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No quantum circuit can turn a completely unknown unitary gate into its coherently con-

trolled version. Yet, coherent control of unknown gates has been realised in experiments,

making use of a different type of initial resources. Here, we formalise the task achieved
by these experiments, extending it to the control of arbitrary noisy channels, and to more

general types of control involving higher dimensional control systems. For the standard

notion of coherent control, we identify the information-theoretic resource for controlling
an arbitrary quantum channel on a d-dimensional system: specifically, the resource is an

extended quantum channel acting as the original channel on a d-dimensional sector of

a (d+ 1)-dimensional system. Using this resource, arbitrary controlled channels can be
built with a universal circuit architecture. We then extend the standard notion of control

to more general notions, including control of multiple channels with possibly different in-

put and output systems. Finally, we develop a theoretical framework, called supermaps
on routed channels, which provides a compact representation of coherent control as an

operation performed on the extended channels, and highlights the way the operation
acts on different sectors.

Keywords: coherent control, superposition of quantum channels, routed quantum cir-

cuits, sector-preserving channels

Communicated by: R Jozsa & J Eisert

1 Introduction

A number of quantum algorithms, such as Kitaev’s phase estimation algorithm [1] and the

DQC1 trace estimation algorithm [2], are based on the use of controlled unitary gates. Con-

trolled gates represent a quantum version of the if-then clause, in which a subroutine is

executed depending on the value of a control variable. In the controlled gate ctrl-U , the

quantum state of a control system determines whether or not a target system is subject to

a given unitary gate U . When the control system is in a superposition state, the target sys-
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(a) No-go theorem on coherent control with black box channels [7, 8, 9, 10, 11, 12].
No supermap can convert an arbitrary unitary channel U , acting on a target system T , into
its controlled version ctrl-U , acting on a control system C and on the target T .
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(b) Universal coherent control with sector-preserving channels. There exists a

supermap CTRL that transforms arbitrary sector-preserving channels C̃ acting on an extended
input system S (with Hilbert space HS = C⊕HT ) into arbitrary controlled channels ctrl-C.
In particular, the supermap CTRL maps arbitrary sector-preserving unitary channels Ũ into
the corresponding controlled unitary channels ctrl-U .

Fig. 1. Comparison between the standard no-go theorem and our universal controllisation circuit.

tem experiences a coherent superposition of quantum evolutions [3]. Quantum programming

languages that exploit coherent control of quantum gates have been proposed in Refs. [4, 5, 6].

The standard way to construct quantum controlled gates is via universal gate sets. To

build the controlled gate ctrl-U , one first decomposes the gate U into elementary gates,

and then adds control to each of these gates [13]. This construction, however, requires a

decomposition of the gate U into elementary gates. In many applications, such as quantum

factoring [14], the decomposition is known, because the gate U is the quantum realisation of

a classical function, for which a classical program is given. In other applications, however,

the gate U may be completely unknown: in a cloud computing scenario, for example, the

gate U may be implemented remotely by a server, and the program that generated U may

be unknown to the client. In these situations, it would be convenient to have a way to

generate the controlled gate ctrl-U from the access to an unknown, uncontrolled gate U .

The ability to generate controlled gates would also benefit the implementation of standard

quantum algorithms, providing them with an appealing modularity feature [11]. Besides

quantum computation, the ability to control an unknown quantum process would be beneficial

to other information-processing tasks, such as quantum communication [15, 16, 17], quantum

metrology [18, 19], and quantum machine learning [20, 21].

The problem of the coherent control of an unknown channel can be phrased in the following

way: ‘Is there a universal protocol which, from the use of a black-box channel C, implements
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its coherently controlled version?’. It has been proven several times, in ever stronger ways

[7, 8, 9, 10, 11, 12], that the answer to this question is a resounding ‘No’: no quantum circuit

can ‘controllise’ arbitrary operations. For general non-unitary channels, such a controllisation

is not even unambiguously defined in the first place, as observed in Ref. [22].

Yet, as has been noted at the same time, coherent control is actually easily implementable

in various contexts, such as optical systems [23, 24, 25, 26], trapped ions [25, 26], and super-

conducting qubits [27]. These realisations are not in contradiction with the no-go theorems

because the resources they use are not black boxes: in the computer science terminology, they

are grey boxes, whose action is partially known [8, 11] (see also Section 3.2 of this paper for

a further elaboration of this point).

This mismatch between theory and experiments suggests that it may be necessary to revisit

the terms of the problem. A suitable formulation of the problem would help understanding in

which situations, from which resources, and with which protocols, one can implement a coher-

ently controlled quantum channel. This understanding would allow to go beyond the existing

examples of implementations of coherent control, and to compare their respective advantages.

Another upshot of a better theoretical understanding is that it allows to neatly distinguish

the informational, implementation-independent aspects of coherent control from the specific,

system-dependent features of experimental implementations. In particular, it would help shift

the focus away from optical implementations and towards a more implementation-neutral per-

spective. Finally, identifying the operational ingredients of coherent control helps elucidate

some aspects of the existing no-go theorems, as studying protocols that can perform a certain

task usually helps understanding why other protocols cannot.

In this paper we analyse the key features of the experimental implementations, and put

forward a new formulation of the problem of coherent control based on these features. Our

starting point is the observation that the crucial feature of the existing implementations is

that they use sector-preserving channels; i.e., channels whose input systems can be partitioned

into sectors (orthogonal subspaces), with the property that a state in a given sector always

remains in this sector after the channel has acted. In this work, we focus on the case where

some sectors are one-dimensional and others are d-dimensional. A sector-preserving channel

acting on a system with a 1-dimensional sector and a d-dimensional sector will be called a

sector-preserving channel of type (1, d). More generally, a sector-preserving channel acting on

a system with m 1-dimensional sectors and n d-dimensional sectors will be called a sector-

preserving channel of type (1, ..., 1︸ ︷︷ ︸
m times

, d, ..., d︸ ︷︷ ︸
n times

) .

The idea of regarding sector-preserving channels as resources originates from Ref. [15],

and was further explored in Refs. [16, 17]a. In these works, the focus was put on the use of

sector-preserving channels for communicationb. In contrast, the relevance of sector-preserving

channels to the task of coherent control has not been explored before, and will be the focus

of this paper.

Our main results are summarised in the following. For the standard notion of coherent

control, we establish a perfect, one-to-one correspondence between sector-preserving channels

aIn the past, a similar approach had independently been explored in Refs. [28, 29]. A different approach, based
on the unitary extension of quantum channels, was developed in Refs. [30, 31, 32].
bThis was part of a wider discussion about the communication advantages of coherent control of causal order
[17, 33, 30, 34, 35].
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of type (1, d) and coherently controlled channels with target systems of dimension d. We then

show that this one-to-one correspondence can be implemented physically, by inserting sector-

preserving channels into a fixed, universal quantum circuit that generates the corresponding

controlled channels. Mathematically, this universal circuit can be represented as a quantum

supermap [36, 37, 38], that is, a transformation of quantum channels. We call this particular

supermap the CTRL supermap, and show that it is invertible. Its inverse CTRL−1 is also

a supermap, corresponding to a universal circuit that transforms controlled channels on d-

dimensional systems into sector-preserving channels of type (1, d).

Summarising, coherently controlled channels on d-dimensional systems and sector-preserving

channels of type (1, d) are fully equivalent resources, and the interconversion of these resources

is implemented by the CTRL supermap and by its inverse. It is worth contrasting this result

with the existing no-go theorems on coherent control: while control cannot be achieved from

general channels on d-dimensional systems, it can be achieved from sector-preserving channels

of type (1, d). The comparison is illustrated in Figure 1.

After establishing the above results, we extend them to more general versions of coher-

ent control. For example, we show a one-to-one correspondence between sector-preserving

channels of type (1, 1, d) and compositely-controlled channels with two branches leading to

application of the identity, and we build universal circuits that implement this correspon-

dence in both ways. We then extend this result to compositely-controlled channels with

any number of branches leading to application of the identity.

We also extend our results to the coherent control of N isometric channels, whose input

and output spaces can be of different dimensions. As the initial resource, we take N sector-

preserving isometric channels of type (1→ 1, din → dout), meaning that (i) the input (output)

is partitioned into a 1-dimensional sector and a din-dimensional (dout-dimensional) sector, and

(ii) states in the 1-dimensional input sector are mapped into states of in the 1-dimensional

output sector, while states in the din-dimensional input sector are mapped into states of in

the dout-dimensional output sector. We then show that this resource can be used to construct

a channel with coherent control between corresponding isometries. We study explicitly the

N = 2 case, which readily generalises to arbitrary N . Mathematically, we show that there

exists an invertible supermap 2-CTRL that transforms every pair of sector-preserving isometric

channels into the corresponding controlled channel.

In the non-isometric case, however, we find that sector-preserving channels of type (1 →
1, din → dout) are generally not sufficient to achieve all possible controlled channels. Such

channels can instead be realised using sector-preserving channels of type (1→ 1, din → doutd
′),

where d′ is the dimension of an auxiliary system, used to extend the original channels (from a

din-dimensional system to a dout-dimensional system) to isometries. Using this extra resource,

we provide a universal protocol for the implementation of coherent control from N sector-

preserving channels.

We conclude the paper by building a general framework for the manipulation of sector-

preserving channels, and, more generally, of channels that maps input sectors into output

sectors according to a prescribed rule, called the route [39]. The key ingredient of our frame-

work is the notion of ‘supermaps on routed channels,’ a new kind of supermaps whose input

is restricted to channels with a prescribed route. Examples of supermaps on routed channels

are the CTRL and 2-CTRL supermaps constructed earlier in the paper (or, more precisely, the
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restrictions of such maps to sector-preserving channels).

Our results open the way to several applications. First, by identifying the resources for the

task of coherent control, we lay the basis for a resource-theoretic analysis of existing protocols

and experiments. Second, the supermaps defined in this work can be easily extended to

multiple channels, and to more elaborate architectures involving multiple instances of coherent

control at different moments of time. This flexibility can help the design of complex protocols

and algorithms, offering a built-in modularity feature. Finally, the new notions of composite

control introduced in this paper have the potential to stimulate new theoretical protocols and

experimental implementations with higher dimensional control systems.

The structure of the paper is as follows. In Section 2, we review the existing definitions

of controlled unitaries and channels, and we address their extension to multiple channels,

defining a new notion of compositely-controlled channels. In Section 3, we analyze the struc-

ture of the existing implementations of coherent control, and use it to motivate a study of

sector-preserving channels of type (1, d). We then show that these channels are in one-to one

correspondence with controlled channels on a d-dimensional system. In Section 4, we show

that the correspondence between sector-preserving channels of type (1, d) and controlled chan-

nels can be physically implemented by a universal protocol, formalised by the CTRL supermap.

In Section 5, we generalise this correspondence to the coherent control between N isometries,

showing that it can also be realised via a universal protocol, and we discuss the case of the co-

herent control between N general channels, showing that it requires more involved resources.

In Section 6, we extend the results of the previous sections to compositely-controlled channels.

Finally, in Section 7 we define supermaps on routed channels, providing a general framework

for the manipulation of sector-preserving channels and more general channels that transform

sectors in a prescribed way.

2 Coherently controlled quantum channels

In this section, we review the existing definitions of coherently controlled unitaries and chan-

nels. Then, we provide a one-to-one parametrisation of the possible controlled versions of

a channel in terms of a ‘pinned Kraus operator’. Finally, we discuss more general types of

controlled quantum channels, and we provide one-to-one parametrisations for these in terms

of pinned Kraus operators.

2.1 Controlled channels and pinned Kraus operators

Let us start with the most basic definition of controlled operation: controlled unitary gates.

Given a unitary operator U acting on a d-dimensional Hilbert space HT , there is a standard

notion of a ‘controlled-U ’ channel: it is the channel corresponding to the unitary operator

ctrl-U := |0〉〈0| ⊗ I + |1〉〈1| ⊗ U , (1)

acting on a composite system, made of a two-dimensional control system C and of a d-

dimensional target system T .

More generally, one may want to control the evolution of an open system. The general

evolution of an open system T is described by a quantum channel C, that is, a completely

positive, trace-preserving map mapping density matrices on HT into density matrices on HT .

The action of the channel C on a generic density matrix ρ can be conveniently described in
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the Kraus representation, as C(ρ) =
∑n
i=1 CiρC

†
i , where the operators (Ci)

n
i=1, called Kraus

operators, satisfy the normalisation condition

n∑
i=1

C†iCi = I , (2)

I being the identity operator on HT .

Crucially, the Kraus representation of a channel is not unique: if V is a l × n isometry

with matrix elements Vji, the operators (C ′j)
l
j=1 defined by C ′j :=

∑
i Vji C

′
i also form a

Kraus representation of channel C. The non-uniqueness of the Kraus representation will play

an important role in this paper.

For a general quantum channel C, the definition of coherent control is not straightforward.

The naive generalisation of Eq. (1) would be to pick a Kraus representation (Ci) and define

the controlled operators ctrl-Ci = |0〉〈0| ⊗ Ci + |1〉〈1| ⊗ I. This definition, however, would

fail to give a quantum channel, because the above operators fail to satisfy the normalisation

condition (2). A suitable generalisation of Eq. (1) was put forward in Ref. [22]: a controlled

version of channel C is the channel with Kraus operators

ctrlαi-Ci := αi |0〉〈0| ⊗ I + |1〉〈1| ⊗ Ci , (3)

where (αi)
n
i=1 are complex amplitudes satisfying the normalisation condition

∑n
i=1 |αi|2 = 1.

This definition is a special case of the definition of coherent control of two general channels

considered in Refs. [40, 28, 15, 30], in the special case where one of the two channels is the

identity channel.

It is important to observe that the definition of the controlled channel does not depend only

on the channel C. In general, it can depend both on the set of Kraus operators C := (Ci)
n
i=1

and on the set of amplitudes α := (αi)
n
i=1 used in Eq. (3). To emphasise the dependence on

the Kraus operators C and on the amplitudes α, we will denote the controlled channel by

ctrlCα-C.
Different choices of Kraus operators and amplitudes generally give rise to different versions

of controlled channels, with none of these versions being straightforwardly more natural than

the other (although some may be more or less coherent [22]). Given that the definition of

controlled channels is non-unique, an important question is how to parametrise the possible

controlled channels in a compact way. As it turns out, the parametrisation ctrlCα-C is quite

redundant: in fact, many choices of C and of α give rise to the same controlled channel

ctrlCα-C.
In the following, we provide a simple one-to-one parametrisation of the possible controlled

channels corresponding to a given uncontrolled channel C: the controlled channels are in one-

to-one correspondence with pairs of the form (C, C1), where C1 is a fixed Kraus operator of

C. We call the pair (C, C1) a channel with a pinned Kraus operator.

First, we prove that any controlled version of C has a Kraus representation in which only

the first Kraus operator is coherent with the identity:

Lemma 1. For every controlled channel ctrlCα-C, one can find a Kraus representation in

which one Kraus operator is of the form |0〉〈0| ⊗ I + |1〉〈1| ⊗ C ′1 and all the others are of the

form |1〉〈1| ⊗ C ′j, where C′ := (C ′j)
n
j=1 is a suitable Kraus representation of channel C. In
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other words, one has

ctrlCα-C = ctrlC
′

un
-C , (4)

where un is the n-dimensional column vector with a 1 in the first entry, and 0 in the remaining

n− 1 entries.

Proof. As α is a normalised vector in Cn, one can find a unitary matrix V sending it to the

basis vector un, i.e. Vα = un. Then, the Kraus operators (C ′j)
n
j=1 defined by C ′j :=

∑
j VjiCi

form an alternative Kraus representation of C, and the Kraus operators (Kj)
n
j=1 defined

by Kj :=
∑
j Vji(ctrlαi

-Ci) form an alternative Kraus representation of ctrlCα-C. It is

straightforward to see that K1 = ctrl1-C ′1 and Kj = ctrl0-C − j′ for every j > 1. Hence,

ctrlCα-C can be characterised as in (4).

This result removes the freedom in the choice of the amplitudes (αi)
n
i=1: one can simply

set the first amplitude to 1, and all the other amplitudes to zero. All the variability of the

controlled channels is then included in the choice of Kraus representation for channel C.
We now show a further simplification: the definition of the controlled channel depends

only on the choice of the first Kraus operator in a Kraus representation of C. In other words,

the choice of the other Kraus operators does not affect the type of control one obtains.

Lemma 2. Let C := (Ci)
m
i=1 and C′ := (C ′j)

n
j=1 be two Kraus representations for channel C.

Then, the controlled channels ctrlCum
-C and ctrlC

′

un
-C coincide if and only if the operators

C1 and C ′1 coincide. In formula,

ctrlCum
-C = ctrlC

′

un
-C ⇐⇒ C1 = C ′1 . (5)

Proof. We start with the direct implication. Without loss of generality, we take m = n,

as one can always include zero Kraus operators and match the cardinality of the Kraus

representations of ctrlCum
-C and ctrlC

′

un
-C. If the two controlled channels coincide, then

there exists a unitary matrix W that connects their Kraus representations. In particular, one

must have

C1 ⊗ |1〉〈1|+ I ⊗ |0〉〈0| = W11 (C ′1 ⊗ |1〉〈1|+ I ⊗ |0〉〈0| ) +
∑
j>1

W1j C
′
j ⊗ |1〉〈1| . (6)

Taking the expectation value on the vector |0〉 on both sides of the equation, we then obtain

the relation I = W11 I, which implies W11 = 1, and, since W is a unitary matrix, W1j = 0

for every j > 1. Inserting this condition in Eq. (6) we obtain C1 = C ′1.

For the converse implication, suppose that C1 = C ′1. Then, for an arbitrary product state
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ρC ⊗ ρT of the control and the target, we have

ctrlCum
-C(ρC ⊗ ρT ) = ctrl1-C1 (ρC ⊗ ρT ) (ctrl1-C1)

†
+
∑
i>1

ctrl0-Ci (ρC ⊗ ρT ) (ctrl0-Ci)
†

= ctrl1-C1 (ρC ⊗ ρT ) (ctrl1-C1)
†

+ |0〉〈0|ρC |0〉〈0| ⊗
(
C(ρT )− C1ρTC

†
1

)
= ctrl1-C ′1 (ρC ⊗ ρT ) (ctrl1-C ′1)

†
+ |0〉〈0| ⊗ ρC |0〉〈0|

(
C(ρT )− C ′1ρTC

′ †
1

)
= ctrl1-C ′1 (ρC ⊗ ρT ) (ctrl1-C ′1)

†
+
∑
j>1

ctrl0-C ′j (ρC ⊗ ρT )
(
ctrl0-C ′j

)†
= ctrlC

′

un
-C(ρC ⊗ ρT ) . (7)

Since ρC and ρT are arbitrary, we conclude ctrlCum
-C = ctrlC

′

un
-C.

Combining Lemmas 1 and 2, we obtain a non-redundant parametrisation of the possible

controlled versions of a given channel:

Theorem 1. The controlled versions of channel C, as defined by Eq. (3), are in one-to-one

correspondence with the possible choices of a single Kraus operator for channel C.

By ‘a Kraus operator for channel C’, we mean a Kraus operator appearing in at least one

Kraus representation for C. Equivalently, the possible Kraus operators for a given channel

can be characterised as follows:

Lemma 3. An operator C1 is a Kraus operator for channel C if and only if the map C− :

ρ 7→ C(ρ)− C1ρC
†
1 is completely positive.

Proof. The ‘only if’ part is immediate. For the ‘if’ part, a Kraus representation for C contain-

ing the operator C1 can be built by picking an arbitrary Kraus representation for the map

C−, say (Ci)
n
i=2. For any such choice, the operators (Ci)

n
i=1 form a Kraus representation for

channel C.

Hereafter, we will call the single Kraus operator picked in Theorem 1 a pinned Kraus oper-

ator. A channel with a pinned Kraus operator will be represented by the pair (C, C1). Given

a pinned Kraus operator C1, and an arbitrary completion of it into a Kraus representation

(Ci)i, the corresponding controlled version of C is given by the Kraus operators{
Ĉ1 = |0〉〈0| ⊗ I + |1〉〈1| ⊗ C1

Ĉi = |1〉〈1| ⊗ Ci ∀i ≥ 2 .
(8)

From now on, we will use the notation ctrlC1
-C to denote the controlled channel with the

above Kraus operators. The action of the controlled channel ctrlC1
-C on a generic product

state of the target system and of the control is

ctrlC1-C(ρC ⊗ ρT ) =
∑
i

Ĉi (ρC ⊗ ρT ) Ĉ†i

= 〈0|ρC |0〉 |0〉〈0|C ⊗ ρT

+ 〈1|ρC |1〉 |1〉〈1|C ⊗ C(ρT )

+ 〈1|ρC |0〉 |1〉〈0|C ⊗ C1 ρT + h.c. , (9)
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where h.c. denotes the Hermitian conjugate. In the above formula, the first two terms in the

sum represent the classical control on the channel, while the second two terms represent the

‘coherent part’ of the controlled operation.

This pinned Kraus operator C1 coincides with the ‘transformation matrix’ of Ref. [30], the

‘vacuum interference operator’ of Ref. [15], and the ‘K operator’ of Ref. [22]. Ref. [30] derived

the ‘transformation matrix’ from a Stinespring dilation of the channel C, and interpreted it

as the additional information that has to be provided about the physical implementation of

channel C in order to build a controlled channel. In contrast, Ref. [15] derived the ‘vacuum

interference operator’ from an extension of channel C to a larger channel that can act also on

the vacuum. In this paper, we will make connection with the latter approach, showing that

the controlled channel ctrlC1 -C is in one-to-one correspondence, both mathematically and

physically, with a particular extension of the original channel C, corresponding to the vacuum

extension of Ref. [15].

Compared to Refs. [30, 15, 22], our presentation makes it evident that the operator char-

acterising a controlled version of channel C can be simply understood as a Kraus operator

of this channel, a fact that has not been pointed out beforec. In addition, the explicit rela-

tion between control and pinned Kraus operators suggests further extensions of the notion of

quantum control, as discussed in the next subsection.

2.2 Control between multiple noisy channels

We now consider a generalisation of the notion of coherent control: the case in which each of

the two values of the control is associated to the execution of a different channel on the target

system. In other words, we now consider the coherent control between the execution of two

channels A and B, rather than between one channel and the identity channel. We will now

take the input and output target systems, Tin and Tout, to be of possibly different dimensions.

Before entering into the technical details, it may be helpful to note that different authors

have used different names for what is essentially the same notion: Refs. [3], [40], [28], [30], [15]

use the expressions ‘superposition of time evolutions’, ‘interference of CP maps’, ‘gluing of

CP maps’, ‘coherent control of quantum channels’, and ‘superposition of quantum channels’,

respectively. We review the existing terminologies in Appendix 1.

If we start with the basic case of two isometric gates, represented by two isometries U, V :

HTin → HTout , the standard notion of a ‘controlled-(U, V )’ channel is given by the isometry

ctrl-(U, V ) := |0〉〈0| ⊗ U + |1〉〈1| ⊗ V . (10)

Extending this definition to the case of the control between two noisy evolutions, repre-

sented by CPTP maps A,B : L(HTin) → L(HTout), requires more work. Once again, there

are a variety of ways of defining the controlled version of A and B. These different versions

can be obtained by picking Kraus representations of same lengthd(Ai)
n
i=1 and (Bi)

n
i=1 for A

and B and defining the Kraus operators:

cA proof in Ref. [22] mentioned that any possible ‘K operator’ is a Kraus operator of C, without however
discussing the reverse implication.
dNote that any two Kraus representations can be taken to be of the same length by adjoining 0’s to the
shortest one.
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ctrl-(Ai, Bi) := |0〉〈0| ⊗Ai + |1〉〈1| ⊗Bi . (11)

A one-to-one parametrisation of the possible choices is provided in the following theorem,

proven in Appendix 2:

Theorem 2. Given a Kraus representation (Ai)
n
i=1 of minimal length of A, the choice of a

control between A and B is in one-to-one correspondence with the choice of n Kraus operators

of B.

By ‘n Kraus operators of B’, we mean n operators that appear together in at least one

Kraus representation of B. Calling these operators Bi’s, and arbitrarily completing them into

a Kraus representation (Bi)
n′

i=1 of B, Kraus operators for the corresponding controlled channel

are given by the concatenation of the (ctrl-(Ai, Bi))
n
i=1 and the (ctrl-(0, Bi))n<i≤n′ . Note

that in this parametrisation, only the Kraus operators of B vary; those of A are fixed from

the start.

The previous considerations can be extended to the case of a control system of dimension

N , controlling between the execution of N channels C1, . . . , CN . A strategy would be to

proceed via recursion, first picking a control between C1 and C2, then picking a control between

this controlled channel and C3, etc.

3 A new resource for coherent control: sector-preserving channels

Here we discuss the physical resources needed to implement coherent control of general quan-

tum channels.

3.1 A no-go theorem for coherent control of unitary gates, and a way to evade

it

It has been proven in various ways that it is impossible to construct a controlled unitary

gate starting from a black box that implements the corresponding uncontrolled unitary gate

[8, 7, 11, 9, 10, 12]. Mathematically, the no-go theorem is that it is impossible to find

a quantum supermap that transforms a generic unitary channel U : ρ 7→ UρU† into the

controlled unitary channel ctrl-U : ρ 7→ ctrl-U ρ ctrl-U† with the operator ctrl-U defined

in Eq. (1).

The origin of the impossibility is that the uncontrolled unitary channel U is provided as a

black box, without any further information on its action except for the fact that U is known

to be unitary. One way to evade the no-go theorem is to start from a device that is not a

complete black box, but rather a grey box, whose action is partially known. For example,

one could be given a device that implements a unitary gate Ũ = |φ0〉〈φ0| ⊕ U , where Ũ acts

on H and U is an unknown unitary gate acting on a d-dimensional sector (i.e. orthogonal

subspace) H1 ⊆ H, and |φ0〉 is another state, orthogonal to all the states in H1. In this case,

the action of the device in the sector H1 is unknown, while the action of the device on the

vector |φ0〉 is known. In this setting, the controlled gate ctrl-U can be built from the gate

Ũ using a simple quantum circuit [8, 25, 11].

The use of grey boxes that act in a known way on some input states is central to all

existing proposals for experimental implementations of coherent controls of unitary gates.
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For example, photonic implementations [23, 24] achieve coherent control of certain optical

devices, such as polarisation rotators, by exploiting the fact that such devices are passive, and

therefore transform the vacuum state into itself. In these examples, the sector H1 is spanned

by single-photon polarisation states, and the state |φ0〉 is the zero-photon Fock state.

In trapped-ions implementations [25, 26], the input device uses a laser pulse to implement

a unitary gate by stimulating the transition between the two electronic levels. The pulse

is far off resonance with the transition between the other electronic levels of the ion, and

therefore the device acts trivially on such levels. In this case, the state |φ0〉 can be any of the

levels that are unaffected by the pulse. A similar situation arises in superconducting-qubits

implementations [27].

In summary, all the existing proposals of experimental implementations use grey box

unitary gates Ũ that act

1. as unknown gates U on a sector H1 ' HT , and

2. as the identity gate I on another sector H0, orthogonal to H1.

In the following we will extend this scheme from unitary gates to arbitrary noisy channels, and

to the case of gates acting as the identity on several sectors, showing that access to a suitable

grey box channel allows one to build a controlled channel that is in one-to-one correspondence

with it.

We will restrict ourselves to the case in which the sectors on which the identity is applied

are one-dimensional; however, all our arguments could be extended to the case in which they

are multi-dimensional and the grey boxes act as the identity on each of them. Note that when

the extension sectors have the same dimension as H0, the above requirements lead to the

usual definition of controlled channels.

3.2 Modelling noisy grey boxes: sector-preserving channels

We now consider how the grey box approach of the previous section can be extended from

unitary gates to arbitrary noisy channels.

To this purpose, we consider a noisy quantum channel C̃ that acts on a system S with a

Hilbert space HS partitioned into two sectors, HS = H0
S ⊕H1

S , with H0
S one-dimensional and

H1
S ' HT . The channel C̃ will act

1. as a completely unknown channel C : L(H1
S) → L(H1

S) on the input states in L(H1
S),

and

2. as the identity channel I on the unique input state in L(H0
S).

Such grey boxes have a simple characterisation: they are the channels that preserve the

sectors HmS , thus called sector-preserving channelse.

Definition 1. Let HS =
⊕m

k=0HkS be a Hilbert space with a preferred partition into sectors.

A channel C̃ : L(HS)→ L(HS) is sector-preserving if it preserves the set of states with support

in the subspace HkS, for every k ∈ {0, . . . ,m}. In formula,

∀k, ∀ρ ∈ L(HkS), C(ρ) ∈ L(HkS) , (12)

e We note that the notion of sector-preservingness has been independently introduced in the past, under the
name ‘subspace-preservingness’; see Ref. [28].
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Note that ρ ∈ L(HkS) equivalently means that Supp(ρ) ⊆ HkS, where Supp(ρ) denotes the

support of ρ.

Sector-preserving channels can be seen as a special case of the notion of channels ‘following

a route’ (i.e., satisfying given sectorial constraints), introduced in Ref. [39]: namely, they are

the channels that follow the identity route δ×δ. The condition (12) was called the ‘no-leakage

condition’ in Ref. [15].

When some of the sectors HkS are one-dimensional, the condition of sector preservation

(12) implies that the channel C̃ acts as the identity channel on each of them. In the following,

we will denote the sector preserving channels with dim(HkS) = 1∀k < m and dim(HmS ) = d

as sector-preserving channels of type (1, . . . , 1︸ ︷︷ ︸
m times

, d). In particular, the channels we asked for in

this Section are the sector-preserving channels of type (1, d).

The approach of considering an extended channel that acts as C on a given sector was

introduced in Ref. [15]. There, there was only one one-dimensional sector, which was called

the ‘vacuum sector’, and the channel C̃ was called a ‘vacuum extension’, with this terminology

motivated by the photonic implementations. Here, however, we prefer to use the expressions

‘ extension sectors’ and ‘extended channel’, which are neutral with respect to the choice of

experimental implementations.

The key point of our paper is that the grey box channel C̃, and not the black box channel

C, should be regarded as the initial resource for the implementation of coherent control. In

other words, we argue that one should shift the terms of the problem away from the question

‘what can one do with an unknown channel C?’. Instead, one should ask the question ‘what

can one do with a channel C̃ that acts as an unknown channel on a given sector?’.

A similar shift of perspective was proposed in Refs. [15, 17, 16] for the purpose of defining

quantum communication protocols where messages can travel in a coherent superposition of

multiple trajectories. In this context, extended channels were used to describe communica-

tion devices that can take as input either one particle (corresponding, in our notations, to

the sector H1
S) or the vacuum (corresponding to the sector H0

S). This modelling was essential

to define resource theories of quantum communication [17], where the initial resources are

communication devices that can be connected in a coherent superposition of multiple config-

urations. Our paper can be viewed as an application of the same approach to the task of the

coherent control of quantum channels: the extended channel represents the initial resource,

and the question is which types of controlled channel can be constructed from such resource.

3.3 The case of one extension sector

The case where there is only one extension sector H1
S (i.e., of sector-preserving channels of

type (1, d)) is particularly relevant in this paper, because, as we will show later, it provides

the fundamental resource for the realisation of the controlled channels defined in Eq. (3).

In terms of Kraus representation, the sector-preserving channels of type (1, d) can be

characterised as the channels with Kraus operators of the form

C̃i = αi ⊕ Ci, (13)

where (Ci)i is a Kraus representation of some channel acting on sector H1
S ' HT , and the

αi’s are amplitudes satisfying the normalisation condition
∑
i |αi|2 = 1. For a proof of the
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above equation, see Lemma 1 in Ref. [15] (this can also be seen as a consequence of the more

general Theorem 6 in Ref. [39]).

A one-to-one parametrisation of the sector-preserving channels of type (1, d) can be ob-

tained with the same approach as in Section 2.

Lemma 4. Every sector-preserving channel of type (1, d) has a Kraus representation of the

form {
C̃1 = 1⊕ C1

C̃i = 0⊕ Ci ∀i ≥ 2 ,
(14)

where (Ci)i is a Kraus representation of some channel on the d-dimensional sector.

Proof. As in the proof of Lemma 1, this alternative Kraus representation can be found by

using a unitary matrix (Vji)ji that sends the normalised vector (αi)i to (1, 0, . . . , 0).

Using the same arguments as in Section 2, it is easy to see that the sector-preserving

channels C̃ are in one-to-one correspondence with pairs (C, C1), consisting of a channel acting

on sector L(H1
S), and of a Kraus operator for C. In short, we have the following.

Theorem 3. The sector-preserving channels of type (1, d) are in one-to-one correspondence

with channels with a pinned Kraus operator on their d-dimensional sector.

The sector-preserving channel of type (1, d) that corresponds to the channel C with the

pinned Kraus operator C1 on its d-dimensional sector shall be called C̃[C1]. In the case of

unitary channels, the characterisation is particularly simple.

Corollary 1. Sector-preserving unitary channels of type (1, d) are in one-to-one correspon-

dence with unitary operators in dimension d. Explicitly, the correspondence between sector-

preserving unitary channels Ũ and unitary operators U is given by the relation

Ũ(ρ) = (1⊕ U) ρ (1⊕ U)† ∀ρ ∈ L(HS) . (15)

This is in contrast with the general situation for unitary channels, which correspond to

unitary operators only up to an arbitrary global phase. The crucial fact here is that the

one-dimensional extension sector can be used to fix this phase gauge in the d-dimensional

sector.

Going back to the case of general channels, Theorem 3 establishes a one-to-one correspon-

dence between sector-preserving channels of type (1, d) and controlled channels:

Corollary 2. For any d, the following sets are in one-to-one correspondence:

1. controlled channels as defined in (3), with a d-dimensional target system;

2. sector-preserving channels of type (1, d);

3. channels with a pinned Kraus operator in dimension d.

Let us comment on the respective roles, for our purposes, of the three notions which Corol-

lary 2 shows to be mathematically equivalent. The first (controlled channels) is essentially

an informational notion, with practical use in quantum protocols: this is typically what one

wants to eventually obtain. The second (sector-preserving channels of type (1, d)) can be
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Fig. 2. Quantum circuit for CTRL supermap. The supermap transforms sector-preserving channels
acting on a system S with Hilbert space HS = H0

S ⊕ H
1
S into controlled channels acting on the

composite system C ⊗ T , consisting of a control system C and of a target system T with Hilbert

space HT ' H1
S . The sector-preserving channel in input is inserted between two controlled

SWAP operations, which in turn are placed between two quantum channels V and D, which serve

as ‘adaptors’, between the systems T and S, and between the systems C ⊗ S ⊗ S and C ⊗ T ,

respectively.

understood as the physical resource (with the sector-preserving property often corresponding

to physical features of an interaction, such as conservation laws) allowing to implement the

first one. Finally, the third (channels with a pinned Kraus operator) is a purely mathematical

notion, with no direct practical interpretation, which serves to provide a simple one-to-one

mathematical parametrisation to the first two.

In fact, a more careful inspection also reveals that the one-to-one correspondence between

the above sets can be implemented by linear maps. For the sets of controlled channels and

sector-preserving channels, the correspondence can be implemented physically by quantum

circuits that convert sector-preserving channels into controlled channels, and vice-versa. This

physical correspondence is the object of the next section.

4 The control supermap and the equivalence between sector-preserving and con-

trolled channels

4.1 The control supermap

In the previous section, we showed that the controlled channels on target systems of dimension

d (the ctrlC1
-C) are in one-to-one correspondence with sector-preserving channels of type

(1, d) (the C̃[C1]).

Our point is now to show that for any given d, there is a universal circuit architecture in

which an agent who possesses the sector-preserving channel C̃[C1] can insert this channel in

order to implement the controlled channel ctrlC1
-C.

We thus introduce the control supermap, a supermap which takes as input any sector-

preserving channel C̃[C1] of type (1, d), and yields the controlled channel ctrlC1-C acting on

a target system of dimension d.
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Theorem 4. Let HS = H0
S ⊕ H1

S be a Hilbert space, with dim(H0
S) = 1 and dim(H1

S) = d,

let HC be a control space of dimension 2, and HT be a target space, with HT ' H1
S.

There exists a supermap CTRL of type (S → S) → (C ⊗ T → C ⊗ T ) such that for any

sector-preserving channel C̃[C1],

CTRL[C̃[C1]] = ctrlC1 -C . (16)

Furthermore, this supermap is unitary-preserving on the sector-preserving channels on S.

Proof. Let V : HT → HS be the isometry that maps HT into the subspace H1
S ' HT , let |s0〉

be a unit vector in H0
S , let W : HC ⊗ HS ⊗ HS → HC ⊗ HT be the coisometry defined by

W := I⊗V †⊗〈s0|, and let D be the quantum channel defined by D(ρ) := WρW †+ρ0 Tr[P ρ],

where ρ0 is a fixed density matrix on HC ⊗ HT and P := I −W †W f. We then define the

supermap CTRL through its action on a generic linear mapM : L(HC ⊗HT )→ L(HC ⊗HT ):

CTRL(M) := D ◦ ctrl-SWAP ◦ (IC ⊗ IS ⊗M) ◦ ctrl-SWAP ◦ (IC ⊗ V ⊗ |s0〉〈s0|) (17)

where V is the quantum channel corresponding to the isometry V , and ctrl-SWAP is

the unitary channel corresponding to the controlled SWAP operator (see Figure 2 for an

illustration).

With this definition, one can verify that the condition CTRL[C̃[C1]] = ctrlC1
-C holds.

Let us prove it by showing that they act in the same way on pure states, using a Kraus

representation for the channel C̃[C1] with Kraus operators C̃i = δi1 ⊕ Ci. From there, it can

then be deduced by linearity that the two channels act in the same way on any density matrix,

and therefore that they are equal. We take a strict equality T = S1 to avoid unnecessary

clutter.

Taking an arbitrary state |ψ〉CT , we obtain

ctrl-SWAP(V ⊗ |s0〉) |ψ〉CT = |0〉C ⊗ C〈0|ψ〉CS ⊗ |s
0〉S + |1〉C ⊗ |s

0〉S ⊗ C〈1|ψ〉CS

and thus

|ψi〉 := ctrl-SWAP (IC ⊗ IS ⊗ C̃i) ctrl-SWAP(V ⊗ |s0〉) |ψ〉CT
= ctrl-SWAP

(
δi1 |0〉C ⊗ C〈0|ψ〉CS ⊗ |s

0〉S + |1〉C ⊗ |s
0〉S ⊗ Ci C〈1|ψ〉CS

)
=
(
δi1 |0〉C ⊗ 〈0|ψ〉CS + Ci |1〉C ⊗ 〈1|ψ〉CS

)
⊗ |s0〉 . (18)

Now, one has P |ψi〉 = 0, and W |ψi〉 = δi1 |0〉 ⊗ C〈0|ψ〉CS + |1〉C ⊗ Ci C〈1|ψ〉CS ≡
ctrlδi1 -Ci |ψ〉CT . Summarising, if the control and target start off in the state |ψ〉CT , and if the

subprocess corresponding to the Kraus operator C̃i takes place, then the final (subnormalized)

fNote that the only thing that matters is how D acts on the sector HC ⊗H1
S ⊗H

0
S of its input; its action on

other sectors is irrelevant and can be defined in an arbitrary way, as long as it gives a CPTP map.
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state is W |ψi〉 = ctrlδi1-Ci |ψ〉CT . On average over all possible values of i, we obtain the

evolution

CTRL(C̃[C1])(|ψ〉 〈ψ|) =
∑
i

W |ψi〉〈ψi|W †

=
∑
i

(ctrlδi1-Ci) |ψ〉 〈ψ| (ctrlδi1-Ci)
†

= ctrlC1
-C(|ψ〉 〈ψ|) .

As for the preservation of unitarity on sector-preserving channels, it is sufficient to recall

Corollary 1: unitary sector-preserving channels of type (1, d) are of the form Ũ : ρ 7→ (1 ⊕
U)ρ(1⊕ U)†. By the previous calculation, one then has CTRL(Ũ) : ρ 7→ (|0〉〈0| ⊗ I + |1〉〈1| ⊗
U)ρ(|0〉〈0| ⊗ I + |1〉〈1| ⊗ U)†, which is a unitary channel.

The supermap CTRL constitutes a rigorous theoretical formalisation of the existing ex-

perimental schemes for the implementation of coherent control. It is the universal protocol

through which sector-preserving channels of type (1, d) can be turned into their corresponding

controlled channel.

We note that even though we defined this supermap as accepting as input any possible

channel S → S, the only thing we are interested in is in fact its action on sector-preserving

channels. An alternative way of defining it would be to formally restrict its inputs to be only

sector-preserving channels (or extensions of those); this would make clearer the fact that this

protocol is only useful when sector-preserving channels are used, and would also allow to get

rid of superfluous information in the specification of the supermap – namely, information that

only modifies the action of the supermap on non-sector-preserving channels. We will do this

in Section 7, coining the notion of supermaps on routed channels.

Let us also comment on the specific case of unitary channels. Per Corollary 1, we know that

sector-preserving unitary channels of type (1, d) are in one-to-one correspondence with unitary

operators on their d-dimensional sector. Noting as U the unitary operator corresponding to the

unitary sector-preserving channel Ũ , the control supermap will then precisely map any sector-

preserving unitary channel Ũ to the gate applying the controlled-unitary ctrl-U defined in

equation (1):

∀ Ũ unitary, CTRL[Ũ ] = ctrl-U . (19)

The control supermap thus also realises, in particular, the coherent control of unitary

gates.

4.2 Sector-preserving and controlled channels are equivalent resources

The previous section showed that there is a universal circuit structure which turns sector-

preserving channels of type (1, d) into their corresponding controlled channel. As resources,

sector-preserving channels of type (1, d) thus allow one to obtain controlled channels. We

now show the opposite: from a controlled channel, one can obtain its corresponding sector-

preserving channel of type (1, d), once again using a universal circuit structure.
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Theorem 5. Let HT ' H1
S be a target space, and let HC be a control space of dimension

2. Taking H0
S
∼= C, H1

S ' HT and HS := H0
S ⊕H1

S, there exists a supermap CTRL−1 of type

(C ⊗ T → C ⊗ T )→ (S → S) such that for any controlled channel ctrlC1 -C,

CTRL−1[ctrlC1-C] = C̃[C1] . (20)

Furthermore, this supermap is unitary-preserving on the controlled channels on C ⊗ T .

Proof. One can define CTRL−1’s action on a given mapK of type C⊗T → C⊗T as CTRL−1[K] =

W ◦ K ◦ V, where V is the channel corresponding to the isometry V : HS → HC ⊗HT that

acts as V |ψ〉 = |1〉 ⊗ |ψ〉 for |ψ〉 ∈ H1
S , and V |ψ〉 = |0〉 ⊗ |φ0〉 for |ψ〉 ∈ H0

S where |φ0〉 is a

fixed arbitrary state in HT , and channel W acts as V† on V’s range and in an arbitrary way

elsewhere.

From this definition, a simple computation shows that (20) holds.

The existence of this inverse control supermap shows that sector-preserving channels of

type (1, d) and controlled channels are fully equivalent resources: one can go from a sector-

preserving channel to its corresponding controlled channel and back again, using a universal

circuit architecture in both cases. This concludes our demonstration of the main claim of this

paper.

Note that CTRL−1 ◦ CTRL acts as the identity supermap only on input channels that are

sector-preserving. A way of formally restricting the CTRL supermap to only act on sector-

preserving channels will be described in Section 7. Once viewed in this way, the CTRL supermap

can be said to be unitary-preserving and invertible.

5 Implementing coherent control of multiple channels

5.1 The case of isometric channels

We now show how the previous methods apply to the coherent control of N ≥ 2 channels, as

defined in Section 2.2. For simplicity, we restrict ourselves to the case of isometric channels,

and to N = 2. The methods we present are readily extendable to the N > 2. Note that the

coherent control of isometric gates includes that of unitary gates and of pure states, as both

are specific examples of isometric gates.

If we define the task of coherent control between two isometric gates as that of implement-

ing controlled-(U, V ) (as defined in equation (10)) from uses of the isometric gates U and V ,

then it is a direct consequence of the aforementioned no-go theorems that such a task cannot

be achieved via a universal circuit architecture.

To circumvent this, we will instead keep our perspective of considering coherent control

as a task performed on sector-preserving channels. Here, as in Section 2.2, we take the input

and output target systems to be of possibly different dimensions. Accordingly, we will slightly

extend the relevant definitions. For instance, Definition 1 can be extended in a straightforward

way to encompass sector-preserving channels fromHSin
:=
⊕

kHkSin
toHSout

:=
⊕

kHkSout
. In

the case in which the Hilbert spaces are both partitioned between a multi-dimensional sector

and several one-dimensional ones, we will refer to these channels as being sector-preserving

of type (1→ 1, . . . , 1→ 1, d→ d′). Structural theorems about these channels can be seen to

extend from those of Section 3.3 (Lemma 4, Theorem 3 and Corollaries 1 and 2) in a natural

way.
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In particular, Corollary 1 can be extended to a statement about isometric sector-preserving

channels C of type (1 → 1, d → d′): they are in one-to-one correspondence with isometric

operators UC in dimension d→ d′. Our point is to implement this correspondence physically

in order to create a control between two isometric gates. We single out a version of the

control supermap that allows one to build the coherent control between two isometric gates

from the two sector-preserving isometric channels of type (1 → 1, d → d′) corresponding to

these isometries. This supermap was originally introduced in Ref. [15] (in the case d = d′), in

a slightly different framework.

Theorem 6. Let HSin
= H0

Sin
⊕H1

Sin
and HSout

= H0
Sout
⊕H1

Sout
be partitioned spaces, with

H0
Sin

and H0
Sout

one-dimensional, let HC be a control space of dimension 2, and let HTin and

HTout
be target spaces, with HTin

' H1
Sin

and HTout
' H1

Sout
.

There exists a supermap 2-CTRL of type (Sin → Sout)⊗(Sin → Sout)→ (C⊗Tin → C⊗Tout)
such that for any pair of isometric sector-preserving channels C and D,

2-CTRL[C ⊗ D] = ctrl-(UC , UD) . (21)

Proof. This can be easily computed from the formulation of the 2-CTRL supermap shown in

Figure 3, in full analogy to the computation in the proof of Theorem 4.

Theorem 6 can serve as a formalisation of the existing experimental schemes for coherently

controlling two unitaries, such as the superposition of paths [15]. It is easy to see that it could

be readily generalised to the coherent control between N isometries by a control system of

dimension N .

In particular, one can see in this formulation that the coherent control of two isometries

can be implemented with a simple parallel combination of the two resource sector-preserving

channels.

5.2 What about general channels?

A natural question to ask would be whether the previous result can be extended to the case

of controls between two general noisy channels, as defined in equation (11) and classified in

Theorem 2: i.e., whether a given version of a control between two channels A and B can be

obtained from the application of the 2-CTRL supermap on suitably chosen sector-preserving

channels of type (1→ 1, d→ d′). The answer to this question, however, is negative.

To see this, take A = B = D, where D is the depolarising channel on a qubit, i.e.

D : ρ 7→ 1
2 (ρ + ZρZ). One natural version of a control between A and B is then given by

the channel IC ⊗DS1 : i.e., D is always applied to S1 and the control doesn’t play any part.

However, no use of the 2-CTRL supermap on A and B can yield this channel. This is essentially

because, in channels obtained from the use of the 2-CTRL supermap, there can only be full

coherence between one Kraus operator of A and one Kraus operator of B.

Implementing the control between two noisy channels in general will therefore require the

use of a more elaborate scheme, using more involved resources. In Appendix C, we propose

such a scheme. Rather than sector-preserving channels of the form C⊕H1
Sin
→ C⊕H1

Sout
, this

scheme will require the use of sector-preserving channels of the form C⊕H1
Sin
→ C⊕H1

Sout
⊗H1

E ,

where H1
E is an auxiliary Hilbert space, representing the environment. In such a scheme, the
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C

Tout

Sout

Sin

Sout

Sin

2-CTRL

C

Tin

=

C
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C
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SWAP

s0V
Sin

SWAP
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Fig. 3. Quantum circuit for the 2-CTRL supermap. The input of the supermap are two sector-
preserving channels transforming a system Sin with Hilbert space HSin

= H0
Sin
⊕ H1

Sin
into a

system Sout with Hilbert spaceHSout = H0
Sout
⊕H1

Sout
. The output of the supermap is a controlled

channel transforming the composite system C ⊗ Tin with HTin
' HS1

in
into the composite system

C⊗Tout with HTout ' HS1
out

. The channels V and D and the state |s0〉 are defined as in Theorem

4. A very similar supermap was defined in Ref. [15] for the case Tin = Tout.

number of Kraus operators of A and B that can be coherent with each other in the produced

controlled channel is capped by the dimension of H1
E .

6 Compositely-controlled channels

In this section, we consider another generalisation of the notion of controlled quantum chan-

nels, corresponding to higher-dimensional control systems, and we show how to implement it,

via a universal architecture, using as resources sector-preserving channels of type (d, 1, . . . , 1).

6.1 Compositely-controlled channels and multiple pinned operators

We introduce a generalisation that can be useful in the description of quantum programs,

which may contain instructions of the form ‘if f(x) = 1, then execute channel C, otherwise do

nothing’, where f is a Boolean function taking as input a parameter x labelling the different

branches of the computational process.

To get started, consider a three-dimensional control system C, with basis states {|0〉, |1〉, |2〉}.
We associate state |0〉 to the execution of the given channel C, and states |1〉 and |2〉 to the

‘do nothing’ option. This corresponds to choosing the Boolean function f to be f(0) = 1 and

f(1) = f(2) = 0. A controlled channel can then be defined in terms of the Kraus operators

ctrlαi,βi
-Ci := |0〉〈0| ⊗ Ci + αi |1〉〈1| ⊗ I + βi |2〉〈2| ⊗ I , (22)

where C := (Ci)
n
i=1 is a Kraus representation of channel C, and α := (αi)

n
i=1 and β :=

(βi)
n
i=1 are complex amplitudes satisfying the normalisation conditions

∑n
i=1 |αi|2 = 1 and∑n

i=1 |βi|2 = 1, respectively. We shall call a controlled channel as defined in (22) a 2-

compositely-controlled channel. In the following, this controlled channel will be denoted by
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ctrlCα,β-C.
As with standard controlled channels, different choices of Kraus representations and of

amplitudes generally lead to different kinds of controlled channels, and again, one may ask

for a one-to-one parametrisation. The generalisation of Theorem 1 is the following.

Theorem 7. The 2-compositely-controlled versions of channel C, as defined by Eq. (22) are

in one-to-onegcorrespondence with triples of the form (C ′1, C
′
2, γ12), where C ′1 and C ′2 are two

Kraus operators for channel C, and of a complex amplitude γ12 ∈ C satisfying |γ12| ≤ 1.

Explicitly, the Kraus operators for the controlled channel can be written as
Ĉ ′1 = |0〉〈0| ⊗ C ′1 + |1〉〈1| ⊗ I + γ12 |2〉〈2| ⊗ I
Ĉ ′2 = |0〉〈0| ⊗ C ′2 +

√
1− |γ12|2 |2〉〈2| ⊗ I

Ĉ ′i = |0〉〈0| ⊗ C ′i ∀i ≥ 3 ,

(23)

for some suitable Kraus representation (C ′i)i of channel C.

Proof. The proof is a generalisation of the proof of Theorem 1. Starting from the

Kraus operators in Eq. (22), one can generate a new Kraus representation of the controlled

channel using a unitary matrix. To choose the appropriate unitary matrix, we apply the

Gram-Schmidt construction to the column vectors |α〉 = (αi)
n
i=1 and |β〉 = (βi)

n
i=1. In other

words, we construct an orthonormal basis (|vi〉)ni=1 where the first vector is |v1〉 = |α〉 and the

second vector is |v2〉 = |β〉 − 〈α|β〉 |α〉 /‖ |β〉 − 〈α|β〉 |α〉 ‖. One can then define the unitary

operator U =
∑n
j=1 |j〉〈vj |, and use its matrix elements to define a new Kraus representation

Ĉj =
∑
i Uji ctrlαi,βi

-Ci. Explicit calculation of the Kraus operators yields Eq. (23), with

γ12 = 〈α|β〉, C ′1 =
∑
i αi Ci and C ′2 =

∑
i(βi − 〈β|α〉 αi)/

√
1− |γ12|2 Ci.

For every given controlled channel ctrlCα,β-C, the pinned Kraus operators C1 and C2, and

the amplitude γ12 can be uniquely determined from the action of the channel on a generic

product state of the target and the control. Explicitly, one has

ctrlCα,β-C(ρC ⊗ ρT )

= 〈0|ρC |0〉 |0〉〈0|C ⊗ C(ρT )

+ 〈1|ρC |1〉 |1〉〈1|C ⊗ ρT
+ 〈2|ρC |2〉 |2〉〈2|C ⊗ ρT
+ 〈0|ρC |1〉 C ′1 |0〉〈1|C ⊗ ρT + h.c.

+ 〈0|ρC |2〉
√

1− |γ12|2 |0〉〈2|C ⊗ C
′
2 ρT + h.c.

+ 〈1|ρC |2〉 γ12 |1〉〈2|C ⊗ ρT + h.c. , (24)

from which the operators C1 and C2, and the amplitude γ12 can be extracted by taking

the appropriate matrix elements of the output state.

In summary, every 2-compositely-controlled channel as defined by Eq. (22) can be pa-

rameterised by two pinned Kraus operators (C ′1, C
′
2) and one amplitude γ12, and the triple

(C ′1, C
′
2, γ12) is uniquely determined by the channel.

gExcept in the case where |γ12| = 1; the choice of C′
2 is then irrelevant. Given that this is a set of measure 0,

we will neglect the existence of this case in the rest of this paper.
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The above notion of controlled channel can be easily extended to higher dimensional

systems, introducing controlled Kraus operators of the form

ctrl-Ci = |0〉〈0| ⊗ Ci +

m∑
k=1

αki |k〉〈k| ⊗ I , (25)

where, for each k ∈ {1, . . . ,m}, the amplitudes (αki )i satisfy the normalisation condition∑
i

∣∣αki ∣∣2 = 1. Controlled channels of the form (25) will be called m-compositely controlled

channels. In this case, the controlled channel is in one-to-one correspondence with m pinned

Kraus operators, and m− 1 complex amplitudes: using the same argument as in the proof of

Theorem 7, one can show that the controlled channel has a Kraus representation of the form



Ĉ1 = |0〉〈0| ⊗ C ′1 + |1〉〈1| ⊗ I +
∑
k>1 γ1k |k〉〈k| ⊗ I

Ĉ2 = |0〉〈0| ⊗ C ′2 +
√

1− |γ12|2 |2〉〈2| ⊗ I +
∑
k>2 γ2k |k〉〈k| ⊗ I

Ĉ3 = |0〉〈0| ⊗ C ′3 +
√

1− |γ13|2 − |γ23|2 |3〉〈3| ⊗ I +
∑
k>3 γ3k |k〉〈k| ⊗ I

...

Ĉj = |0〉〈0| ⊗ C ′j +
√

1−
∑
i<j |γij |2 |j〉〈j| ⊗ I +

∑
k>j γjk |k〉〈k| ⊗ I ∀j ≤ m

Ĉj = |0〉〈0| ⊗ C ′j ∀j > m ,

(26)

where (C ′i) is a Kraus representation of channel C, and (γij)i<k≤m are suitable amplitudes.

In summary, controlled channels can represent if-then clauses in the execution of a quan-

tum program, and every branch of the program corresponding to the ‘do nothing’ instruction

corresponds to a pinned Kraus operator.

6.2 A resource: sector-preserving channels of type (d, 1 . . . , 1)

We now consider the types of channels that can be used as resources for the implementation

of m-composite control. To do this, we extend the approach of section 3.2 to consider sector-

preserving channels with one d-dimensional sector and m 1-dimensional sectors, i.e. those of

type (d, 1, . . . , 1︸ ︷︷ ︸
m times

).

The Kraus operators of such channels have the form

C̃i = Ci ⊕ α1
i ⊕ α2

i ⊕ · · · ⊕ αmi , (27)

where (Ci)i is a Kraus representation of a channel C in dimension d, and, for every k ∈
{1, . . . ,m}, (αki )i are amplitudes satisfying the condition

∑
i |αki |2 = 1. The existence of this

form is a consequence of Theorem 6 in Ref. [39].

A one-to-one parametrisation can be obtained using the same argument as in the proof

of Theorem 7, which allows us to show that every sector-preserving channel of this type is in

one-to-one correspondence with m pinned Kraus operators of a channel C in dimension d, and

with a set of complex amplitudes (γij)1≤i<j≤m. To illustrate the situation, we consider the

m = 2 case. In this case, it is possible to show that every sector-preserving channel C̃ admits
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Fig. 4. The CTRL(2) supermap. s1 and s2 are the only normalised states in L(H1
S) and L(H2

S),

respectively. I : L(HT )→ L(HS) is an isometric channel such that I(ρ) = ρ (i.e. it just embeds
L(HT ) within L(HS)). c− perm is the unitary gate which, depending on the state of C, performs

a cyclic permutation of the three S wires: it performs the identity if C is in state |0〉, connects

each wire to its right neighbour if C is in the state |1〉, and connects each wire to its left neighbour
if C is in the state |2〉. D : L(HC ⊗HS ⊗HS ⊗HS) → L(HC ⊗HT ) reduces to the identity on

the sector L(HC ⊗H2
S ⊗H

1
S ⊗H

0
S) ' L(HC ⊗H0

S) ' L(HC ⊗HT ) of its input space; its action

on other sectors is irrelevant and can be arbitrarily defined, as long as it makes D into a CPTP
map.

a Kraus representation of the form
C̃1 = C1 ⊕ 1⊕ γ12
C̃2 = C2 ⊕ 0⊕

√
1− |γ12|2

C̃i = Ci ⊕ 0⊕ 0 ∀i ≥ 3 ,

(28)

where (Ci)i are Kraus operators of a suitable quantum channel C in dimension d. Note that

this expression is completely analogous to Eq. (23). In this case, it is possible to show that

the quadruple (C, C1, C2, γ12) provides a one-to-one parametrisation:

Theorem 8. The sector-preserving channels of type (d, 1, 1) are in one-to-one correspondence

with quadruples of the form (C, C1, C2, γ12), where C : L(H0
S) → L(H0

S) is a channel in

dimension d, C1 and C2 are two Kraus operators for C, and γ is a complex amplitude satisfying

|γ12| ≤ 1.

Combining Theorem 8 with Theorem 7, we obtain the following.

Corollary 3. The following sets are in one-to-one correspondence:

1. 2-compositely-controlled channels, as defined in (22), with a d-dimensional target sys-

tem;

2. quadruples of the form (C, C1, C2, γ12), where (C, C1, C2) is a channel with two pinned

Kraus operators in dimension d, and γ12 is a complex amplitude satisfying |γ12| ≤ 1;

3. sector-preserving channels of type (d, 1, 1).
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The case of arbitrary m ≥ 2 can be treated similarly, and also in this case, one can show

that there exists a one-to-one correspondence between the set of m-compositely-controlled

quantum channels of type (25) and the set of sector-preserving channels of type (d, 1, . . . , 1︸ ︷︷ ︸
m times

).

6.3 Implementing compositely-controlled channels via a universal circuit archi-

tecture

We now turn to the generalisation of the result of Section 4 to the implementation of m-

compositely-controlled channels. For illustration, we once again focus on the case m = 2.

As stated in Corollary 3, for any given d, there is indeed a one-to-one correspondence

between the 2-compositely-controlled channels on target systems of dimension d (which can

be written as the ctrlC1,C2,γ12 -C), and the sector-preserving channels of type (d, 1, 1) (which

can be written as the C̃[C1, C2, γ12]). This correspondence can also be implemented via a

universal circuit architecture.

Theorem 9. Let HS = H0
S⊕H1

S⊕H2
S be a Hilbert space, with dim(H0

S) = d and dim(H1
S) =

dim(H2
S) = 1, and let HC be a control space of dimension 3.

There exists a supermap CTRL(2) of type (S → S)→ (C ⊗S0 → C ⊗S0) such that for any

sector-preserving channel C̃[C1, C2, γ12],

CTRL(2)[C̃[C1, C2, γ12]] = ctrlC1,C2,γ12 -C . (29)

Furthermore, this supermap is unitary-preserving on the sector-preserving channels on

HS.

This Theorem can be proven in a straightforward way using the formulation of the CTRL(2)
supermap presented in Figure 4.

Similarly, an inverse CTRL−1(2) of this control map can easily be defined, showing that sector-

preserving channels of type (d, 1, 1) and 2-compositely-controlled channels are fully equivalent

resources.

These results can be generalised in a straightforward way to the case of general m: for any

given m, d, there exists a universal circuit architecture (represented by a supermap CTRL(m))

turning a sector-preserving channel of type (d, 1, . . . , 1︸ ︷︷ ︸
m times

) into its corresponding m-compositely-

controlled channel, and a universal circuit architecture realising the converse task.

7 Supermaps on routed channels

We now turn to a formal construction allowing to describe the CTRL and 2-CTRL supermaps

as acting solely on sector-preserving channels. We achieve this through the introduction of

the notion of supermaps on routed channels.

Supermaps, first introduced in [36], can be conceptually defined as ‘operations on opera-

tions’: they are linear transformations taking quantum channels as input and mapping them

to output quantum channels. Their main use is to model the different ways of using and

connecting together ‘black-box’ operations [36], for example in a quantum comb [37] or in

more exotic setups, such as the quantum switch [38]; they provide a rigorous framework for

studying the features and relative advantages of these manipulations of the black boxes.
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Fig. 5. Diagrammatic representation of a supermap S on routed channels, and of its action on a
routed channel (λ,A) (also acting on an auxiliary system), yielding a routed channel (µ, (I⊗S)[A]).

Here, we define (deterministic) ‘supermaps on routed channels’ as supermaps which only

accept a subset of all channels as input; namely, in the language of Ref. [39], those that follow

a certain route – i.e. satisfy a given set of sectorial constraints. These restrictions will make

the possible supermaps more diverse, as they are no longer required to be well-defined on all

possible input channels. Fortunately, a good deal of the formal work necessary in order to

define such supermaps on routed channels has been undertaken already: in [38], deterministic

supermaps on a restricted subset of quantum channels were defined in general. We will recall

the main parts of this definition, then apply it to the definition of supermaps on routed

channels.

We denote a system X as corresponding to a finite-dimensional Hilbert space HX . For two

systems Ain and Aout, we denote Herm(Ain → Aout) to be the real vector space of Hermitian-

preserving linear maps from L(HAin
) to L(HAout

), and QChan(Ain → Aout) to be its subset

containing quantum channels of type Ain → Aout. We also note St(X) ⊆ Herm(HX) to be the

set of states for system X. The first notion we need is that of an extension of a set of channels,

which allows us to take into consideration channels which also act on an auxiliary system.

Given a subset of channels S ⊆ QChan(Ain → Aout) and two systems Xin, Xout, the extension

of S in QChan(AinXin → AoutXout) is the set ExtXin→Xout
(S) := {C ∈ QChan(AinXin →

AoutXout) | ∀σ ∈ St(Xin),TrXout (C ◦ (1Ain ⊗ σXin)) ∈ S}. With this notion, one can define

deterministic supermaps on a restricted subset of channels [38].

Definition 2 (Deterministic supermaps on a restricted subset of quantum channels). Let

S ⊆ QChan(Ain → Aout) and T ⊆ QChan(P → F ) be subsets of channels. A deterministic

supermap of type S → T is a linear map S from Herm(Ain → Aout) to Herm(P → F ) such

that, for any auxiliary systems Xin, Xout and for any channel C ∈ ExtXin→Xout
(S), one has

(S ⊗ IXin→Xout
)[C] ∈ ExtXin→Xout

(T ) , (30)

where IXin→Xout
is the identity supermap on Herm(Xin → Xout).

We can first apply this notion to the definition of supermaps acting on a single routed

channel. First, we briefly recall the basic notions introduced in Ref. [39]. Here, we will

restrict ourselves to routes with full coherence, i.e., only encoding sectorial constraints and

not coherence constraintsh. A partitioned Hilbert space Xk is a Hilbert space with a preferred

hThis leads us to adopting notations that are somewhat different from those of Ref. [39]. There, routes for

general channels were taken to be completely positive relations Λll′
kk′ . As fully coherent routes are those Λ’s

which can be written as Λll′
kk′ = λlkλ

l′
k′ , we simplify our notations in the present article by just referring to
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Fig. 6. Diagrammatic representation of a supermap S acting on a pair of routed channels (λ,A)

and (σ,B) (also acting on auxiliary systems), yielding a routed channel (µ, (I ⊗ S ⊗ I)[A,B]).

orthogonal partition, labelled by a finite set ZX ; i.e., HX := ⊕k∈ZX
HkX . Given two such

partitioned spaces Akin and Alout, and a relation λ : ZAin
→ ZAout

(or, in other terms, a

Boolean matrix (λlk)
l∈ZAout

k∈ZAin
), we say that a channel A ∈ QChan(Ain → Aout) follows the

route λ if

∀k, ∀ρ ∈ L(HkAin
), A(ρ) ∈ L

(⊕
l|λl

k=1HlAout

)
. (31)

Equivalently (see Theorem 6 in Ref. [39]), given any Kraus representation (Ki)i of A, A
follows λ if and only if

∀i,∀k, ∀|ψ〉 ∈ HkAin
, Ki |ψ〉 ∈

⊕
l|λl

k=1HlAout
. (32)

We denote the set of channels of type Ain → Aout that follow the route λ as QChanλ(Akin →
Alout) ⊆ QChan(Ain → Aout). We will also say that these channels have type Akin

λ→ Alout; it

is this type of channels on which we want to define supermaps. It is easy to prove that the

condition defining the extension of Akin
λ→ Alout to auxiliary systems can be simplified.

Lemma 5. For a type Akin
λ→ Alout and auxiliary systems Xin, Xout, one has:

ExtXin→Xout
(QChanλ(Akin → Alout))

= QChanλ(Akin ⊗Xin → Alout ⊗Xout) .
(33)

In other terms, the extension of the set of channels Ain → Aout following a route λ to a

type Xin → Xout is simply the set of channels Ain ⊗ Xin → Aout ⊗ Xout following λ. The

definition of supermaps on routed channels then derives naturally from Definition 2.

Definition 3 (Supermap on routed channels). Let Akin, Alout, P
m and Fn be partitioned

Hilbert spaces, and let λ : ZAin
→ ZAout

and µ : ZP → ZF be two relations. A deterministic

supermap of type (Akin
λ→ Alout) → (Pm

µ→ Fn) is a linear map S from Herm(Ain → Aout)

to Herm(P → F ) such that, for any auxiliary systems Xin, Xout and for any channel C ∈
QChanλ(Akin ⊗Xin → Alout ⊗Xout), one has

(S ⊗ IXin→Xout
)[C] ∈ QChanµ(Pm ⊗Xin → Fn ⊗Xout) . (34)

them as λlk.
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channels, in the framework of routed quantum circuits [39]. s0 is the only state on the one-
dimensional sector L(H0

Sin). The Boolean vector (λpkm)p,k,m∈{0,1} has coefficients 1 for indices

001 and 110, and 0 elsewhere. (λpln)p,l,n∈{0,1} is its transpose. An advantage of the routed

formulation is to allow one to get rid of the superfluous embedding operations that were present
in the standard formulation (Figure 3).

We show how supermaps on routed channels can be represented graphically in Figure 5.

The CTRL supermap described in Theorem 4 can be characterised as a supermap on routed

channels, with type (Ak
δ→ Al)→ (C ⊗ S1 → C ⊗ S1).

Let us now turn to supermaps acting on multiple routed channels. To avoid clutter, we

will present the construction for supermaps acting on a pair of channels, the generalisation

to N ≥ 2 being immediate. Formally, these have to be defined as supermaps whose input

channels should be product channels, with each channel in this product following a given

route. For some partitioned spaces Akin, Alout, B
m
in and Bnout, and for two relations λ : ZAin

→
ZAout

and σ : ZBin
→ ZBout

, we thus define ProdChanλ×σ(Akin ⊗ Bmin → Alout ⊗ Bnout) to

be the intersection of the set of product channels ProdChan(Ain ⊗ Bin → Aout ⊗ Bout) with

QChanλ×σ(Akin ⊗ Bmin → Alout ⊗ Bnout). One can then define supermaps acting on such a set,

once again following Definition 2.

Definition 4 (Supermaps on pairs of routed channels). Let Akin, Alout, B
m
in , Bnout, P

q and F r

be partitioned Hilbert spaces, and let λ : ZAin
→ ZAout

, σ : ZBin
→ ZBout

and µ : ZP → ZF
be relations. A deterministic supermap of type (Akin

λ→ Alout) ⊗ (Bmin
σ→ Bnout) → (P q

µ→ F r)

is a linear map S from Herm(Ain ⊗Bin → Aout ⊗Bout) to Herm(P → F ) such that, for any

auxiliary systems Xin, Xout, Yin, Yout and for any pair of channels A ∈ QChanλ(Akin⊗Xin →
Alout ⊗Xout), B ∈ QChanσ(Bmin ⊗ Yin → Bnout ⊗ Yout), one has

(IXin→Xout
⊗ S ⊗ IYin→Yout

)[A⊗ B]

∈ QChanµ(Xin ⊗ P q ⊗ Yin → Xout ⊗ F r ⊗ Yout) .
(35)

We show how supermaps on pairs of routed channels can be represented graphically in

Figure 6. The 2-CTRL supermap described in Theorem 6 can be characterised as a supermap

on routed channels, with type (Ak
δ→ Al) ⊗ (Ak

δ→ Al) → (C ⊗ S1 → C ⊗ S1); we show in
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Figure 7 how it can then be written in a fully explicit way in the language of routed quantum

circuits. Figure 7 can thus be seen as a more compact rewriting of Figure 3 , which contained

the additional operations V and D. The role of these operations was simply to embed the

target systems into suitable sectors. While in some specific realisations these embeddings

may correspond to non-trivial physical operations, from the information-theoretic point of

view they are irrelevant, and they can be completely absorbed into the graphical language of

routed circuits.

8 Conclusion

In this work, we showed that sector-preserving channels of type (1, d) are the necessary re-

source for implementing controlled channels on a d-dimensional system. We demonstrated

that sector-preserving channels and controlled channels are into one-to-one correspondence,

and can be faithfully parametrised by channels with a pinned Kraus operator. In addition,

we showed that this mathematical one-to-one correspondence can be implemented physically:

for any given d, there exist two universal circuit architectures that convert sector-preserving

channels into controlled channels, and vice-versa.

In addition to characterising the resources for the standard notion of control, we defined a

generalised type of controlled channels, called compositely-controlled, in which several states

of the control are associated with the ‘do-nothing’ option. Also in this case, we showed that

the controlled channels are in (both mathematical and physical) correspondence with sector-

preserving channels, in this case of type (d, 1, . . . , 1). We also generalised these results to

the implementation of coherent control between N channels, and showed that, when these

channels are not isometries, such an implementation requires the use of sector-preserving

channels of type (1, d) which reduce, on their d-dimensional sectors, to isometric extensions

of the channels to be controlled.

The framework of sector-preserving channels provides an information-theoretic underpin-

ning to the existing experimental schemes for the implementation of universal coherent control

[23, 24, 25, 26, 27] , as well as a pathway to the generalisation of such schemes to more com-

plex architectures. Furthermore, it lays down the conceptual and mathematical framework

required to analyse and compare the performance of implementations of coherent control as

well as the advantages that they yield, e.g. in computation or in communication. As a byprod-

uct, it also motivates new experiments on the realisation of composite control and theoretical

investigations of its uses.

Finally, in order to properly characterise the supermaps we defined, we introduced the

notion of supermaps on routed channels, and gave them a rigorous mathematical definition,

building on the framework of Ref. [39]. However, the supermaps presented in the present work

can always be extended to act on general channels (even though this will make them lose their

unitary-preserving property). An interesting open question is whether there exist supermaps

on routed channels which cannot be extended to act on general channels. This might in

particular prove relevant to the study of Indefinite Causal Order: it has been shown [41]

that some indefinite causal structures could be investigated using index-matching circuits, a

specific type of routed circuits.
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12. Z. Gavorová, M. Seidel, and Y. Touati, “Topological obstructions to implementing controlled
unknown unitaries,” arXiv:2011.10031 [quant-ph].

13. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A.
Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical Review A 52
no. 5, (Nov, 1995) 3457–3467, arXiv:quant-ph/9503016.

14. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in
Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. 1994.

15. G. Chiribella and H. Kristjánsson, “Quantum Shannon theory with superpositions of

http://arxiv.org/abs/quant-ph/9511026
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://arxiv.org/abs/quant-ph/9802037
http://dx.doi.org/10.1103/PhysRevLett.64.2965
http://dx.doi.org/10.1103/PhysRevLett.64.2965
http://dx.doi.org/10.1109/LICS.2005.1
http://arxiv.org/abs/quant-ph/0409065
http://dx.doi.org/10.1016/C2014-0-02660-3
http://dx.doi.org/10.1007/978-3-319-89366-2_19
http://dx.doi.org/10.1007/978-3-319-89366-2_19
http://arxiv.org/abs/1804.00952
http://dx.doi.org/10.1088/1367-2630/16/9/093026
http://arxiv.org/abs/1309.7976
http://dx.doi.org/10.1088/1367-2630/18/9/093053
http://dx.doi.org/10.1088/1367-2630/18/9/093053
http://arxiv.org/abs/1606.02394
http://dx.doi.org/10.1103/physreva.94.022340
http://dx.doi.org/10.1103/physreva.94.022340
http://arxiv.org/abs/1509.01062
http://dx.doi.org/10.1088/1367-2630/aa99b3
http://arxiv.org/abs/1310.2927
http://arxiv.org/abs/1310.2927
http://arxiv.org/abs/2011.10031
http://dx.doi.org/10.1103/physreva.52.3457
http://dx.doi.org/10.1103/physreva.52.3457
http://arxiv.org/abs/quant-ph/9503016
http://dx.doi.org/10.1109/SFCS.1994.365700


1348 Universal control of quantum processes using sector-preserving channels

trajectories,” Proceedings of the Royal Society A 475 (2019) , arXiv:1812.05292 [quant-ph].
16. H. Kristjánsson, W.-X. Mao, and G. Chiribella, “Witnessing latent time correlations with a

single quantum particle,” arXiv:2004.06090 [quant-ph].
17. H. Kristjánsson, G. Chiribella, S. Salek, D. Ebler, and M. Wilson, “Resource theories of

communication,” New Journal of Physics 22 no. 7, (2020) 073014, arXiv:1910.08197
[quant-ph].

18. X. Zhao, Y. Yang, and G. Chiribella, “Quantum Metrology with Indefinite Causal Order,”
Physical Review Letters 124 no. 19, (2020) 190503, arXiv:1912.02449 [quant-ph].

19. M. Frey, “Indefinite causal order aids quantum depolarizing channel identification,” Quantum
Information Processing 18 no. 4, (2019) 96.

20. S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nature
Physics 10 no. 9, (Jul, 2014) 631–633, arXiv:1307.0401 [quant-ph].

21. H. J. Briegel and G. De las Cuevas, “Projective simulation for artificial intelligence,” Scientific
reports 2 no. 1, (2012) 1–16, arXiv:1104.3787 [nlin.AO].

22. Q. Dong, S. Nakayama, A. Soeda, and M. Murao, “Controlled quantum operations and combs,
and their applications to universal controllization of divisible unitary operations,”
arXiv:1911.01645 [quant-ph].

23. X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P. Lanyon, and J. L. O’Brien,
“Adding control to arbitrary unknown quantum operations,” Nature Communications 2 no. 1,
(Aug, 2011) , arXiv:1006.2670 [quant-ph].

24. X.-Q. Zhou, P. Kalasuwan, T. C. Ralph, and J. L. O’Brien, “Calculating unknown eigenvalues
with a quantum algorithm,” Nature Photonics 7 no. 3, (Feb, 2013) 223–228, arXiv:1110.4276
[quant-ph].

25. N. Friis, V. Dunjko, W. Dür, and H. J. Briegel, “Implementing quantum control for unknown
subroutines,” Physical Review A 89 (2014) 030303, arXiv:1401.8128 [quant-ph].

26. V. Dunjko, N. Friis, and H. J. Briegel, “Quantum-enhanced deliberation of learning agents using
trapped ions,” New Journal of Physics 17 no. 2, (Jan, 2015) 023006, arXiv:1407.2830
[quant-ph].

27. N. Friis, A. A. Melnikov, G. Kirchmair, and H. J. Briegel, “Coherent controlization using
superconducting qubits,” Scientific Reports 5 no. 1, (2015) , arXiv:1508.00447 [quant-ph].
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Appendix A A review of the terminology on coherent control in previous liter-

ature

The notion of ‘coherent control’ has been studied under several different names in the

literature, which might lead to some confusion. In this appendix, we provide a review of the

different terms previously used, arguing that they all essentially refer to the same notion. We

will then motivate the choice of the term ‘coherent control’ employed in this paper.

Coherent control was first considered for unitary gates in the work of Aharonov and

coauthors [3]. In this work, controlled unitary gates were used to build what was called a

‘superposition of time evolutions’. More precisely, the authors discussed the possibility of

implementing evolutions of the form
∑
j cj Uj , where the Uj ’s are unitary operators, and the

cj ’s are complex coefficients. It was proven that such an evolution could be realised, for

arbitrary cj ’s, using auxiliary systems and postselection. The protocol described in Ref. [3]

consists in realising the controlled unitary gate
∑
j |j〉〈j|⊗Uj , initialising the control system in

a superposition state, measuring the control system in a suitable basis, and then postselecting

on a specific measurement outcome.

Another early instance was in the work of Åberg [28, 29], in which some of what would later

come to be seen as the crucial features of coherent control were pointed out and analysed under

different names. Indeed, Ref. [28] introduces the concept of so-called subspace-preserving

channels, asking how their mathematical form can be obtained from that of their restrictions

to each subspace, a procedure called gluing of completely positive maps, which is noted to be

non-unique. This procedure is a mathematical avatar of the task of coherent control; and, even

though the question of physical implementation is not discussed in detail, the comment on the

non-uniqueness can be regarded as an early observation of the ill-definedness of the control

between two quantum channels. This ill-definedness is noted to be due to the incompleteness

of the description of the channels one wants to glue. An application of these methods to

single-particle interferometry is described in Ref. [29].

Around the same time, Oi [40] studied the interference of CP maps, proposing that the

combination of quantum channels in an interferometic setup could reveal additional properties
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of their physical implementation that are not included in the mathematical expression of

quantum channels. In the light of our results, the ability to probe additional properties of the

implementation is due to the fact that the channels inserted in the interferometric setup are not

the original channels, but rather sector-preserving channels of type (1, d) which coincide with

them on their d-dimensional sector. It is the properties of these sector-preserving channels,

not of the original ones, that become visible through interferometry.

Finally, Chiribella and Kristjánsson [15] considered superpositions of quantum channels,

in the context of a communication model where the information carriers move on a super-

positions of trajectories. Even though this paper focused on applications to communication,

its framework also yields an implementation of the task of coherent control, as shown by the

present paper. In this perspective, superpositions of trajectories represent one of the possible

physical implementations of coherent control.

The term we adopted here, ‘coherent control’ (or sometimes ‘quantum control’, or simply

‘control’), is commonly found in both experimental [23, 24, 25, 26, 27] and theoretical [8, 9,

12, 22, 30, 31, 32] works. Consistency with this relatively large body of works is one of the

benefits of choosing the term ‘control’. Moreover, this choice has the advantage of referring to

a clearly defined operational task, rather than to analogies with properties of quantum states

(such as ‘superpositions of quantum evolutions’ or ‘superpositions of quantum channels’), to

mathematical procedures (‘gluing of CP maps’), to possible phenomena (‘interference of CP

maps’), or to specific types of physical implementations (‘superpositions of trajectories’).

Appendix B Parametrising the coherent control between two channels

In this Appendix, we prove Theorem 2. We fix a Kraus representation (Ai)
n
i=1 of minimal

length of A. We first prove that any version of a controlled channel between A and B admits

a Kraus decomposition (Kj)
m
j=1, where m ≥ n, Kj = ctrl-(Aj , Bj) for j ≤ n and Kj =

ctrl-(0, Bj) for j > n. Let us take such a channel, given by Kraus operators (ctrl-(A′i, B
′
i)
m
i=1.

The A′i form a Kraus representation of A; therefore, m ≥ n and there exists an unitary matrix

(Vji)
m
i,j=1 such that

∑
i VjiA

′
i = Aj for j ≤ n and 0 for j > n. Then, (

∑
j VjiKi)

m
j=1 is a Kraus

representation of the right form for the controlled channel.

We now prove that, given two choices (Bi)
m
i=1 and (B′j)

m′

j=1 of Kraus representations for

B, the controlled channels that they define are equal if and only if ∀i ≤ n,Bi = B′i. First,

suppose that the latter equation holds. Then, taking an isometry matrix (Vji)
n<j≤m′

n<i≤m relat-

ing the Kraus decompositions (Bi)
m
i=n+1 and (Bj)

m′

j=n+1, we can complete it into a unitary

matrix (Vji)
1≤j≤m′

1≤i≤m by taking ∀i, j ≤ n, Vji = δji; one then has ∀i, j,
∑
i Vjictrl-(Ai, Bi) =

ctrl-(Aj , B
′
j). Reciprocally, suppose that the controlled channels defined by the choices

(Bi)
m
i=1 and (B′j)

m′

j=1 are equal. Taking then (Vji)
1≤j≤m′

1≤i≤m to be an isometry matrix relating

the associated Kraus decompositions, one has in particular ∀i, j ≤ n,
∑
i VjiAi = Aj . Yet,

that (Ai)
n
i=1 is a Kraus representation of minimal length implies in particular that the Ai’s

are linearly independent; therefore ∀i, j ≤ n, Vji = δji, which implies ∀i ≤ n,B′i = Bi.

Appendix C Control of two noisy channels

In this Appendix, we propose a universal circuit implementation for all possible versions

of the control between two noisy channels A and B from L(HTin
) to L(HTout

). To avoid
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clutter, we will take the isomorphisms Tin ' S1
in and Tout ' S1

out to be strict, that is, as will

assume Tin = S1
in and Tout = S1

out.

Recall that, as proven in Section 5, in the case where A and B are isometric channels

the controlled version could be implemented using as resources sector-preserving channels

from L(H0
Sin
⊕H1

Sin
) to L(H0

Sout
⊕H1

Sout
), where H1

Sout
:= HSout , H1

Sin
:= HSin , and H0

Sin

∼=
H0
Sout

∼= C, with these channels restricting respectively to A and B on L(H1
Sin

). However, the

controlled channels yielded by this method can feature full coherence only between at most

one Kraus operator of A and one operator of B.

Here, we shall therefore make use of more complex resources. These resources will be

sector-preserving channels whose multi-dimensional output sector will not be H1
Sout

, but

H1
Sout
⊗ H1

E , where H1
E is an auxiliary Hilbert space. The restrictions of these channels

to this sector will have to yield A and B when E1 is traced out. In other words, to get the

full scope of controls between A and B we need to use sector-preserving channels that restrict

to (possibly partial) purifications of A and B on their multi-dimensional sectors. Using such

resources, the number of Kraus operators of A and B between which there can be full coher-

ence in the controlled channel is capped by the dimension of H1
E . In particular a sufficiently

large H1
E will ensure that all possible controlled channels can be generated.

More formally, we define the supermap 2-CTRL(E) from the supermap 2-CTRL in the fol-

lowing way:i

C

Sm
out

Sm
in

Sk
out

Sk
in

2-CTRL(E)

C

S1
in

EmEk

S1
out

:=

C

Sm
out

Sm
in

Sk
out

Sk
in

2-CTRL

C

S1
in

EmEk

E1

S1
out

. (C.1)

Let us now prove that, for a given choice of E, 2-CTRL(E) can produce all controlled

channels in which the number of coherent pairs of Kraus operators is less than the dimension

of E.

Theorem C.1. We fix an environment E with dimension D, and use the one-to-one parametri-

sation of the control between two channels provided by Theorem 2: i.e., given a Kraus rep-

resentation (Ai)
n
i=1 of A of minimal length, the parametrisation is given by the choice of n

Kraus operators Bi of B.

Then any choice of a control in which only the D first operators Bi are non-zero can be

obtained from the use of the 2-CTRL(E) supermap.

i Here, we defined this supermap as a routed one (also using the convention of contracting Kronecker deltas)
for clarity, but this could also be arbitrarily expanded into a supermap acting on all channels from L(HSin

)

to L(⊕k∈{0,1}Hk
Sout

⊗ Hk
E). Note that when writing such a non-routed supermap, one would have to write

the combination of Sout and E as a single wire, as the way in which they combine to form Sk
outE

k is not a
tensor product and cannot be expressed using standard quantum circuits.
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Proof. In the case D = 1 (i.e. that of the 2-CTRL supermap), it can easily be computed, from

the formula of Fig. 3, that any controlled version in which there is coherence between A1 and

B1 can be obtained by plugging the channels ÃA1 and B̃B1 in 2-CTRL.

Considering now the case D > 1, let us take a version C of a control between A and B for

which a Kraus representation is
(
|0〉〈0|C ⊗ A1 + |1〉〈1|C ⊗ B1, . . . , |0〉〈0|C ⊗ AD + |1〉〈1|C ⊗

BD, |0〉〈0|C ⊗ AD+1, . . . , |0〉〈0|C ⊗ An, |1〉〈1|C ⊗ BD+1, . . . , |1〉〈1|C ⊗ Bm
)

. Then a (possibly

partial) purification of C is given by the channel of type CS1
in → CS1

outE for which a Kraus

representation is
(∑D

i=1

(
|0〉〈0|C⊗Ai+|1〉〈1|C⊗Bi

)
⊗|i〉E , |0〉〈0|C⊗AD+1⊗|1〉E , . . . , |0〉〈0|C⊗

An⊗|1〉E , |1〉〈1|C⊗BD+1⊗|1〉E , . . . , |1〉〈1|C⊗Bm⊗|1〉E
)

. This latter channel can be seen as

being a version of a control between two channels S1
in → S1

outE
1 with coherence between one

pair of Kraus operators. By the first part of the proof, it can thus be obtained by applying

the 2-CTRL supermap to suitable sector-preserving channels of type Skin → SkoutE
k. Discarding

E1 then yields C. The 2-CTRL(E) as defined in (C.1) thus yields C when applied to the same

sector-preserving channels.

In particular, as any channel S1
in → S1

out admits a Kraus representation of length less

than the product of the dimensions of S1
in and S1

out, all versions of controlled channels can be

obtained from the use of the supermap 2-CTRL(E) when E is of that dimension.
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