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The development of efficacious treatments targeting Alzheimer’s disease (AD) aetiology has been proved an extensive, time-
consuming task. Currently prescribed therapies, primarily acetylcholinesterase inhibitors such as donepezil and the NMDA-
receptor antagonist memantine, concentrate on the improvement of symptoms such as cognitive decline and memory loss,
however, do not address the underlying pathology of the condition. More recently, efforts have focused on developing drugs
that target the hallmarks of AD, amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Many clinical trials focusing
on the removal of these proteins are presently ongoing, primarily exploring immunotherapeutic avenues such as the anti-
body aducanumab (targeting Aβ) and the vaccine AADvac-1 (targeting tau). However, the incomplete understanding of AD
progression presents a challenge, and further studies focusing on the development of the disease are essential to the expan-
sion of novel, efficient therapeutic routes.
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Introduction
Alzheimer’s disease (AD) is one of the most common neurode-
generative diseases characterized pathologically by progres-
sive neurodegeneration, subsequent to accumulation of
extracellular amyloid plaques and intracellular neurofibrillary
tangles of the microtubule-associated protein tau (Perl, 2010).
This manifests clinically as progressive cognitive impairment,
commonly amnestic in nature, with sporadic late-onset AD
(LOAD) being the predominant cause of senile dementia
(Vardarajan et al., 2014). Worldwide, it is estimated 1 in 10
people over the age of 65 have some form of dementia, with
AD accounting for 50–70% of all cases (Qiu, Kivipelto, Von
Strauss, 2009).

Understanding of AD pathology is incomplete. However,
some of the most developed hypotheses reflect the dysregulation
of the cholinergic system and glutamatergic system, in addition
to protein aggregation (tau and amyloid) within the brain.
Currently, prescribed treatments for AD are based upon the
acetylcholine and glutamate dysregulation hypotheses as mono-
therapy with either acetylcholinesterase inhibitors (AChEIs) or
memantine, respectively (National Institute for Health and
Clinical Excellence, 2011). Therapies targeting tau and amyloid,
most distinctively those exploring the effects of immunotherapy,
are still under development but have yet to show clear clinical
efficacy over that of current treatment regimens. According to a
systematic review by Ehret and Chamberlin (2015), the optimal
concentrations for the available acetylcholinesterase inhibitors
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(galantamine, rivastigmine and dopenezil) and the NMDA-
receptor antagonist memantine are unknown, albeit being the
only drugs that have demonstrated consistent clinical effects
throughout late-phase trials. Whilst short-term trials of 3–6
months were considered acceptable and approved by the US
Food and Drug Administration (FDA), they did not consider
the long-term efficacy of the drug, nor whether the positive out-
comes can be sustained. Although extensive meta-analyses con-
cluded that these drugs are efficacious in reducing major
symptoms such as cognitive decline and memory loss, the
improvement is modest and temporary (approximately 6
months) and does not address the underlying pathology or life
expectancy (Birks, 2006; Molino et al., 2013). Ultimately, a
major challenge for future drug development would be a bal-
ance between economic output and evaluation of drug efficacy.
Furthermore, memantine/AChEI combination therapy does not
appear to provide a solution to the limits of either monotherapy,
nor is it likely to be a worthwhile avenue of future development
(Molino et al., 2013). Therefore, a shift from the currently inad-
equate symptomatic treatment strategies to targeting or prevent-
ing AD aetiology is highly desirable. Drugs such as AChEI and
memantine are primarily symptomatic, however, targeting not
only the symptoms but also the underlying mechanism through
which AD develops is fundamental. A range of disease-
modifying drugs are currently under development targeting
amyloid and hyperphosphorylated tau. The combination of
drugs which provide symptomatic relief and disease-modifying
therapies that may alter the pathological steps leading to the dis-
ease, may prove to be a worthwhile route for future treatment.

The amyloid hypothesis
At the centre of the amyloid hypothesis is the neuronal
surface-membrane-bound protein, the amyloid precursor pro-
tein (APP) (Fig. 1). Physiologically, APP co-localizes to neur-
onal growth cones with the extracellular tropic molecule
netrin-1 during neural development. Here, netrin-1 binds its
main receptor, DCC (deleted in colorectal cancer), and co-
receptor, APP, acting to navigate commissural axon out-
growth via chemoattraction (Rama et al., 2012). Netrin-1 is
also expressed and active in the adult brain, including the
hippocampus and dentate gyrus (Lourenço et al., 2009)—
areas associated with memory formation, storage and major
sites of AD pathology (Reilly et al., 2003).

APP undergoes either α or β processing to engender function-
ally polar intracellular signalling fragments (Fig. 2) (Bredesen,
2009; Dong et al., 2012). Products from its α-pathway proteoly-
sis regulate neurite outgrowth, synaptic plasticity, maintenance
and spatial memory—all promoting memory retention and cell
survival in cognitive neural pathways via netrin-1 interactions.
Conversely, the β-pathway promotes neurite retraction, synap-
tic reorganization and neuronal apoptosis—promoting memory
loss and reorganization (Bredesen, 2009). In particular, β-pro-
cessing produces an anomalous Aβ variant with a 42-amino
acid sequence, rather than normally produced Aβ 1–40, which
possesses marked neurotoxicity and aggregative capacity, form-
ing hallmark amyloid plaques in AD brains (Dong et al., 2012).

Lourenço et al. (2009) demonstrated that production of Aβ is
inhibited by APP–netrin-1 interaction, and that the netrin-1
binding-region of APP lies in its ectodomain (sAPPα region),
including the 17 amino acid residues that overlap with the Aβ
region. As such, Aβ also binds netrin-1, with the Aβ1–42 variant
possessing a higher binding affinity than the Aβ1–17 fragment
alone, although the authors comment that this is possibly only
due to the inherently adherent properties of Aβ, and not neces-
sarily biologically relevant.

Aβ production begins with APP proteolysis by β-site APP
cleavage enzyme 1 (BACE1) into secretory APP-β and β C-
terminal fragment (β-CTF), followed by further cleavage of β-
CTF by γ-secretase to Aβ (Fig. 2, ) (Chow et al., 2010).
Holsinger et al. (2002) found that BACE1 is upregulated in
AD brains 2.7-fold compared with age-matched controls,
although this may not only reflect increased Aβ production,
as BACE1 has multiple substrates (Chow et al., 2010). The
next Aβ production mediator, γ-secretase, also has multiple
substrates, including Notch receptors, and is composed of
several components: presenilin 1 or 2 (PS1/PS2), nicastrin,
Aph-1 and Pen2 (Chow et al., 2010). Genes coding for these
presenilin components contain ~90% of mutations associated
with early-onset familial AD (Dong et al., 2012). This upregu-
lation of BACE1 and genetic risk associated with γ-secretase
in AD, coupled with their pivotal role in Aβ production, make
both enzymes prime candidates for inhibitory drugs.

Based on such experimental evidence, however, Bredesen
(2009) proposes a convincing model for AD that sees Aβ
corrupting neural growth/death signalling by shifting the APP
α:β processing ratio towards the β-pathway. Aβ (particularly
Aβ42) acts as an anti-trophin, competing with APP for netrin-1

Figure 1. APP structure and differential processing. In the plasma
membrane, APP processing and subsequential cleavage occur via the
non-amyloidogenic α-processing pathway, whereas amyloidogenic β-
processing occurs in the endosomal membrane.
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binding, preventing neurite outgrowth and consequently imped-
ing cognitive maintenance, learning and memory formation.
Additionally, this netrin-1–APP inhibition of Aβ production is
itself inhibited. This initiates a positive feedback loop of Aβ gen-
eration, as increasing volumes of Aβ surmount the regulatory
function of APP–netrin-1 in the brain parenchyma. Aβ ultim-
ately alters neuronal proteostasis to create a microenvironment
that is both amyloidogenic and opposes neuronal cell growth
signalling, subsequently reflected by the AD phenotype of pro-
gressive cognitive impairment as synapses are lost and new
neural circuits fail to form.

Pharmacological targeting
of amyloid β

Treating Aβ as the lynch-pin of AD pathogenesis offers many
opportunities for therapeutic intervention which can be

divided into those targeting either production or clearance.
Ohno et al. (2004) reported that BACE1 ablation in an AD
murine model rescued memory deficits, which was attributed
to the ‘near abolition’ of Aβ production. Current phase III
drug verubecestat (MK-8931), a small molecule inhibiting
BACE1 and BACE2, has delivered promising results. A study
by Kennedy et al. (2016) demonstrated a decrease in overall
CSF Aβ in mice, monkeys and AD patients, following from
phase I trials showing a likewise decrease within volunteers
using variable dosage from 2.5 to 550mg/day, with minimal
side effects (ALZ Forum, 2012).

Conversely, two Phase III trials of the first AD candidate γ-
secretase inhibitor, semagacestat, were aborted due to unforeseen
toxicity, with serious adverse effects including susceptibility
to skin cancer and infections due to decreased immunity being
observed in patients treated with the drug (Doody et al.,
2013). Retrospective analysis of this failure concluded that
toxicity was caused by inhibition of Notch-receptor pathways

Figure 2. Aβ production via amyloidogenic and non-amyloidogenic APP processing pathways, apolipoprotein E-mediated Aβ clearance in
neurons, and related drug interventions. Ab production—amyloidogenic pathway (red arrows): LRP mediated endocytosis of APP into a
clathirin-coated p8it. LDLR family receptors apoER2 and LRP1b act to inhibit this mechanism by retaining APP at the cell surface when bound.
apoE4 promotes LRP1-mediated APP endocytosis. The acidic environment of the endosome activates β-secretase, which cleaves APP, shedding
secretory APPβ (aSPPβ) and leaving a membrane bound β C-terminal (β-CTF). Next, γ-secretase cleaves β-CTF, producing Aβ (38-43 amino acids
long), and APP intracellular C-terminal domain (AICD—not shown). Aβ is then degraded in the lysosomal/late endosome by proteolytic
enzymes; Aβ production—non-amyloidogenic pathway (green arrows): APP may also be restored to the plasma membrane via recycling
endosomes. α-secretase cleaves APP through the Aβ region, shedding secretory APPα (sAPPα). Next, γ-secretase cleaves the remaining α-CTF
into non-toxic peptide P3 and AICD (not shown); Aβ clearance—apolipoprotein E-mediated degradation (blue arrows): Activation of the
peroxisome proliferator activated receptor γ (PPARγ) and the retinoid X receptor (RXR) cause the two to form a heterodimer, which then binds to
the peroxisome proliferator response element (PPRE) DNA region, inducing transcription of APOE and abca1 genes. ABCA1 lipidates apoE,
forming a high-density lipoprotein (HDL) particle. apoE in this particle binds secreted soluble Aβ, directing its LPR1-mediated endocytosis and
autophagic degradation as in (3). Alternatively, Aβ is degraded by insulin degrading enzyme or neprilysin proteases, or removed from the brain
parenchyma via de blood–brain barrier or interstitial fluid drainage pathway (not shown); Aβ-targeting drugs (yellow): Avagacestat binds and
inhibits γ-secretase ( ), thus preventing Aβ production. Rosiglitazone/pioglitazone (RSG/PGZ) activate PPARy ( ), inducing apoE transcription
and ultimately increasing Aβ clearance. Adapted from Bu (2009) and Mandrekar-Colucci et al. (2012).
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via γ-secretase (Ghezzi, Scarpini and Galimberti, 2013).
However, γ-secretase may still be a worthwhile target, with Li
et al. (2007) suppressing γ-secretase activity by 30% via het-
erozygous knockout of the γ-secretase subunit Aph-1 in AD-
model mice, resulting in a 35 ± 16% reduction in Aβ burden.
The authors concluded that such moderate suppression avoids
adverse side effects associated with impairment of Notch-
pathways. The γ-secretase inhibitor avagacestat builds on this
success, inhibiting the Aβ cleavage function of γ-secretase
with a 193-fold selectivity over Notch-processing (Gillman
et al., 2010). Furthermore, Albright et al. (2013) demon-
strated a single 200mg dose of avagacestat caused a 47%
decrease in cerebrospinal fluid (CSF) Aβ levels after 12 h in
healthy human volunteers, in contrast with a steady increase
in those participants in the placebo group. Moreover, the γ-
secretase and inflammation modulator CHF5074 was also
shown to decrease Aβ plaque burden and learning deficit in
rodent models (Imbimbo et al., 2009; Porrini et al., 2015).

Although recent progress has been made by pharmaceut-
ical companies in developing BACE1 inhibitors, some drugs
have not made past phase I and II clinical trials. Trials involv-
ing small molecule BACE1 inhibitors such as RG7129 from
Roche and LY2886721 from Lilly were either dropped or
halted before reaching phase III, respectively. Whereas the
development of RG7129 was terminated by Roche with no
official explanation, LY2886721, an orally administered non-
peptidic BACE1 inhibitor, showed promising results in ani-
mal models by reducing Aβ and successfully succeeded in
phase I trials, however the continuous development was can-
celled due to abnormal liver biochemistry being reported in a
small number of phase II candidates (Vassar, 2014).

More recently, efforts have been placed upon the develop-
ment of efficient Aβ immunotherapy. Aducanumab, a human
monoclonal antibody selectively targeting aggregates and
insoluble Aβ deposits, showed promising results in mice mod-
els and its latest clinical trial including AD patients, being the
only drug in AD trials to suggest disease modification at a
higher dose in Phase I trials (Sevigny et al., 2016). In this
study, 165 patients with clinical AD diagnosis and positive Aβ
PET scan were given monthly doses of 1, 3, 6 or 10mg kg−1

of aducanumab over the course of a year. The results showed
the antibody readily transverses the blood–brain barrier and
reduces Aβ aggregates in a time- and dosage-dependant man-
ner. Moreover, in correlation with the decrease in Aβ burden,
cognitive studies performed determined a steady improvement
in cognition. Although the efficacy of aducanumab requires
confirmation in larger studies, it provides further evidence
that the development of immunotherapies as treatment for
AD are a promising target route. In contrast, drugs such as
solanezumab, an anti-amyloid monoclonal antibody similarly
designed to target and bind to soluble Aβ peptide, showed no
significant improvements to cognition or functional abilities in
two Phase III trials (Doody et al., 2014). Bapineuzumab,
another anti-amyloid monoclonal antibody candidate, was
also unsuccessful during Phase III trials (Salloway et al.,
2014). However, advantages and disadvantages are inevitable

when exploring Aβ active and passive immunization, includ-
ing variable antibody response and the necessity for repeated
antibody infusions over time. Conversely, immunotherapy
remains a promising target route and several clinical trials are
still ongoing, having passed phase II of clinical development
(Lannfelt, Relkin, Siemers, 2014).

Microtubule-associated protein tau
hypothesis
Deposition of neurofibrillary tangles (NFTs) formed from the
hyperphosphorylated microtubule-associated protein (MAP)
tau correlates closely with AD progression. Tau is produced
with alternative mRNA splicing of a single gene (Stoothoff
and Johnson, 2005), approximately 80 serine/threonine and 5
tyrosine phosphorylation sites (Wang et al., 2013). This pro-
tein can be differentially post translationally modified (which
includes, but is not limited to, aggregation, polyamination
and nitration), with phosphorylation described as the most
common under normal and pathological conditions. Although
tau phosphorylation is present in the healthy brain, the concen-
trations are three to four times lower than those found in the
AD brain, and the impact in biological function varies greatly
depending on the phosphorylation site (Gong and Iqbal, 2008).
Martin, Latypova, Terro (2011) reported that post-translational
modifications are most likely responsible for excessive tau
phosphorylation (hyperphosphorylation), which reduces its
microtubule affinity and destabilizes neuronal cytoskeleton.
However, tau hyperphosphorylation is a key mechanism for
foetal neurodevelopment, where it is thought to contribute
towards neuronal growth and plasticity by maintaining a less
stable cytoskeleton (Lovestone and Reynolds, 1997). In the
developed brain, aggregation of tau increases according to
levels of hyperphosphorylated tau, also causing impairment in
the functionality of other proteins (Götz, Ittner, Ittner, 2012).
While tau hyperphosphorylation occurs prior to the develop-
ment of NFTs, the mechanism behind its abnormal formation
is not completely understood.

Current pharmacological targets of tau
Approaches including stimulation of tau disassembly and
inhibition of tau aggregation are the most widely explored
therapeutic treatments, and are based on the principle that
an imbalance in phosphatases and kinases may lead to
hyperphosphorylation of tau and to the development of
NFTs (Mangialasche et al., 2010). Phosphoseryl/phospho-
threonyl protein phosphatase (PP-2A), responsible for tau
dephosphorylation and inhibition of phosphorylation-
inducing kinases such as mitogen-associated protein kinase
(MAPK), has been shown to directly impact AD pathogenesis
and is a strong candidate for new pharmacological therapy
(Mangialasche et al., 2010; Voronkov, Braithwaite, Stock,
2011; Götz, Ittner, Ittner, 2012). Downregulation of PP-2A
and increased levels of PP-2A endogenous inhibitors such as
inhibitor 2 (I2) have been shown in post mortem evaluation
of AD brains, which resulted in increased Aβ deposition and
tau hyperphosphorylation in in vivo models (Voronkov,
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Braithwaite, Stock, 2011). Over-activation of glycogen syn-
thase kinase 3 β (GSK-3β), involved in Aβ and tau process-
ing, gene transcription and cell signalling, is hypothesized to
be linked to tau hyperphosphorylation, Aβ deposition and
memory impairment, all of which are observed in AD
(Hooper et al., 2008). Furthermore, a study by Wen et al.
(2008) has shown GSK-3β activity increases with aging, and
its inhibition may reverse hyperphosphorylation both
in vitro and in vivo (Engel, 2006).

Therapeutic treatments targeting PP-2A stimulation and
GSK-3β inhibition are therefore highly desirable. Aβ-candi-
date drug memantine has been linked to decreased tau hyper-
phosphorylation by reversing PP-2A inhibition (Mangialasche
et al., 2010), potentially reducing the necessity for combin-
ation therapy or simultaneous treatments. Lithium, one of the
most studied pharmacological treatments for GSK-3β inhib-
ition, has been correlated with decreased tauopathy and tau
lesions in vivo (Nakashima et al., 2005; Noble et al., 2005;
Pérez et al., 2003). However, both GSK-3β and PP-2A are
essential for normal development and play key roles in cellular
regulation, requiring further pharmacological investigation
and development of pathological-specific drugs rather than
broad targeting of these substrates.

Immunotherapy focusing on pathological tau removal is
also a strong candidate for drug development. AADvac-1,
active immunization therapy targeting tau peptides, has
shown to decrease 95% of tau hyperphosphorylation in AD
rodent models. The study also indicated levels of tau oligo-
mers and NFTs were reduced, with clinical phenotype of
models improving considerably (Kontsekova et al., 2014).
Moreover, a double blind, phase I clinical trial conducted
from June 2013 to March 2015 demonstrated positive results
for AADvac-1, with 29 out of 30 patients developing the IgG
immune response expected from the drug (Novak et al.,
2016). In conjunction, these results offer promising routes for
the development of novel tau immunotherapy.

Conclusion
Clinical trials in AD remain challenging due to the struggle to
recruit participants, participant compliance and technological lim-
itations related to sensitive markers/measures of cognitive or bio-
chemical improvements as a result of treatment. Moreover, the
development of therapeutics targeting multiple pathways respon-
sible for the pathogenesis of AD is undoubtedly complex, and is
yet to produce a disease-modifying agent. Acetylcholinesterase
inhibitors such as rivastigmine, dopenezil and galantamine, and
the NMDA-receptor antagonist memantine are thus far the only
therapeutics approved by the FDA and available for AD treat-
ment. These treatments, however, offer no more than symptom-
atic relief over a short period of time, and have variable efficacy
from patient to patient. Although any improvement must be
considered a triumph, without efficacious treatments concentrat-
ing on the underlying pathology there is very little possibility of
long-term recovery. Moreover, while passive and active

immunization targeting either Aβ or hyperphosphorylated tau
are still under development, most studies were halted after
unsuccessful Phase III trials. There is, however, a growing
expectation of those clinical trials persisting for longer periods
and focusing on specific populations, therefore gathering more
relevant data that could lead to the development of an effective
treatment.
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