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LONGITUDINALLY INVARIANT ELASTIC STRUCTURES ANALYZED 
BY THE MESHLESS MLPG METHOD USING 2.5D APPROACH 
 
P. Stanak 1, A. Tadeu 2, J. Sladek 1, V. Sladek 1 
 

This paper presents a general 2.5D meshless MLPG methodology for the computation of the 
elastic response of longitudinally invariant structure subjected to the incident wave field.                     
A numerical frequency domain model is established using the Fourier transform in time and 
longitudinal coordinate domains. This allows for significant reduction of computational effort 
required. In the MLPG method the Moving-Least Squares (MLS) scheme is employed for the 
approximation of the spatial variation of displacement field. No finite elements are required for the 
approximation or integration of unknowns. A small circular subdomain is introduced around each 
nodal point in the analyzed domain. Local integral equations derived from the governing equations 
are specified on these subdomains. Continuously non-homogeneous material properties are 
varying in the cross-section of the analyzed structure. A simple patch test is introduced to assess 
the accuracy and the convergence of developed numerical model. At the end of the paper, 
numerical examples illustrate the applicability of the proposed numerical formulation. 
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1. Introduction 

The development of solution techniques for elastic wave propagation has been object of 
research over the years because the topic has a vast field of engineering applications in the field 
of civil and environmental engineering together with geophysical engineering or non-destructive 
analysis of materials and structures. Several reference works (Achenbach, 1973; Bedford and 
Drumheller, 1994) give a clear introduction to the topic of elastic wave propagation including 
nonhomogeneous solids (Berezovski et al., 2009).  

The calculation of 3D elastic response of longitudinally invariant structures may become 
computationally demanding, unless more efficient techniques, such as 2.5D dimensional 
approach, are applied (Tadeu and Kausel, 2000). In case of 2.5D approach only the cross-
section of the structure is discretized and Fourier series expansion is used to retrieve the results 
in the longitudinal direction. Longitudinally invariant structures are considered to be roads, 
railway tracks, tunnels, pipelines, dams or alluvial valleys (Francois et al., 2010).  A wide range 
of tools is currently available for the analysis of elastic wave propagation in solid media 
including analytical techniques (Carcione et al., 1988) and numerical methods such as boundary 
element method (BEM) (Aliabadi, 2002; Tadeu, Kausel and Vrettos, 1996) or finite element 
method (FEM) (Zhang and Zhao, 1987). Tadeu and Antonio (2001) used 2.5D BEM approach 
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for the layered elastic and acoustic domains. 2.5D FEM was applied by Hung et al. (2013) for 
the analysis of soil vibrations along the railway due to moving trains. Sheng et al. (2006) 
proposed a wave-number finite/boundary element method for predicting the vibration spectra 
for circular tunnel structures. Even though the FEM and BEM have encountered wide 
acceptance and success on a commercial market, they possess some drawbacks such as 
unavailability of fundamental solution for certain problems at BEM or locking of elements, 
stress discontinuity across elements or costly remeshing in large problems with moving 
boundaries related to FEM. 

In recent time, a class of numerical approaches known as meshless methods has attracted 
considerable attention due to its potential to solve the above-mentioned. Among many meshless 
or meshfree methods available, the meshless local Petrov-Galerkin (MLPG) method (Atluri et 
al., 2000; Atluri, 2004) has received considerable scientific attention. MLPG is a truly meshless 
method, thus no elements are required neither for approximation nor for integration of 
unknowns. Meshless methods are also advantageous by their ability to efficiently treat problems 
with continuously non-homogeneous domains, since the unknown field quantities are 
approximated only in terms of nodes instead of elements used in mesh-based methods such as 
the FEM, thus the continuous variation of material properties is maintained exactly. Sladek, 
Sladek and Zhang (2003) applied the MLPG for the elastodynamic problems in continuously 
non-homogeneous bodies. Acoustic wave propagation in non-homogeneous media was analyzed 
by coupled BEM-MLPG approach in (Tadeu et al., 2014). The MLPG method was applied for 
analysis of axisymmetric continuously non-homogeneous piezoelectric solids (Sladek et al., 
2008), fracture analysis (Sladek et al. 2009) or circular plates under transient loading (Stanak et 
al. (2011); Sladek et al., 2013a). The review articles by Dong et al. (2014) and Sladek et al. 
(2013b) describe the principles of the MLPG method and its application to analyses of a broad 
range of scientific problems. 

In the present contribution, the MLPG formulation is used for the modeling of the 
displacement responses of the 2.5D nonhomogeneous elastic domain. The analysis is performed 
in the frequency domain with the use of variables in the form of complex numbers. Nodal points 
are spread on the analyzed 2D domain without any restrictions. A small local circular 
subdomain is introduced around each nodal point. Local integral equations (LIEs) constructed 
from governing PDEs are defined over these circular subdomains. Moving Least-Squares 
(MLS) approximation scheme (Lancaster and Salkauskas, 1981) is used to approximate the 
spatial variations of electric and mechanical fields. The essential boundary conditions are 
satisfied by the collocation of MLS approximation expressions for prescribed displacements on 
boundary nodes. 

Hollow cylinder with nonhomogeneous material properties is analyzed as a numerical 
example to demonstrate the applicability of present method. The patch test is first introduced to 
evaluate the accuracy of proposed formulation. Then non-uniform loading in the vertical 
direction is considered. The results at the cross-section of the cylinder are obtained from the 
nodal points while the results along longitudinal z-coordinate are computed using the Fourier 
series. Finally, some conclusions are given and the quality of the numerical results is discussed. 
 
2. Governing equations for elastic wave propagation 

Specification of the considered problem requires a mathematical formulation of governing 
equations for elastic wave propagation in nonhomogeneous solids. For the general 3D problem 
with , 1,2,3i j   one can define the following equilibrium equation 
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   , , ,ij j it u t x x                   (1) 

where ij , iu ,   is the stress tensor, the mechanical displacements and the mass density, 

respectively. A comma followed by an index denotes partial differentiation with respect to the 
spatial coordinate ix . The dots over the quantity indicate the derivative with respect to time t . 

Let us consider a cylindrical body with boundary conditions on the lateral sides as well as the 
material properties of the structure being invariant along the longitudinal z-direction  3x z . 

Then it is appropriate to perform the 2.5D analysis. Considering the Fourier transform in both 
frequency and spatial domain gives 

     i, , zk z t
zf k f t z e dtdz

 
 

 

    (2) 

where  is the angular frequency, zk is the axial wave number and a dependence of the type 
 i zk z te  

is implicit.  
Applying the Fourier transform (2) to Eq. (1) and separating the third spatial component (thus 

1,2  ), one may obtain 

     2
, 3, , i , , , ,i z z i z i zk k k u k         x x x    (3) 

As 1 2( , )x xx , all physical quantities may vary at the cross-sectional plane. 

The elastic stress tensor is defined as 

 , , ,ij ij k k i j j iu u u         (4) 

where ,   are the Lame’s material constants and ij is the Kronecker delta symbol. In certain 

problems the non-homogeneity of isotropic material is observed with varying Young’s modulus 

 E x while the Poisson’s ratio   is considered to be constant. Then the varying Lame’s 

constants can be defined as 

   
 2 1

E






x

x ,    
  1 1 2

E 


 


 
x

x  (5) 

 

3. Local integral equations for the MLPG method 

For the meshless analysis of elastic wave propagation in the analyzed domain, the MLPG is 
chosen, assuming the MLS approximation for the definition of the trial functions and Heaviside 
unit step function as a test function in each local subdomain S , see (Atluri, 2004). Instead of 

writing the global weak form, the MLPG is based on the local weak form of the governing 
equations. The local integration domain S  can have arbitrary shape, thus the cylindrical shape 

aligned in the longitudinal 3z   direction is considered in this case. Since the problem is 
assumed to be infinite in the longitudinal direction, the volume integral can be decomposed as 
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integral over the z-coordinate and the cross section of cylinder S . The local integration 

domain S is shown in Fig.1 for 2D case. 
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Figure 1. Local boundaries for weak formulation, the domain x  for MLS approximation of 
the trial function, and support area of weight function around node 
 
 

The local weak form of Eq. (3) is then written over each subdomain S  as 

       2 *
, 3, , i , , , , 0

S

i z z i z i zk k k u k w d       


      x x x x    (6) 

It is convenient to apply the Gauss divergence theorem for the left hand side integral in Eq. 
(6) that leads to 

         

     

* *
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n k w d k w d

k k u k w d

      

    

 



  

     

 



x x x x x

x x x

 

 
 (7) 

where  jn x  is the unit normal vector and S  is the boundary of the subdomain S . 

Assuming the Heaviside unit step function for the test function 

 
 

* 1 at
( )

0 at
s s

s s

w
      

x
x

x
 (8) 
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the following local integral equation (LIE) is finally obtained 

       2
3, , i , , , , 0

S S

i z z i z i zn k d k k u k d       
 

     x x x x   . (9) 

Integrand in the first boundary integral in Eq. (9) can be identified as the Fourier transform 
of the traction vector      , , , ,i z i zt k n k   x x x  . 

In general, a meshless method uses a local interpolation to represent the trial function with the 
values (or the fictitious values) of the unknown variable at some randomly located nodes. For 
the approximation of trial functions various approximation schemes such as radial basis 
functions (RBF), partition of unity (PU), reproducing kernel particle methods (RKPM) or 
moving least-squares (MLS) can be used within the framework of MLPG method (Atluri, 
2004). The moving least-squares (MLS) approximation used in our analysis may be considered 
as one of such schemes. According to the MLS method (Atluri, 2004), the approximation of 

displacements    , , , ,i z zu k k x u x   by approximant  , ,h
zk u x   is given by 

 
1

ˆ( , , ) ( , , ) ( ) ,
N

h a a
z z z

a

k k k   


  u x u x x u   (10) 

where the nodal values  ˆ ,a
zk u  are called fictitious nodal parameters of the mechanical 

displacements. The MLS shape function  a x  is defined over a set of N  nodes located in the 

support domain x (Atluri, 2004) as shown in Fig.1. C1-continuity of the MLS approximation 

is ensured by the fourth-order spline type weight function used for the construction of the shape 
function given as 

2 3 4

1 6 8 3 0
( )

0

a a a
a a

a a a a

a a

d d d
d r

v r r r

d r

      
                 

 

x  (11) 

where 
a ad  x x  and ar  is the radius of the circular support domain. The value of N in 

Eq. (10) is determined by the number of nodes lying in the support domain with radius ar .  
The partial derivatives of field quantities are approximated with the use of the shape function 
derivative  ,

a
 x  and same fictitious parameters as 

 , ,
1

ˆ( , , ) ( ) ,
N

a a
z z

a

k k   


 u x x u  (12) 

Note that derivative in the longitudinal direction is defined as 

 ,3
1

ˆ( , , ) i ( ) ,
N

a a
z z z

a

k k k  


 u x x u  (13) 
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Applying Eqs. (10, 12, 13) to approximation of trial functions  , ,zk u x  and their 

derivatives to Fourier transformed stress tensor (4) and its subsequent insertion into local 
integral equation (9) is leading to a set of discretized local integral equations in the following 
component form 
 

           

         

           

   

1 1 ,1 2 ,2
1

2 1 ,2 2 ,1
1

2 2
3 1 1

1 1

3 ,1
1

ˆ , 2

ˆ ,

ˆ ˆ, ,

ˆ , 0

S

S

S S

S

N
a a a

z
a

N
a a a

z
a

N N
a a a a

z z z z
a a

N
a a

z z
a

u k n n d

u k n n d

ik u k n d ik u k d

ik u k d

    

  

       

  

 

 

  

 

     

     

      

  

 

 

  

 

x x x x

x x x x

x x x

x

 (14) 

 

         

           

           
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2 2
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z
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z z z z
a a
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z z
a

u k n n d

u k n n d

ik u k n d ik u k d

ik u k d

  

    

       

  

 

 

  

 

    

      

      

  

 

 

  

 

x x x x

x x x x

x x x
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 (15) 

 

           
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z z
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 
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A collocation approach is used to impose essential boundary conditions directly, using MLS 
variable approximation (10). For natural boundary conditions local integral equations are 
written for the nodes on the appropriate segments of the global boundary as explained in (Atluri, 
2004). 
 
4. The patch test - verification and accuracy of the proposed model 

Development of new computational methods for solving complex problems such as elastic 
wave propagation requires tools for checking the quality of computed results. The patch test can 
be considered as one of such numerical procedures to address the convergence of the applied 
method. Convergence, in sense of numerical computing, describes how the results, under 
specific conditions, approach the exact solution. The patch test was developed primarily for the 
finite element method (FEM) however it can also be used for other computational methods 
including MLPG as shown in (Stanak et al., 2012). 

In the present case, the known displacement field is prescribed on the boundary nodes using 
collocation of MLS approximation expression (10). A homogeneous cylinder having radius 
1.0m is considered for the analysis. Only the circular cross-section centered at 

 1 20.0 m; 0.0 mcen cenx x  is discretized using 701 internal nodal points and 100 nodes on 

the boundary. The cylinder is excited by a line load whose amplitude varies sinusoidally in the 
third dimension ( 0.3 rad/mzk  ) located at a given point  0 0

1 24.0 m; 0.0 mx x   , in the 

outer homogeneous domain with the same material parameters. The medium, with an elasticity 
modulus of 11689288.6 kPaE  , Poisson ratio of 0.29593   density of 32140 kg/m  is 
considered. The incident displacement field applied on the boundary is given as 

 

   0
1 1

1

i
, , ,

2 p p

inc
s z c c

r
u k k H k r

x
 




x x  

   0
2 1

2

i
, , ,

2 p p

inc
s z c c

r
u k k H k r

x
 




x x  

   0
3 0, , ,

2 p

inc z
s z c

k
u k H k r x x  

(17) 

 

with 0 2 0 2
1 1 2 2(x x ) (x x )s sr      and the dilatational wave number 

 2 2 2 , assuming Im 0
p pc p z ck c k k   .  ...nH are second kind Hankel functions of 

the order n and pc is the dilatational wave velocity.  

Figure 2 presents the uniform distribution of the 100 boundary nodes and 701 internal nodes 
used to compute the solution. The radius of the MLS support domain is chosen as three times 
distance between two neighboring nodes. Results for a harmonic source with the frequency          
100 Hz are presented next to illustrate the accuracy of the solution.  
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Using the exact benchmark solution, one can compute relative errors of the numerical 
analysis. Relative errors are computed for displacements 1u . The relative error for every node is 

specified in percentage as  

 1 1

1

100 %
num exact

exact

u u
e

u


  (18) 

where 1
numu  represents the computed value of axial displacement and 1

exactu  represents “exact” 

solution as obtained by straightforward use of Eq. (17) for each nodal point. Figure 2 shows the 
nodal distribution of total 801 nodes used for the calculations. Figure 3 then presents the 

resulting distribution of real and imaginary part of displacement 1
numu .  

 
 
 

 
 
Figure 2. Nodal distribution for the considered problem 
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Figure 3. Resulting real (left) and imaginary (right) parts of displacement 1
numu  obtained for 

incident load with frequency 100Hz 
 

 

 
 
Figure 4. Relative error distribution for real (left) and imaginary (right) part of computed 

displacement 1
numu  

 

Finally, the relative error distribution for the displacement 1
numu  is given in Figure 4. One 

may observe that the error tends to zero close to the boundary since on the boundary nodes the 

exact values 1
exactu  are prescribed directly. Note that the errors are quite small at the order of 

31 10 % . 
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It may be convenient to specify other type of error estimation that would tackle the error of 
the numerical solution from the global viewpoint. Averaged percentage error (Sladek et al., 
2005) was introduced for this reason as 
 

 100 %
num exact
i i

exact
i

u u
AE

u


  (19) 

where the norm is given as  
1

22

1

tN
a

a

       
 x  and tN  is the total number of nodes used in 

the analysis. Using this error estimate the convergence of the method for varying nodal densities 
can be determined as shown in Fig. 5. Results show that the longitudinal displacement 3u  is 

reaching the best accuracy than the remaining two; however the convergence rate for both 
quantities is almost the same. The errors for the displacement 2u  can be considered the highest 

because the source point of the load 0x  lies on the x-axis. Thus the resulting displacements 2u
are almost zero over the nodes lying on the x-axis which lead to increased errors. This numerical 
test showed that the developed formulation passed the patch test with positive convergence for 
increased number of nodes. 
 
 

 
Figure 5. Averaged relative error distribution and the convergence rate 
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5. Numerical examples 

Results of numerical experiments are presented in this section to illustrate the applicability of 
the proposed MLPG formulation for a more general problem. The analysis of a hollow cylinder 
(pipe) with continuously nonhomogeneous material properties subjected to non-uniform load is 
considered. Schematic visualization of the geometry is shown in Fig. 6. The hollow interior with 
diameter 0.33minR   is considered rigid (with zero prescribed displacements). On the outer 

boundary with the diameter 1.0moutR  is prescribed the non-uniform traction 

      1
2 2 0sign cos

2

i
i i

out

x
t x t

R

 
  

 

x
x x   (20) 

where 2
0 1000 N mt   is the maximum applied load. This applied load varies sinusoidally in 

the longitudinal direction with 0.3 rad/mzk  and frequency 1000.0 Hz .   

Nonhomogeneous material properties of the cylinder are defined through continuous variation 
of Young’s modulus  iE x  as 

   
   

2 2

1 22 2

2
0 0

2
i ix x

i
r r

i x
E E E e

r

                   

x x

x
x  (21) 

where 0E is the initial value of Young’s modulus,    1 2,i ix xx x  are the nodal coordinates and 

r is the radius of the cylinder. Variation of Lame’s constants that depend on  iE x is shown in 

Fig. 7. 
 

 
 
Figure 6. Schematic representation of hollow cylinder with the pattern of the traction load 
indicated by blue arrows 
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Figure 7. Spatial variation of Lame’s constants for continuously nonhomogeneous material:                   
a)  , b)   
 
 

Homogeneous material properties of the cylinder with the constant value of Young’s 
modulus   0

iE Ex  are considered first. As mentioned before, in the 2.5D analysis it is 

possible to expand the solution in the longitudinal direction using the spatial transform  

    3
3, , , , zik x

i i zu x u k e  x x  (22) 

In this way it is possible to specify the displacement response in any point in the longitudinal 
direction of the cylinder. A set of reference points is thus defined within  3 0.0, 5.9mx  . 

Figures 8 to 10 present the displacement responses in all three dimensions. Evolution of the 
response in the longitudinal direction can be clearly observed. 
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Figure 8. Numerical 2.5D response of displacement  1 , ,zu k x for homogeneous hollow 

cylinder: a) nodal solution in the cross-section of the cylinder b) expanded solution in 
longitudinal direction 
 

 
 
Figure 9. Numerical 2.5D response of displacement  2 , ,zu k x for homogeneous hollow 

cylinder: a) nodal solution in the cross-section of the cylinder b) expanded solution in 
longitudinal direction 
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Figure 10. Numerical 2.5D response of displacement  3 , ,zu k x for homogeneous hollow 

cylinder: a) nodal solution in the cross-section of the cylinder b) expanded solution in 
longitudinal direction 
 

Nonhomogeneous material properties are considered next with variation of Young’s 
modulus given by Eq. (21). Figures 11 to 13 present the displacement responses in all three 
dimensions. Effect of varying material properties is clearly visible compared to Figures (8 – 10) 
for homogeneous material. Larger displacements are observed at the bottom part of the cylinder 
where the material properties are smaller.  

 
Figure 11. Numerical 2.5D response of displacement  1 , ,zu k x for nonhomogeneous hollow 

cylinder: a) nodal solution in the cross-section of the cylinder b) expanded solution in 
longitudinal direction 
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Figure 12. Numerical 2.5D response of displacement  2 , ,zu k x for nonhomogeneous hollow 

cylinder: a) nodal solution in the cross-section of the cylinder b) expanded solution in 
longitudinal direction 

 

 
 
 
Figure 13. Numerical 2.5D response of displacement  3 , ,zu k x for nonhomogeneous hollow 

cylinder: a) nodal solution in the cross-section of the cylinder b) expanded solution in 
longitudinal direction 
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The presented solution can be further extended for transient time analyses. Time responses 
can be obtained by applying an inverse Fourier transformation to computed set of spatial 
responses over a specified frequency range. This approach however requires significant 
computational power if the number of frequencies required is large. 
 
Conclusions 

A meshless local Petrov-Galerkin method (MLPG) is proposed for the solution of boundary 
value problems for elastic wave propagation in longitudinally invariant nonhomogeneous solids. 
The proposed method is a truly meshless method as no discretization elements were used for the 
approximation or integration of unknowns. The analyzed domain is divided into small 
overlapping spherical subdomains. The MLS approximation scheme has been used for 
approximation of trial functions. Using the Heaviside unit step function as a test function the 
boundary-domain formulation on each local subdomain has been obtained.  
The patch test analysis has showed a high accuracy of the present method. Applicability of the 
proposed meshless method is demonstrated on numerical examples assuming continuously 
nonhomogeneous material properties and non-uniform mechanical displacement loading. 
Collocation of the applied displacement field using the MLS approximations is simple and 
straightforward. 
A numerical application was used to illustrate the applicability of the proposed model for a 
hollow cylinder with variable elastic material properties. The analysis of displacement responses 
was found to be consistent with the physics of the problem. 
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