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ABSTRACT: 

While native proteins cover diverse structural spaces and accomplish various biological events, 

not many of them can directly serve human needs. One reason is because the native proteins 

usually contain idiosyncrasies evolved for their native functions but disfavoring engineering 

requirements. To overcome this issue, one strategy is to create de novo proteins which are 

designed to possess improved stability, high environmental tolerances, and enhanced 

engineering potentials. Compared to other protein engineering strategies, in silico design of de 

novo proteins significantly expanded the protein structural and sequence spaces, reduced wet 

lab workload, and incorporated engineered features in a guided and efficient manner. In the 

Baker laboratory, we have been applying a design pipeline that use the blueprint builder to 

design different folds of de novo proteins and successfully obtained libraries of de novo proteins 

with improved stability and engineering potentials. In this protocol, we will use the design of de 

novo β-barrel proteins as an example to describe the principles and basic procedures of the 

blueprint builder-based design pipeline. 

Basic protocol 1: The construction of blueprints 

Basic protocol 2: De novo protein design pipeline using the blueprint builder 

Keywords: de novo protein; protein design; blueprint; BluePrintBDR; Rosetta 

INTRODUCTION 

Designing de novo proteins using Rosetta has successfully provided many robust proteins with 

diverse topologies for various protein engineering purposes, including small molecule binding 

(Dou et al., 2018; Tinberg et al., 2013), therapeutic developments (Cao et al., 2020; Fleishman, 

Whitehead, et al., 2011; Silva et al., 2019), orthogonal biological signaling system construction 

(Chen et al., 2019; Langan et al., 2019; Quijano-Rubio et al., 2020), and material formation (Hsia 

et al., 2020; Pyles et al., 2019; Ueda et al., 2020). A number of de novo proteins designed for 
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above-mentioned applications have significantly different secondary structure features, and 

were generated using a similar pipeline, which all involved the key step using the structure 

modifier in Rosetta, the blueprint builder (Huang et al., 2011; Marcos et al., 2018). The name of 

the modifier in Rosetta is ‘BluePrintBDR’, and it is usually referred to as the ‘blueprint builder’. 

The protein folds (i.e. the arrangement of a suite of secondary structure elements (SSE, 

(Schaeffer et al., 2011)) that have been generated include the ferredoxin-like folds (Koga et al., 

2012), the Rossmann 2x2 folds (Lin et al., 2015), the TIM barrel folds (Huang et al., 2016), the 

Nuclear transport factor 2-like protein folds (NTF2-like, (Basanta et al., 2020; Marcos et al., 

2018)), the β-barrel folds (Dou et al., 2018), and multiple miniprotein folds (Chevalier et al., 

2017). The β-barrel is a family of barrel-like protein structures which are composed of a suite of 

β-sheets, among which the first strand and the last strand of the β-sheet are connected via 

backbone hydrogen bonds to form a closed barrel shape. In this protocol, we will adapt the 

functions of a set of published scripts that were used for generating β-barrel folds as an example 

(Dou et al., 2018) to explain the idea and the technical details of the blueprint builder-based de 

novo protein designing pipeline.  

As our focus is to introduce the use of the blueprint builder-based pipeline for structure 

generation, this design pipeline will be referred to as the blueprint pipeline in the coming 

report. In general, the blueprint pipeline includes three steps, blueprint (and/or a constraint 

file) construction, protein backbone building following the guidance and restrictions in the 

blueprint (and/or constraint) file, and protein sequence design on the generated backbones. 

The blueprints can either be generated based on careful designing of a protein fold from scratch 

(see Basic Protocol 1), or extracting the structure information from an existing protein of 

interest (see Alternative Protocol 1, (Huang et al., 2011)). A computational filter step is usually 

added following the second and the third step, respectively, to supervise the quality of the 

generated protein backbones and the design of the protein sequences.  

By following this protocol, the readers will be able to run the demonstrative scripts on their 

own, obtain a general understanding of the blueprint pipeline, and have access to all resources 

needed to start using the required Rosetta functions, including the BluePrintBDR. The authors 

assume the readers have a little basic knowledge of programming languages and interpreters 

including python, bash, and xml, or can follow the provided resources to find the needed 

information. The authors also assume the readers have or can follow the provided resources to 

obtain accesses to functional python 3, Rosetta software, PyRosetta interface, and have read 

through the tutorials of Rosetta and PyRosetta. Some basic Rosetta terminologies are used in 

this protocol, including ‘pose’, ‘centroid’, ‘fullatom’, ‘mover’, ‘filter’. Their definitions can be 

found at https://www.rosettacommons.org/docs/wiki/rosetta_basics/RosettaEncyclopedia.  

The following report uses a combination of bash commands, python scripts, xml scripts for 

RosettaScripts, and PyRosetta scripts. The documentation of bash commands can be found at 

https://www.gnu.org/software/bash/manual/bash.html#Shell-Commands. In this protocol, 

some basic bash commands are used to run the corresponding scripts. The documentation of 

python 3 can be found at https://docs.python.org/3/tutorial/. The resources, instructions for 

the installation, demonstration, and developments of Rosetta can be found at 

https://www.rosettacommons.org/. Rosetta licensing policy and software downloading 

instructions can be found at https://www.rosettacommons.org/software. It is highly 

recommended to obtain the license for Rosetta first, because the license is required for getting 

https://www.gnu.org/software/bash/manual/bash.html#Shell-Commands
https://docs.python.org/3/tutorial/
https://www.rosettacommons.org/
https://www.rosettacommons.org/software
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access to the material provided on the RosettaCommons website. The tutorial and demos for 

using Rosetta can be obtained at https://www.rosettacommons.org/demos/latest/Home. The 

introductory resources for the usage of RosettaScripts can also be found in other reviews and 

articles (Chaudhury et al., 2010; Fleishman, Leaver-Fay, et al., 2011; Andrew Leaver-Fay et al., 

2013; Leman et al., 2020). The resources, instructions for the installation, and demonstration of 

the PyRosetta interface can be found at http://www.pyrosetta.org/. The download and 

installation of PyRosetta can be found at http://www.pyrosetta.org/dow. The demos and 

tutorials of PyRosetta can be found at http://www.pyrosetta.org/tutorials. Jupyter Notebook is 

used during the analysis procedure, and the instructions for its download and usage can be 

found at https://jupyter-notebook.readthedocs.io/en/stable/index.html#. All demonstrative 

scripts and commands below can be executed on a personal portable computer (4 gigabyte 

random-access memory, Intel core i5 processor) with the Ubuntu operating system version 

20.04, using the command line interface. Only one blueprint file will be generated, and less than 

11 structures will be calculated at each step of the demonstration, which requires less than 50 

megabytes of free disk space for smooth running during the whole procedure. The readers 

should adjust their preserved free disk space for program execution accordingly to prevent 

building-up of temporary files which may exhaust the disk spaces quickly. The python version 

used for the demonstration is 3.7.1. The Rosetta version used is v2020.25-dev61318 (The 

Rosetta version can be found on the name of the downloaded file). The PyRosetta version is 

PyRosetta-4 2020. PyRosetta is installed under a conda environment named ‘pyrosetta’ (this is 

the environment name used in this protocol, and readers should adjust accordingly), which is 

explained in the previously mentioned PyRosetta installation online resource. The authors 

recommend the readers to install the Jupyter Notebook under the same conda environment for 

the ease of use. All full versions of exemplary scripts and data sets are available at 

https://github.com/LAnAlchemist/blueprint_builder_demo. The linux operating system is not 

required, and the scripts and commands can be adapted to other operating systems. Please note 

that the syntaxes on Windows, MacOS, Unix, and Linux may be different, and misuse can lead to 

errors and/or abortion of the execution of the scripts and commands. Readers should make 

adjustments accordingly when following the exemplary commands. The first step of all 

demonstrations in the following examples are designed to change the current directory to the 

example directory. Most of the following commands can then be directly executed after 

removing the comments and line break signs if the demo folder structure is not changed by the 

reader. All commands and scripts are written in Courier font. Each line of commands starts 

with a larger sign (>) for clarity. A line break sign (\) is added at the end of the script or 

command if the script or command is not finished but broken into multiple lines for clarity. The 

type of the scripts or commands (e.g. python, bash, or xml) is noted with the number sign (‘#’) 

before the scripts or command body starts. Each command or script body is located between 

dashed lines for readability. When the example script content is explained, some parts of the 

scripts are omitted for clarity, which is noted with ellipsis signs (...). The explanations of each 

line of the scripts or commands are added after a number sign. If any action is triggered after 

running a script or a command for any step, the expected action and/or results will be noted 

and/or explained at the end of that step. Potential errors are noted in the ‘Troubleshooting’ 

section. 

BASIC PROTOCOL 1: THE CONSTRUCTION OF BLUEPRINTS 

https://www.rosettacommons.org/demos/latest/Home
http://www.pyrosetta.org/
http://www.pyrosetta.org/dow
http://www.pyrosetta.org/tutorials
https://jupyter-notebook.readthedocs.io/en/stable/index.html
https://github.com/LAnAlchemist/blueprint_builder_demo
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Introduction 

Following the funnel-shaped protein folding energy landscape hypothesis, previous studies 

demonstrated that the tertiary structure of a protein has strong dependence on the construction 

of its secondary structure elements (SSE) (Abkevich et al., 1996; Baker, 2019; Koga et al., 2012). 

Designing sequences to adapt the designed SSE patterns would favor the folding of the proteins 

to desired tertiary motifs driven by strongly funneled energy landscapes (Koga et al., 2012). 

Furthermore, Lin et al. extended the design rules by discovering the co-dependencies between 

the secondary structure features and the torsion angles of the loops linking them, and 

successfully designed proteins with specific secondary structure features (Lin et al., 2015). The 

blueprint pipeline is a method that allows users to pre-define each protein SSE and the local and 

non-local interactions between them, and design protein sequences which favors the realization 

of these SSEs and interactions. If successful, the designed protein sequence should adapt the 

designed SSEs and their interactions as constructed, which is expected as a result of adapting a 

sharp folding funnel and folding into the desired tertiary structure. These detailed secondary 

structure features with backbone torsion angle constraints used to direct protein folding into 

certain high-order structures are referred to as ‘blueprints’, and can be constructed as a text-

based blueprint file (Figure 1). Rosetta BluePrintBDR (‘BluePrintBDR’ is a ‘mover’, if referred 

using the Rosetta terminology) was designed to read the blueprint file, and perform a stepwise 

Monte Carlo fragment assembly protocol to insert blueprint-biased protein fragments at each 

position of the designed protein (Bowie et al., 1994; A. Leaver-Fay et al., 2011; Marcos et al., 

2017; Simons et al., 1997). An additional constraint file is sometimes supplied to specify certain 

structural geometry formations, such as to require hydrogen bonding formation through 

restraining the distance or angle between the atom pairs to the assigned values (see more 

explanations in Basic Protocol 1 Build blueprints from scratch). Both the blueprint and the 

constraint files are text-based files, and can be modified easily with any text editor, which gives 

users a large degree of freedom during the protein design process. 

[*Place figure 1 near here.] 

An example of a simple blueprint file is shown in Figure 1. Each line of the blueprint represents 

the construction of one residue. A tetra-peptide can be built from this blueprint. The first 

column on the left is a number, a non-zero residue number of the part from the input protein 

that will be kept and used as the building point, or 0 to mark new residues to be appended. The 

second column from the left is a one-letter amino acid code, which encodes the amino acid 

identity to be used for centroid-level structure building at that specific residue. Commonly, 

valine and/or alanine is chosen to represent an average side chain occupation. The primary 

sequence locations of the special amino acids such as glycines, prolines, and cysteines can be 

assigned at this stage if their locations are designed. The third column from the left defines the 

expected secondary structure feature of the residues (Lin et al., 2015; Wintjens et al., 1996). The 

first or the only letter in the third column defines the secondary structure feature of the 

corresponding residue, and is chosen from ‘L’, ‘E’, or ‘H’, which represents loop, extended 

strand, and helix, respectively. Sometimes, a second letter is added to the third column, which is 

a finer category representing the ABEGO bin of the assigned residue. The ABEGO logos, ‘A’, ‘B’, 

‘E’, ‘G’, and ‘O’, represent certain blocks of backbone phi-psi angle combinations (Lin et al., 2015; 

Wintjens et al., 1996). Detailed definitions of the ABEGO bins can be found at (Lin et al., 2015). 
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The last column indicates whether the residue is going to be rebuilt (indicated by ‘R’) or 

required for keeping the current position (indicated by ‘.’). 

Commonly, two methods are used for generating blueprints. The first method is to build a 

blueprint file from scratch based on the meticulous analyses of the protein structures to be 

designed (see Basic Protocol 1). The first method will be discussed in more detail with the 

example of building a β-barrel. The second method is to build blueprints based on the structures 

of the existing proteins (see Alternative Protocol 1, (Huang et al., 2011)).  This method can be 

useful if the users want to perform engineering, idealization, and redesign on the existing 

proteins of interest. PyRosetta can be directly used to generate corresponding blueprint files for 

any .pdb file through obtaining the knowledge of the secondary structural feature and torsional 

angle distribution for each residue. The use of a python script is provided as an example. 

Basic Protocol 1: Build blueprints from scratch 

Required resources 

A computational system installed with a python script interpreter and PyRosetta interface.  

Sample data 

The exemplary input and output files generated in this section can be found at:  

https://github.com/LAnAlchemist/blueprint_builder_demo/tree/master/demo1.1  

Analysis of the protein folds 

Building blueprints for protein folds requires a systematic understanding of the organization of 

the desired folds in the first place. Earlier studies demonstrated that the basic structural 

characteristic parameters of β-barrel proteins are the number of strands (n) and the shear 

number (S), which corresponds to the stagger of the closed β sheet as the relative position of the 

same strand can be displaced by following the specific backbone hydrogen bond pattern 

((Murzin et al., 1994a, 1994b), Figure 2 a). Because the extended strand has neighboring side 

chains facing two sides, the antiparallel strands of a β-barrel has the feature that the residues 

with same backbone hydrogen direction also have their side chains facing the same side (i.e. 

inward or outward-facing of the β-barrel). The residues with the same side chain direction and 

connected by backbone hydrogen bonds are referred to as a Cβ-strip (Figure 2 b). The number 

of Cβ-strips is the half of the number of S (Figure 2 c). The radius of the β-barrel is determined 

by n, S, and the distance between neighboring strands (D, Figure 2 c). Analysis of native β-barrel 

structures suggested that the soluble β-barrels usually have the n of 8 or 10, and S of 8, 10, or 

12. A β-barrel of n = 8 and S = 10 was built with the aim of designing soluble and stable β-barrel 

proteins which are big enough to accommodate small molecule ligands (Dou et al., 2018).  

[*Place figure 2 near here.] 

Generation of the 2D map and its corresponding blueprint for β-barrel structure building 

To build blueprints from scratch, a 2D map is usually built for a specific fold of protein for 

design. It is usually recommended to first analyze structurally related native or engineered 

proteins, and use the knowledge learnt to help the construction of the 2D map. While it bears 

https://github.com/LAnAlchemist/blueprint_builder_demo/tree/master/demo1.1
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the name of a ‘map’, it can adapt any forms that can be understood by the users and translated 

into a blueprint file. The 2D map needs to include a suite of information on the protein to be 

designed, including the total protein residue number, the length of each secondary structure 

element, the backbone hydrogen bonds (i.e. the hydrogen bond donor atom, residue and the 

hydrogen bond acceptor atom, residue), and the backbone torsion angle bin of each residue (Lin 

et al., 2015).  

Based on the above-mentioned analysis of native β-barrel structures, a 2D map (Figure 2 c) was 

generated to build a specific de novo β-barrel. This example was prepared for a β-barrel with 

eight strands (n = 8) and shear number 10 (S = 10). The residue numbers that compose each 

secondary structure element and interact through backbone hydrogen bond pairs can be 

developed from this 2D map. The length of each β-strand was chosen to satisfy the pre-defined 

registry shifts following the example in (Dou et al., 2018). The length and torsion angle of the 

loop regions between each strand were also pre-defined (Figure 2 d). As a result, a string 

representing the secondary structure assignment for the example β-barrel fold became 

‘L1E9L3E13L2E10L3E13L2E8L4E11L2E8L3E10L1’, i.e. a nine-residue strand followed by a 

three-residue loop, a thirteen-residue strand, etc. More detailed structural features implied in 

the 2D map were indicated during the process of constructing a blueprint file. For this 2D map 

to be understood by Rosetta, we need to convert the 2D map into a blueprint file (Figure 1). 

With the blueprint format, the structure to be folded will be understood in residue-level, each 

describing the intended three-state secondary structure type (‘H’, ’E’, or ‘L’) and/or more 

specific backbone torsion angle bin (ABEGO bin). All residues composing strands were indicated 

with ‘E’, residues forming the N terminal helix were written with ‘H’, and the other loop residues 

were assigned with ‘L’ in the blueprint file. The length of each continuous secondary structure 

segment followed that assigned by the 2D map. The rules used for defining the ABEGO bin for 

each residue are listed here as an example. 1) Regular extended structure-residues composing 

the β strands (‘E’) are with ABEGO label ‘B’, 2) Some glycine residues are placed in the middle of 

long strands (‘E’) to release Cβ-strip strains (referred to as ‘glycine kinks’, with ABEGO label ‘E’, 

3) One to two β-bulge residues (‘E’) are placed at the end of assigned strands to also relieve the 

strain and drive the curve of the β-sheet, with ABEGO label ‘A’ , and 4) Loop residues (‘L’) 

between the β-strands designed to form specific β-turn types are with ABEGO label sequences 

‘AA’, ‘AAG’, or ‘AAAG’ depending on their positions within the 2D map (Dou et al., 2018). Further 

specification can additionally be applied using the constraints that will be described in the next 

section.  

A python script was generated for the preparation of the blueprint and the constraint file at the 

same time and, the usage of the script will be demonstrated in the following step. 

Generation of a constraint file for β-barrel 

While a blueprint file tells Rosetta the required fragment feature for each position, a constraint 

file will provide additional information to Rosetta to bias the sampling of conformations. The 

constraint files are not required, but recommended if building complicated proteins, such as β-

barrels, to improve folding efficiency. 

The constraint file for building the β-barrel defines its hydrogen bond registry between each Cβ-

strip (Figure 2 b & c). Other distance and angle constraints can be defined in similar fashion. 

Each line of constraint follows the format of ‘type of constraint’, ‘applied atom1’, ‘residue 
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number of atom1’, ‘applied atom2’, ‘residue number of atom2’, ... , ‘function type used for the 

constraint’, ‘required distance or angle’, and ‘deviation’, and connected by space. To restrain a 

backbone hydrogen bond, both atom pair distance and bond angle are defined following the 

previous studies (Figure 3) (Dou et al., 2018). The first line describes the distance requirement 

between the heavy atom of the acceptor hydrogen, and the heavy atom of the donor, which is 

N17 and O21, respectively. The function used is a harmonic function, with a requirement 

distance of 3 Å, and 0.5 Å deviation. The second line defines the angle between three atoms, 

N17-H17-O21, which is one of the components to describe the hydrogen bond. The function 

used is circular harmonic, with a requirement of radian 3.1, and 0.3 degree deviation. More 

examples of constraints can be found at 

https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/constraint-file. 

[*Place figure 3 near here.] 

The stepwise commands to generate blueprint and constraint files are described below: 

1. Open your command line interface. 

2. (Optional) Make a new directory as your working directory and move the demo folders 

into it. It is suggested that the same directory be used to contain all the files for 

constructing the protein. 

#bash script--------------------------------------------------

-- 

>mkdir /path_to_document/my_beta_barrel_folder #You may name 

this directory by your favorite name 

>mv /path_to_where_the_demo_folders_are/* \ 

/path_to_document/my_beta_barrel_folder #Move the extracted 

downloaded demo folders and all files in the folders to the 

newly created directory. „*‟ represents all files and folders 

under the indicated directory. In this case, they should be 

the extracted demo folders and files. 

#-------------------------------------------------------------

-- 

Expected results: A new directory, 

/path_to_document/my_beta_barrel_folder/, was created. Then the 

downloaded demo files and folders have been moved into that directory. 

3. Move to your working directory. It is recommended to store all generated files in this 

directory. 

#bash script--------------------------------------------------

-- 

>cd /path_to_document/my_beta_barrel_folder/demo1.1 #move to 

your working directory 

https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/constraint-file
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#-------------------------------------------------------------

-- 

Expected results: Your current path is changed to folder demo1.1/. 

4. Use the pre-developed python script to convert a 2D map into a blueprint file. 

#bash script--------------------------------------------------

-- 

>python ./scripts/gen_bp_cst.py \ 

"L1E9L3E13L2E10L3E13L2E8L4E11L2E8L3E10L1" \ 

"E1.1;E2.5;E3.8;E4.5,7;E6.5;E8.5" bp cst #The python script 

„gen_bp_cst.py‟ takes the string of listed secondary 

structures to be built, followed by a string indicating the 

location of pre-defined glycine kinks and the names of the 

output blueprint and constraint files to be generated, „bp‟ 

and „cst‟, respectively.  

#-------------------------------------------------------------

-- 

Expected results: A blueprint file (./bp) and a constraint file (./cst) are created. 

5. (Optional) Check your resulting blueprint file 

#bash script--------------------------------------------------

-- 

>head ./bp #check the top several lines of the blueprint file 

#-------------------------------------------------------------

-- 

Expected results: The top few lines of the blueprint fine is printed on your terminal 

screen. 

Alternate Protocol 1: Build blueprints based on existing protein .pdb files 

Required resources 

A Computational system installed with a python script interpreter, and PyRosetta. 

Sample data 

The exemplary input and output files in this section can be found at: 

https://github.com/LAnAlchemist/blueprint_builder_demo/tree/master/demo1.2  

Generate a blueprint file based on a native .pdb file 

The stepwise commands are described below: 

https://github.com/LAnAlchemist/blueprint_builder_demo/tree/master/demo1.2
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1. Open your command line interface, (optional, create your working directory) and move 

to your working directory following the previously described steps.  

#bash script--------------------------------------------------

-- 

>cd /path_to_document/my_beta_barrel_folder/demo1.2 #Move to 

folder demo1.2 

#-------------------------------------------------------------

-- 

2. Create the blueprint file based on a .pdb file of your choice: 

#bash script--------------------------------------------------

-- 

>conda activate pyrosetta #(This step may require adjustments 

depending on the installation steps of the users.) This step 

activates a conda environment, „pyrosetta‟, under which 

pyrosetta and related modules are installed. The authors named 

their conda environment „pyrosetta‟, and the users should 

change the name accordingly. 

>python ./scripts/pyrosetta_pdb_to_bp.py ./4rlc.pdb #The 

demonstrative .pdb file, 4rlc.pdb, can be replaced with your 

file of choice. The argument following the .py scripts 

specifies the location of the chosen .pdb file to calculate 

the blueprint for. 

#-------------------------------------------------------------

-- 

Expected results: Information about calling of PyRosetta is printed on the screen. After 

execution, you should see the creation of a new blueprint file in your working directory. 

For this particular case, „4rlc_bp’ is created. 

BASIC PROTOCOL 2: DE NOVO PROTEIN DESIGN BASED ON THE BLUEPRINTS 

Introduction 

With the blueprint file and the corresponding constraint files in hand, we can start to use 

Rosetta to build the backbone of the β-barrel, and perform sequence design on these backbones. 

This backbone and sequence design procedure is largely shared in other Rosetta protein design 

protocols. Many of the RosettaScripts used in the demonstration can be directly adapted by 

pipelines not using the BluePrintBDR. We will first build the backbone of the protein using the 

BluePrintBDR through a stepwise Monte Carlo fragment insertion of protein oligomer at each 

residue ((Bowie et al., 1994; Simons et al., 1999b; Simons et al., 1997), see COMMENTARY for 

other backbone building methods). A filter step will be followed to select backbones with 

satisfactory quality. Next, side chains will be designed based on these protein backbones, 
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followed by another round of filtering to select desired sequences. The output sequences can be 

selected for further wet laboratory verification, which is beyond the content of this protocol, 

and will not be discussed in this protocol. 

In the backbone building step, the BluePrintBDR will first insert protein fragments at each 

position of the to-be-built protein residue starting from a position in the input protein based on 

the requirement of the blueprint file (Bowie et al., 1994; Simons et al., 1999b; Simons et al., 

1997). While we call the generated structures ‘backbones’, they are usually proteins constructed 

with polyvaline or polyalanine sequence. Their backbone conformation will be used and 

generally preserved during the sequence design step, and determine the overall fold of the 

designed protein. The constraint file is optional, and if it is provided, the refinement of the 

designed protein is performed with the consideration of the constraint requirement. The 

constraints can efficiently restrict the conformational space to be explored during the structure 

building process, thus they are often applied for building complicated proteins. During building 

of the β-barrel, constraints were applied to enforce the formation of hydrogen bonds with 

accurate registry shift between the strands as intended. After Monte Carlo-based fragment 

assembly, the structure is minimized in centroid mode. The constraints are applied both during 

the Monte Carlo procedure and energy minimization steps. The final model is converted into 

fullatom mode structure for scoring (for further explanation on centroid mode and fullatom 

mode, please check 

https://www.rosettacommons.org/demos/latest/tutorials/full_atom_vs_centroid/fullatom_cen

troid). The specific script lines for above-mentioned key steps are commented in the sample xml 

script provided at the end of this section. 

Followed by the backbone building, a filter step is usually added to select backbones with 

satisfactory quality. Because the following step, sequence design, is usually the most resource-

consuming step, only backbones with certain qualities are used to save computational 

resources. In general, backbone structures with high quality will also result in better sequence 

design results. In the demonstration, a Jupyter Notebook is used at this step for its convenience 

for data visualization (Kluyver et al., 2016). Usually, score terms and filters including ‘vdw’, 

‘rama’, ‘omega’, ‘hb_lr_bb’, ‘hb_sr_bb’, etc, are checked. Additional explanations on different 

score terms can be found in the demonstrative Jupyter Notebook and at 

https://www.rosettacommons.org/docs/wiki/rosetta_basics/scoring/centroid-score-terms. It 

is recommended to take the protein backbones scored by top percentage based on the 

experience and intentions of the users, because it is impossible to strictly define hard score 

cutoff values that are universally applicable for different protein design situations. 

After selecting the protein backbones, these backbones are used for a few rounds of sequence 

design on the fixed backbone and structure minimization on the fixed sequence, which are 

referred to as the ‘sequence design’ steps. Sometimes, the designers will be able to identify 

locations that need to be conserved for selected amino acids. A ‘resfile’ is used to identify these 

locations and restrict the amino acid choices during design. In the provided example, some 

glycine kinks were identified in the resfile to release the inner tension of each Cβ-strip. Also, in 

general, a layer design approach is used in the sequence design step. All residues can be 

classified into ‘core’, ‘boundary’, or ‘surface’ type based on the number of their geometric-

neighboring residues, or their solvent accessible surface area. In the demonstration, all residues 

were also classified into different SSE, i.e. loop, strand, or helix, based on the DSSP definition of 

https://www.rosettacommons.org/demos/latest/tutorials/full_atom_vs_centroid/fullatom_centroid
https://www.rosettacommons.org/demos/latest/tutorials/full_atom_vs_centroid/fullatom_centroid
https://www.rosettacommons.org/docs/wiki/rosetta_basics/scoring/centroid-score-terms
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secondary structures (Kabsch et al., 1983). The combination of these two classifications allocate 

each residue into different layers, such as ‘coreH’ (i.e. a helical residue in the core region) or 

‘surfE’ (i.e. a strand residue on the surface) (Dou et al., 2018). Residues in each layer can be 

assigned with different design operations. For example, the user can avoid the use of 

hydrophobic residues for surface residues and prefer proline at the end of a helix. Special 

locations with specific amino acid types (often glycine, cysteine, or proline) are mostly pre-

defined, disallowed to be designed, and only allowed for packing. 

Required resources 

A computational system installed with a python script interpreter, PyRosetta, Rosetta, and 

Jupyter Notebook. Computing in computer clusters are recommended for computationally 

heavy steps, which are noted in stepwise instructions. 

A working directory containing the blueprint file and the constraint file created from the 

previous steps. 

Sample data 

The exemplary input and output files generated for ‘Protein backbone assembly using the 

BluePrintBDR’ and ‘Filtering of the backbones designed from the BluePrintBDR’ in this 

section can be found at:  

https://github.com/LAnAlchemist/blueprint_builder_demo/tree/master/demo_bb  

The exemplary input and output files generated for ‘Sequence design on the selected backbone 

structures’ and ‘Filtering of the designed proteins’ in this section can be found at: 

https://github.com/LAnAlchemist/blueprint_builder_demo/tree/master/demo_seq  

Protein backbone assembly using the BluePrintBDR  

1. Open your command line interface, (optional, create your working directory) and move 

to your working directory following the previously introduced steps. 

#bash script--------------------------------------------------

-- 

>cd /path_to_document/my_beta_barrel_folder/demo_bb #move to 

your working directory and folder, demo_bb/. 

#-------------------------------------------------------------

-- 

2. Run the following commands to perform backbone assembly following protocol, 

bb_gen.xml. An explanation of part of the demonstrated xml file is provided in the 

coming section. While the below demonstration directly runs the backbone design jobs 

on the personal computational system, it is recommended to submit the jobs to 

computer clusters, especially if many structures are to be calculated. Readers should 

inquire about their local computing resources for submission method. 

#bash script--------------------------------------------------

-- 

https://github.com/LAnAlchemist/blueprint_builder_demo/tree/master/demo_bb
https://github.com/LAnAlchemist/blueprint_builder_demo/tree/master/demo_seq
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>/path_to_your_Rosetta/rosetta/main/source/bin/rosetta_scripts

.default.linuxgccrelease \ #Call your rosetta script 

-parser:protocol ./bb_gen.xml \ #The flag „-parser:protocol‟ 

followed by an xml file instructs the RosettaScripts to 

execute the objects listed in the xml protocol section.  

-s ./input.pdb \ #the supplied input pdb file followed by the 

flag „-s‟ will be used as an initial position of a protein 

fragment to build the protein with the BluePrintBDR. 

-parser:script_vars bp=./bp cst=./cst \ 

weights=./fldsgn_cen_omega02.wts \ #The flag „-

parser:script_vars‟ supplies the files which are called by the 

xml protocol during the execution of the RosettaScripts. Those 

variants are quoted through citing variant names using „%%‟ 

signs. More explanations for calling of the external files are 

provided in the coming section, together with the explanation 

of the xml file. 

-out:pdb:path ./result \ #An optional flag, The flag „-

out:pdb:path‟ supplies the location of the directory where you 

want to store the resulting .pdb file. The default path to the 

resulting pdb file is the current working directory, if not 

specified. 

-out:score:path ./result \ #An optional flag, The flag „-

out:score:path‟ supplies the location of the directory where 

you want to store the resulting score file. The default path 

to the resulting score file is the current working directory, 

if not specified. 

-out:suffix _demo \ #An optional but highly recommended flag, 

the flag „-out:suffix‟ supplies a suffix after all resulting 

pdb, which helps identifying each experiment results if 

multiple rounds of protein constructions were performed. Other 

than the suffix option, a prefix can be added in a similar way 

using the flag ‟-out:prefix your_prefix_‟. 

-nstruct 10 \ #The flag „-nstruct‟ specifies the number of 

calculation rounds to be performed with the xml protocol. This 

leads to the production of 10 designed structures at maximum 

if they all passed the filters indicated in the xml protocol.   

#-------------------------------------------------------------

- 

Expected results: Information on the execution of the RosettaScripts is printed on the 

screen. This step may take around 10 to 30 min for each structure to finish computing, 

depending on the specific protein folds to be built. After the running is completed, you 

should see the creation of the de novo protein .pdb files and its corresponding score file 

in the specified result directory. You may visually check the .pdb files using PyMOL (The 

PyMOL Molecular Graphics System, Schrödinger, LLC). In this particular demo, ten .pdb 

files and a score file are created in the directory, ‘./result’. 
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To explain how the BluePrintBDR works, a part of the backbone generation xml file, 

‘bb_gen.xml‟, is selected and explained below. It is recommended that the readers first read 

the protocol part (i.e. the part of the xml script blocked with lines 

<PROTOCOLS>...<PROTOCOLS/>) and track the operation names in the corresponding parts 

of the xml script (such as <MOVERS> and <FILTERS> blocks) to understand their roles when 

called. A brief introduction on the demonstrated xml script is added in the comments section for 

each line. Additional documentations on RosettaScripts can be found at 

https://www.rosettacommons.org/docs/wiki/Home.  

#RosettaScripts, in xml format--------------------------------------

- 

<ROSETTASCRIPTS> #Here is the start of the whole Rosetta Script. 

<SCOREFXNS> #Here is the start of the section to define scoring 

functions. 

 <ScoreFunction name="SFXN1" weights="%%weights%%" > #The 

supplied weights file, „weights=./fldsgn_cen_omega02.wts‟, is cited 

here. 

... 

     </ScoreFunction> 

... 

</SCOREFXNS> #Here is the end of the score function section. 

<FILTERS> #Here is the start of the filter section. 

 ... 

 <ScoreType name="vdw" scorefxn="SFXN1" score_type="vdw" 

threshold="1000000" /> #This filter with score type „vdw‟ will 

calculate the van der Waals energy of the generated protein 

structure and reject the structure if the energy is higher than the 

provided threshold. A relatively high threshold is set here as an 

example so probably no structure is rejected during the running of 

this filter. 

 ... 

<FILTERS/> #Here is the end of the filter section. 

... 

<MOVERS> #Here is the start of the mover section. 

... 

https://www.rosettacommons.org/docs/wiki/Home
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<Dssp name="dssp"/> #This mover performs secondary structure 

assignment for each residue of the protein using the DSSP algorithm 

(Kabsch et al., 1983). 

<SwitchResidueTypeSetMover name="fullatom" set="fa_standard"/> 

#This mover converts the representation of the protein model into 

fullatom mode. 

     <SwitchResidueTypeSetMover name="cent" set="centroid"/> #This 

mover converts the representation of the protein model into centroid 

mode. In the centroid mode, only the backbone atoms retain their 

original features and the side chain atoms are represented by a 

single virtual atom for simplification. 

... 

<BluePrintBDR name="bdr1" scorefxn="SFXN1" use_abego_bias="1" 

blueprint="%%bp%%" constraint_file="%%cst%%"/> #This defines the 

blueprint builder mover with specifications. The scoring function 

defined as „SFXN1‟ is used during the execution of the building. The 

flag „use_abego_bias‟ is set to „true‟ („1‟) to bias fragment 

picking with the ABEGO bins of the corresponding residue positions 

of the protein as assigned in the blueprint file. The sign „%%‟ 

cites the external variants provided following the flag „-

parser:script_vars‟ in the RosettaScripts execution command. The 

provided blueprint and constraint files are cited here.  

<ConstraintSetMover name="addcst1" add_constraints="1" 

cst_file="%%cst%%"/> #This mover adds the provided constraint to the 

protein structure processed during RosettaScripts execution. 

<MinMover name="min1" scorefxn="SFXN1" chi="1" bb="1" 

type="dfpmin_armijo_nonmonotone_atol" tolerance="0.0001"/> #The 

mover defined by this line performs minimization of the built 

protein structure. In this example, the degrees of freedom allowed 

to be minimized include the chi angles and backbone torsion angles 

as indicated by „1‟ for both „chi‟ and „bb‟ flags. The type of the 

minimization algorithm to be used is defined as 

„dfpmin_armijo_nonmonotone_atol‟ with absolute tolerance „0.0001‟. 

The „tolerance‟ sets the requirement for minimization convergence 

and the smaller number gives higher requirement for convergence.  

... 

<ParsedProtocol name="cenmin1" > #This block includes the 

specific steps of switching the protein representation to centroid 

mode for minimization and switching back to fullatom mode. Protein 

structure in fullatom mode will later be used for scoring, 

filtering, and construction in the final result .pdb file in the 
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<PROTOCOLS> block. This section contains four individual movers, 

which are included between <ParsedProtocol> ...<ParsedProtocol/>. 

<Add mover_name="cent" /> #See above for explanation. 

       <Add mover_name="addcst1" /> #The provided constraints 

should be added before the minimization. 

<Add mover_name="min1" /> #To perform minimization of the 

generated structure. 

     <Add mover_name="fullatom" /> #See above for explanation 

     </ParsedProtocol> 

<ParsedProtocol name="bdr1ss" > #This block indicates the 

specific steps to set up the BluePrintBDR. This section includes 

three individual movers, “bdr1”, ”cenmin1”, and ”dssp” , which are 

included between <ParsedProtocol> ...<ParsedProtocol/>. 

<Add mover_name="bdr1" /> #Calls the mover, BluePrintBDR. 

<Add mover_name="cenmin1" /> #This converts the structure 

into a centroid mode for protein structure building and 

minimization. Centroid mode representation allows the energy 

calculation during fragment assembly to be done in lower 

resolution.   

<Add mover_name="dssp" /> #See above for explanation 

    </ParsedProtocol>  

</MOVERS> #Here is the end of the mover section. 

<PROTOCOLS> #Here is the start of the protocol section 

<Add mover_name="bdr1ss" /> #Calls the mover, BluePrintBDR 

 ... 

<Add filter_name="vdw" /> #Applies the score type filter to 

calculate the „vdw‟ energy, which we will use for structure 

filtering in the next step. 

... 

<Add mover_name="fullatom" /> #This mover converts the 

designed structure into fullatom mode. 

... 

</PROTOCOLS> #Here is the end of the protocol section 

</ROSETTASCRIPTS> #Here is the end of the whole RosettaScript. 
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#-------------------------------------------------------------------

- 

Filtering of the backbones designed from the BluePrintBDR 

3. Open your command line interface, (optional, create your working directory) and move 

to your working directory following the previously introduced steps. 

#bash script--------------------------------------------------

-- 

>cd /path_to_document/my_beta_barrel_folder/demo_bb #move to 

your working directory, change to folder, demo_bb/. 

#-------------------------------------------------------------

-- 

4. Open Jupyter Notebook. If the reader had the Jupyter Notebook installed under a conda 

environment, as suggested in the Introduction, the reader will need to activate that 

conda environment following the previously introduced command before executing this 

step. 

#bash script--------------------------------------------------

-- 

>jupyter notebook # open Jupyter Notebook application 

#-------------------------------------------------------------

-- 

Expected results: A new html-based window pops out, which displays the contents of 

your current directory. 

5. Click to open the Jupyter Notebook, ‘./scripts/pick_bb.ipynb’, follow the 

instructions in the notebook to complete the backbone quality analysis. Stepwise 

explanations are provided in the notebook before each cell, thus will no longer be 

repeated in the main text of this protocol. 

Expected results: A new folder (./sel_for_seq_design/) containing all selected 

backbone structures is created. 

Sequence design on the selected backbone structures  

6. Open your command line interface, (optional, create your working directory) and move 

to your working directory following the previously introduced steps. 

#bash script--------------------------------------------------

-- 

>cd /path_to_document/my_beta_barrel_folder/demo_seq #move to 

your working directory 
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#-------------------------------------------------------------

-- 

7. (Optional but recommended, not demonstrated here) Make another directory based on 

the fold to be generated and move or copy the corresponding blueprint file and 

constraint file into it. This step will help data management if you are working with 

multiple protein folds to be built based on different 2D maps at the same time. In the 

demonstration, because structures for only one blueprint is built, the blueprint and the 

constraint files are directly copied to demo_seq/ for further steps. 

8. Run the following commands to generate the resfile and the sequence design xml file for 

downstream sequence design. The resfile contains pre-defined protein fold-specific 

amino acid type requirements for certain locations. In the example of the β-barrel 

construction, the resfile was generated to define: 1) the location of glycine kinks to 

release Cβ-strip tension; 2) the amino acid type requirements for the β-turns; 3) the 

location of tryptophan corners (Dou et al., 2018). 

#bash script--------------------------------------------------

-- 

>python ./scripts/gen_resfile_xml_from_bp.py ./bp \ 

./bb_design.resfile ./bb_design.xml #The 

‟gen_resfile_xml_from_bp.py‟ file is the python script that 

creates the resfile and the sequence design xml file using the 

blueprint file generated in Basic Protocol 1. The script is 

written to create a new xml file compatible with given inputs 

by modifying the template xml file, „template_bb_design.xml‟. 

Thus it is recommended that the python script, 

„template_bb_design.xml‟ file, and the input blueprint file be 

stored under the parent directory to simplify the executing 

procedure. The first argument following the python script 

specifies the location of the blueprint file. The second 

argument specifies the desired location and name of the output 

resfile. The last argument specifies the desired location and 

name of the output sequence design xml file. 

#-------------------------------------------------------------

-- 

Expected results: The resfile and sequence design .xml file are created in the specified 

directory. 

9. Run the following commands to generate the running scripts for execution of sequence 

design using Rosetta. One command line is designed to be generated for each selected 

backbone structure generated from the previous backbone generation step.  

#bash script--------------------------------------------------

-- 
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>python ./scripts/seq_cmd_generator.py \ 

/path_to_your_Rosetta/rosetta/main/source/bin/rosetta_scripts.

default.linuxgccrelease ./bb_design.xml ./bb_design.resfile \ 

/path_to_document/my_beta_barrel_folder/demo_bb/sel_for_seq_de

sign #seq_cmd_generator.py is the python script that creates a 

file containing all commands to perform sequence design on 

each selected backbone structure. 

#-------------------------------------------------------------

-- 

Expected results: A ‘seq_design_cmd’ file is created, which contains the same number 

of command lines as the number of the selected backbones. Each line is a command line 

of using RosettaScripts for performing sequence design on a particular backbone 

structure. 

10. Run the following commands to perform sequence design. In this step, the commands 

generated in step 9, which were set up to run the ‘bb_design.xml’ script with its inputs, 

are executed. Each structure may take 20 ~ 60 min to calculate. While the below 

demonstration directly runs the sequence design jobs on the current personal 

computational system, it is highly recommended to submit the jobs to computer 

clusters, especially if many structures were to be designed. 

#bash script--------------------------------------------------

-- 

>bash ./seq_design_cmd #Execute the sequence design commands.   

#-------------------------------------------------------------

-- 

Expected results: The designed proteins and a corresponding score file are created in 

the specified directory, ./seq_result/. You may visually check the pdb files using 

PyMOL (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC).  

To explain the sequence design procedure, a part of the sequence design xml file, 

‘bb_design.xml‟, is explained below. The same reading method is recommended as 

mentioned before. 

#RosettaScripts, in xml format--------------------------------------

- 

<ROSETTASCRIPTS> #Here is the start of the whole Rosetta Script. 

 ... 

<RESIDUE_SELECTORS> #Here is the start of the residue selectors 

block, which defines different subsets of residues to work on.  

 <Layer name="coreRes" select_core="true" 

use_sidechain_neighbors="true" core_cutoff="2.1" 
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surface_cutoff="1.0"/> #This residue selector selects the core 

residues. The detection is based on counting the number of 

contacting neighboring side chains of that residue. In this 

particular case, if a residue has more than 2.1 contacting residues, 

it will be counted as a core residue. If a residue has less than 1.0 

contacting residue, it will be counted as a surface residue. 

 ... 

 <SecondaryStructure name="helix" ss="H" 

pose_secstruct="LLHHHHLLEEEEEEEEELLLEEEEEEEEEEEEELLEEEEEEEEEELLLEEEE

EEEEEEEEELLEEEEEEEELLLLEEEEEEEEEEELLEEEEEEEELLLEEEEEEEEEEL"/> #This 

residue selector selects all helical residues based on their 

individual secondary structure state assignments. For this example, 

the states of each residue in the input backbone structure were 

assigned according to the DSSP algorithm (Kabsch,W. and Sander,C. 

(1983) Biopolymers 22, 2577-2637).  

 ... 

<And name="coreH" selectors="coreRes,helix,not_resfile_res" /> 

#This residue selector is an „AND‟ logical selector, which takes the 

overlapping residues of the indicated individual selectors. This 

particular selector selects core residues which also have „H‟ 

secondary structure states, but are not specified in the provided 

resfile.  

</RESIDUE_SELECTORS> #Here is the end of the residue selectors 

block. 

<TASKOPERATIONS> #Here is the start of the block defining task 

operations. 

 ... 

 <ReadResfile name="resfile" filename="%%resfile%%" /> #This 

task operation reads the resfile provided by the „resfile‟ variable 

in the execution command and correspondingly defines design rules 

for specified residue positions. 

<OperateOnResidueSubset name="design_helixCore_AA" 

selector="coreH" > 

     <RestrictAbsentCanonicalAASRLT 

aas="AFILVM"/></OperateOnResidueSubset> #This task operation defines 

a task to perform on „coreH‟ residues (see above) by restricting 

them to be designed with selected amino acid types, „AFILVM‟. 

 ... 

</TASKOPERATIONS> #Here is the end of the task operations block. 

<MOVERS> #Here is the start of the movers block. 
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<FastDesign name="fdesign" 

task_operations="resfile,design_helixCore_AA,...,design_loopSurf_AA" 

scorefxn="beta" cst_file="%%cst_trp%%" ramp_down_constraints="1" /> 

#This Mover performs the major sequence design step. The 

„task_operations‟ lists multiple tasks to define the overall 

specifications of the sequence design steps to be performed. It will 

logically merge all design rules defined by each task operation such 

as „resfile‟ and „design_helixCore_AA‟ (see above for the 

explanation) and construct a final map that controls the behavior of 

each residue upon fast design application. For example, the final 

map may define whether a residue is designable, and allowed amino 

acid types if the residue is open for design. There are multiple 

flags to define available options of fast design. In this example, 

the energy function is defined by the „scorefxn‟ and „cst_file‟ 

flags. The „ramp_down_constraints‟ flag was set as true („1‟) to 

allow ramping down of the constraint weight. 

... 

</MOVERS>#Here is the end of the movers block. 

... 

<PROTOCOLS>#Here is the start of the protocol block. 

... 

<Add mover_name="fdesign" /> #This calls the fast design 

mover. 

</PROTOCOLS>#Here is the end of the protocol block. 

</ROSETTASCRIPTS> #Here is the end of the whole Rosetta Script. 

#-------------------------------------------------------------------

- 

Filtering of the designed proteins 

11. Open your command line interface, (optional, create your working directory) and move 

to your working directory following the previously introduced steps. 

#bash script--------------------------------------------------

-- 

>cd /path_to_document/my_beta_barrel_folder/demo_seq #Move to 

the „demo_seq/‟ directory under your main working directory 

#-------------------------------------------------------------

-- 

12. Open Jupyter Notebook  
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#bash script--------------------------------------------------

-- 

>jupyter notebook  

#-------------------------------------------------------------

-- 

Click to open the Jupyter Notebook, „./scripts/SeqAnalysis.ipynb‟, and follow 

the instructions in the notebook to complete the protein sequence design quality 

analysis. Stepwise explanations are provided in the notebook before each command line, 

thus no longer repeated in the main text of this protocol. Other available filters and 

sequence quality control options are discussed in the ‘Troubleshooting’ section in the 

protocol. 

COMMENTARY 

Background Information 

History of pipeline development 

In early studies, sequence-based fragment assembly was used to perform ab initio protein 

structure prediction (Bowie et al., 1994; Simons et al., 1997). Its success demonstrated that 

understanding of the substructures will be extremely useful in recovering the whole protein 

tertiary structure (Simons et al., 1999a). With the success in protein structure prediction, the 

idea of reversing the structure prediction procedure for protein design was proposed. Designing 

sequences that adapt ideal motifs which are stabilized by local and distant interactions was 

proposed and tested, which was the early successes of de novo protein design (Kuhlman et al., 

2003; Nauli et al., 2001). Following these early successes, a more general method to define the 

per-residue features of the protein that will be designed was developed (Koga et al., 2012; Lin et 

al., 2015) and applied to a variety of protein folds successfully (see Introduction), which became 

the widely used blueprint pipeline today.  

Comparison to other methods 

While the blueprint pipeline has proved itself powerful, it has the limitations of requiring a 

great understanding of the structures of to-be-designed proteins, which may be challenging if 

the targeting fold is structurally complicated. Additionally, the BluePrintBDR cannot change the 

length of the designed proteins, nor can it introduce fold-level diversification into the protein 

built. Lastly, the result of the fixed-backbone sequence design step can be limited by the quality 

of the backbones generated using the blueprint. The Fleishman laboratory developed methods 

reaching rich structure diversity through combining native protein fragments (Lapidoth et al., 

2015), and successfully designed enzymes with comparable characteristics to native enzymes 

(Netzer et al., 2018). Other recently developed methods use machine learning to directly 

generate protein sequences for desired or novel protein folds (Anand et al., 2020; Anishchenko 

et al., 2020), which at the same time can provide proteins with great structural diversity. Other 

methods include SEWING (Jacobs et al., 2016), junction fusion protein creation (Brunette et al., 

2020), and loop-helix-loop unit combinatorial sampling (Pan et al., 2020). 
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Critical Parameters 

Structural parameters defined by the blueprint designed from scratch 

The BluePrintBDR only builds the structure as asked for by the provided blueprint. The 

fragments used for assembly are picked with bias to the assigned features in the blueprint. If a 

user is aiming to build a fold from scratch, a meticulous analysis on the corresponding or related 

folds is strongly recommended prior to generating a blueprint. Every detail in the input 

blueprint and constraint file can affect the output structure and will decide the feasibility of the 

structure to be folded as defined by the user. For example, the location of β-bulges is critical to 

determine the folding of β-barrel and NTF2-like proteins (Dou et al., 2018; Marcos et al., 2017; 

Marcos et al., 2018). Constructing multiple 2D maps or blueprints with different options in 

structural parameters such as the length of the secondary structure segments or secondary 

structure states may aid in exploring the parameter space. Please refer to the ‘Troubleshooting’ 

section for some suggestions on how to improve the quality of the blueprints. 

Constraint parameters 

Constraints can optionally be constructed and assigned to restrict the folding of the structures 

during the blueprint building process. Each constraint specifies a function type such as a 

harmonic function or a circular harmonic function and its related parameters to define a 

potential. The parameters assigned for each constraint can change the minimum or the 

steepness of the potential and thus reflect the target value to constrain to or how strongly the 

user wants the restriction to be applied. The minimum value can be decided based on 

biophysical studies or experiences of the user (i.e. average value observed for the distance 

between two atom types). For the standard deviations of harmonic or circular harmonic 

functions, we provided the parameters that were used in (Dou et al., 2018) but it can be changed 

with caution depending on the experiences or intentions of the users. The smaller the standard 

deviation, the stronger the constraint will be forced, but such constraints can sometimes 

interrupt energy minimization or cause irregularities in the protein structure by relatively 

underestimating the raw scoring function. Details on the constraint types and function types 

applicable by Rosetta can be found at 

https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/constraint-file. 

Number of structures to generate 

When a centroid-level structure is generated for a given blueprint, a random factor exists when 

a fragment or a position to be inserted is picked. Different fragments can be selected every time 

while satisfying the selection condition provided by the blueprint. A trial fragment insertion is 

accepted based on the Metropolis criterion which also involves randomness. Therefore, even 

when one blueprint file is given as input, if multiple structures are generated with the number 

parameter assigned after the flag ‘-nstruct’, structural diversity in other dimensions can be 

observed. Statistically, we may expect the structures to be distributed more finely when more 

structures are generated while maintaining the blueprint definition. This resolution of 

structural difference can affect the downstream sequence design results and hence the number 

of centroid-level structures to generate can be a critical parameter for the quality of final design 

outputs. In another case, when the success ratio is lower than expectation after applying the 

backbone structure filtering criteria, the user might want to generate more structures with the 

https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/constraint-file


 

 

 

This article is protected by copyright. All rights reserved. 

 

same blueprint builder by increasing the number parameter. Hundreds of centroid-level 

structures are usually generated with the BluePrintBDR for well-studied blueprints (Dou et al., 

2018). 

Troubleshooting 

General steps for troubleshooting when there is error during program execution 

Observation: The execution is aborted, an ‘ERROR’ code pops up, or no expected results are 

found after execution. 

When the execution of a script is aborted abruptly and if there is an execution log file, the user 

should go back and trace the log. The logs are usually the record of computational processes 

printed as words during the computational execution. The log can be printed out on the screen 

during the execution of the scripts or saved as a file. You should find the lines marked with 

‘ERROR’ and check its content. The error line usually tells the specific script line 

number/function name of where the error occurs. Suggested methods to fix the error are 

sometimes described following the error codes. Common errors for new users include spelling 

errors, indentation errors, input file formatting errors, and path errors, which are 

recommended to be checked first. If the user does not understand the meaning of the error 

code, we encourage the users to first search the error code online for explanations. If an error 

occurs when the user is executing a Rosetta program, a ‘ROSETTACRASH.log’ file will be created, 

which indicates the specific error location. The user should troubleshoot with previously 

mentioned general methods first. If the error remains or too little information is provided by the 

log file, the user is encouraged to search for the solution and/or ask for assistance at 

https://www.rosettacommons.org/.  

Blueprints improvements 

Observation: The score distribution of the structures is generally unsatisfactory or successful 

rate of generating structures passing the recommended score threshold is low. The generated 

structures do not comply with the requirements indicated by the input blueprint and constraint 

files. 

Some common score terms can be examined first to find potential issues with the generated 

structures. High ‘vdw’ score indicates the structure may have steric clash and high ‘omega’ and 

‘cen_rama’ scores suggest the structure may have non-ideal geometry. Low ‘ss_pred’ score may 

suggest the resulting protein has low chance in satisfying the required secondary structure 

features.  

One potential reason of the structures being unfavorably scored could be that the definition and 

requirements set up with the blueprint and constraint file are not compatible with ideal 

structure formation. For example, if a definition of the ABEGO bins of your partial input is hard 

to be find in the native protein structure database, high quality fragments will not be picked, 

and the generated structure can end up having clashed and unstructured parts. The general 

strategy to solve these issues are to identify ‘badly defined regions’ and optimize their blueprint 

(and/or constraint) definitions. Users are suggested to analyze the SSE and ABEGO bins of the 

output structures to check if they fit the original blueprint requirements (see Alternative 

https://www.rosettacommons.org/
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Protocol 1). Also, it is suggested that users analyze the atom-pair angles and distances of the 

resulting structures to check if they meet the original constraint requirements, if a constraint 

file is provided. If there are residues that fail the requirements, this may indicate the original 

residue requirements are unrealistic, difficult to satisfy, or even self-contradicting. The users 

may make changes on those residues to screen for more reasonable blueprint requirements.  

It is also suggested to perform per-residue analysis to check the scores for each residue to find 

poorly performing regions. Based on the score term that results in unfavorable scores, users 

may conclude which characteristic of each residue needs improvements. Common issues 

include formation of clashes, unideal geometries, and unsatisfied buried polar functional 

groups. These issues may suggest that the users tune and improve the sequence design 

procedure for these particular residues. As an example, the generally constructed layer design 

protocol may assign some residues to be packed with unrealistic amino acid types within the 

given context. Also, the blueprint and/or constraint file may need modifications if the original 

SSE or geometrical requirements do not allow for reasonable side chain packing.  

Other backbone and sequence quality control methods 

The quality of the protein backbone is crucial for successful protein design. It is suggested that 

the user always check the quality of the built backbones before and after the sequence design 

step. Estimating the quality of backbones before sequence design can rely on using Rosetta 

score terms as mentioned in the above section. As explained above, poor backbone quality 

distribution could indicate genuine problems in the blueprint inputs, but for some complicated 

folds to be designed, the problem could be relieved by generating more structures. If increasing 

the number of generated structures does not help in producing a reasonable amount of 

backbone structures to proceed with sequence design, the user should consider revisiting the 

input preparation step. 

Some tools capable of checking the backbone quality and its compatibility for the designed 

sequences are listed here, and the users can find the information at the RosettaCommons 

website or through the references. The filter ‘<worst9mer>’ is a commonly used Rosetta 

objective to check for the quality of fragments inserted at each residue position before and after 

the sequence design step. After sequence design, the quality of the backbones should be 

evaluated in conjunction with the sequence. The deep-learned model, DeepAccNet, is a fast and 

easy-to-use tool to estimate the quality of the structure for a given sequence (Hiranuma et al., 

2020). DeepAccNet also allows the users to check the scores of each residue position. The users 

can pull out regions with relatively low scores to perform targeted improvement. After the users 

finish protein design and obtain results with confident scores, it is recommended to use ab initio 

protein modeling, forward folding, to predict the energy landscape of the protein based on its 

given structure and sequence (Bradley et al., 2005). This step is usually time consuming and 

requires more computation capability than the tools listed above and may not be reliable if the 

protein has complicated topology. This is because there is higher chance the method has 

limitations in exploring the full conformational space as the degrees of freedom increase. 

Therefore, it is suggested that the users use forward folding for the last computational checking 

step, and as a positive indicator to help selecting designs for further wet lab validations. It is not 

a method to apply in large scale, or after an intermediate design step (i.e. it is not recommended 
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to forward fold thousands of designs when the designs are not fully optimized, since it would be 

computationally heavy). 

Understanding Results 

Please refer to the ‘Basic Protocol’ and the ‘Troubleshooting’ sections for results description and 

analysis. 

Time Considerations 

The blueprint pipeline can be divided into three steps, 2D map construction, protein backbone 

construction, and sequence design. The first step, 2D map construction, is the most critical and 

time-consuming step which will determine the success of the whole protein design. This step 

requires the user to have a meticulous and/or mathematical understanding of the protein fold 

class to be designed. While it may be difficult to come up with an accurate blueprint from 

scratch, the Rosetta-based computational platform makes it possible for the users to exhaust all 

possible SSE and ABEGO combinations at different locations through constructing many 

blueprint variants. The backbone and sequence design results based on the blueprints can be 

used for re-evaluating the original blueprints. As a result, the total computational time will 

increase depending on the number of different blueprint options to explore or the iterations of 

designs based on the feedbacks. 

The backbone building and sequence design steps for one output usually take 30 to 60 min each 

on a typical personal computer (4 gigabyte random-access memory, Intel core i5 processor) for 

the demonstrated β-barrel, which is around 110 amino acids long. Commonly, the larger the 

protein, the more computations are required for energy calculation, and the longer time it takes 

to finish each design step. It is suggested that the users use a computer cluster system and run 

the jobs in parallel if many jobs are to be executed. 

The filter steps are usually fast if the scores have been pre-computed and can be completed on a 

typical personal computer (4 gigabyte random-access memory, Intel core i5 processor) within 

10 to 30 min. The specific time consumption is highly dependent on the number of structures 

and the specific features to be analyzed. Although both the Rosetta score file and the .pdb file 

format can be used for analysis, when many .pdb files are loaded as poses (i.e. the object that 

holds the sequence and structural information of a protein in PyRosetta) to be further analyzed 

using the PyRosetta scripts, the analysis can be delayed due to the time spent on constructing 

multiple poses. Therefore, if the user is planning to use the scores that have already been 

evaluated and reported as a part of the backbone or sequence design process, using the score 

file directly for analysis can save time.  

Abbreviations 

DSSP - Dictionary of secondary structure of proteins 

NTF2 - Nuclear transport factor 2 

SSE - secondary structure element 
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Figure Legends 

Figure 1. An example of a blueprint. 

 

Figure 2. The overall fold, Cβ-strip, and the 2D map of a β-barrel. (a) The cartoon representation of a β-barrel. The 

backbones are shown in sticks. The carbon, nitrogen, and oxygen atoms are colored in white, blue, and red, 

respectively. The side chains and hydrogen atoms are omitted for clarity. The backbone hydrogen bonds between 

each strand are shown in yellow dash lines. (b) A Cβ-strip is shown in sticks and cartoon representation in orange. 

The carbon, nitrogen, oxygen, and hydrogen atoms are colored in orange, blue, red, and white, respectively. (c) The 

2D map of the β-barrel used in this report is shown in cartoon representation. Each circle represents a β-barrel 

residue. The strand residues are colored in white or gray, and the loop residues are colored in blue. Individual Cβ-

strip is distinguished by the color of gray or white. One exemplary Cβ-strip is marked out with a gray dash line. The 

last strand is also shown in dashed circles to show its complete hydrogen bond registry to the first strand. The N or C 

terminus of the protein is marked out by ‘N’ or ‘C’. The shear number (S) and strand distance (D) are marked out. 

Some of the N and C terminal residues in the actual blueprint file used in the report are omitted for clarity. Panels a & 

b are prepared using PyMOL (The PyMOL Molecular Graphics System, Schrödinger, LLC). 

 

 

Figure 3. An example of defining a hydrogen bond constraint between the amine of residue 17 

and the carbonyl of residue 21. 

 


