
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LD Langevin Dynamics

MD Molecular Dynamics

MNP Magnetic nanoparticle

MPCD Multi-particle collision dynamics

MSD Mean Squared Displacement

NFD Nanoscale fluid dynamics

NP Nanoparticle

NPP Nanoscale particle and polymer

PDB Protein Data Bank

PDF Probability density function

Pe Peclet number

RBC Red blood cell

Re Reynolds number

SACF Stress autocorrelation function

SDE Stochastic differential equation

SRD Stochastic rotational dynamics

VACF Velocity autocorrelation function

WCA Weeks-Chandler-Andersen

References

[1]. Prasher R, Bhattacharya P, Patrick P, Brownian-motion-based convective-conductive model for the 
effective thermal conductivity of nanofluids, J. Heat Transf 128 (6) (2006a) 588–595, 
10.1115/1.2188509.

[2]. Keblinski P, Prasher R, Jacob E, Thermal conductance of nanofluids: is the controversy over? J. 
Nanoparticle Res 10 (7) (10 2008) 1089–1097, 10.1007/s11051-007-9352-1. ISSN 1572–896X. 
URL, https://doi.org/10.1007/s11051-007-9352-1.

[3]. Buongiorno J, et al., A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys 
106 (9) (2009), 094312, 10.1063/1.3245330. URL, https://doi.org/10.1063/1.3245330.

[4]. Michaelides E.E. (Stathis), Fundamentals of Nanoparticle Flow and Heat Transfer, Springer 
International Publishing, Cham, Switzerland, 2014, ISBN 978-3-319-05621-0, pp. 1–45, 
10.1007/978-3-319-05621-01. URL, https://doi.org/10.1007/978-3-319-05621-0_1.

[5]. Van Kampen NG, Stochastic Processes in Physics and Chemistry, third ed. edition, Elsevier, 
Amsterdam, 2007, 10.1016/B978-0-444-52965-7.50023-4. URL, https://www.sciencedirect.com/
science/article/pii/B9780444529657500234.

[6]. Chapman S, Burnett D, Cowling TG, The Mathematical Theory of Non-uniform Gases, 
Cambridge University Press, 1970.

[7]. Bixon M, Zwanzig R, Boltzmann-Langevin equation and hydrodynamic fluctuations, Phys. Rev 
187 (1) (11 1969) 267–272.

Radhakrishnan et al. Page 40

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.sciencedirect.com/science/article/pii/B9780444529657500234
https://www.sciencedirect.com/science/article/pii/B9780444529657500234


[8]. Landau LD, Lifshitz EM, in: Landau LD, Lifshitz EM (Eds.), Fluid Mechanics, Second Edition, 2 
editionCourse of Theoretical Physics, vol. 6, Butterworth-Heinemann, 1987.

[9]. Hauge EH, Martin-Löf A, Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys 7 (3) 
(1973) 259–281, 10.1007/BF01030307.

[10]. Chaikin PM, Lubensky TC, Principles of Condensed Matter Physics, Cambridge University 
Press, Cambridge, England, 2000.

[11]. Landau LD, Lifshitz EM, Fluid Mechanics, Pergamon Press, London, 1959.

[12]. Onsager L, Reciprocal relations in irreversible processes, I. Phys. Rev 37 (1931a) 405–426.

[13]. Onsager L, Reciprocal relations in irreversible processes. II, Phys. Rev 38 (12 1931) 2265–2279.

[14]. Chandler D, Introduction to Modern Statistical Mechanics, Oxford University Press, New York, 
1987a.

[15]. Kubo R, The fluctuation-dissipation theorem, Rep. Prog. Phys 29 (1) (1966a) 255–284, 
10.1088/0034-4885/29/1/306.

[16]. Kubo R, Toda M, Hashitsume N, Statistical Physics II Nonequilibrium Statistical Mechanics, 2 
edition, vol. II, Springer-Verlag, Berlin, 1991.

[17]. Balakrishnan V, Elements of Nonequilibrium Statistical Mechanics, Ane Books, 3 2008.

[18]. Hardy RJ, Energy-flux operator for a lattice, Phys. Rev 132 (1963) 168, 10.1103/PhysRev.
132.168.

[19]. Allen MP, Atomic and molecular representations of molecular hydrodynamic variables, Mol. 
Phys 52 (1984) 705, 10.1080/00268978400101491.

[20]. Allen MP, Tildesley DJ, Computer Simulation of Liquids, second ed., Oxford University Press, 
New York, 1989.

[21]. Sharma N, Patankar NA, Direct numerical simulation of the Brownian motion of particles by 
using fluctuating hydrodynamic equations, J. Comput. Phys 201 (2) (2004) 466–486, 10.1016/
j.jcp.2004.06.002.

[22]. Donev A, Vanden-Eijnden E, Garcia AL, Bell JB, On the accuracy of explicit finite-volume 
schemes for fluctuating hydrodynamics, Commun. Appl. Math. Comput. Sci 5 (2) (2010a) 149–
197.

[23]. Ladd AJC, Short-time motion of colloidal particles: numerical simulation via a fluctuating 
Lattice-Boltzmann equation, Phys. Rev. Lett 70 (9) (3 1993) 1339–1342, 10.1103/PhysRevLett.
70.1339. [PubMed: 10054351] 

[24]. Ladd AJC, Numerical simulations of particulate suspensions via a discretized Boltzmann 
equation. part 1. theoretical foundation, J. Fluid Mech 271 (1994a) 285–309, 10.1017/
S0022112094001771.

[25]. Ladd AJC, Numerical simulations of particulate suspensions via a discretized Boltzmann 
equation. part 2. numerical results, J. Fluid Mech 271 (1994b) 311–339, 10.1017/
S0022112094001783.

[26]. Patankar NA, Direct numerical simulation of moving charged, flexible bodies with thermal 
fluctuations, in: Technical Proceedings of the 2002 International Conference on Computational 
Nanoscience and Nanotechnology, vol. 2, Nano Science and Technology Institute, 2002, pp. 93–
96.

[27]. Adhikari R, Stratford K, Cates ME, Wagner AJ, Fluctuating lattice–Boltzmann, EPL 
(Europhysics Letters) 71 (3) (2005) 473–479.

[28]. Dünweg B, Ladd AJC, Lattice–Boltzmann simulations of soft matter systems, Adv. Polym. Sci 
221 (2008) 89–166, 10.1007/978-3-540-87706-62.

[29]. Nie D, Lin J, A fluctuating lattice-Boltzmann model for direct numerical simulation of particle 
Brownian motion, Particuology 7 (6) (2009) 501–506, 10.1016/j.partic.2009.06.012. ISSN 1674–
2001.

[30]. Atzberger PJ, Kramer PR, Peskin CS, A stochastic immersed boundary method for fluid-structure 
dynamics at microscopic length scales, J. Comput. Phys 224 (2) (2007) 1255–1292, 10.1016/
j.jcp.2006.11.015. ISSN 0021–9991.

Radhakrishnan et al. Page 41

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[31]. Voulgarakis NK, Chu J-W, Bridging fluctuating hydrodynamics and molecular dynamics 
simulations of fluids, J. Chem. Phys 130 (13) (2009) 134111, 10.1063/1.3106717. URL, https://
doi.org/10.1063/1.3106717 [PubMed: 19355721] 

[32]. Voulgarakis NK, Satish S, Chu JW, Modeling the nanoscale viscoelasticity of fluids by bridging 
non-markovian fluctuating hydrodynamics and molecular dynamics simulations, J. Chem. Phys 
131 (23) (2009a) 234115, 10.1063/1.3273210. [PubMed: 20025322] 

[33]. Serrano M, Español P, Thermodynamically consistent mesoscopic fluid particle model, Phys. 
Rev. E 64 (4) (2001), 046115, 10.1103/PhysRevE.64.046115.

[34]. Serrano M, Gianni DF, Español P, Flekkøy EG, Coveney PV, Mesoscopic dynamics of voronoi 
fluid particles, J. Phys. A Math. Gen 35 (7) (2002) 1605, 10.1088/0305-4470/35/7/310.

[35]. Grmela M, Öttinger HC, Dynamics and thermodynamics of complex fluids. i. development of a 
general formalism, Phys. Rev. E 56 (6) (1997) 6620–6632, 10.1103/PhysRevE.56.6620.

[36]. Öttinger HC, Grmela M, Dynamics and thermodynamics of complex fluids. ii. illustrations of a 
general formalism, Phys. Rev. E 56 (6) (1997) 6633–6655, 10.1103/PhysRevE.56.6633.

[37]. Mynam M, Sunthar P, Ansumali S, Efficient lattice Boltzmann algorithm for brownian 
suspensions, Philos. Trans. Royal Soc. A 369 (2011) 2237–2245, 10.1098/rsta.2011.0047.

[38]. Liu Z, Zhu Y, Rao RR, Clausen JR, Aidun CK, Efficient Lattice Boltzmann Algorithm for 
Brownian Suspensions, 2011 arXiv preprint arXiv:180102299.

[39]. Hu HH, Direct simulation of flows of solid-liquid mixtures, Int. J. Multiph. Flow 22 (2) (1996) 
335–352, 10.1016/0301-9322(95)00068-2. ISSN 0301-9322.

[40]. Hu HH, Patankar NA, Zhu MY, Direct numerical simulations of fluid-solid systems using the 
arbitrary langrangian-Eulerian technique, J. Comput. Phys 169 (2) (2001) 427–462, 10.1006/
jcph.2000.6592. ISSN 0021–9991.

[41]. Zhang L, Gerstenberger A, Wang X, Liu WK, Immersed finite element method, Comput. 
Methods Appl. Mech. Eng 193 (21–22) (2004) 2051–2067, 10.1016/j.cma.2003.12.044. ISSN 
0045–7825.

[42]. Wang XS, Zhang LT, Liu WK, On computational issues of immersed finite element methods, J. 
Comput. Phys 228 (7) (2009) 2535–2551, 10.1016/j.jcp.2008.12.012. ISSN 0021–9991.

[43]. George PL, Automatic Mesh Generation: Application to Finite Element Methods, Wiley, New 
York, 1991.

[44]. Swaminathan TN, Mukundakrishnan K, Hu HH, Sedimentation of an ellipsoid inside an infinitely 
long tube at low and intermediate Reynolds numbers, J. Fluid Mech 551 (2006a) 357–385, 
10.1017/S0022112005008402.

[45]. Swaminathan TN, Hu HH, Patel AA, Numerical analysis of the hemodynamics and embolus 
capture of a greenfield vena cava filter, J. Biomech. Eng 128 (3) (2006b) 360–370, 
10.1115/1.2187034. [PubMed: 16706585] 

[46]. Mukundakrishnan K, Hu HH, Ayyaswamy PS, The dynamics of two spherical particles in a 
confined rotating flow: pedalling motion, J. Fluid Mech 599 (2008) 169–204, 10.1017/
S0022112007000092.

[47]. Español P, J.G. Anero1, I. Zúñiga, Microscopic derivation of discrete hydrodynamics, J. Chem. 
Phys 131 (2009) 244117, 10.1063/1.3274222. [PubMed: 20059064] 

[48]. Bell JB, Garcia AL, Williams SA, Numerical methods for the stochastic Landau-Lifshitz Navier-
Stokes equations, Phys. Rev. E 76 (1) (7 2007), 016708, 10.1103/PhysRevE.76.016708.

[49]. Williams SA, Bell JB, Garcia AL, Algorithm refinement for fluctuating hydrodynamics, 
Multiscale Model. Simul 6 (2008) 1256–1280, 10.1137/070696180.

[50]. Farokhirad S, Morris JF, Lee T, Coalescence-induced jumping of droplet: inertia and viscosity 
effects, Phys. Fluids 27 (2015) 102102, 10.1063/1.4932085.

[51]. Farokhirad S, Lee T, Computational study of microparticle effect on self-propelled jumping of 
droplets from superhydrophobic substrates, Int. J. Multiph. Flow 95 (2017) 220, 10.1016/
j.ijmultiphaseflow.2017.05.008.

[52]. Farokhirad S, Shad MM, Lee T, Coalescence-induced jumping of immersed and suspended 
droplets on microstructured substrates, Eur. J. Comput. Mech 26 (2017a) 1–19, 
10.1080/17797179.2017.1306830.

Radhakrishnan et al. Page 42

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[53]. Shad MM, Lee T, Phase-field lattice Boltzmann modeling of boiling using a sharp-interface 
energy solver, Phys. Rev. E 96 (2017), 013306, 10.1103/PhysRevE.96.013306. [PubMed: 
29347090] 

[54]. Xuan Y, Li Q, Yao Z, Application of lattice Boltzmann scheme to nanofluids, Sci. China Ser. E 
Technol. Sci 47 (2004) 129–140, 10.1360/03ye0163.

[55]. Xuan Y, Yao Z, Lattice Boltzmann model for nanofluids, Heat Mass Transf 41 (2005) 199–205, 
10.1007/s00231-004-0539-z.

[56]. Xuan Y, Yu K, Li Q, Investigation on flow and heat transfer of nanofluids by the thermal lattice 
Boltzmann model, Prog. Comput. Fluid Dyn 5 (2005) 13–19, 10.1504/PCFD.2005.005813.

[57]. Zhou L, Xuan Y, Li Q, Multiscale simulation of nanofluid multiphase flows, J. Comput. Phys 26 
(2009) 849–856, 10.1142/S1756973709000074.

[58]. Zhou L, Xuan Y, Li Q, Multiscale simulation of flow and heat transfer of nanofluid with lattice 
Boltzmann method, Int. J. Multiph. Flow 36 (2010) 364–374, 10.1016/j.ijmultiphaseflow.
2010.01.005.

[59]. Sidik NAC, Razali SA, Lattice Boltzmann method for convective heat transfer of nanofluids - a 
review, Renew. Sustain. Energy Rev 38 (2014) 864–875, 10.1016/j.rser.2014.07.001.

[60]. Sidik NAC, Mamat R, Recent progress on lattice Boltzmann simulation of nanofluids: a review, 
Int. Commun. Heat Mass Transf 66 (2015) 11–22, 10.1016/j.icheatmasstransfer.2015.05.010.

[61]. Kalteh M, Hasani H, Lattice Boltzmann simulation of nanofluid free convection heat transfer in 
an l-shaped enclosure, Superlattice Microstruct 66 (2014) 112–128, 10.1016/j.spmi.2013.12.004.

[62]. Mliki B, Abbasi MA, Omri A, Belkacem Z, Lattice Boltzmann analysis of mhd natural 
convection of cuo-water nanofluid in inclined c-shaped enclosures under the effect of 
nanoparticles brownian motion, Powder Technol 308 (2017) 70–83, 10.1016/j.powtec.
2016.11.054.

[63]. Zhou W, Yan Y, Xie Y, Liu B, Three-dimensional lattice Boltzmann simulation for mixed 
convection of nanofluids in the presence of magnetic field, Int. Commun. Heat Mass Transf 80 
(2017) 1–9, 10.1016/j.icheatmasstransfer.2016.11.012.

[64]. Bhatnagar PL, Gross EP, Krook M, A model for collision processes in gases. i. small amplitude 
processes in charged and neutral one-component systems, Phys. Rev 94 (1954) 511–525, 
10.1103/PhysRev.94.511.

[65]. d’Humires D, Ginzburg I, Krafczyk M, Lallemand P, Luo LS, Multiple-relaxation-time lattice 
Boltzmann models in three dimensions, Phil. Trans. R. Soc. Lond. A 360 (2002) 437–451, 
10.1098/rsta.2001.0955.

[66]. Gompper G, Ihle T, Kroll DM, Winkler RG, Multi-particle collision dynamics a particle-based 
mesoscale simulation approach to the hydrodynamics of complex fluids, Adv. Polym. Sci 221 
(2009) 1–87, 10.1007/978-3-540-87706-6_1.

[67]. Rotne J, Prager S, Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys 
50 (1969) 4831–4837, 10.1063/1.1670977.

[68]. Yamakawa H, Transport properties of polymer chains in dilute solution: hydrodynamic 
interaction, J. Chem. Phys 53 (1970) 436–443, 10.1063/1.1673799.

[69]. Sarkar A, Eckmann DM, Ayyaswamy PS, Radhakrishnan R, Hydrodynamic interactions of 
deformable polymeric nanocarriers and the effect of crosslinking, Soft Matter 11 (2015) 5955–
5969, 10.1039/C5SM00669D. URL, https://doi.org/10.1039/C5SM00669D. [PubMed: 
26126781] 

[70]. Farokhirad S, Ramakrishnan N, Eckmann DM, Ayyaswamy PS, Radhakrishnan R, Nanofluid 
dynamics of flexible polymeric nanoparticles under wall confinement, J. Heat Transf 141 (5) 
(2019a), 052401 URL, 10.1115/1.4043014.

[71]. Farokhirad S, Ranganathan A, Myerson J, Muzykantov V, Ayyaswamy PS, Eckmann DM, 
Radhakrishnan R, Stiffness can mediate balance between hydrodynamic forces and avidity to 
impact the targeting of flexible polymeric nanoparticles in flow, Nanoscale 11 (2019b) 6916–
6928. URL, 10.1039/C8NR09594A. [PubMed: 30912772] 

[72]. Malevanets A, Kapral R, Mesoscopic model for solvent dynamics, J. Chem. Phys 110 (1999) 
8605, 10.1063/1.478857.

Radhakrishnan et al. Page 43

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[73]. Malevanets A, Kapral R, Solute molecular dynamics in a mesoscale solvent, J. Chem. Phys 112 
(2000) 7260, 10.1063/1.481289.

[74]. Kapral R, Multiparticle collision dynamics: simulation of complex systems on mesoscales, Adv. 
Chem. Phys 140 (2008) 89–146, 10.1002/9780470371572.ch2.

[75]. Yamamoto T, Masaokal N, Numerical simulation of star polymers under shear flow using a 
coupling method of multi-particle collision dynamics and molecular dynamics, Rheol. Acta 54 
(2015) 139–147, 10.1007/s00397-014-0817-8.

[76]. Kikuchi N, Gent A, Yeomans JM, Polymer collapse in the presence of hydrodynamic 
interactions, Eur. Phys. J 9 (2002) 63–66, 10.1140/epje/i2002-10056-6.

[77]. Ripoll M, Winkler RG, Gompper G, Hydrodynamic screening of star polymers in shear flow, Eur. 
Phys. J 23 (2007) 349–354, 10.1140/epje/i2006-10220-0.

[78]. Winkler RG, Mussawisade K, Ripoll M, Gompper G, Rodlike colloids and polymers in shear 
flow: a multi-particle-collision dynamics study, J. Phys. Condens. Matter 16 (2004) S3941–
S3954, 10.1088/0953-8984/16/38/012.

[79]. Mussawisade K, Ripoll M, Winkler RG, Gompper G, Dynamics of polymers in a particle-based 
mesoscopic solvent, J. Chem. Phys 123 (2005), 10.1063/1.2041527, 1449051–11.

[80]. Ripoll M, Winkler RG, Gompper G, Star polymers in shear flow, Phys. Rev. Lett 96 (2006), 
10.1103/PhysRevLett.96.188302, 1883021–4.

[81]. Noguchi H, Gompper G, Dynamics of fluid vesicles in shear flow effect of membrane viscosity 
and thermal fluctuations, Phys. Rev. E 72 (2005a), 011901, 10.1103/PhysRevE.72.011901.

[82]. Noguchi H, Gompper G, Shape transitions of fluid vesicles and red blood cells in capillary flows, 
Proc. Natl. Acad. Sci 102 (2005b) 14159–14164, 10.1073/pnas.0504243102. [PubMed: 
16186506] 

[83]. Cannavacciuolo L, Winkler RG, Gompper G, Mesoscale simulations of polymer dynamics in 
microchannel flows, Europhys. Lett 83 (2008) 34007, 10.1209/0295-5075/83/34007.

[84]. Heine DR, Petersen MK, Grest GS, Effect of particle shape and charge on bulk rheology of 
nanoparticle suspensions, J. Chem. Phys 132 (2010) 184509, 10.1063/1.3419071.

[85]. Karplus M, Brunger AT, Elber R, Kuriyan J, Molecular dynamics: applications to proteins, Cold 
Spring Harbor Symp. Quant. Biol 52 (1987) 6679–6685, 10.1101/SQB.1987.052.01.044.

[86]. Karplus M, Kuriyan J, Molecular dynamics and protein function, Proc. Natl. Acad. Sci. U.S.A 
102 (19) (2005) 381–390, 10.1073/pnas.0408930102.

[87]. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE, 
The protein data bank, Nucleic Acids Res 28 (2000) 235–242, 10.1093/nar/28.1.235. [PubMed: 
10592235] 

[88]. Farokhirad S, Bradley RP, Sarkar A, Shih A, Telesco S, Liu Y, Venkatramani R, Eckmann DM, 
Ayyaswamy PS, Radhakrishnan R, Comprehensive Biomaterials II Computational Methods 
Related to Molecular Structure and Reaction Chemistry of Biomaterials, vol. 3, Elsevier, 
Amsterdam, Netherlands, 2017b, pp. 245–267.

[89]. MacKerell AD, et al., All-atom empirical potential for molecular modeling and dynamics studies 
of proteins, J. Phys. Chem. B 102 (18) (1998) 3586–3616, 10.1021/jp973084f. [PubMed: 
24889800] 

[90]. Foloppe N, Mackerell AD, All-atom empirical force field for nucleic acids i, parameter 
optimization based on small molecule and condensed phase macromolecular target data, J. 
Comput. Chem 21 (2000) 86–104, 10.1002/(SICI)1096-987X(20000130)21:2&lt;86::AID-
JCC2&gt;3.0.CO;2-G.

[91]. MacKerell AD, Banavali NK, All-atom empirical force field for nucleic acids ii, application to 
molecular dynamics simulations of DNA and RNA in solution, J. Comput. Chem 21 (2000) 105–
120, 10.1002/(SICI)1096-987X(20000130)21:2&<105::AID-JCC3&>3.0.CO;2-PCitedby:374.

[92]. Cheatham TE, Cieplak P, Kollman PA, A modified version of the cornell. force field with 
improved sugar pucker phases and helical repeat, J. Biomol. Struct. Dyn 16 (1999) 845–862, 
10.1080/07391102.1999.10508297. [PubMed: 10217454] 

[93]. Wang W, Donini O, Reyes CM, Kollman PA, Biomolecular simulations: recent developments in 
force fields, simulations of enzyme catalysis, protein-protein, and protein-nucleic acid 

Radhakrishnan et al. Page 44

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



noncovalent interactions, Annu. Rev. Biophys. Biomol. Struct 30 (2001) 211–243, 10.1146/
annurev.biophys.30.1.211. [PubMed: 11340059] 

[94]. Glenn JM, Douglas JT, Michael LK, Constant pressure molecular dynamics algorithms, J. Chem. 
Phys 101 (5) (1994) 4177–4189, 10.1063/1.467468.

[95]. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M, Constant 
pressure molecular dynamics algorithms, J. Chem. Phys 4 (2) (1983) 187–217, 10.1002/jcc.
540040211.

[96]. Weiner PW, Kollman PA, Camber: assisted model building with energy refinement, J. Comput. 
Chem 2 (1981) 287–303, 10.1002/jcc.540020311.

[97]. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, 
Kruger P, van Gunsteren WF, The gromos biomolecular simulation program package, J. Comput. 
Chem 103 (1999) 3596–3607, 10.1021/jp984217f.

[98]. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa EC, Skeel RD, Kale L, Schulten 
K, Scalable molecular dynamics with NAMD, J. Comput. Chem 26 (2005) 1781–1802, 10.1002/
jcc.20289. [PubMed: 16222654] 

[99]. Humphrey W, Dalke A, Schulten K, Vmd - visual molecular dynamics, J. Mol. Graph 14 (1996) 
33–38, 10.1016/0263-7855(96)00018-5. [PubMed: 8744570] 

[100]. Coco-Enrquez L, Munoz-Anton J, Martinez-Val JM, New text comparison between co2 and 
other supercritical working fluids (ethane, xe, ch4 and n2) in line-focusing solar power plants 
coupled to supercritical brayton power cycles, Int. J. Hydrogen Energy 42 (2017) 17611–17631, 
10.1016/j.ijhydene.2017.02.071.

[101]. Memon AG, Memon RA, Aermodynamic analysis of a trigeneration system proposed for 
residential application, Energy Convers. Manag 145 (2017) 182–203, 10.1155/2013/604852.

[102]. Sharma T, Reddy ALM, Chandra TS, Ramaprabhu S, Development of carbon nanotubes and 
nanofluids based microbial fuel cell, Int. J. Hydrogen Energy 33 (2008) 6749–6754, 10.1016/
j.ijhydene.2008.05.112.

[103]. Lapotko D, Plasmonic nanoparticle-generated photothermal bubbles and their biomedical 
applications l, Nanomedicine 4 (2016) 813–845, 10.2217/nnm.09.59.

[104]. Ramakrishnan N, Tourdot RW, Eckmann DM, Ayyaswamy PS, Muzykantov V, Radhakrishanan 
R, Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of 
protein expression and mechanical factors, J. Royal Society Open Science 3 (2016a) 160260.

[105]. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, 
Tyagi H, Small particles, big impacts: a review of the diverse applications of nanofluids, J. Appl. 
Phys 113 (2013), 011301, 10.1063/1.4754271.

[106]. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R, Nanocarriers as an emerging 
platform for cancer therapy, Nat. Nanotechnol 2 (2007a) 751–760, 10.1038/nnano.2007.387. 
[PubMed: 18654426] 

[107]. Mitragotri S, Burke BA, Langer R, Overcoming the challenges in administering 
biopharmaceuticals: formulation and delivery strategies, Nat. Rev. Drug Discov 13 (2014a) 655–
672, 10.1038/nrd4363. [PubMed: 25103255] 

[108]. Shi J, Kantoff PW, Wooster R, Farokhzad OC, Cancer nanomedicine: progress, challenges and 
opportunities, Nat. Rev. Cancer 17 (2016) 20–37, 10.1038/nrc.2016.108. [PubMed: 27834398] 

[109]. Cooley M, Sarode A, Hoore A, Fedosov DA, Mitragotri S, Gupta AS, Influence of particle size 
and shape on their margination and wall-adhesion: implications in drug delivery vehicle design 
across nano-to-micro scale, Nanoscale 10 (2018) 15350. [PubMed: 30080212] 

[110]. Maxwell JC, A Treatise on Electricity and Magnetism, second ed. edition, Clarendon Press, 
Oxford, UK, 1881.

[111]. Choi US, Tran TN, Recent Developments in Non-newtonian Flows and Industrial Applications: 
Experimental Studies of the Effects of Non-newtonian Surfactant Solutions on the Performance 
of a Shell-and-Tube Heat Exchanger, vol. 124, American Society of Mechanical Engineers, New 
York, NY, 1991, pp. 47–52.

[112]. Choi SUS, Cho YI, Kasza KE, Degradation effects of dilute polymer solutions on turbulent 
friction and heat transfer behavior, J. Non-Newtonian Fluid Mech 41 (1992) 289–307, 
10.1016/0377-0257(92)87003-T.

Radhakrishnan et al. Page 45

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[113]. Xuan Y, Li Q, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow 21 (2000) 58–
64, 10.1016/S0142-727X(99)00067-3.

[114]. Das SK, Choi SU, Yu W, Pradeep T, Nanofluids: Science and Technology, John Wiley and Sons, 
New Jersey, 2008, 10.1002/9780470180693.

[115]. Wen D, Lin G, Vafaei S, Zhang K, Review of nanofluids for heat transfer applications, 
Particuology 7 (2009) 141–150, 10.1016/j.partic.2009.01.007.

[116]. Hamilton RL, Crosseri OK, Thermal conductivity of heterogeneous two-component systems, 
Ind. Eng. Chem. Fundam 1 (1962) 187–191, 10.1021/i160003a005.

[117]. Choi SUS, Zhang ZG, Yu WI, Lockwood FE, Grulke EA, Anomalous thermal conductivity 
enhancement in nanotube suspensions, Appl. Phys. Lett 79 (2001) 2252–2254, 
10.1063/1.1408272.

[118]. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ, Anomalously increased effective thermal 
conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. 
Lett 78 (2001) 718–720, 10.1063/1.1341218.

[119]. Chopkar M, Das PK, Manna I, Synthesis and characterization of nanofluid for advanced heat 
transfer applications, Scr. Mater 55 (2006) 549–552, 10.1016/j.scriptamat.2006.05.030.

[120]. Chopkar M, Kumar S, Bhandari D, Das PK, Manna I, Development and characterization of 
Al2Cu and Ag2Al nanoparticle dispersed water and ethylene/glycol based nanofluid, Mater. Sci. 
Eng., B 139 (2007) 141–148, 10.1016/j.mseb.2007.01.048.

[121]. Das SK, Putra N, Thiesen P, Roetzel W, Temperature dependence of thermal conductivity 
enhancement for nanofluids, Mater. Sci. Eng., B 125 (2003a) 567–574, 10.1115/1.1571080.

[122]. Patel HE, Das SK, Sundarajan T, Nair AS, George B, Pradeep T, Thermal conductivities of 
naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous 
enhancement and chemical effects, Appl. Phys. Lett 83 (2003) 2931, 10.1063/1.1602578.

[123]. Wen D, Ding Y, Experimental investigation into convective heat transfer of nanofluids at the 
entrance region under laminar flow conditions, Int. J. Heat Mass Transf 47 (2004) 5181–5188, 
10.1016/j.ijheatmasstransfer.2004.07.012.

[124]. Chon CH, Kihm KD, Lee SP, Choi SUS, Empirical correlation finding the role of temperature 
and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett 87 
(15) (2005) 153107, 10.1063/1.2093936.

[125]. Li CH, Peterson G, Experimental investigation of temperature and volume fraction variations on 
the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys 99 
(2006), 084314, 10.1063/1.2191571.

[126]. Murshed SMS, Leong KC, Yang C, Investigations of thermal conductivity and viscosity of 
nanofluids, Int. J. Therm. Sci 47 (2008) 560–568, 10.1016/j.ijthermalsci.2007.05.004.

[127]. Minsta HA, Roy G, Nguyen CT, Doucet D, New temperature dependent thermal conductivity 
data for water-based nanofluids, Int. J. Therm. Sci 48 (2009) 363–373, 10.1016/j.ijthermalsci.
2008.03.009.

[128]. Kole M, Dey T, Enhanced thermophysical properties of copper nanoparticles dispersed in gear 
oil. applied thermal engineering, Appl. Therm. Eng 56 (2013) 45–53, 10.1016/j.applthermaleng.
2013.03.022.

[129]. Lee JH, Lee SH, Jang SP, Do temperature and nanoparticle size affect the thermal conductivity 
of alumina nanofluids? Appl. Phys. Lett 104 (2014) 10.1063/1.4872164, 161908–53.

[130]. Mehrali M, Sadeghinezhad E, Latibari ST, Mehrali M, Togun H, Zubir M, Metselaar HSC, 
Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene 
aqueous nanofluids, J. Mater. Sci 49 (2014) 7156–7171, 10.1007/s10853-014-8424-8.

[131]. Sundar LS, Ramana EV, Singh MK, Sousa AC, Thermal conductivity and viscosity of stabilized 
ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an 
experimental study, Int. Commun. Heat Mass Transf 56 (2014) 86–95, 10.1016/
j.icheatmasstransfer.2014.06.009.

[132]. Esfe MH, Saedodin S, Akbari M, Karimipour A, Afrand M, Wongwises S, Dahari M, 
Experimental investigation and development of new correlations for thermal conductivity of 
Cuo/EG-water nanofluid, Int. Commun. Heat Mass Transf 65 (2015) 47–51, 10.1016/
j.icheatmasstransfer.2015.04.006.

Radhakrishnan et al. Page 46

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[133]. Lee S, Choi SUS, Li S, Eastman JA, Measuring thermal conductivity of fluids containing oxide 
nanoparticles, J. Heat Transf 121 (1999) 8–89, 10.1115/1.2825978.

[134]. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H, Heat transfer and flow behaviour of aqueous 
suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. 
Heat Mass Transf 50 (11) (2007) 7–8, 10.1016/j.ijheatmasstransfer.2006.10.024.

[135]. Kim SH, Choi SR, Kim D, Thermal conductivity of metal-oxide nanofluids: particle size 
dependence and effect of laser irradiation, Journal of Heat and Mass Transfer 129 (3) (2006) 
298–307, 10.1115/1.2427071.

[136]. Chen G, Yu W, Singh D, Cookson D, Routbort J, Application of saxs to the study of particle-
size-dependent thermal conductivity in silica nanofluids, J. Nanoparticle Res 10 (7) (2008) 1109–
1114, 10.1007/s11051-007-9347-y.

[137]. Beck MP, Yuan Y, Warrier P, Teja AS, The effect of particle size on the thermal conductivity of 
alumina nanofluids, J. Nanoparticle Res 11 (5) (2009) 1129–1136, 10.1007/s11051-008-9500-2.

[138]. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG, The effect of alumina/water nanofluid particle 
size on thermal conductivity, Appl. Therm. Eng 30 (2010) 2213–2218, 10.1016/j.applthermaleng.
2010.05.036.

[139]. Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL, Particle size and interfacial 
effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids. 
nanotechnology, Nanotechnology 21 (21) (2010) 215703, 10.1088/0957-4484/21/21/215703. 
[PubMed: 20431197] 

[140]. Warrier P, Teja A, Effect of particle size on the thermal conductivity of nanofluids containing 
metallic nanoparticles, Nanoscale Research Letters 6 (1) (2011) 1–6, 10.1186/1556-276X-6-247.

[141]. Angayarkanni S, Sunny V, Philip J, Effect of nanoparticle size, morphology and concentration 
on specific heat capacity and thermal conductivity of nanofluids, Journal of Nanofluids 4 (3) 
(2015) 302–309, 10.1166/jon.2015.1167.

[142]. Lee D, Kim JW, Kim BG, A new parameter to control heat transport in nanofluids: surface 
charge state of the particle in suspension, J. Phys. Chem. B 110 (2006) 4323–4328, 10.1021/
jp057225m. [PubMed: 16509730] 

[143]. Timofeeva EV, Yu W, France DM, Singh D, Routbort JL, Base fluid and temperature effects on 
the heat transfer characteristics of sic in ethylene glycol/H2O and H2O nanofluids, J. Appl. Phys 
109 (2011), 014914, 10.1063/1.3524274.

[144]. Keblinski P, Phillpot SR, Choi SU, Eastman JA, Mechanisms of heat flow in suspensions of 
nanosized particles (nanofluids), Int. J. Heat Mass Transf 45 (2002) 855–863, 10.1016/
S0017-9310(01)00175-2.

[145]. Xuan Y, Li Q, Hu W, Aggregation structure and thermal conductivity of nanofluids, AIChE J 94 
(2003) 038–1043, 10.1002/aic.690490420.

[146]. Kumar DH, Patel HE, Kumar VR, Sundararajan T, Pradeep T, Das SK, Model for heat 
conduction in nanofluids, Phys. Rev. Lett 93 (2004) 144301, 10.1103/PhysRevLett.93.144301. 
[PubMed: 15524799] 

[147]. Jang SP, Choi SUS, Role of brownian motion in the enhanced thermal conductivity of 
nanofluids, Appl. Phys. Lett 93 (2004) 144301, 10.1063/1.1756684.

[148]. Evans W, Fish J, Keblinski P, Role of brownian motion hydrodynamics on nanofluid thermal 
conductivity, Appl. Phys. Lett 88 (2006), 093116, 10.1063/1.2179118.

[149]. Murshed SMS, Leong KC, Yang C, A combined model for the effective thermal conductivity of 
nanofluids, Appl. Therm. Eng 29 (2009) 2477–2483, 10.1016/j.applthermaleng.2008.12.018.

[150]. Yu W, Choi SU, The role of interfacial layers in the enhanced thermal conductivity of 
nanofluids: a renovated maxwell model, J. Nanoparticle Res 5 (2003) 167–177, 10.1023/A:
1024438603801.

[151]. Xue L, Keblinski P, Phillpot SR, Choi SUS, Eastman JA, Two regimes of thermal resistance at a 
liquid-solid interface, J. Chem. Phys 118 (2003) 337–339, 10.1063/1.1525806.

[152]. Xue L, Keblinski P, Phillpot SR, Choi SUS, Eastman JA, Effect of liquid layering at the liquid-
solid interface on thermal transport, Int. J. Heat Mass Transf 47 (2004) 4277–4284, 10.1016/
j.ijheatmasstransfer.2004.05.016.

Radhakrishnan et al. Page 47

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[153]. Xie H, Fujii M, Zhang X, Effect of interfacial nanolayer on the effective thermal conductivity of 
nanoparticle-fluid mixture, Int. J. Heat Mass Transf 48 (2005) 2926–2932, 10.1016/
j.ijheatmasstransfer.2004.10.040.

[154]. Xue Q, Xu WM, A model of thermal conductivity of nanofluids with interfacial shells, Mater. 
Chem. Phys 90 (2005) 298–301, 10.1016/j.matchemphys.2004.05.029.

[155]. Choi SUS, Zhang ZG, Keblinski P, Nanofluids in Encyclopedia of Nanoscience and 
Nanotechnology, vol. 6, American Scientific Publishers, CA, 2004, pp. 757–773.

[156]. Koo J, Kleinstreuer C, A new thermal conductivity model for nanofluids, J. Nanoparticle Res 6 
(2004) 577–588, 10.1007/s11051-004-3170-5.

[157]. Ren Y, Xie H, Cai A, Effective thermal conductivity of nanofluids containing spherical 
nanoparticles, J. Phys. D Appl. Phys 38 (2005) 3958, 10.1088/0022-3727/38/21/019.

[158]. Prasher R, Bhattacharya P, Phelan PE, Thermal conductivity of nanoscale colloidal solutions 
(nanofluids), Phys. Rev. Lett 94 (2005), 025901, 10.1103/PhysRevLett.94.025901. [PubMed: 
15698196] 

[159]. Prasher R, Bhattacharya P, Phelan PE, Effect of aggregation kinetics on the thermal conductivity 
of nanoscale colloidal solutions (nanofluid), J Nano Let 6 (2006b) 1529–1534, 10.1021/
nl060992s.

[160]. Krishnamurthy S, Bhattacharya P, Phelan PE, Prasher R, Enhanced mass transport in nanofluids, 
Nano Lett 6 (2006) 419–423, 10.1021/nl0522532. [PubMed: 16522034] 

[161]. Patel HE, Anoop K, Sundararajan T, Das SK, A micro-convection model for thermal 
conductivity of nanofluids, Pramana 65 (2006) 863–869, 10.1615/IHTC13.p8.240.

[162]. Xuan Y, Li Q, Zhang X, Fujii M, Stochastic thermal transport of nanoparticle suspensions, J. 
Appl. Phys 100 (2006), 043507, 10.1063/1.2245203.

[163]. Patel HE, Sundararajan T, Das SK, A cell model approach for thermal conductivity of 
nanofluids, J. Nanoparticle Res 10 (2008) 87–97, 10.1007/s11051-007-9236-4.

[164]. Shima P, Philip J, Raj B, A role of microconvection induced by brownian motion of 
nanoparticles in the enhanced thermal conductivity of stable nanofluids, J. Nanoparticle Res 94 
(2009) 223101, 10.1063/1.3147855.

[165]. Prasher R, Evans W, Meakin P, Fish J, Phelan PE, Keblinski P, Effect of aggregation on thermal 
conduction in colloidal nanofluids, Appl. Phys. Lett 89 (2006c) 14311, 10.1063/1.2360229.

[166]. Prasher R, Phelan PE, Bhattacharya P, Effect of aggregation kinetics on the thermal conductivity 
of nanoscale colloidal solutions (nanofluid), Nano Lett 6 (2006d) 1529–1534, 10.1021/
nl060992s. [PubMed: 16834444] 

[167]. Feng Y, Yu B, Xu P, Zhou M, The effective thermal conductivity of nanofluids based on the 
nanolayer and the aggregation of nanoparticles, J. Phys. D Appl. Phys 40 (2007) 3164, 
10.1088/0022-3727/40/10/020.

[168]. Evans W, Prasher W, Fish J, Meakin P, Phelan P, Keblinski P, Effect of aggregation and 
interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal 
nanofluids, Int. J. Heat Mass Transf 51 (2008) 1431–1438, 10.1016/j.ijheatmasstransfer.
2007.10.017.

[169]. Pang C, Jung JY, Kang YT, Effect of aggregation and interfacial thermal resistance on thermal 
conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transf 72 (2014) 
392–399, 10.1016/j.ijheatmasstransfer.2013.12.055.

[170]. Masuda H, Ebata A, Teramae K, Hishinuma N, Alteration of thermal conductivity and viscosity 
of liquid by dispersing ultra-fine particles. dispersion of Al2O3, SiO2 and TiO2 ultra-fine 
particles, Netsu Bussei 7 (1993) 227–233, 10.2963/jjtp.7.227.

[171]. Wang X, Xu XF, Choi SUS, Thermal conductivity of nanoparticle-fluid mixture, Thermophysics 
Heat Transfer 13 (1999) 474–480, 10.2514/2.6486.

[172]. Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, Melfi RJD, Novel thermal properties of 
nanostructured materials, Mater. Sci. Forum 312–314 (1999) 629–634, 10.4028/
www.scientific.net/MSF.312-314.629.

[173]. Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu QR, Thermal conductivity enhancement of 
suspensions containing nanosized alumina particles, J. Appl. Phys 91 (2002) 4568, 
10.1063/1.1454184.

Radhakrishnan et al. Page 48

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[174]. Heris SZ, Etemad SG, Esfahany AN, Experimental investigation of oxide nanofluids laminar 
flow convective heat transfer, Int. Commun. Heat Mass 33 (2006) 529–535, 10.1016/
j.icheatmasstransfer.2006.01.005.

[175]. Hong TK, Yang HS, Choi CJ, Study of the enhanced thermal conductivity of fe nanofluids, J. 
Appl. Phys 97 (2005), 064311, 10.1063/1.1861145.

[176]. Murshed SM, Leong KC, Yang C, Enhanced thermal conductivity of TiO2-water based 
nanofluids, Int. J. Therm. Sci 44 (2005) 367–373, 10.1016/j.ijthermalsci.2004.12.005.

[177]. Leong KC, Yang C, Murshed SMS, A model for the thermal conductivity of nanofluids - the 
effect of interfacial layer, J. Nanoparticle Res 8 (2006) 245, 10.1007/s11051-008-9535-4.

[178]. Xhu H, Zhang C, Liu S, Tang Y, Yin Y, Effects of nanoparticle clustering and alignment on 
thermal conductivities of Fe3O4 aqueous nanofluids, Appl. Phys. Lett 89 (2006), 023123, 
10.1063/1.2221905.

[179]. Zhang HY, Wu QC, Lin J, Chen J, Xu ZW, Thermal conductivity of polyethylene glycol 
nanofluids containing carbon coated metal nanoparticles, J. Appl. Phys 108 (2010) 124304, 
10.1063/1.3486488.

[180]. Kubo R, Statistical-mechanical theory of irreversible processes: I. general theory and simple 
applications to magnetic and conduction problems, J. Phys. Soc. Jpn 12 (1957) 570–586, 
10.1143/JPSJ.12.570.

[181]. Hoover WG, Computational Statistical Mechanics, Elsevier Science, New York, 1990.

[182]. Rapaport DC, The Art of Molecular Dynamics Simulation, second ed., Cambridge University 
Press, New York, 2004.

[183]. Sarkar S, Selvam RP, Molecular dynamics simulation of effective thermal conductivity and 
study of enhanced thermal transport mechanism in nanofluids, J. Appl. Phys 102 (2007), 074302, 
10.1063/1.2785009.

[184]. Murshed SM, Leong KC, Yang C, Enhanced thermal conductivity of TiO2-water based 
nanofluids, Int. J. Therm. Sci 44 (2006) 367–373, 10.1007/s11051-008-9535-4.

[185]. Bhattacharya P, Saha S, Yadav A, Phelan P, Prasher R, Brownian dynamics simulation to 
determine the effective thermal conductivity of nanofluids, J. Appl. Phys 95 (2004) 6492–6494, 
10.1063/1.1736319.

[186]. Eapen J, Li J, Yip S, Mechanism of thermal transport in dilute nanocolloids, Phys. Rev. Lett 98 
(2007a), 028302, 10.1103/PhysRevLett.98.028302. [PubMed: 17358654] 

[187]. Teng KL, Hsiao PY, Hung SW, Chieng CC, Liu MS, Lu MC, Enhanced thermal conductivity of 
nanofluids diagnosis by molecular dynamics simulations, J. Nanosci. Nanotechnol 8 (2008) 
3710. [PubMed: 19051928] 

[188]. Sankar N, Mathew N, Sobhan C, Molecular dynamics modeling of thermal conductivity 
enhancement in metal nanoparticle suspensions, Int. Commun. Heat Mass Transf 35 (2008) 867–
872, 10.1016/j.icheatmasstransfer.2008.03.006.

[189]. Sachdeva P, Kumar R, Effect of hydration layer and surface wettability in enhancing thermal 
conductivity of nanofluids, Appl. Phys. Lett 95 (2009) 223105, 10.1063/1.3270003.

[190]. Jain S, Patel HE, Das SK, Brownian dynamics simulation for the prediction of effective thermal 
conductivity of nanofluid, J. Nanoparticle Res 11 (2009) 767–773, 10.1007/s11051-008-9454-4.

[191]. Kang H, Zhang Y, Yang M, Li L, Molecular dynamics simulation on effect of nanoparticle 
aggregation on transport properties of a nanofluid, J. Nanotechnol. Eng. Med 3 (2012), 021001, 
10.1115/1.4007044.

[192]. Lee S, Saidur R, Sabri M, Min T, Effects of the particle size and temperature on the efficiency of 
nanofluids using molecular dynamic simulation, Numer. Heat Transf., Part A: Applications 69 
(2016) 996–1013, 10.1080/10407782.2015.1109369.

[193]. Muraleedharan MG, Sundaram DS, Herry A, Yang V, Thermal conductivity calculation of nano-
suspensions using green-kubo relations with reduced artificial correlations, J. Phys. Condens. 
Matter 29 (2017) 155302, 10.1088/1361-648X/aa5f08. [PubMed: 28170348] 

[194]. Xie H, Lee H, Youn W, Choi M, Nanofluids containing multiwalled carbon nanotubes and their 
enhanced thermal conductivities, J. Appl. Phys 94 (2003) 4967–4971, 10.1063/1.1613374.

Radhakrishnan et al. Page 49

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[195]. Babaei H, Keblinski P, Khodadadi JM, A proof for insignificant effect of brownian motion-
induced microconvection on thermal conductivity of nanofluids by utilizing molecular dynamics 
simulations, J. Appl. Phys 113 (2013) 1–5, 10.1063/1.1613374.

[196]. Cui W, Zhaojie S, Jianguo Y, Shaohua W, Minli B, Influence of nanoparticle properties on the 
thermal conductivity of nanofluids by molecular dynamics simulation, The Royal Society of 
Chemistry 4 (2014) 55580–55589, 10.1039/C4RA07736A.

[197]. Lee JW, Meade AJ, Barrera EV Jr., Templeton JA, Thermal transport mechanisms in carbon 
nanotube-nanofluids identified from molecular dynamics simulations, J. Heat Transf 137 (2015a) 
1–8, 10.1115/1.4029913.

[198]. Lee SL, Rahman S, Sabri MFM, Min TK, Molecular dynamic simulation on the thermal 
conductivity of nanofluids in aggregated and non- aggregated states, Numer. Heat Transf 68 
(2015b) 432–453, 10.1080/10407782.2014.986366.

[199]. Jia T, Zhang Y, Ma HB, Chen JK, Investigation of the characteristics of heat current in a 
nanofluid based on molecular dynamics simulation, Appl. Phys. A 108 (2012) 537–544, 10.1007/
s00339-012-7019-y.

[200]. Yu W, France DM, Routbort JL, Choi SUS, Review and comparison of nanofluid thermal 
conductivity and heat transfer enhancements, Heat Transf. Eng 29 (5) (2008) 43–46, 
10.1080/01457630701850851.

[201]. Lu WQ, Fan QM, Study for the particle’s scale effect on some thermophysical properties of 
nanofluids by a simplified molecular dynamics method, Eng. Anal. Bound. Elem 32 (2008) 282–
289, 10.1016/j.enganabound.2007.10.006.

[202]. Venerus DC, Kabadi MS, Lee S, Perez-Luna V, Study of thermal transport in nanoparticle 
suspensions using forced Rayleigh scattering, J. Appl. Phys 100 (2006), 062501, 
10.1063/1.2360378.

[203]. Zhang X, Gu H, Fujii M, Experimental study on the effective thermal conductivity and thermal 
diffusivity of nanofluid, Int. J. Thermophys 27 (2006a) 569–580, 10.1007/s10765-006-0054-1.

[204]. Zhang X, Gu H, Fujii M, Effective thermal conductivity and thermal diffusivity of nanofluids 
containing spherical and cylindrical nanoparticles, Exp. Therm. Fluid Sci 31 (2006b) 593–599, 
10.1016/j.expthermflusci.2006.06.009.

[205]. Beck MP, Sun T, Teja AS, The thermal conductivity of alumina nanoparticles dispersed in 
ethylene glycol, Fluid Phase Equilib 260 (2007) 275–278, 10.1016/j.fluid.2007.07.034.

[206]. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger 
JV, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and 
theory, Physical Review E 76 (2007), 061203, 10.1103/PhysRevE.76.061203.

[207]. Penas JRV, Zarate JMO, Khayet M, Measurement of the thermal conductivity of nanofluids by 
the multicurrent hot-wire method, J. Appl. Phys 104 (2008), 044314, 10.1063/1.2970086.

[208]. Singh D, Timofeeva E, Yu W, Routbort J, France D, Smith D, Lopez-Cepero JM, An 
investigation of silicon carbide-water nanofluid for heat transfer applications, J. Appl. Phys 105 
(2009), 064306, 10.1063/1.3082094.

[209]. Beck MP, Yuan Y, Warrier P, Teja AS, The thermal conductivity of alumina nanofluids in water, 
ethylene glycol, and ethylene glycol+ water mixtures, J. Nanoparticle Res 12 (2010) 1469–1477, 
10.1007/s11051-009-9716-9.

[210]. Pastoriza-Gallego MJ, Lugo L, Legido JL, Pineiro MM, Thermal conductivity and viscosity 
measurements of ethylene glycol-based Al2O3 nanofluids, Nanoscale Research Letters 6 (2011a) 
1–11, 10.1186/1556-276X-6-221.

[211]. Mohebbi A, prediction, Of specific heat and thermal conductivity of nanofluids by a combined 
equilibrium and non-equilibrium molecular dynamics simulation, J. Mol. Liq 175 (2012) 51–58, 
10.1016/j.molliq.2012.08.010.

[212]. Pak BC, Cho YI, Hydrodynamic and heat transfer study of dispersed fluids with submicron 
metallic oxide particles, Exp. Heat Transf 11 (1998) 151–170, 10.1080/08916159808946559.

[213]. Chen H, Ding Y, He Y, Tan C, Rheological behaviour of ethylene glycol based titania 
nanofluids, Chem. Phys. Lett 444 (2007a) 333–337, 10.1016/j.cplett.2007.07.046.

[214]. Chen H, Ding Y, He Y, Tan C, Rheological behaviour of nanofluids, New J. Phys 9 (2007b) 367, 
10.1088/1367-2630/9/10/367.

Radhakrishnan et al. Page 50

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[215]. Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa HA, Temperature and 
particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon, Int. J. 
Heat Fluid Flow 28 (2007) 1492–1596, 10.1016/j.ijheatfluidflow.2007.02.004.

[216]. Nguyen CT, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Mintsa HA, Viscosity data 
for Al2O3/water nanofluid hysteresis: is heat transfer enhancement using nanofluids reliable? Int. 
J. Therm. Sci 47 (2008) 103–111, 10.1016/j.mseb.2007.01.048.

[217]. Anoop K, Sundararajan T, Das SK, Effect of particle size on the convective heat transfer in 
nanofluid in the developing region, Int. J. Heat Mass Transf 52 (2009) 2189–2195, 10.1016/
j.ijheatmasstransfer.2007.11.063.

[218]. Chen H, Ding Y, Lapkin A, Fan X, Rheological behaviour of ethylene glycol-titanate nanotube 
nanofluids, J. Nanoparticle Res 11 (2009a) 1513–1520, 10.1007/s11051-009-9599-9.

[219]. Chen H, Witharana S, Jin Y, Kim C, Ding Y, Predicting thermal conductivity of liquid 
suspensions of nanoparticles (nanofluids) based on rheology, Particuology 7 (2009b) 151–157, 
10.1016/j.partic.2009.01.005.

[220]. Chandrasekar M, Suresh S, Chandra BA, Experimental investigations and theoretical 
determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Exp. Therm. 
Fluid Sci 34 (2010) 210–216, 10.1016/j.expthermflusci.2009.10.022.

[221]. Kole M, Dey T, Viscosity of alumina nanoparticles dispersed in car engine coolant, Exp. Therm. 
Fluid Sci 34 (2010) 677–683, 10.1016/j.expthermflusci.2009.12.009.

[222]. Einstein A, Investigation of the Brownian Theory of Movement, Dover Publication, New York, 
1956.

[223]. Batchelor G, The effect of brownian motion on the bulk stress in a suspension of spherical 
particles, J. Fluid Mech 83 (1977) 97–117, 10.1017/S0022112077001062.

[224]. Mahbubul I, Saidur R, Amalina M, Latest developments on the viscosity of nanofluids, Int. J. 
Heat Mass Transf 55 (2012) 874–885, 10.1016/j.ijheatmasstransfer.2011.10.021.

[225]. Das SK, Putra N, Roetzel W, Pool boiling characteristics of nanofluids, Int. J. Heat Mass Transf 
46 (2003b) 851–862, 10.1016/S0017-9310(02)00348-4.

[226]. Putra N, Roetzel W, Das SK, Natural convection of nanofluids, Heat Mass Transf 39 (2003) 
775–784, 10.1007/s00231-002-0382-z.

[227]. Rudyak VY, Krasnolutskii SL, Dependence of the viscosity of nanofluids on nanoparticle size 
and material, Phys. Lett. A 378 (2014) 1845–1849, 10.1016/j.physleta.2014.04.060.

[228]. Rudyak VY, Krasnolutskii SL, Simulation of the nanofluid viscosity coefficient by the 
molecular dynamics method, Tech. Phys 60 (2015) 798–804, 10.1134/S1063784215060237.

[229]. Lou Z, Yang M, Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids, 
Comput. Fluids 117 (2015) 17–23, 10.1016/j.compfluid.2015.05.006.

[230]. Bushehri MK, Mohebbi A, Rafsanjani HH, Prediction of thermal conductivity and viscosity of 
nanofluids by molecular dynamics simulation, J. Eng. Thermophys 25 (2016) 389–400, 10.1134/
S1810232816030085.

[231]. Chevalier J, Tillement O, Ayela F, Rheological properties of nanofluids flowing through 
microchannels, Appl. Phys. Lett 91 (2007) 233103, 10.1063/1.2821117.

[232]. Pastoriza-Gallego MJ, Casanova C, Legido JL, Pineiro MM, Cuo in water nanofluid: influence 
of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilib 
300 (2011b) 188–196, 10.1016/j.fluid.2010.10.015.

[233]. Prasher R, Song D, Wang J, Phelan P, Measurements of nanofluid viscosity and its implications 
for thermal applications, Appl. Phys. Lett 89 (2006e) 133108, 10.1063/1.2356113.

[234]. Rudyak VY, Belkin A, Egorov V, On the effective viscosity of nanosuspensions, Tech. Phys 54 
(2009) 1102–1109, 10.1134/S1063784209080039.

[235]. Namburu PK, Kulkarni DP, Misra D, Das DK, Viscosity of copper oxide nanoparticles dispersed 
in ethylene glycol and water mixture, Exp. Therm. Fluid Sci 32 (2007) 397–402, 10.1016/
j.expthermflusci.2007.05.001.

[236]. Murshed SMS, Santos FJV, de Castro CAN, Rheology of nanofluids containing TiO2 and SiO2 
nanoparticles, in: Proc. 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, 
and Thermodynamics, 2013.

Radhakrishnan et al. Page 51

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[237]. Loya A, Ren G, Molecular dynamics simulation study of rheological properties of CuO-water 
nanofluid, J. Mater. Sci 50 (2015) 4075–4082, 10.1007/s10853-015-8963-7.

[238]. Rubio FJ, Ayucar-Rubi MF, Velazquez-Navarro JF, Galindo-Rosales FJ, Intrinsic viscosity of 
SiO2, Al2O3 and TiO2 aqueous suspensions, J. Colloid Interface Sci 298 (2006) 967–972, 
10.1016/j.jcis.2006.01.009. [PubMed: 16457835] 

[239]. Chen H, Ding Y, Heat transfer and rheological behaviour of nanofluids; a review, in: Advances 
in Transport Phenomena, Springer, Berlin, Heidelberg, 2009, pp. 4135–4177, 
10.1007/978-3-642-02690-43.

[240]. Pastoriza-Gallego MJ, Casanova C, Paramo R, Barbes B, Legido JL, Pineiro MM, A study on 
stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid, J. 
Appl. Phys 106 (2009) 64301, 10.1063/1.3187732.

[241]. Zhou SQ, Ni R, Funfschilling D, Viscosity affected by nanoparticle aggregation in Al2O3-water 
nanofluids, J. Appl. Phys 6 (2011) 248, 10.1186/1556-276X-6-248.

[242]. Srivastava S, Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids, Appl. 
Nanosci 2 (2012) 325–331, 10.1007/s13204-012-0082-z.

[243]. Utomo AT, Poth H, Robbins PT, Pacek AW, Experimental and theoretical studies of thermal 
conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids, Int. J. Heat 
Mass Transf 55 (2012) 7772–7781, 10.1016/j.ijheatmasstransfer.2012.08.003.

[244]. Pang C, Lee JW, Kang YT, Enhanced thermal conductivity of nanofluids by nano-convection 
and percolation network, Heat Mass Transf 52 (2016) 511–520, 10.1007/s00231-015-1569-4.

[245]. Hong K, Hong TK, Yang HS, Thermal conductivity of Fe nanofluids depending on the cluster 
size of nanoparticles, Appl. Phys. Lett 88 (2006), 031901, 10.1063/1.2166199.

[246]. Karthikeyan N, Philip J, Raj B, Effect of clustering on the thermal conductivity of nanofluids, 
Mater. Chem. Phys 109 (2008) 50–55, 10.1016/j.matchemphys.2007.10.029.

[247]. Eapen J, Li J, Yip S, Beyond the maxwell limit: thermal conduction in nanofluids with 
percolating fluid structures, Phys. Rev. E 76 (2007b), 062501, 10.1103/PhysRevE.76.062501.

[248]. Philip J, Shima P, Raj B, Enhancement of thermal conductivity in magnetite based nanofluid 
due to chainlike structures, Appl. Phys. Lett 91 (2007) 203108, 10.1063/1.2812699.

[249]. Gharagozloo PE, Eaton JK, Goodson KE, Diffusion, aggregation, and the thermal conductivity 
of nanofluids, Appl. Phys. Lett 93 (2008) 103110, 10.1063/1.2977868.

[250]. Philip J, Shima P, Raj B, Evidence for enhanced thermal conduction through percolating 
structures in nanofluids, Nanotechnology 19 (2008) 305706, 10.1088/0957-4484/19/30/305706. 
[PubMed: 21828773] 

[251]. Shalkevich N, Shalkevich A, Burgi T, Thermal conductivity of concentrated colloids in different 
states, J. Phys. Chem. C 114 (2009) 9568–9572, 10.1021/jp910722j.

[252]. Gao J, Zheng R, Ohtani H, Zhu D, Chen G, Experimental investigation of heat conduction 
mechanisms in nanofluids, Nano Lett 9 (2009) 4128–4132, 10.1021/nl902358m. [PubMed: 
19995084] 

[253]. Hong J, Kim D, Effects of aggregation on the thermal conductivity of alumina/water nanofluids, 
Thermochim. Acta 542 (2012) 28–32, 10.1016/j.tca.2011.12.019.

[254]. Vladkov M, Barrat JL, Modeling thermal conductivity and collective effects in a simple 
nanofluid, J. Comput. Theor. Nanosci 5 (2008) 187–193, 10.1166/jctn.2008.2459.

[255]. Shima P, Philip J, Raj B, Influence of aggregation on thermal conductivity in stable and unstable 
nanofluids, Appl. Phys. Lett 97 (2010) 153113, 10.1063/1.3497280.

[256]. Angayarkanni S, Philip J, Effect of nanoparticles aggregation on thermal and electrical 
conductivities of nanofluids, Journal of Nanofluids 3 (2014) 17–25, 10.1166/jon.2014.1083.

[257]. Uma B, Swaminathan TN, Radhakrishnan R, Eckmann DM, Ayyaswamy PS, Nanoparticle 
Brownian motion and hydrodynamic interactions in the presence of flow fields, Phys. Fluids 23 
(7) (2011a), 073602.

[258]. Ramakrishnan N, Wang Y, Eckmann DM, Ayyaswamy PS, Radhakrishnan R, Motion of a nano-
spheroid in a cylindrical vessel flow: brownian and hydrodynamic interactions, J. Fluid Mech 821 
(6 2017) 117–152. [PubMed: 29109590] 

Radhakrishnan et al. Page 52

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[259]. Einstein A, On the molecular-kinetic theory of the movement by heat of particles suspended in 
liquids at rest, Ann. Phys 17 (8) (1905) 549–560, 10.1002/andp.19053220806. ISSN 1521–3889.

[260]. Zwanzig R, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.

[261]. Heyes DM, Nuevo MJ, Morales JJ, Branka AC, Translational and rotational diffusion of model 
nanocolloidal dispersions studied by molecular dynamics simulations, J. Phys. Condens. Matter 
10 (45) (1998) 10159–10178, 10.1088/0953-8984/10/45/005.

[262]. Gotoh T, Kaneda Y, Effect of an infinite plane wall on the motion of a spherical brownian 
particle, J. Chem. Phys 76 (1982) 3193–3197, 10.1063/1.443364.

[263]. Pagonabarraga I, Hagen MHJ, Lowe CP, Frenkel D, Algebraic decay of velocity fluctuations 
near a wall, Phys. Rev. E 58 (1998a) 7288–7295, 10.1103/PhysRevE.58.7288.

[264]. Hagen MHJ, Pagonabarraga I, Lowe CP, Frenkel D, Algebraic decay of velocity fluctuations in 
a confined fluid, Phys. Rev. Lett 78 (1997) 3785–3788, 10.1103/PhysRevLett.78.3785.

[265]. Felderhof BU, Effect of the wall on the velocity autocorrelation function and longtime tail of 
brownian motion, J. Phys. Chem. B 109 (2005) 21406–21412, 10.1063/1.2084948. [PubMed: 
16853777] 

[266]. Franosch T, Jeney S, Persistent correlation of constrained colloidal motion, Phys. Rev. E 79 
(2009), 031402, 10.1103/PhysRevE.79.031402.

[267]. Vitoshkin H, Yu H-Y, Eckmann DM, Ayyaswamy PS, Radhakrishnan R, Nanoparticle stochastic 
motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall, Phys. 
Rev. Fluids 1 (5) (2016), 054104, 10.1103/PhysRevFluids.1.054104. [PubMed: 27830213] 

[268]. Español P, Zúñiga I, On the definition of discrete hydrodynamic variables, J. Chem. Phys 131 
(2009) 164106, 10.1063/1.3247586. [PubMed: 19894926] 

[269]. Donev A, Vanden-Eijnden E, Garcia A, Bell J, On the accuracy of finite-volume schemes for 
fluctuating hydrodynamics, Commun. Appl. Math. Comput. Sci 5 (2) (2010b) 149–197.

[270]. Iwashita T, Nakayama Y, Yamamoto R, Velocity autocorrelation function of fluctuating particles 
in incompressible fluids, Prog. Theor. Phys 178 (2009) 86–91, 10.1143/PTPS.178.86.

[271]. Iwashita T, Nakayama Y, Yamamoto R, A numerical model for Brownian particles fluctuating in 
incompressible fluids, J. Phys. Soc. Jpn 77 (7) (2008a), 074007, 10.1143/JPSJ.77.074007.

[272]. Atzberger PJ, Stochastic Eulerian Lagrangian methods for fluid-structure interactions with 
thermal fluctuations, J. Comput. Phys 230 (8) (2011) 2821–2837, 10.1016/j.jcp.2010.12.028.

[273]. Ermak DL, McCammon JA, Brownian dynamics with hydrodynamic interactions, J. Chem. 
Phys 69 (4) (1978) 1352–1360, 10.1063/1.436761.

[274]. Brady JF, Bossis G, Stokesian dynamics, Annu. Rev. Fluid Mech 20 (1) (1988) 111–157, 
10.1146/annurev.fl.20.010188.000551.

[275]. Foss DR, Brady JF, Structure, diffusion and rheology of Brownian suspensions by Stokesian 
dynamics simulation, J. Fluid Mech 407 (2000) 167–200, 10.1017/S0022112099007557.

[276]. Banchio AJ, Brady JF, Accelerated Stokesian dynamics: brownian motion, J. Chem. Phys 118 
(22) (2003) 10323–10332, 10.1063/1.1571819.

[277]. Iwashita T, Yamamoto R, Short-time motion of Brownian particles in a shear flow, Phys. Rev. E 
79 (3) (3 2009), 031401, 10.1103/PhysRevE.79.031401.

[278]. Uma B, Swaminathan TN, Ayyaswamy PS, Eckmann DM, Radhakrishnan R, Generalized 
Langevin dynamics of a nanoparticle using a finite element approach: thermostating with 
correlated noise, J. Chem. Phys 135 (11) (2011b) 114104, 10.1063/1.3635776. [PubMed: 
21950847] 

[279]. Uma B, Eckmann DM, Ayyaswamy PS, Radhakrishnan R, A hybrid formalism combining 
fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle 
thermal motion in an incompressible fluid medium, Mol. Phys 110 (11–12) (2012) 1057–1067, 
10.1080/00268976.2012.663510. [PubMed: 22865935] 

[280]. Kubo R, The fluctuation-dissipation theorem, Rep. Prog. Phys 29 (1) (1966b) 255–284, 
10.1088/0034-4885/29/1/306.

[281]. Pagonabarraga I, Hagen MHJ, Lowe CP, Frenkel D, Algebraic decay of velocity fluctuations 
near a wall, Phys. Rev. E 58 (6) (1998b) 7288–7295, 10.1103/PhysRevE.58.7288.

Radhakrishnan et al. Page 53

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[282]. Iwashita T, Nakayama Y, Yamamoto R, A numerical model for brownian particles fluctuating in 
incompressible fluids, J. Phys. Soc. Jpn (7) (2008b), 074007, 10.1143/JPSJ.77.074007.

[283]. Yu H-Y, Eckmann DM, Ayyaswamy PS, Radhakrishnan R, Composite generalized Langevin 
equation for Brownian motion in different hydrodynamic and adhesion regimes, Phys. Rev. E 91 
(5) (2015), 052303, 10.1063/1.3635776.

[284]. Chandler D, Introduction to Modern Statistical Mechanics, Oxford University Press, New York, 
1987b.

[285]. Shang BZ, Voulgarakis NK, Chu J-W, Fluctuating hydrodynamics for multiscale modeling and 
simulation: energy and heat transfer in molecular fluids, J. Chem. Phys 137 (4) (2012), 044117, 
10.1063/1.4738763. URL, https://doi.org/10.1063/1.4738763. [PubMed: 22852607] 

[286]. Voulgarakis NK, Satish S, Chu J-W, Modeling the nanoscale viscoelasticity of fluids by 
bridging non-markovian fluctuating hydrodynamics and molecular dynamics simulations, J. 
Chem. Phys 131 (23) (2009b) 234115, 10.1063/1.3273210. URL, https://doi.org/
10.1063/1.3273210. [PubMed: 20025322] 

[287]. Voulgarakis NK, Satish S, Chu J-W, Modelling the viscoelasticity and thermal fluctuations of 
fluids at the nanoscale, Mol. Simul 36 (7–8) (2010) 552–559, 10.1080/08927022.2010.486832. 
URL, 10.1080/08927022.2010.486832.

[288]. Kou S, Xie XS, Generalized Langevin equation with fractional Gaussian noise: Sub-diffusion 
within a single protein molecule, Phys. Rev. Lett 93 (18) (2004) 180603, 10.1103/PhysRevLett.
93.180603. [PubMed: 15525146] 

[289]. Min W, Luo G, Cherayil BJ, Kou SC, Xie XS, Observation of a power-law memory kernel for 
fluctuations within a single protein molecule, Phys. Rev. Lett 94 (19) (2005) 198302, 10.1103/
PhysRevLett.94.198302. [PubMed: 16090221] 

[290]. Yu HY, Jabeen Z, Eckmann DM, Ayyaswamy PS, Radhakrishnan R, Microstructure of flow-
driven suspension of hardspheres in cylindrical confinement: a dynamical density functional 
theory and Monte Carlo study, Langmuir 33 (42) (2017) 11332–11344, 10.1021/acs.langmuir.
7b01860. URL, http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b01860. [PubMed: 28810736] 

[291]. Jabeen Z, Yu HY, Eckmann DM, Ayyaswamy PS, Radhakrishnan R, Rheology of colloidal 
suspensions in confined flow: treatment of hydrodynamic interactions in particle-based 
simulations inspired by dynamical density functional theory, Phys. Rev. E 98 (2018), 042602, 
10.1103/PhysRevE.98.042602. [PubMed: 30687804] 

[292]. Wakiya A, Slow motions of a viscous fluid around two spheres, J. Phys. Soc. Japan 22 (4) 
(1967) 1101–1109, 10.1143/JPSJ.22.1101. ISSN 0031–9015, 1347–4073.

[293]. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R, Nanocarriers as an emerging 
platform for cancer therapy, Nat. Nanotechnol 2 (12) (12 2007) 751–760. [PubMed: 18654426] 

[294]. Muzykantov V, Targeted drug delivery to endothelial adhesion molecules, ISRN Vascular 
Medicine 2013 (916254) (1 2013) 1–27.

[295]. Goldberg M, Mahon K, Anderson D, Combinatorial and rational approaches to polymer 
synthesis for medicine, Adv. Drug Deliv. Rev 60 (9) (2008) 971–978. [PubMed: 18423930] 

[296]. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Tyler J, Anderson 
DG, Treating metastatic cancer with nanotechnology, Nat. Rev. Cancer 12 (1) (1 2012) 39–50.

[297]. Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, Karp JM, Kataoka K, 
Mirkin CA, Petrosko SH, Shi J, Stevens MM, Sun S, Teoh S, Venkatraman SS, Xia Y, Wang S, 
Gu Z, Xu C, Accelerating the translation of nanomaterials in biomedicine, ACS Nano 9 (7) (7 
2015) 6644–6654. [PubMed: 26115196] 

[298]. Mitragotri S, Burke PA, Langer R, Overcoming the challenges in administering 
biopharmaceuticals: formulation and delivery strategies, Nat. Rev. Drug Discov 13 (9) (8 2014) 
655–672. [PubMed: 25103255] 

[299]. Brenner JS, et al., Mechanisms that determine nanocarrier targeting to healthy versus inflamed 
lung regions, Nanomedicine 13 (4) (2017) 1495–1506. [PubMed: 28065731] 

[300]. Ayyaswamy PS, Muzykantov V, Eckmann DM, Radhakrishnan R, Nanocarrier hydrodynamics 
and binding in targeted drug delivery: challenges in numerical modeling and experimental 
validation, J. Nanotechnol. Eng. Med 4 (1) (2013) 101011–1010115, 10.1115/1.4024004. ISSN 
1949–2944 (Print). URL, http://www.ncbi.nlm.nih.gov/pubmed/23917383. [PubMed: 23917383] 

Radhakrishnan et al. Page 54

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b01860
http://www.ncbi.nlm.nih.gov/pubmed/23917383


[301]. Ding HM, Ma YQ, Theoretical and computational investigations of nanoparticle-biomembrane 
interactions in cellular delivery, Small 11 (2015) 1055–1071. [PubMed: 25387905] 

[302]. Vácha R, Martinez-Veracoechea FJ, Frenkel D, Intracellular release of endocytosed 
nanoparticles upon a change of ligand-receptor interaction, ACS Nano 6 (12) (12 2012) 10598–
10605. [PubMed: 23148579] 

[303]. Martinez-Veracoechea FJ, Frenkel D, Designing super selectivity in multivalent nanoparticle 
binding, Proc. Natl. Acad. Sci. U.S.A 108 (27) (7 2011) 10963–10968. [PubMed: 21690358] 

[304]. V Dubacheva G, Curk T, Auzély-Velty R, Frenkel D, Richter RP, Designing multivalent probes 
for tunable superselective targeting, Proc. Natl. Acad. Sci. U.S.A 112 (18) (5 2015) 5579–5584. 
[PubMed: 25901321] 

[305]. Gonzalez-Rodriguez D, I Barakat A, Dynamics of receptor-mediated nanoparticle 
internalization into endothelial cells, PLoS One 10 (4) (4 2015), e0122097. [PubMed: 25901833] 

[306]. Liu J, Weller GER, Zern B, Ayyaswamy PS, Eckmann DM, Muzykantov VR, Radhakrishnan R, 
Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, 
and atomic force microscopy experiments, Proc. Natl. Acad. Sci 107 (38) (2010) 16530–16535, 
10.1073/pnas.1006611107. URL, http://www.pnas.org/content/107/38/16530.abstract. [PubMed: 
20823256] 

[307]. Liu J, Agrawal NJ, Calderon A, Ayyaswamy PS, Eckmann DM, Radhakrishnan R, Multivalent 
binding of nanocarrier to endothelial cells under shear flow, Biophys. J 101 (2) (7 2011) 319–
326. [PubMed: 21767483] 

[308]. Ramakrishnan N, Tourdot RW, Eckmann DM, Ayyaswamy PS, Muzykantov V, Radhakrishnan 
R, Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of 
protein expression and mechanical factors, Journal of Royal Society Open Science 3 (6) (2016b) 
160260, 10.1098/rsos.160260. [PubMed: 27429783] 

[309]. McKenzie M, Ha SM, Rammohan A, Radhakrishnan R, Ramakrishnan N, Multivalent binding 
of a ligand-coated particle: role of shape, size, and ligand heterogeneity, Biophys. J 114 (8) 
(2018) 1830–1840. [PubMed: 29694862] 

[310]. Zern BJ, Chacko A-M, Liu J, Greineder CF, Blankemeyer ER, Radhakrishnan R, Muzykantov 
V, Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET 
detection of pulmonary inflammation, ACS Nano 7 (3) (3 2013) 2461–2469. [PubMed: 
23383962] 

[311]. Tan J, Thomas A, Liu Y, Influence of red blood cells on nanoparticle targeted delivery in 
microcirculation, Soft Matter 8 (2012) 1934–1946.

[312]. Muller K, Fedosov DA, Gompper G, Margination of micro- and nano-particles in blood flow 
and its effect on drug delivery, Sci. Rep 4 (4871) (2014) 1–8.

[313]. Fish MB, Fromen CA, Lopez-Cazares G, Golinski AW, Scott TF, Adili R, Holinstat M, Eniola-
Adefeso O, Exploring deformable particles in vascular-targeted drug delivery: Softer is only 
sometimes better, Biomaterials 124 (2017) 169–179. [PubMed: 28209527] 

[314]. Rosensweig RE, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater 
252 (2002) 370, 10.1016/S0304-8853(02)00706-0.

[315]. Li CH, Hodgins P, Peterson GP, Experimental study of fundamental mechanisms in inductive 
heating of ferromagnetic nanoparticles suspension (Fe3O4 iron oxide ferrofluid), J. Appl. Phys 
110 (2011), 054303, 10.1063/1.3626049.

[316]. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB, Selective inductive 
heating of lymph nodes, Ann. Surg 146 (1957) 596, 10.1097/00000658-195710000-00007. 
[PubMed: 13470751] 

[317]. Wust P, Gneveckow U, Johannsen M, Böhmer D, Henkel T, Kahmann F, Sehouli J, Felix R, 
Ricke J, Jordan A, Magnetic nanoparticles for interstitial thermotherapy - feasibility, tolerance 
and achieved temperatures, Int. J. Hyperth 22 (2006) 673, 10.1080/02656730601106037.

[318]. O’Handley RC, Modern Magnetic Materials: Principles and Applications, first ed., John Wiley 
and Sons, Inc., New York, 2000.

[319]. Deatsch AE, Evans BA, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. 
Magn. Mater 354 (2014) 163–172, 10.1016/j.jmmm.2013.11.006.

Radhakrishnan et al. Page 55

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.pnas.org/content/107/38/16530.abstract


[320]. Hergt R, Dutz S, Magnetic particle hyperthermia-biophysical limitations of a visionary tumour 
therapy, J. Magn. Magn. Mater 311 (2007) 187–192, 10.1016/j.jmmm.2006.10.1156.

[321]. Etheridge ML, Bischof JC, Optimizing magnetic nanoparticle based thermal therapies within 
the physical limits of heating, Ann. Biomed. Eng 41 (2013) 78–88, 10.1007/s10439-012-0633-1. 
[PubMed: 22855120] 

[322]. Cantillon-Murphy P, Wald LL, Adalsteinsson E, Zahn M, Heating in the MRI environment due 
to superparamagnetic fluid suspensions in a rotating magnetic field, J. Magn. Magn. Mater 322 
(2010) 727–733, 10.1016/j.jmmm.2009.10.050. [PubMed: 20161608] 

[323]. Tsafnat N, Tsafnat G, Lambert TD, Jones SK, Modelling heating of liver tumors with 
heterogeneous magnetic microsphere deposition, Phys. Med. Biol 50 (2005) 2937–2953, 
10.1088/0031-9155/50/12/014. [PubMed: 15930612] 

[324]. Staruch RM, Ganguly M, Tannock IF, Hynynen K, Chopra R, Enhanced drug delivery in rabbit 
VX2 tumours using thermosensitive liposomes and MRI controlled focused ultrasound 
hyperthermia, Int. J. Hyperth 28 (2012) 776–787, 10.3109/02656736.2012.736670.

[325]. Cressman ENK, Geeslin MG, Shenoi MM, Hennings LJ, Zhang Y, Iaizzo PA, Bischof JC, 
Concentration and volume effects in thermochemical ablation in vivo: results in a porcine model, 
Int. J. Hyperth 28 (2012) 113–121, 10.3109/02656736.2011.644621.

[326]. Pennes HH, Analysis of tissue and arterial blood temperatures in resting human forearm, J. 
Appl. Physiol 1 (1948) 93–122, 10.1152/jappl.1948.1.2.93. [PubMed: 18887578] 

[327]. Arkin H, Xu L, Holmes KR, Recent developments in modeling heat transfer in blood perfused 
tissues, IEEE Trans. Biomed. Eng 41 (1994) 97–107, 10.1109/10.284920. [PubMed: 8026856] 

[328]. Bagaria HG, Johnson DT, Transient solution to the bioheat equation and optimization for 
magnetic fluid hyperthermia treatment, Int. J. Hyperth 21 (2005) 57, 
10.1080/02656730410001726956.

[329]. Bagaria HG, Johnson DT, Transient solution to the bioheat equation and optimization for 
magnetic fluid hyperthermia treatment, Int. J. Hyperth 21 (2009) 57, 
10.1080/02656730410001726956.

[330]. Serantes D, Baldomir D, Martinez-Boubeta C, Simeonidis K, Angelakeris M, Natividad E, 
Castro M, Mediano A, Chen DX, Sanchez A, Balcells LI, Martínez B, Influence of dipolar 
interactions on hyperthermia properties of ferromagnetic particles, J. Appl. Phys 108 (2010), 
073918, 10.1063/1.3488881.

[331]. Kaddi CD, Phan JH, Wang MD, Computational nanomedicine: modeling of nanoparticle-
mediated hyperthermia cancer therapy, Nanomedicine 8 (2013) 1323–1333, 10.2217/nnm.13.117. 
[PubMed: 23914967] 

[332]. Suriyanto EYN, Kumar SD, Physical mechanism and modeling of heat generation and transfer 
in magnetic fluid hyperthermia through néelian and brownian relaxation: a review, Biomed. Eng. 
Online 16 (2017) 36, 10.1186/s12938-017-0327-x. [PubMed: 28335790] 

[333]. Surry KJM, Austin HJB, Fenster A, Peters TM, Poly(vinyl alcohol) cryogel phantoms for use in 
ultrasound and MR imaging, Phys. Med. Biol 49 (2004) 5529–5546, 
10.1088/0031-9155/49/24/009. [PubMed: 15724540] 

[334]. Lazebnik M, Madsen EL, Frank GR, Hagness SC, Tissue-mimicking phantom materials for 
narrowband and ultrawideband microwave applications, Phys. Med. Biol 50 (2005) 4245–4258, 
10.1088/0031-9155/50/18/001. [PubMed: 16148391] 

[335]. Divkovic GW, Liebler M, Braun K, Dreyer T, Huber PE, Jenne JW, Thermal properties and 
changes of acoustic parameters in an egg white phantom during heating and coagulation by high 
intensity focused ultrasound, Ultrasound Med. Biol 33 (2007) 981–986, 10.1016/j.ultrasmedbio.
2006.11.021. [PubMed: 17434665] 

[336]. Yella A, Li BQ, Mohanty P, Liu C, Measurement of temperature distribution and evolution 
during surface plasma resonance heating of gold nanoshells-embedded phantom tissue, Exp. 
Therm. Fluid Sci 47 (2013) 34–39, 10.1016/j.ultrasmedbio.2006.11.021.

[337]. Searles DJ, Evans DJ, The fluctuation theorem and green-kubo relations, J. Chem. Phys 112 
(22) (2000) 9727–9735, 10.1063/1.481610. URL, https://doi.org/10.1063/1.481610.

[338]. Ratanapisit J, Isbister DJ, Ely J, Transport properties of fluids: Symplectic integrators and their 
usefulness, Fluid Phase Equilib 183–184 (07 2001) 351–361, 10.1016/S0378-3812(01)00447-2.

Radhakrishnan et al. Page 56

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[339]. Henry AS, Chen G, Spectral phonon transport properties of silicon based on molecular 
dynamics simulations and lattice dynamics, J. Comput. Theor. Nanosci 5 (2) (2008) 141–152, 
10.1166/jctn.2008.2454. URL, https://www.ingentaconnect.com/content/asp/jctn/
2008/00000005/00000002/art00002.

Radhakrishnan et al. Page 57

Adv Heat Transf. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ingentaconnect.com/content/asp/jctn/2008/00000005/00000002/art00002
https://www.ingentaconnect.com/content/asp/jctn/2008/00000005/00000002/art00002


Fig. 1. 
Computational models in micro, meso and macroscale for solution of nanofluids flows.
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Fig. 2. 
Annual Scopus publications on nanofluids.
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Fig. 3. 
Thermal conductivity comparison of common polymers, liquids, and solids, redrawn from 

Ref. [115].
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Fig. 4. 
Experimental measurements on the viscosity enhancement of nanofluids based on the 

particle volume fraction; redrawn from Ref. [224].
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Fig. 5. 
Schematic of aggregated nanoparticles consisting of the backbone and dead-ends with the 

fluid [169].
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Fig. 6. 
The effect of confinement and curvature of the cylindrical wall on the translational velocity 

of a 500 nm-diameter particle in a stationary fluid (calculated by the deterministic method), 

located in the center of the vessel with (a) parallel (h − a) /a > 1 (axial) and (b) perpendicular 

(h − a) /a > 1 (radial) directions; near wall in a direction (c) parallel (h − a) /a = 1 and (d) 

perpendicular (h − a) /a = 1 to the wall, and in the lubrication zone (e) parallel (h − a) /a < 1 

and (f) perpendicular (h− a) /a < 1. (see section A1) and B⊥ = h2/a2 − 5/9 /4 π. The inset in 

each panel shows the corresponding comparison between τD and the time at which the 

second exponential decay appears C1
trτD. The coefficient C1

tr is approximately 0.025, 0.017, 

and 0.019 for bulk, near-wall, and lubrication regimes, respectively. These coefficients have 

been determined by plotting the axes in a semi-log scale and then fitting the data.
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Fig. 7. 
(A) Normalized VACF of a non-neutrally-buoyant Brownian particle near an infinite plane 

wall in an incompressible, quiescent fluid medium for different separations from the wall. 

The symbols are the corresponding results from Ref. [266] and the lines are the predictions 

from the composite GLE simulations reported by Ref. [283]; here ρp /ρ = 2.25 with ρp being 

the density of the particle. (B) Normalized VACF of a neutrally-buoyant Brownian particle 

in the lubrication regime with h /a = 1.14 in the presence of a harmonic spring (representing 

strong adhesion with k = 1 N/m) and comparison with DNS and FHD simulations.
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