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DESIGNING A SOFTWARE TRANSACTIONAL MEMORY
FOR PEER-TO-PEER SYSTEMS

Aurel PAULOVIC *, Peter LACKO T

Abstract. Transactional memory is a rather novel approach to concurrency con-
trol in parallel computing, that has just recently found its way into distributed systems
research. However, the research concentrates mainly on single processor solutions or
cluster environment. In this paper we argue, that peer-to-peer systems would require
a different design of transactional memory because of the increased failure-rate of
nodes, slower network and possibility of network splits. We also present a few of our
design ideas, namely increased performance and fault tolerance through the use of
higher-level conflict detection and resolution via abstract data types and eventually
consistency, that as we think could be important to a successful implementation of
a scalable and resilient transactional memory.

Keywords: distributed transactional memory, STM, peer-to-peer, eventual con-
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1 Introduction

With the rise of parallel and distributed applications, concurrency becomes devel-
oper’s daily bread and butter. Traditionally, the concurrency problem has been solved
by using explicit locking and critical sections. While this might be straightforward
in smaller applications running on a single computer, it quickly becomes complicated
and error-prone as systems grow larger and more complex and the programmers have
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to reason about hard-to-debug problems like deadlock, livelock, priority inversion or
lock convoying.

When diving into distributed systems, explicit locking gets even harder. Manag-
ing and tracking locks in the presence of node failures, latency and network splits
often requires carefully crafted locking solutions using dedicated locking services and
policies. In addition, locking highly contended resources across a large distributed
system can easily become a bottleneck due to the introduced blocking.

Peer-to-peer (P2P) systems, as a class of distributed systems, try to provide scal-
ability and effective sharing of computational resources. In contrast to many systems
developed for cluster computing, they tend to be decentralized, geographically dis-
persed and inherently fault-tolerant. However, many of P2P’s desired features become
issues, when trying to concurrently manage and work with shared data. High node
volatility (joining and leaving the network), latency, asymmetric connection speeds
and network partitions, that are all much more frequent and severe than in typical
cluster systems running in a data center, make concurrency control using explicit
locks complicated.

Researchers try to alleviate these problems with new concurrency mechanisms
and models. One of such novel approaches is transactional memory (TM). So far,
TM research has mainly focused on parallelism on a single chip. In recent years
attention has slightly shifted towards TM for multiprocessors and cluster computing.
However, to our knowledge only a little work has been done on the topic of TM for
P2P systems.

In the rest of this paper we first briefly introduce TM as a concurrency control
mechanism and the notion of higher-level transaction conflict detection and resolution.
We follow with a description of distributed TM and the differences between TM for
cluster computing and P2P systems. Finally, we present our preliminary ideas and
design proposals on a software transactional memory for peer-to-peer systems.

2 Transactional Memory

Transactional memory is a relatively new approach to managing concurrency in par-
allel and distributed systems, that was first practically demonstrated by Herlihy and
Moss [7] as an extension to multiprocessor cache-coherence protocol, and later in soft-
ware implementation by Shavit and Touitou [19]. TM uses the notion of transactions
as a concurrency primitive for memory operations and is often implemented as a form
of optimistic concurrency control. Generally, a transaction in TM is a finite sequence
of operations that satisfies the failure atomicity and isolation properties, and allows
the operations of different transactions to be executed concurrently in isolation. It ei-
ther completely successfully commits, if no conflict occurred, or automatically aborts
and rolls back all its changes to the state before the start of the transaction.

The goal of transactions is to free the developer from the need to use explicit
locking to denote and protect critical sections that access shared variables, which
could be the subject of race conditions. By removing the explicit locks, we can
develop a general concurrency management that is more efficient than coarse grained
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locking, yet does not expose the complications of fine-grained locking and its issues
(e.g. deadlock). Also, since transactions can generally be managed at higher levels
of concurrency at runtime and not at the level of locks in code, they should provide
easier composability of operations that need synchronization.

2.1 Conflict detection and resolution

Traditionally TM implementations detect conflicts between transactions (read-write,
write-write conflicts) using the individual memory addresses that the transactions
access. In general the TM runtime records every address read by a transaction in
a read-set and every write in a write-set and compares these with the read- and
write-sets of other concurrently running transactions. If there is some nonempty
intersection between the write-set of one transaction and the read- or write-set of an-
other transaction, a conflict is detected and one of the transactions has to be aborted.
While this is relatively straightforward and does not require the TM implementation
to understand the operations performed, it can also result in false positives and un-
necessary transaction aborts. For example, if one transaction were to read the last
element of a singly-linked list it would have to traverse the entire list and the trans-
action would end up with a read-set containing all of the elements in the list. Such
a transaction would then be in a conflict with every transaction that would wish to
insert or remove an element anywhere in the list despite the fact that the operations
might actually logically not interfere.

In order to alleviate this issue, the TM can use the notion of Higher-Level Conflict
Detection and Resolution (HLCDR). In HLCDR the TM does not detect conflicts
using the accessed memory addresses, but uses the higher semantics of the operations
performed on the data structures instead. In the previous example the TM could,
using the semantics of used operations, allow both transactions to succeed despite
the fact that read- and write-sets of the transactions might overlap. For the TM
to be able to support this, the data structures used in transactions have to declare
semantics of the operations that can be applied to them. Such data types are called
Abstract Data Types (ADT). ADTs completely encapsulate their state and expose
higher-level operations together with information on their mutual commutativity and
its constraints as well as their inverses, which can be used in the case of a transaction
rollback. ADT and HLCDR have been explored in multiple works [11, 16, 8, 9] with
focus on their performance benefits.

3 Distributed Transactional Memory

The research of transactional memory for distributed systems has been mainly driven
by the rise of cluster computing, data centers and cloud. However, the design and
implementation of TM that can be used in distributed environment differs from the
more traditional TM for single processor systems in many aspects, from which some
of the most important are:
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e Nodes in a distributed system can fail and a failure of a node should not stop
the whole system (failure transparency).

e Distributed systems often use replication and data items handled by a TM might
be replicated on multiple nodes. Distributed TM has to manage coherency be-
tween all item replicas (replication transparency). On the other hand, replica-
tion could be exploited for the purpose of data versioning.

e Communication latency between processes running on separate nodes is many
orders of magnitude higher than inter-process communication on a single node.
The concurrency control overhead of TM can be diminished by the overhead
of communication between remote distributed processes and TM can perform
more complex algorithms to avoid conflicts.

e While overhead of TM on a single processor is usually considerably higher than
the overhead of explicit locking, in a distributed system, the overhead of locking
raises significantly due to potentially higher contention and can be outperformed
by optimistic concurrency control performed by TM.

e Distributed applications tend to be more complex than single processor appli-
cations and concurrency control via transactions may offer easier interface than
using explicit locks, while still providing better protection against deadlock, etc.

The ever-growing body of research of distributed transactional memory implemen-
tations is characteristic by its variety. Some of the TM designs focus on relatively
small number of nodes while others show good performance even for large clusters.

Kotselidis et al. [10] created a distributed STM called DiSTM using which they
analysed 3 different prototypes of distributed coherence protocols: a) a decentralized
Transactional Coherence and Consistency (TCC) protocol, that broadcasts the read-
and write-sets of a committing transaction to all nodes in the system, where they are
checked for conflicts; b) a serialization lease protocol effectively used as a lock on the
master; and ¢) a scheme using multiple leases. Their TM design, however, always uses
a single master that effectively limits the scalability and reliability of their solution
as a single point of failure.

The Cluster-STM presented by Bocchino et al. [2] was designed for large scale
clusters and showed good performance for systems comprising up to 512 processors.
Their implementation guarantees serializability and imposes a programming restric-
tion, that each memory location can be accessed between two global synchronization
points either only transactionally or only non-transactionally. To be able to perform
well and scale to large clusters, the STM uses several key techniques. It offers a re-
mote evaluation of transactional operations via the on construct in order to avoid
transferring large amounts of data to the node, that is initiating the transaction; it
supports multiword data movement, that allows for bulk transfers of data between
transactional and local memory; and employs a novel strategy that uses a transaction
descriptor distributed across multiple processors. However, their solution focuses on
HPC workloads and does not provide fault tolerance.

Manassiev et al. [13] exploited in their Distributed Multiversioning (DMV) al-
gorithm the natural presence of multiple data replica versions across a distributed
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transactional system. They use the different replica versions to run conflicting read-
only and update transactions on different nodes without having to keep different
versions of data locally, which allows them to avoid many conflict waits and transac-
tion roll-backs. Their implementation broadcasts all modifications performed during
a transaction to all the nodes in the system and has to acquire their acknowledgment
prior to local commit, thus is likely to be latency sensitive and not scalable to larger
number of nodes.

In Sinfonia [1] Aguilera et al. proposed a service built on the concept of mini-
transactions. A minitransaction trades programmability and general expressiveness
for better scalability and performance. It does not allow to perform a sequential set
of operations that can both read transactional data and then write it in the same
transaction to a different location; instead the operations merely consists from a set
of compare items, a set of read items and a set of write items, which are all chosen be-
fore the minitransaction starts executing. Upon commit, the minitransaction is then
performed on the nodes holding the data, the compare items are compared to the
actual values and if the comparison succeeds, the read- and write-items are treated as
input and output of the whole transaction. The communication of the system is very
efficient, but it is debatable whether the programming model is not too restrictive.

Fault tolerance in distributed STM was the focus of D*STM [5] and the Fault-
Tolerant DTM [12]. The former processes each transaction autonomously in isolation
on each node and then uses non-blocking distributed certification scheme based on
atomic broadcast and a novel Bloom Filter Certification (BFC) read-set encoding to
validate the transaction. The later uses combination of primary, backup, cached and
transactional local copies of objects and prefetching to optimize the performance and
mask the latency in the networked system. While fault-tolerant, both designs have
been tested only with a small number of nodes and relatively good network and it is
therefore unclear how scalable they are.

Transactional memory for P2P systems, has been studied rather sparsely. Pratt-
Szeliga and Fawcet [18] used Hilbert Space Filling Curves to search the P2P overlay
for data without flooding. Miiller et al. [15] presented the implementation of multiple
distributed commit protocols:a) a peer-to-peer based approach using a forward valida-
tion with a first-wins strategy; b) a both forward and backward validation algorithm
based on ultra-peers; and ¢) a combined solution using super-peers and an ultra-peer
node. Mesaros et al. [14] designed a transactional system for structured overlay
networks using decentralized lock-based management.

4 Differences between Cluster and P2P STM

Peer-to-peer networks typically consist of hundreds or thousands of highly unreliable,
geographically dispersed peer nodes that can almost arbitrarily leave and join the
network at any time. The latencies can be one or two orders of magnitude grater
than those in a high-end data center and some nodes might have asymmetric connec-
tions. Based on that, we have identified a set of differences between cluster and P2P
environments that could prove to be important in the design of a TM.
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Nodes in a P2P system are much more likely to fail or to get split from the
other nodes by a network partition. TM for P2P networks should probably focus
on optimistic concurrency since detecting node failures is relatively complicated and
pessimistic concurrency could introduce blocking. Also in the case that a node running
a transaction fails, it should not hold any locks or otherwise block the rest of the
system.

Since P2P nodes are volatile, data needs to be replicated. This can be true for
cluster environment as well, however, there might be a difference between the pos-
sibilities of data replication and migration. The peer nodes are often not dedicated
solely to the purpose of running the computation or application and could enforce
strict limits on the memory used (and would typically have much less memory than
a server in a data center) or might be unwilling to host replicated data from other
peers because of privacy or performance issues.

Nodes in a P2P network could be potentially malicious. To allow more secure work
with data, some resources might be limited to a privileged group of peers that have
direct access to them, while other nodes would have to access the resources remotely.
TM could support executing transactional operations on remote peers to allow for
this scenario.

Distance and latency between nodes in a P2P system is much greater than in
a cluster, also the connection speed and throughput are typically considerably lower
than between nodes in a data center. The conflict detection and resolution algorithms
of a TM should focus on minimizing transaction abort-rate and communication over-
head. In addition, a peer network connection might be asymmetric and could prohibit
transferring large amounts of data from the node to the rest of the system. TM for
P2P should be able to exploit data locality and communication batching.

Because of the nature of P2P systems and their often decentralized architecture,
that provides the individual peers only with a partial view of the entire network,
locating data items and their replicas is much more complicated. Structured and
unstructured networks would potentially require different data search and discovery
services and a potential TM implementation should be able to support them.

The workloads of typical P2P applications are often quite different from those
of clusters. Distributed systems in data centers often focus on heavy computation,
data analysis, supporting large number of client requests or performance in highly-
parallelizable tasks. On the other hand P2P systems are more used in collaborative or
sharing scenario. This has impact on the type and frequency of potential transaction
conflicts. We think, that a more Create, Read, Update and Delete (CRUD) -like
scenario is appropriate and benchmarks modelling such workload should be used to
test a P2P TM design.

5 Design Proposals for P2P STM

Generally, we build distributed systems because we need to scale the size of data
that is processed by the system, increase the overall performance of the system, or
achieve reliability and fault tolerance. However, most of the distributed transactional
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memory research so far focused only on providing better performance and scaling and
can be thus seen as an extension of the previous TM systems for a single processing
node. The proposed solutions are therefore often optimized for high-speed close-range
networks in a typical data center or a group of servers in a rack. Some of the designs
also use transaction managers that form a single point of failure.

We aim to explore the properties and possible use of TM in highly unreliable dis-
tributed environment with emphasis on fault tolerance. However, retrofitting existing
cluster TM designs for this purpose would be, at the very least, complicated if not
entirely impossible and the overhead introduced with such mechanisms could severely
hamper their performance. Also since the latency, network partitions and nodes
volatility of a P2P system tend to make the communication between peers slower and
generally even harder than in a cluster system, we believe, that lowering the abort
rate of transactions and the communication overhead is essential. For this reasons, we
want to focus on computationally more expensive conflict resolution and avoidance
algorithms, of which cost is diminished by the network I/O, and the relaxation of
consistency semantics. In compliance with our observations, we try to draft a few
design ideas, that could shape our future work and help us with the implementation
of an effective solution for P2P TM.

5.1 Higher-level conflict detection and resolution

Since there is no way to prevent node failures, the only way for a distributed system to
remain resilient to failures is to replicate the data across the system, so that if a part
of the network gets disconnected by a network partition or a node hosting some piece
of data fails, we still have a copy of the data residing somewhere on the remaining
processing nodes. This in turn requires the TM to keep the data replicas consistent.
It has to propagate and validate all update operations, that are executed on the data,
which raises the amount of inter-node communication needed for the validation and
commit phases of TM transactions. This communication often needs to be totally
ordered across the whole system and can require relatively large data transfers (read-
and write-sets), that could in the case of a grater network latency or timeouts severely
degrade performance of the system. Existing distributed fault-tolerant TM designs,
which we introduced in section 3, employ different strategies to tackle this problem.
One of the common features of these strategies is the minimization of the commu-
nication needed to synchronize data using e.g. prefetching schemes to hide network
latency, efficient read-set encoding or trading transaction expressiveness for reduced
communication overhead.

In our research, we try to explore a different kind of synchronization optimiza-
tion. Our goal is to minimize possible conflicts and therefore reduce the required
information needed to validate and propagate transactions. To do this, we plan to
use abstract data types (ADT) and the notion of higher-level conflict detection and
resolution (HLCDR).

By rising the level of conflict detection from individual memory addresses or, de-
pending on the TM granularity, the shared words or objects, to the higher semantics
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of operations on the used data structures, we believe we can dramatically reduce
the size of read- and write-sets of individual transactions in distributed environment.
Such reduction decreases the change of a data access race between concurrent trans-
actions as it has been shown by the respective studies [8, 9, 16]. Interestingly enough,
these studies have analysed the effect of higher-level conflict semantics only on the
performance and transaction abort-rate of single node systems and have not exam-
ined its impact on replica synchronization in distributed environment. Also, to our
knowledge, HLCDR in TM has not yet been studied in the context of fault tolerance.

The use of HLCDR in combination with abstract data types (ATD) could allow
us to employ a form of lazy replication. As an example, imagine two concurrent
transactions that both try to insert distinct items into a replicated unordered set. If
this set was implemented as an ADT, both transactions could insert the item without
a conflict. If the inserted items happened to be the same, depending on the definition
of equivalence for the item, the ADT could possibly merge the concurrent inserts
into a single insert. This idea could be possibly even extended to employ deferred
consistency control. If e.g. the transaction would not need to explicitly check for the
presence of an item in the set, we could defer the replica synchronization to some
later time and piggy-back it with some other communication, which could increase
the performance of the TM.

5.2 Eventual Consistency

Strong consistency and isolation semantics of transactions might be easier to reason
about and therefore more desirable, but their practical implementation is difficult and
often requires excessive communication to validate the consistency of transactional
data, which can prohibit TM scalability. Also distributed TM systems are, as ev-
ery other distributed system, affected by the consequences of the CAP theorem [6].
While existing distributed TM implementations favour consistency over availability
or partition tolerance, we would argue that the characteristics of P2P system require
a different approach.

Following the use of relaxed consistency models such as eventual consistency (EC)
in recent NoSQL data stores to cope with node failures, we think that EC could be
used to improve TM scalability, performance as well as fault tolerance in P2P STM.
In 2012 Burckhardt et al. [4] proposed and formally specified a novel consistency
model for concurrent revisions based on eventually consistent transactions. Although
their model was not developed for TM systems, but for concurrent programming with
revisions and isolation types [3], it bears several significant similarities with snapshot
isolation and ADTs.

In their consistency model, each new concurrent transaction (revision) starts by
forking with a stable snapshot of shared data items represented as the isolation types
from some existing revision. The forked transaction then executes all it operations
on the local copies of the data from the snapshot in complete isolation without syn-
chronizing with parallel processes. The forked transactions are then explicitly joined
together (according to defined rules) and the data is merged using the isolation types.
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The difference from snapshot isolation used in databases and some TM implementa-
tions lies in the merging phase, where the EC isolation types can merge even write
conflicts. In contrast, the traditional snapshot isolation cannot merge write-write
conflicts and one of transactions has to perform an abort and a rollback.

We believe, the consistency model developed by Burckhardt et al. could be
adapted for use in distributed TM systems using ADT and HLCDR as a replacement
for isolation types and merging. This model could then further minimize the synchro-
nization needed in a P2P STM and allow for better fault- and partition-tolerance.

5.3 Control-Flow

Control-flow (used in several TMs) is a model in which transactional operations are
not performed locally on downloaded copies of data but are sent to the remote node,
on which the data item resides. This is the opposite of data-flow model, in which data
items are temporarily copied from their respective remote nodes to the node that is
running the transaction. While control-flow might lower the total data-transfer in the
network, it increases the performance requirements on the remote node that has to
perform the computation.

However, control-flow in P2P system could solve the issues of data security, asym-
metric connections and also exploit the raw processing power of selected super-peers.
The P2P application could for example use small client peers, that have limited re-
sources (e.g. battery powered devices) and that would perform only lightweight com-
putation, and server super-peers, that would do the heavy lifting. Other examples
would include data with restricted access, like an account with protected secret bal-
ance located on a secure server, but can be transactionally charged or increased from
remote peers through a secure validating interface, etc.

6 Conclusions

Although mainly explored in academia, transactional memory and its concepts have
been slowly finding their way into some programming languages. The simplification
of concurrency control provides a great incentive to use TM in new parallel and
distributed systems. However, so far it has been studied mainly in the environment
of highly reliable data centers and cluster computing and only a little work has been
devoted to TM in the context of P2P systems and fault tolerance.

In our work, we have focused on designing a software transactional memory system
for P2P networks. We have identified several key differences between cluster and P2P
systems that, as we think, could have a large impact on the architectural requirements
and performance properties of a TM. We believe, that the best way to combat high
latency and severe node volatility is to minimize the overall replica synchronization
and conflict-rate of the TM runtime. To do that, we believe that abstract data types,
higher-level conflict detection and resolution and the relaxation of consistency model
should be used. We also think, that the nature of P2P systems could benefit from
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control flow, that could exploit the processing power and security characteristics of
dedicated super-peers.

Ultimately, we think that TM could simplify the development of highly available
and reliable distributed systems and would abstract the issues of node failures, replica-
tion and network partitions from the developer, while still providing good parallelism
and concurrency. In this sense, we see TM as an enabling technology that could give
birth to a whole new breed of distributed applications.
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