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Abstract

Progress in computer technology has made it possible to make larger calwlatth
finer grid-scale resolution, and physical processes that were ddferreach of coarse-
resolution models are now simulated directly. This focuses scientific intereatdanore
turbulent flow regimes, and applications toward more realistic modeling oifgpegional
configurations.

In this article we examine the numerical design of oceanic modeling code$icgc
suited for modern demands. These are compared to traditional "legaeghmcgeneral
circulation models, as well as to computational fluid dynamics methods for modern e
gineering applications. Our primary subject is how the numerical algorithmdifferent
aspects of the discretized partial differential equation system — the cotigmatiskernel
— combine to yield the overall model performance, with particular focus ordag de-
structive interference among algorithmic components.

Key words: oceanic modeling, free-surface, mode-splitting, conservation propertie
computational stability, numerical algorithm interference

1 Introduction: Integrated Kernel Design

Oceanic General Circulation Models (OGCMs) (Bryan & Cox, 196@n&berg & Mellor, 1987; Bleck
& Smith, 1990; Dukowitz & Smith, 1994; McWilliams, 1996; M&rallet al., 1997; Griffieset al,, 2000)
have historically been a separate branch of computation@ fhechanics with significantly different
choices for numerical methods compared to most engine@fiig (computational fluid dynamics) appli-
cations. The main motivation is the need to perform very lengven millennial — simulations over hun-
dreds of thousands of time steps, which makes it essentiiddore conservation properties for the mean
and variance of model fields (Lilly, 1965; Arakawa & Lamb, ¥9.7This typically has led to the choice of
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discrete algorithms as a combination of basic second-ocdatered spatial operators and leap-frog time-
stepping, both because they can easily be made to assureddesnservation properties and because
higher-order advection schemes usually do not give battatisns for coarse grids that do not adequately
resolve the baroclinic deformation radig., the “non-eddy-resolving” regime typical for climate stesl).
Instead, coarse-grid models have to rely on parametesimmbf subgrid mesoscale processes to achieve
physically correct results (Gent & McWilliams, 1990; Griet al, 1998). The OGCM codes targeting
large-scale circulation were ill-suited for nearshorermmena due to inaccurate handling of complex
geometry, bottom topography, free surface, and bottom danyrlayer; coastal model developments took
a rather independent route (Casulli & Cheng, 1992; Casulli &t 994; Casulli & Stelling, 1998; Ca-
sulli, 1999) with more focus on achieving accurate disperpiroperties for surface gravity waves, wetting
and drying capabilitiesgtc, with less emphasis on long-term conservation propertiesGoriolis-force
effects. These coastal codes are characterized by twekeweé time-stepping, upstream-biased, semi-
Lagrangian, monotonicity-preserving advection schermed,sometimes non-hydrostatic effects and un-
structured grids (Cheng & Casulli, 2001). The combinatiorhefe features makes them more similar to
CFD codes than to OGCMs.

During the 1990s all major OGCMs underwent a substantialsigden order to take advantage of
the rapidly developing computer technology, especiallsalpel processing. This allowed much larger
computational grids, ultimately ones that can close theluéisn gap between coastal and regional-global
applications. A somewhat paradoxical outcome of this dimius the use of parallel codes has become
the wide-spread in oceanic modeling, while as yet there bas telatively little overhaul of the numerical
methods in their hydrodynamic kernels. Most of the recentleh@ontent developments have come in
physical parameterizations and peripheral modules fagdmohemical processes. Griffiesal. (2000) is
an overview of the modern state of OGCMs in climate modelimm& rare exceptions to the widespread
use of classical time-stepping and second-order advealimiithms have been adopted to avoid spurious
oscillations and negative concentrations for materiaers (Willebrancet al,, 2001), but only rarely are
better advection schemes used for momentum (Dietieth, 1987, 1997). Monotonic advection schemes
are also used in the context of isopycnic layer models to wéhl vanishing layer thickness (Bleck &
Smith, 1990).

The code organizational structure in the Modular Ocean M@I©OM) became anothede facto
standard, adopted by many modelers when their code complextured to OGCM status. This ap-
proach is encouraged and often justified by the ease of incatipg peripheral modules. However, it
led to a widespread “modular vision” of the kernel, and thenaction and, in fact, interference among
the algorithmic components was often overlooked. For exenglowing a free-surface in a previously
rigid-lid model, (Killworth et al,, 1991; Dukowitz & Smith, 1994) may result in the loss of canae
tion and/or constancy-preservation properties of contofime scheme for tracer advectiopwhich was
noticed, mitigated (Griffiest al,, 2001), and eliminated completely (Camgial., 2004; Shchepetkin &
McWilliams, 2005; Marsaleiet al,, 2008) only a decade later. If one wants to implement a naiila®ry
advection scheme for tracers, the tracer time step has thd@ged from leapfrog to a two-time level
algorithm,e.g.,predictor-corrector. However, since this change appti¢sacers only, it leads to an under-
utilization of its potential benefit because the time-stee g\t of an OGCM is usually limited by the
gravity-wave speed for the first baroclinic mode. The gsawiive behavior arises from an interplay be-
tween the momentum and the tracer equations and cannot beveapby refining tracers alone.

There is a common practice of two-stage code developmermendnsingle-processor prototype code
is parallelized later, only after being considered suffidiemature. This is another reason for sub-optimal

1 The exact cause of this loss and a remedy are considered later in Sec. 3.1



algorithmic choices, because considerations of compunaliefficiency (cost) may be quite different be-
tween parallel or non-parallel cases. For example, thénweat of the Coriolis force for the barotropice,
depth-averaged) mode on a C-grid with an alternating-doechethod (Bleck & Smith, 1990) or a fixed-
point iteration procedure (Higdon, 2005) is straightforsvan a single processor, but, due to the staggered
placement of:- andv-points on a C-grid and the associated interpolation, itltesu excessive synchro-
nization and message passing in a parallel implementdtiazontrast, for even moderately high spatial
and temporal resolution, the associated stability-lmgitCourant number is very smalf {\t < 1, where

f is the Coriolis frequency). The Coriolis force can be sucaedigstreated in parallel with virtually any
explicit, conditionally stable time-stepping algorithAnother interesting example comes from the expe-
rience of parallelization on shared-memory computersra @ficient code can be obtained by arranging
the mathematical operations in such a way that intermeriatédts are stored in cache-sized private arrays
that are reused in as many stages as possible before a gjolchrsnization event takes place. This ex-
perience thus stimulates the use of multi-stage, highradeurate, wide-stencil algorithms because they
naturally allow a higher computational density(, in this context the ratio of mathematical operations to
cache-to-main-memory memory loads and stores). From ¢ pf view, the recent tendency to develop
an abstract Earth-System Modeling Framewovwk. esnf . ucar . edu), driven primarily by computer
scientists, has the danger of decoupling physical-mogdé&om code-infrastructure decisions, as a further
commitment to modular architectures. While this approack mdeed save modelers labor by providing
common code components, it also can have the effect of hilireyen impeding the resolution of the
types of algorithmic interferences that are the focus «f #ticle.

In our designs for the computational kernel in the Regionaddic Modeling System (ROMS) (Shchep-
etkin & McWilliams, 2005), we adopt an integrated approatieve we try to analyze and take into account
all previously known experience, but in such a way that nomament from a legacy code is accepted
priori. Rather, we try to identify potential algorithmic interfaces and conflicts and their possible rec-
onciliations. This principle encompasses a full range ofsiderations, from the theoretical analysis of a
linearized time-stepping scheme all the way to cross- atitinvprocessor code optimization issues.

The advantage of using higher-order advection schemesrtaulent flows is well understood (Orszag,
1971; Leonarcet al,, 1996; Shchepetkin & McWilliams, 1998). This approach esgmthe primary crite-
rion not as the formal order of accurapgr se(which is merely a Taylor series estimate of the asymptotic
convergence rate for smooth functions), but rather as teetsg bandwidthi(e., the fraction of grid-
resolved Fourier components that are correctly repreddntehe discretized operator). In practice this
translates into downplaying the goal of achieving a unifgrmgh-order of accuracy for all terms in the
governing equations — a rather unrealistic hope for a nsalile, multi-process, nonlinear system any-
way — in favor of isolating and removing specific causes olaacy loss in particular solution regimes.
Although ROMS has been successfully used for coarse-rasoklimate studies (Haidvoget al.,, 2000),
its main intended applications are medium- or high-resmhusimulations with a well-resolved baroclinic
deformation radius and strong advective influences. Thus,imtended to simulate mesoscale, approxi-
mately geostrophically balanced currents and eddiesthegevith nonlinear gravity and inertial waves
with similar spatial scales. This downplays the importaoteddy parameterization in comparison with
most climate models. However, the need to avoid erroneotigaemixing, especially across isopycnic
surfaces in stably stratified regions, is a high priorityltorg-term simulations. For this reason the use of
upstream-biased advection schemes in the vertical direididiscouraged. That value is expected to be
limited by the phase speeds for barotropic and barocliragityr waves (.e., external and internal modes,
respectively), which are different from each other by astem order of magnitude (barotropic is faster).
The first-mode baroclonic speed is usually larger than tive@dve velocity, although comparable in its
order of magnitude. The baroclinic time step is expectedetonbich smaller than the inertial period, so



that the Coriolis force does not impose any additional restn on A¢. Vertical mixing is always treated
implicitly since its transport rate can be much larger tHanvertical advective rate.

Taking into account the specifics of this physical regime haee been developing the kernel code in
ROMS to have the features in the following lisf.( Fig. 1) that foreshadows the algorithms discussed in
more detail below.

¢ Vertical Coordinate Although ROMS nominally belongs to the vertical-boundéosifowing model
family (i.e., o(z,y, t)-coordinate), the code stores the height-coordinate foemsz = z(z,y,0) as
a special array, and, in principle, it can be used as a genedalertical coordinate.

e Free SurfaceROMS is free-surface model with split-explicit time-stamp The pressure-gradient force
(PGF) for the barotropic mode is defined as a variational/deve of vertical integral of the hydrostatic
PGF with respect to perturbations in the free-surface &tavg(zx, y,t). As a result the barotropic PGF
depends not only ogi but also on the two differently averaged density fields iatéd by two ascending
arrows,p* andp in Fig. 1 (Sec. 3.2) that are computed from 3D fields and hahldt@mt during barotropic
time-stepping. This insures an accurate and stable spdity @ith a large ratio between thé&t for the
baroclinic and barotropic modes.

e Barotropic Averaging:The barotropic variables are averaged in the fast (barafréime step to pre-
vent aliasing of frequencies not resolved by the slow (3daric) time-stepping. To avoid undesir-
able damping of resolved frequencies, the fast-time auegag performed using a specially designed
S-shaped filter function (denoted By) in Fig. 1) that has second-order temporal accuracy for the av
eraged barotropic prognostic variables, @, v). (A strictly positive-definite averaging yields at most
first-order accuracy.)

e Tracer Conservation and Constancy-Preservatibmassure these properties when the grid-box control
volumes change due to change®ne must ensure that slow-time volume fluxes are exactlgistamt
with the changes ig as computed with the barotropic mode. Hence, it is not endaigghow the final
state of( . )-averaged barotropic variables at the new time step; oengleds to have an integral mea-
sure of the entire barotropic evolution between two consezbaroclinic times. This is accomplished
by fast-time averaging the barotropic volume flux using aedmperator( . )) in Fig. 1) that is derived
from the primary( .) (Sec. 3.1).

¢ Barotropic Time-SteppingSince the external mode phase speed imposes the dominane€ifiction
on At, the generalized forward-backward step is chosen for @t mode. This algorithm consists of
a modified Adams-Bashforth update of free surface followedgate of momentum equations where
the newly computed participates in the computation of PGF. Unlike the claddmavard-backward
step, the new algorithm naturally combines with advectiod €oriolis terms and has a dissipative
leading-order truncation term.

¢ Baroclinic Time-Stepping3D time-stepping schemes are designed in anticipationfigirdnt Courant-
number limitations corresponding to different physicabqasses. The internal gravity-wave speed is
expected to be the most restrictive, although the othetdimt advective and Coriolis CFL — are not
as distant as in the barotropic mode. A modified predictorembor scheme with forward-backward
feedback between advection @fvia the tracerd” andS) and PGF in momentum equations is chosen.
It generally maintains temporal third-order accuracy fdvextion and Coriolis terms to match the
accuracy of spatial discretization. The use of forwardkbacd feedback expands the CFL stability
limit for internal waves. A forward Euler step is used for izontal viscosity and diffusion terms, and
an implicit backward step is used for vertical mixing. Thell time-stepping procedure is compatible
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Fig. 1. Schematic diagram of main time stepping procedure of ROMS hydaodgrkernel using Leap-Frog —
third-order Adams-Moulton (LF-AM3) predictor-corrector step for baoclinic (3D) mode with mode coupling
during the corrector stage. Thaecs (curved arrows) represent “steps., updates of either momenta or tracers
that involve computation of r.h.s. terms (shown as circles attached to the &tragyht arrows indicate exchange

of data between the modes. Each arrow originates at the time when thepooidasy variable becomes logically
available, regardless of its actual temporal placement. Arcs and arrevasawvn in the sequence that matches the
sequence of operations in the actual code: whenever arrows gviirgapperation occurring later corresponds to
the arc or arrow on top. Note that lab&gtage 1.. Stage 6correspond to the actual computational stages described
in Sec. 5 of Shchepetkin & McWilliams (2005). The four ascending arrdersote the vertically integrated r.h.s.
terms for 3D momentum equations; and the 2-way, vertically averaged dengitad p* which participate in
computation of pressure gradient terms for the barotropic mode (Secel@®)bThe two descending arrows of
smaller size on the left symbolize r.h.s. terms computed from barotropic varidfie asterisks*(*) where the

two pairs of ascending and descending arrows meet denote the computabarnoclinic-to-barotropic forcing
terms, two smaller arrows ascending diagonally to the right. The five largeeéisig arrows symbolize 2-way
fast-time-averaged barotropic variables (enclosediand ((.)), Sec. 3.1 below) for backward couplirfgyd.-bkw.

feed stands forforward-backward feedbacketween momentum and tracer equations — the update of tracers is
delayed until the new-time-step velocitiesv™ ! become available, so that they can participate in computation of
r.h.s. terms for tracersly/ is mode splitting ratio [number of barotropic time steps per one baroclinic. Note tha
barotropic time stepping goes slightly beyond £5% in the case above) the baroclinic step- 1]; v = 1/12 is
associated with of LF-AM3 algorithm (this is further explained in Fig. 17 in. 8gc



with both centered and upstream-biased advection, whichgsrtant for ROMS where we commonly
use a third-order, upstream-biased advection scheme ihdtieontal directions for both tracer and
momentum, but a centered scheme in the vertical to avoidamudiffusion due to "rectification” of
dissipative truncation terms.

e Temporal Stability LimitsThe time-stepping algorithms are specifically designedifar close to their
limiting Courant number for computational stability yetllsjuarantee a numerically accurate solu-
tion. The optimal algorithms are derived by an inverse $tglainalysis, by writing them with arbitrary
coefficients first, then deriving characteristic equatiand choosing coefficients that yield the desir-
able characteristic roots. This makes it possible to restile phase propagation for both internal and
external modes with an accuracy order higher than for eagatio taken individually.

e Updating: ROMS'’s time-stepping utilizes a form where all temporaknpblations are applied to the
primitive variables rather than their right-hand-sidh.g.) tendencies. This allows us to combine differ-
ent time-stepping algorithms for different physical ternsl reduces memory usage for a more efficient
code.

e Baroclinic PGF: This term is discretized with a high-order, density-Jaanolscheme based on mono-
tonized cubic polynomial fits for the vertical profiles @and geopotential height This scheme pre-
serves most of symmetries of the original Jacobian of Blugni8eMellor (1987) while dramatically
reducing errors in hydrostatic balance.

e Compressible Equation of State (EO®ecause of seawater’s compressibility most of the vertical
change oin situ p is due to pressure change. Monotonicityirokitu p does not guarantee the absence
of spurious oscillations in the interpolated stratificatrofile; this degrades the accuracy of the PGF
scheme and potentially leads to numerical instabilitytfi@nmore, the combination of the Boussinesq
approximation and the full EOS is a source of both inaccueay mode-splitting error. Therefore, the
EOS (Jackett & McDougall, 1995) is modified to cancel the mdknpressibilty inn situ p to achieve
a more consistent Boussinesq approximation (Dukowicz, P@6d reformulated in terms of adiabatic
p derivatives.

e Advection:ROMS commonly uses a third-order upstream-biased advettithe horizontal direction
for both tracer and momentum equations and fourth-ordeteceth advection in the vertical.

e Coriolis and Curvilinear Metric TermsThese are combined with advection of momentum and dis-
cretized using an energy-conserving scheme.

e Code ArchitectureThe code architecture is distinct from a modular desfn MOM). The architec-
tural design decisions involve optimization in multidins@mnal space for the model physics, numerical
algorithms, and computational performance. As a rule, thsilts in significantly larger functional
units in the code than in more traditional oceanic modeliragfice. This is typically beneficial for both
exploiting cache locality and minimizing the number of syranization events in a parallel code.

e Parallelization:ROMS is a parallel code which has both shared- (via Open Mé§ietributed-memory
(via MPI) capabilities, including a possibility of allongnmultiple threads within each MPI process.
Both Open MP and MPI options are implemented using two-dimo@as subdomain decomposition in
horizontal directions.

A detailed description of the components and algorithms@MS is outside the scope of this article.
Instead, we present a comprehensive overview of the kelgefitoms, focusing on algorithm interfer-
ences that require special effort to reconcile conflictdhsd inultiple desired properties can coexist at the



same time. Examples of such conflicts ajel{e barotropic-baroclinic time-splitting scheme (agdiesed

by a linear stability analysis) can interfere with finitehume mass conservation in slow mode, as well
as cause loss of the tracer constancy-preservation pyogieytlinear stability analysis favors Forward-
Backward time-stepping for momentum and tracers over pir@doorrector by the stabilitys. compu-
tational cost criterion for internal waves alone, but mastable advection algorithms are two-stage pro-
cedures that are more naturally incorporated into a predadrrector schemeiii() barotropic-baroclinic
mode-splitting makes it impossible to satisfy the finitdewoe continuity equation on slow baroclinic time
during a predictor sub-step, causing loss of the constaneservation property for tracersy) high-order
polynomial interpolation requires monotonicity congttaito prevent spurious oscillations if the interpo-
lated field is not smooth on the grid scale, andddiis leads to a monotonicity constraint for stratification
that further leads to a redesign of the EOS for seawater; gnalith modal time-splitting the barotropic
time step requires knowledge of bottom stress related tmimotelocity that is a sum of both types of
modes, yet it would be unphysical to remove more than thé todanentum within the bottom-most grid
box per baroclinic time step while the baroclinic velociyhield constant.

2 Time-Stepping: Accuracy and Linear Stability

Oceanic flows in a regime with high Reynolds number can uselbdlviewed from the perspective of
time-stepping algorithms as satisfying hyperbolic padiffierential equations. We consider two simple
hyperbolic test systems. One can be called an advectiortiequa

dq . 0q

and the other a wave system,

% _ Ou ou %

ot~ Cox ot~ Cor
Table 4 from Griffieset al. (2000) provides a comprehensive summary of time-steppgagithms used in
different oceanic models. These can be subdivided into tantlasses. The first class is synchronous
schemes where the r.h.s. tendencies for all prognostiahlas are computed at the same time and si-
multaneously used to advance the variables to the next tiepe examples are Leap-Frog (LF) with an
Asselin Filter to suppress temporal oscillations, secorter Runge-Kutta (RK2), predictor-corrector (LF
with a trapezoidal rule (LF-TR), LF with third-order Adamseiiton (LF-AM3), second-order Adams-
Bashforth with TR predictor-corrector (AB2-TR)), and thircder Adams-Bashforth (AB3) (Durran,
1991). The second class is Forward-Backward (FB) schemesgevame variable is advanced then im-
mediately used to advance the other(s),

(2.2)

a n a n+1
Y Ut =y — cAt - ¢

or’ or '
wheren is a time index. A FB scheme obviously is applicable only tdtruariate systems. Almost all
OGCMs currently use a synchronous method.

¢ = (" — cAt-

(2.3)

One can easily verify that synchronous time-stepping hastidal accuracy and stability limits for
the advection equation and wave system (Camtital, 1988; Shchepetkin & McWilliams, 2005). This
typically occurs fora,,,, < 0.8 (wherea = wAt is the Courant number and = ck is the frequency



for a solution component with wavenumber per r.h.s. computation for the most efficient algorithms
within this class. This is only half as efficient (as measurgdhe ratio of stability limit to the number

of r.h.s. computations) as a FB scheme with.,, = 2. Thus, the commonly used synchronous time-
stepping is less than optimal for oceanic modeling becaweséastest process, gravity waves, occur as an
interplay between momentum and mass as in the wave systesrefdhe, we define our primary design
goals asif to generalize the most-used synchronous algorithres RK2, LF-TR, LF-AM3, and AB3)

by introducing a FB-like feedback, anil)(to generalize FB to higher orders of accuracy. In both cases
the time-stepping algorithm must be accurate and robust iéused close to the limit for of numerical
stability.

The methodology employed here is a von Neumann linear gyadralysis (Durran, 1998) applied in
an “inverse” manner to design the algorithm rather than sessone chosenpriori. We insert adjustable
parameters into a time-stepping algorithm, then derivectieacteristic equation for the eigenvalues of
the step-multiplier matrix, and then solve it as an optimi@aproblem to find parameters that achieve
the desired properties. These properties include the afdaccuracy and related bandwidth of the re-
solved frequency spectrum that is accurately represetitednaximum stability limit; the nature of the
dominant truncation error ternm 0., dissipation of fastest, poorly resolved frequencies isgored over
dispersion); and sufficient damping for any computationatles. The method is applied to the spatial
Fourier transform of (2.3),

a¢ , ou _

> W = = iw - 2.4
ot — T g = G (2.4)
with w = ck. Although it is implicit here that the primitive system ismimear, the stability analysis is
linear. For example, consider the evolution of a small pb#tion to a nonlinear flow described by

oC oC ou ou ou oC

E%—V%:—ca—x, aJrVa—I:—c%, (2.5)
whereV is velocity of background flow. An instability of an algonthapplied to (2.5) would automatically
imply an instability of the fully nonlinear system using teme algorithm. Thus, a practical time-stepping
algorithm for (2.5) is always a combination of both a gerieeal FB step for terms involving thé-u
interplay, as well as a synchronous algorithm for other sewhere a FB step is either not applicable, or
impractical. Although less critical in its CFL limitatiorhé synchronous step must be at least conditionally
stable. A similar requirement comes from the need for stabktment of advection and Coriolis force,
and the latter is the more restrictive since robustly stabesipative, upstream-biased, advection schemes
can be used.

2.1 A Two-time-level Scheme: RK2 with FB Feedback

Consider a discrete time-stepping algorithm for (2.4) wifiredictor sub-step,

Cn+1,* — Cn — i u

(2.6)
u = — e B 4 (1= B)C

followed by a corrector sub-step,
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Setting5 = ¢ = 0 in the above reverts it to the standard RK2 time-stepping ihainstable for a
non-dissipative system (purely real-valueyl since the eigenvalue magnitude|ld = /1 +a*/4 =~
1+ a*/8 > 1, implying amplitude growth in time for any. But, because in the limit — 0 its growth
rate asymptotes to unity faster than- O (a?), it is sufficient to add hyperdiffusivity, rather than nor-
mal diffusvity, to stabilize a forward-in-time, centergdspace scheme. This behavior is caleglakor
asymptotianstability.

The presence of terms with ande brings FB feedback into the algorithm (2.6)-(2.7), and bibid
accuracy and stability can be improved by having them ptebsing the r.h.s. of the predictor equations,
we eliminate¢"*1* andu™*1* from the corrector and transform the algorithm into a sirség written in
matrix form as

n+1
N e
(“) i (W( —f)  1-g 4 )(u) | (2.8)

This yields the characteristic equation foi),

)\2—(2—a2+a1ﬁ6>)\+1+f(1—2ﬁ—e+ﬁe):0. (2.9)

Since the exact solution of (2.4) has= e*®, corresponding to right- and left-traveling waves in (2v23
substitute the desired solution into (2.9) and expand ifliaydor series for smalk, seeking to approximate
the ideal step multiplier as accurately as possible by fggmg mismatch terms with successive powers
of o

a4<;—§—i>j:m5<112—ﬁ4€>+(9<046):0. (2.10)

Choosinge = 4/3 — 23 eliminates the) (a*) term, reducing the above to

+iaS [316 + ; (6 - ;)Z] +0(a°) =0. (2.11)

No real-valued3 can eliminate th& («°) term, one can only minimize the residual by settihg- 1/3,
and, correspondingly,= 2/3. The position of characteristic roots relative to the uiitle (i.e.,the exact
solution) is shown in Fig. 2.

The stability range of this algorithm is limited by one of thdes leaving the unit circle through
A = —1. Substituting\ = —1 ande = 4/3 — 2 into (2.9) yields

4 —a? +[36 (5—)21064:0, (2.12)

which is to be solved forv = «(f3) with 3 playing the role of an independent parameter. A simple
analysis leads to the conclusion that= 1/3 yields the maximumx (= 2.14093), hence the largest



Fig. 2. Characteristic roots for the modified RK2
scheme (2.6),(2.7) witp = 1/3, ¢ = 2/3 relative to

the unit circle. Tickmarks on the outer side of the unit
circle point to the locations of “ideal” amplification
factorse™* for o € {—n/16, —7/8, —37/16...}.
Tickmarks on the inner side of bold solid curve indi-
cate the actual roots corresponding to these values of
The ideal and the actual root locations are connected by
a thin straight line whose length and orientation show
the magnitude and the nature (dispersive/dissipative)
of numerical error. This algorithm has a third-order ac-
curate step- multiplieh = A(«) and a stability limit

omax = 1/6 (3 — V/5) = 2.14093.

_ _ _ Fig. 4. Ruedaet al. (2007) algorithm with their
Fig. 3. Same as Fig. 2, but for= 1/2 ande = 1. This 0, = 1/6, 6, = 0 = 1/2. This is equivalent to our

setting is similar to Hallberg (1997). Egs. (2.6),(2.13) withy = 6 = 1/2, 3 = 1/6.

possible stability limit, and, as shown in (2.11) and thetrmmragraph, the samevalue corresponds to
the minimum possible truncation error among the whole suiifséird-order schemes.

Overall, this modified RK2 algorithm is in line with two-tinlevel schemes of Hallberg (1997); Hig-
don (2002), except that they do not contain any counterparthie free parameterin (2.7) by always
selectinge = 1 (hence their algorithms cannot be reverted back to cldsRi€d). Setting3 = 0,¢ = 1
in (2.6)-(2.7) yields a non-dissipative scheme that make®) (dentical to the characteristic equation for
classical FB. This leads to second-order accuracyand = 2. In the absence of Coriolis force, the
algorithm in Egs. (4)-(6) of Higdon (2002) has an identidau@cteristic equation, eigenvalues, accuracy,
and stability limit. Settings = 1/2, e = 1 yields another second-order algorithm which is similar tp E
(16) of Higdon (2002) ¢f., Egs. (3.9), (3.10), (3.13), and (3.14) of Hallberg (199Again the stability
limit is amax = 2, but the scheme is highly dissipative, Fig..3

Ruedaet al. (2007) considered a family of RK2-type algorithms for thedudinic mode of the TRIM

2 The algorithms of Higdon (2002) and Hallberg (1997) can be viewed asithextreme members of thfamily
of second-order schemes (2.6)-(2.7) with= 1 and3 € [0,1/2]. All of them have a stability limitvyax = 2
independently of7, and they differ only by the dissipation rate that increases With
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model . They combine the predictor step (2.6) with

Cn+1 — Cn — o - [,Yun+1,* + (1 — fy)un]
un+1 — u" — i [QCnJrl + (1 — H)Q‘n] 7

(2.13)

where again there is nemixing between predicted and correct¢dbut an extra degree of freedom
is introduced by allowingy and § deviate fromy = 6§ = 1/2. To be second-order accurate requires
v+ 6 = 1. Once this is satisfied, an additional constraiit,= 1/12, makes this algorithm third-order
accurate. Ruedat al. (2007) restricted their analysis to a set of discrete vai#is ¢ = 1/2 or 1 and

3, ~ are various permutations 6f 1/2, and1, all of which result in either second- or first-order accyrac
They also showed that the choiceof= 6 = 1/2, § = 1/6 results in a third-order accurate algorithm. By
making an analysis similar to (2.12), one can also show Higthoice yields the largest possible stability
limit, v = 2: @any deviation ofy, § from 1/2, while maintainingy + 6 = 1 and3y = 1/12 reduces
amax relative to this value. Overall, it is comparable, thouglgtgly more dissipative than, (2.6)—(2.7)
with 8 = 1/3, e = 2/3( Fig. 4).

Despite the fact that two-time-level algorithms for shatwater equations are perhaps the most
studied, (Hallberg, 1997; Higdon, 2002, 2005; ShchepegkiMcWilliams, 2005; Ruedeet al., 2007),
have an extensive history, none of the previous work hasyzex a scheme which is competitive with
the classical forward-backward step in terms of its stahilinit relative to computational costy,,., = 2
with the r.h.s. computed only once per time step for eachteap)a An examination the characteristic
equations resulting from the two versions of a predictorrazzior algorithm — (2.6) in combination with
either (2.7) or (2.13) — reveals that neither has sufficiegrdes of freedom, despite the presence of three
free coefficients in each. This can be remedied by combisimagdd-weightings for the corrector step so
it becomes

Cn+1 _ Cn [(1 ) n+1,%* +9un]
wt =y — o [0 (¢ + (1 — €)¢"T) + (1 — 6)¢]

(2.14)

where we already replacedby 1 — 6 in (2.13) to make it second-order accurate. As expected;itamac-
teristic equation for (2.6), (2.14) is

A= (ef(1 -0
AQ—A[2—a2+a4A} +1—-a*B=0  where feb ) . (2.15)
B=(1-0)(8— peb + €0 —0)

and it reverts back to (2.9) #f = 1/26. Substitution of\ = ¢**> and Taylor-series expansion leads to

3 TRIM (tidal, residual, inter-tidal, mudflat) is an ocean model, whose emphasisfige-scale coastal dynamics
and coastal engineering (Casulli & Cheng, 1992).

4 Egs. (2.6)—(2.13) can be remapped onto Rueda’s Egs. (50), 8)).and (25) using the followingur — their
substitute of variables; — u; v — p,p; 8 — 0, v — Oy, 0 — 0.

5 Inits classical sense the teshallow-water equationsefers to a single-layer of shallow, hydrostatically balanced
homogeneous fluid. After Casulli & Cheng (1992) and Casulli & Catta®@4), it is frequently applied to hydrostat-
ically balanced, stratified fluids, including ones admitting internal wavessélgpit is also applicable to governing
equations for stratified, multilayer modeling in isopycnic coordinates.

6 After settinge = 1 in (2.15), this also coincides with Eq. (53) from Ruedal. (2007) if 6y, is replaced with —
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1 B 1
4_A_B)i’5B 6(_> N — 2.1
a<12 10’B 4+ « 5~ 360 +(’)(a) 0, (2.16)
where the absence of@-term guarantees second-order accuracy for any combmafig, #, ande.
Obviously, one cannot eliminate both («®) and O (af) terms simultaneously. To achieve third-order
accuracy one needs to satisfy+ B = 1/12, which leads to the condition

_ 1 __5
6_1+129(1—9) 0 (2.17)
and turnsA and B in (2.15) into
A=(1-0)(C?=(B-0C))
(2.18)

1 ) where O:€+

B:(1—9)<(ﬁ—0)2—02+12(1_9) 2 24(1-0)°

The expression foB can be made equal to zero to eliminét¢a’) term in 2.16) only wheid > 0.9457,
resulting in a non-dissipative fourth-order algorithmwewer, it has unattractive properties: a significant
portion of thea-range within the limit of stability yields a wrong phase

speed without providing any damping at all, and the coefiitsién (2.14) are no longer non-negative
because values @b, 5) which makeB = 0 also result inre > 1 as follows from (2.17)e.g.,0 > 0.945
yields (3 = 1.230, e = 1.302). For0 < e < 1, itis only possible to minimize the dissipation by selegtin

0 1
f=5+

2 24(1-0) (2.19)

for any#, which is still treated as a free parameter.

Algorithms of this kind become unstable when the two modestraesome point on the real axis, after
which one of them leaves the unit circle through eithet —1 or A = +1, whichever occurs earlier .
Substituting\ = +1 into (2.15) yields

A=—1: 4—a’+a*(A-B)=0
A=+1: @?[1—a*(A+B)]=0.

(2.20)

to be the same as the sign (of — B). The solution exists only id — B < 1/16. AsA — B — 1/16,
thenam.x — /8, which is the largest stability limit when this limitatiopplies. (Note thaty,,,, = 2 in
the case oA — B = 0, and changes continuously whén— B changes sign.) The second line in (2.20)
yieldsa?, = 1/(A+ B), which with (2.17) leads to a less restrictiug,., = V/12 for the entire subset

max

of third-order algorithms. Fig. 5 summarizes this for thaof parameter (3, ¢ within the domain to

The first line results im? = (1 + \/1 + 16(A — B)) /[2(A — B)] where the signt must be chosen

there.

7 The minimum possible value éfwhich makesB = 0 in (2.18) occurs whep = C (hence eliminating the first
quadratic term in the expression fB) andC? = 1/[24(1 — 6)], which, after substitution of the expression for
yields a quaric equation fdralone. Its only solution within the range of interest: 6 < 1, is6 = 0.9452697779.
Any change in3 relative tog = C results in a larger value &£
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1.0 -
! Fig. 5. Stability map for the two-parameter

(6,0)-family  of third-order RK2 algorithms
(2.6),(2.14) withe set to satisfy (2.17). Thin contours
show the difference ot — B from (2.18) as a function
of (3,0), which controls the stability limit due to
one of the modes leaving the unit circle at= —1.
The shaded area corresponds 40— B > 1/16,
where this no longer happens; hence the stability
range is limited only by the mode leaving through
A = +1 resulting iNna., = V12 ~ 3.4641 for all
settings within the shaded area. Superimposed bold
solid curves corresponds to= 0 (lower) ande = 1
(upper): the values off3, ) must be chosen between
these two curves in order for the algorithm to have all
a ‘ non-negative coefficients in (2.17). The bold dashed
Y 0.25 0.5 0.75 1 B curve corresponds to a minimal dissipation subset with
B = p(0) from (2.19). Specific settings shown on this map BréRuedaet al, 2007) and« (Shchepetkin &
McWilliams (2005), also Fig. 2). The points X, ando refer to Fig. 6.

0.75-!

051!

0.254 | \

avoid negative coefficients in (2.14),< 6,¢ < 1. In contrast,5 > 0 can, in principle, exceed 1 because
no coefficient likel — 3 is presentin (2.6). This figure reveals the existence of @aahere the stability is
limited only by the lower line in (2.20};e.,none of the modes ever leaves the unit circle through—1.
We are therefore interested {i¥, 0)-pairs from the portion of the shaded area in Fig. 5 just befosv
upper solid bold line that correspondsete- 1. Furthermore, to minimize th@ («°) truncation term, we
are interested in algorithms withandé related by (2.19), as represented by the bold dashed lingégon F
5. Remarkably, this line follows the maximum af— B for any givend, so that settings which minimize
the truncation error are also optimal for stability.

Characteristic roots for three algorithms from the shaded are shown in Fig. 6. The one with=
0.734 corresponds to just after entrance into the shaded areg #ierdashed ling (denoted as "+” on
Fig. 5). The overall behavior of the algorithm is similar kat on Fig. 2 except that it has slightly lower
dissipation. More importantly, after the two arms meet eaitter at\ ~ —0.7, one of them continues
toward the negative real axis, but instead of exiting\at —1, it stops there, reverses direction, and
continues toward the center. Note the existence of the atagnpoint discussed in the caption. Settéhg
slightly smaller thab.734 causes this mode to exit at= —1.

Increasing beyond0.734 while following the the dashed line on Fig. 5 moves the stégngpoint
toward the center of the unit circle, and subsequently inglea the behavior of the algorithm in the
vicinity of the point where the two arms meet each other.4er 5/6 (denoted ax on Fig. 5), they no
longer approach the real axis at a 90-degree angle, but ththebend inward and touch the real axis. The
portion of thea-spectrum for which the roots are located on the real axis to the left of the merging point
disappears whet increases beyong/6. This is beneficial for the algorithm because phase incrésnen
of a beyondr are within the aliasing range: wavenumber components gporaling to them cannot be
propagated along the grid, so if the algorithm is used inréggme, these signals must be damped. Further
increase of changes this behavior again. Instead of approaching theaxéa the arms bend inward,

8 The exact value ofg for the point of entry into the shaded area on Fig. 5 comes from the equation
1 1-6 1 . I . .

<92 — 6) (1—6)*— 5 + = 0, derived by substituting expressions far B, C' from (2.18) along with

the condition3 = C from (2.19) intoA — B = 1/16. This yieldsf = 0.7332939955221.
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0 =0.734, f = 0.523641604, e = 0.71340818 0=5/6,0=2/3,e=4/5

Fig. 6. Characteristic roots for the RK2 algo-
rithm (2.6),(2.14) with coefficients chosen to yield
third-order accuracy and minimal dissipatide ( both
conditions (2.17) and (2.19) are met) for three different
values off. In the case of = 0.734 the two arms meet
each other ah =~ —0.7, after which one of them pro-
ceeds along the real axis towakd= —1, but stops
when nearly reaching this point and reverses direction,
continuing toward the center. (Note that roots corre-
sponding toa = 77n/8 anda = 157 /16 are very
close to each other, which indicates the existence of a
stagnation point fol = A(«) in the vicinity (smaller
values off result in one of the arms exiting the cir-

cle atA = —1, as it occurs in Fig. 2, while largeis

move the reversal point closer to the center). Stabil-
o, 1 1 B ity is limited by the other arm reachingy = +1 at
0=06= 92 T \/7 ~ 09082482, e=1 a = amax = V12, which is also the stability limit for

the other two panels in this figure.

resulting in a highly dissipative algorithm for the uppertm of the spectrumi3z /16 < o < v/12. Fig.

6, lower left, shows the characteristic roots for an aldgponitvith maximum possiblg, 6 along the minimal
dissipation curve with all-non-negative coefficients irt6j2.14) (this is the poir on Fig. 5, located at
intersection of the bold dashed and selig 1 lines)? . Variation ofd within the range).734 < 0 < 0.91
causes only minor effects on the behavior of this algorithithiw the lower, physically accurate, portion
of its spectrum|a| < 7/2. All three examples on Fig. 6 demonstrate very small nuraédispersion and
a dissipation-dominant truncation error outside this eang

This class of time-stepping algorithms is an attractivei@héor isopycnic and high-resolution coastal
engineering models because it is a two-time-level schemtectimbines nicely with positive-definite ad-
vection algorithms as well as with wetting-and-drying soles that also require the use of limiters. Having
all non-negative coefficients in front of the r.h.s. termsitime-stepping scheme is crucial (Stelling &

9 Since this choice belongs to= 1 — family, it can be used without modification in the TRIM code (Ruetlal,,
2007), except for setting coefficiertsd, = 1/2 + /1/6 andf, = 1/2 — /1/6 in their Egs. (51), (52), and (25).
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Duinmeijer, 2003). Its accuracy, stability, and efficierarg superior to most of the known algorithms. It
Is somewhat less attractive for or o-coordinate models in the context of long-term, large-ssaiula-
tion because it is incompatible with centered vertical atie@ needed to avoid long-term drift: although
this requirement is mitigated relative to forward-in-tistepping, some degree of upstream-biasing of ad-
vection schemes is required for stability if RK2-type timepping is used’ . The existence of two-time
level, predictor-corrector algorithms with a stabilitynit «,,,.,. beyond3 has been long overlooked, and,
in fact, this makes it competitive with the FB-type algorithsonsidered later in this section in terms of
computational efficiencyi.g., the ratio of the stability limit to the number of r.h.s. congtions for each
equation).

2.2 LF-TR or LF-AM3 with FB Feedback

Another possibility is an algorithm comprised of a LF preédicsub-step followed by either a two-time
TR or a three-time AM3 corrector:

Cn+1,* — Cn—l — i - u"

urth = 0t = 2iac- (1 26) ¢ 4 B(CME (Y] (2.21)
and

(Mt =" —dac {(1 - 7) w4 (1 + 27) u” — vu”_l}

o) et sa-aen e (emje ey, O

where the parameters and ¢ introduce FB-feedback during both stages, whileontrols the type of
corrector scheme. Without FB-feedback the standard akgorii

7=0 = LF-TR Omax = V2
f=e=0 =1{y=1/12 = LF-AM3 Omax = 1.5874
~v = 0.0804 = max stability ay,.. = 1.5876,

which is one of the most efficient and attractive synchroralgsrithms ¢€f., Fig. 20 in Shchepetkin &
McWilliams (2005)).

Following exactly the same path as for RK2 above, we derive afsmnstraints for coefficients, ~,
ande to achieve the specified orders of accuracy (Shchepetkin &/Mems, 2005):

10 For example, QUICK advection is asymptotically unstable in combination with fakivatime stepping. (In
contrast, QUICKEST, which explicitly contains the second-order, timedéent terms is stable.) However, as dis-
cussed in Ruedet al. (2007), QUICK is stable in combination with RK2, while centered scheme gregstically
unstable).
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0.151

0.1+

0.05+

3=0.126,e=0.83: maximum
possible stability rangex,.,=1.958537).

8 = 17/120, e = 11/20: fourth-order accuracy 6_=_0.044,e_:0.39:
with minimum possible truncation error secondary stability maximuna(,,,=1.908525).

(max=1.851640).

Fig. 7. Upper left stability limit a.,ax @s a function ok, g with v+ = 1/12 (i.e., among all third-order accurate
schemes within the generalized LF-AM3 family). The empty area in the ujigreorner corresponds to schemes
with an asymptotic instability for the physical modes. The straight dashed kn& /30—¢/6 approximately parallel

to the edge corresponds to ze(ﬂ)(a5) truncation termi(e., a fourth-order accurate subset). The asterisk (*) and
cross (+) on this line denote locations of the minimal possible truncation exdomaximum stability limit among
the fourth-order algorithms, which are not far away from each othete Me stability maxima dt, 5)=(0.83,0.126),
just on the edge of asymptotic instability and (0.39,0.044). The three remaiainmadgshow the characteristic roots
for the 3, e choices yielding the indicated specific properties.
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0.15q

0.1+

0.05

v =0,8=0.166, € = 0.84: ax=2.4114. v = —0.05, 8 = 0.105, € = 0.84: ayax = 2.8010.

Fig. 8.Upper left Map of amax = amax (€, 3) for v=0. Upper right am.x and the corresponding 3 as functions
of v. Lower panelshow examples aof, ¢ choices that give the maximum stability range for a given

: 1
third-order: T=1 VG, e (2.23)
fourth-order: above angf = 370 — % Ve (2.24)
, ) 11\? 1603
fifth- : h -le—=—=] —=—=0. 2.2
ifth-order both above and- 5 (e 20> 5400 0 (2.25)

No set of coefficients can satisfy the condition for fifth-erdaccuracy, so we can only minimize the
leading-order truncation term by choosiag= 11/20, henceg = 17/120 and~y = 1/12. This yields a
fourth-order scheme with extremely small numerical disfwer and dissipation within the whole range of
its numerical stabilityq,,,,x = 1.851640 (Fig. 7 lower-left panel).

Since a primary goal is to extend the stability range, we @egjvely give up one order of accuracy at
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a time, which frees one or two parameteryr (¢, 5) be available for tuning. Fig. 7 (upper-left) shows a
map of the stability range.,..x in ane, 5-plane, for all third-order accurate schemes (henpee 1/12 is
always respected). The subset of fourth-order schemegrissented by the diagonal liné= 7/30—¢/6,
that is nearly parallel to the edge of stability. Overaler#nare two stability maxima in the 3-plane, and
remarkably, the choices corresponding to maximum stglaitié not far away from the minimal truncation
error within the fourth-order subset. As a result 0.83, 5 = 0.126, corresponds to the largest possible
amax = 1.958537, and it is also very accurate within the whole stability raifgig. 7, upper-right). It has a
25% larger stability limit than the 1.5874 of the original+AM3 scheme with? = ¢ = 0. The secondary
maximum (lower-left) is less attractive and in fact, proesisimilar leading-order numerical dissipation
and dispersion errors as does- ¢ = 0 LF-AM3, albeit with a wider stability range.

Searching for the maximum stability range+ns, e-space while maintaining second-order accuracy
(hencey # 1/12 but is otherwise an adjustable parameter) requires ealigritie same kind of analysis
as in Fig. 7 (upper-left) but repeated for different valués.oThis is summarized in Fig. 8 (upper-right),
with the upper-left panel showing a particular examplen@f, = amax(€, 5) for v = 0. It turns out
that the stability range can be expanded significantly witteerease ofy, however, at the expense of
accuracy degradation. Given that these schemes are digsjphis is acceptable, and in fact desirable for
the barotropic mode (since fast motions are fast-timesagest anyway) and for applications where the
wave propagation is not of primary interest. Thus, the ohiiction of FB-feedback into a LF-TR/ (= 0)
scheme can achieve up to 70% gain in stability range relédive = ¢ = 0 (Fig. 8, lower-left). Going
beyondy < 0is not desirable due to loss of accuracy. Still, none of tliekemes can achieve an efficiency
comparable to the classical FB scheme in terms of the ratig,Qf and the number of r.h.s. computations.

2.3 Generalized FB with AB2-AM3

To approach the problem from the opposite direction — stgrwith a Forward-Backward scheme
and attempting to construct an algorithm compatible witthledvection and wave propagation — we
consider an explicit algorithm comprised of an AB2-like step( followed by an AM3-like step fou:

¢t =t —da[(1 4 B)ut — Bun]

(2.26)
un-i—l = u" —ia [(1 -y — E)Cn-i-l + ,ycn + Egn—l] .
Obviously it reverts to the classical FB schemg &= v = ¢ = 0. Its characteristic equation is
MN-o2-a?(1-—v—e1+A+1—-a?(B—7—28y—
2-a?(1—v—¢€(1+P)] a® (8 — v — 2By — Pe) (2.27)

+a?(e+ Be—By) A —a?BeAd2=0.

After substitution of\ = e*® and Taylor-series expansion in a set of constraints arise for achieving
progressive orders of accuracy,

second-order: vy=p0—2¢ V(,e (2.28)
. 1 1
third-order: v =p3—23% — 5 and e=p3*+ o V3 (2.29)
1 .
fourth-order: ~,€ as above and 5 1’; -3=0 = (=0.3737076. (2.30)
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=0,y = —1/6,e =1/12  nax = V3 B = 0.3737076 (fourth-order) am.. = V2

Fig. 9. Characteristic roots for the AB2-AM3 algo-
rithm (2.26) with three different choices fgs. In

all three cases the remaining paramete@nd e sat-
isfy the third-order accuracy condition. The leading
third-order, dissipative truncation term changes sign at
8 = 0.3737076, resulting in fourth-order accuracy.
The scheme becomes weakly unstable beyond this
point (note that physical modes on the left-lower panel
are slightly outside the unit circle, reachipg ~ 1.01

for « ~ 7/3). The stability range decreases with in-
creasing3, and forg =< 1/2 the AB2-type time step

is unconditionally unstable for an advection equation
with centered spatial discretization.

B=1/2,v=-1/6,e=1/3 o, =1/3/2
The second-order accuracy condition can be interpretetim&acentering balance rule: once the r.h.s. for
¢ is placed at,, + (1/2 — ¢§) At, the r.h.s. for is centered at,, + (1/2 + 0) At with the same offsef =
1/2 — ¢ from the midway time,, + At /2. The classical FB scheme obeys this rule, and it is also céspe
by the third- and fourth-order constraints. The third-erdendition introduces a single-parameter family
of schemes with a useful range®k 5 < 1/2 (Fig. 9).

The leading-order truncation term has a dissipative cl@raand it decreases with increasifglt
vanishes ap = 0.3737076 when the scheme becomes fourth-order, and it changes sgeafter; this
means that the physical modes become asymptotically uadtalpond thisG value. Leaving the weak
asymptotic instability aside, the overall stability rangdimited by one of the computational modes that
leaves the unit circle at = —1, hence

Qmax = \/§/V1+§+6ﬁ37 (231)

which decreases with. Although potentially attractive and simple, this algbnit does not combine nat-
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urally with the other hyperbolic terms (advection, Coripl®cause there is no overlap in jisrange:
the AB2-like time step is asymptotically unstable for the extion equation whepy < 1/2, while the
algorithm (2.26) for the wave system neetls< 0.3737076, and in fact3 = 0 is desirable to achieve the
widest possible stability range.

2.4 Generalized FB with an AB3—AM4 Step

To overcome the limitation of (2.26), we explore the possibof using a three-time, AB3-like step
for ¢-equation followed by a four-time AM4-like step far

(o = a3+ ) (3 20) et ]

(2.32)
"t = u" — i K% + v+ 26) ¢t 4 (% — 27— 36) ¢4 e("*ﬂ ,

where the r.h.s. for both equations are already time-cedtatt,, + At/2 regardless of the values for,

v, ande, (i.e.,the r.h.s. time-centering rule (2.28) for the AB2-AM3 schemalready respected). As a

result, second-order accuracy is always guaranteed. (Db AB3-type (3-family) time step for the

advection equation is stable as long@as- 1/6 (otherwise it is subject to an asymptotic instability of

an AB2-type), and it is third-order accuratedf= 5/12, while a smaller value off = 0.281105 yields

the largest stability range. This time step naturally carebiwith the Coriolis and advection terms (both

centered and upstream-biased).

A viable choice would be a straightforward combination afdforder accurate AB3 (hence =
5/12) with either a TR or a third-order accurate Adams-Moultohesoe ¢ = —1/12, ¢ = 0), resulting
respectively in second- and third-order accuracy with bitarangea.,... slightly exceeding unity (Fig.
10). This about 50% more efficient than a synchronous thid&oAB3 scheme for both equations,(,, =
0.71), but has only half the efficiency of the classical FB schelndghe remaining part of this section
we will show that the stability range of algorithm (2.32) da@ significantly expanded by relaxing the
conditions = 5/12, which is in fact the key to utilizing its full potential.

The analysis of the algorithm (2.32) follows the same pattoadB2—AM3 above. It again leads to a
collection of conditions to achieve progressive orderscoliaacy,

. 1
third-order: ~ = 3 G — 3¢ VG, e (2.33)
1 1
fourth-order: 3 = 3¢ and v = 1 2¢ Ve (2.34)
. 7 2 1 190
fifth- Do+ 2 = =+ —; f 2.
ifth-order 120 + 3¢ +e =0 = € 3 50 B,~v from above (2.35)

The fifth-order algorithm is asymptotically unstable and big., = 1.0145 limited by one of the compu-
tational modes leaving the unit circle at= —1 (Fig. 11, left). Overall this is not an attractive choiceedu
to both its modest stability range and the asymptoticakyahility of its physical modes.

Giving up one order of accuracy allows us to treats an adjustable parameter that can be tuned to
achieve the maximum stability range. This search yields 1/12 and a stability limit ofay,.. = V3
(Fig.11, right). (Here one can substitute= 0, ¥ = ¢ = 1/12 into the characteristic equation for (2.32)
and verify that\ = —1 is a double root itx? = 3.) An obvious drawback for this algorithm is that= 0
means the time-stepping for tijeequation is only AB2, which is asymptotically unstable fdwvaction
and Coriolis force.
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AB3-TR: 3=5/12,v=¢=0 AB3-AM3: 3=5/12, v = —1/12, =0
Omax=1.1441551 max=1.003859
Fig. 10. The algorithm (2.32) with a third-order accurate AB3 (hefice 5/12) first step. These “naive” settings

result in a stability limit of order of unity. The algorithm on the left was the origugasion for the main time step
in the ROMS family of codes, and it is still widely used.

fifth-order accuracy witla,,,,,=1.0145. B=0 v=¢€=1/12: amax = V3.

Fig. 11. Characteristic roots for the AB3—AM4 algorithm (2.32) withy, ¢ set to achieve either fifth-order accuracy
(left pane) or the maximum possible stability limit while maintaining fourth-order accuragy{ pane). Note that

at the optimun, two computational modes meetlat= —1, after which one of them continues out of the unit circle
along the negative real axis.df> 1/12 the meeting occurs outside the circiee(, the computational modes leave
the circle before they meet), while a smalktemoves the meeting point inside, resulting in an earlier escape of one
of the modes along the negative imaginary axis. Either way, ends up being smaller than3 if € # 1/12.

The third-order, 2-parametes ) family can reach up te,., = 1.939 (Fig. 12, upper-left) that is now
very close to that of the classical FB schemefitalue lies within the desirable rangelof6 < 5 < 5/12
(i.e.,the range of stable choices for the advection equation #itialy centered schemes, as well as for
Coriolis force). The only undesirable property of this alon is its nearly purely dispersive truncation
error, resulting in weak damping of frequency componerds dine not accurately represented. This issue
can be addressed by a slight biagiagiway from the maximum stability (Fig. 12, upper-right), ainieads
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(5=0.232, ¢=0.00525: maximum possible (=0.21, ¢=0.0115: monotonic
Omax V3, € (nax=1.939). dissipation ., = 1.874).

Fig. 12.Upper left AB3—-AM4 scheme (2.32) with the
maximum possible stability range and third-order ac-
curacy forA\ = A(«). The physical modes touch the
unit circle ata ~ +27/3. Larger values of3 result

in the physical modes going outside the circle near
thesea values (as in Fig. 10). Small¢t values cause
an earlier escape of one of the computational modes
along the negative real axigpper right a third-order
schene with parameters slightly deviating from opti-
mum stability to ensure that numerical dissipation in-
creases monotonically with. Lower left a multi-pur-
pose compromise witl# set to maximize the stabil-
ity range for the advection equation, whid@nd~ are

set to yield a good stability range for the wave sys-
3=0.281105, ¢=0.013, ~=0.0880: tem while maintaining monotonically increasing dissi-

max=1.7802. pation.

to an insignificant decreasedn, ... Since this is achieved with a smaller valueipthe stability range for
advection and Coriolis force is also decreased.

From a practical point of view, it is attractive to choSe= 0.281105, corresponding to the largest
possible stability range for advection and Coriolis forcéhwm the 5-family for AB3-like schemes, ac-
companied byy = 0.088 ande = 0.013 that yield a sufficiently large stability range for wavesgF12,
lower-left) and a dissipation-dominant truncation erfidris compromise gives second-order accuracy, and
our experience is that it is robust even applied to the futilimear system (Sec. 4). Thus, it is the method
of choice for the barotropic mode.

To summarize for (2.32), we note that the crucial step toinkaa algorithm with a stability limit
comparable to that of FB(,., = 2) is to reduce the curvature parameter of the AB3-like stey foy
settings < 5/12. This brings a tension between the need to keéeplatively large to avoid an asymptotic
instability for centered advection and Coriolis force, dmeldesire to expand the maximum stability range
for the wave system that favors bringipigcloser to zero. A simultaneous optimization of both stéapili
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ranges yields a useful range®21 < 3 < 0.281105. Remarkably, in this range the AM4-like coefficients
in the second equation in (2.32) end up quite different frbat in the classical AM4 weights, and one can
verify that terms with(”*1, ¢*, ("=, and¢™~2 in the r.h.s. all have positive coefficients for all of theess
shown in Fig. 12.

2.5 Summary for Time-stepping Algorithms

We have analyzed four different classes of algorithms foaaensystem that use a degree of forward-
backward feedback to achieve better accuracy for modeliegohase speed for wave motions and/or
extend the stability limity,,., over their previously known prototypes. Although in mostaic applica-
tions external and internal waves are not the major intgtt@sivave properties of the discretized system is
always a primary concern from a numerical viewpoint becalieg are likely to impose the most restric-
tive limit on the time-step size in flows with small Froude rhen Unlike for a simple advection equation,
where one can construct a stable algorithm using a simpleafok-in-time stepping and upstream-biased,
semi-Lagrangian discretization in space, the stabilitg @fave system cannot rely entirely on a specially
designed spatial operatdr. Thus, stability of an algorithm with respect to wave mosiamalways in con-
sideration, even thought the final selection of the tim@stey scheme among the ones described above
depends on the choice of algorithms for spatial discretimdhat, in turn, depends on the physical applica-
tion. The algorithms in Sec. 2.2 are fully compatible witimsred advection for the tracer and momentum
equations, and they naturally incorporate the treatme@arfolis force using a synchronous LF—AM3
predictor-corrector step. The same remark applies to therithms in Sec. 2.4; however, compatibility
with centered advection imposes some restriction on thécehaf coefficients (formallys > 1/6 in
(2.32, but in practice we use a greater valugpfwhich lead to a compromise in the stability linaif,..,
for wave motions. In contrast, algorithms in Sec. 2.3 ar@nmgatible with centered advection because
of weak instability of second-order Adams-Bashforth stape(needs at least small viscosity to mitigate
this, or introduce “a forward bias” into AB2 extrapolationefficients, Campiret al. (2004), which is in
essense setting > 1/2 in (2.26) in it would be a single advection equation). Simylathe RK2-type
algorithms in Sec. 2.1 always require some degree of upstheas in the advection scheme for stability
because RK2 is asymptotically unstable in combination wettered advection. Monotonicity-preserving
advection schemes typically require two-level time-steg@and have built-in compatibility with forward-
in-time stepping but are incompatible with algorithms thate negative coefficients in their temporal
interpolation. This makes RK2 preferable, if monotonicydesired €.9.,in modeling estuaries char-
acterized by sharp fronts in temperature and salinity). fline-stepping algorithms described here are
just linearizations of more general algorithms for the fudhlinear system (Sec. 4) which involve other
considerations in their desige.@.,conservation properties), resulting in additional seébectriteria.

3 Vertical Mode-Splitting

Although vertical mode-splitting has been used in ocearodeting since the very beginning (Bryan
& Cox, 1969; Berntseret al, 1981; Blumberg & Mellor, 1987; Bleck & Smith, 1990; Killwortét al.,

n principle, one can separate signals propagating in different dirscéind construct an approximate Riemann
solver (Roe, 1981), which essentially relies on upstream-biased algofithstability. However, this is not a viable
option for oceanic modeling because of complexity (due to implied normal madergmsition in vertical direction

in the case of 3D mode (Shulmat al, 1999)), computational cost, large numerical dissipation, and the implied
directional splitting that is not desirable.
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1991), a mature theoretical understanding of its stakalitgl accuracy is relatively recent (Skamarock &
Klemp, 1992; Higdon & Bennett, 1996; Higdon & de Szoeke, 1993liberg, 1997; Nadigat al., 1997,
Higdon, 1999, 2002; Shchepetkin & McWilliams, 2005). Thgon#ssues to be resolved in this approach
are () an inaccurate separation of fast- and slow-time ,(barotropic and baroclinic) components in the
PGF that may cause “leakage” of fast-time signals into tber glvolution and numerical instability even
for linearized systems (Higdon & Bennett, 1996i)) the time delay in calculating the vertically integrated
r.h.s. terms of the slow component can, in effect, be a faivuatime treatment of the barotropic mode,
with associated loss of accuracy and numerical instabfliiyy an aliasing of fast barotropic signals due
to sub-sampling in the baroclinic time-stepping) (@ loss of conservation and constancy preservation
properties for tracers in both split-explicit (Griffiesal., 2001) and implicit free-surface models (Adcroft
& Cadmin, 2004); ¥) the compressibility effect in EOS complicates the defimitof the barotropic PGF
with the Boussinesq approximation; andl) the bottom stress must be known before the barotropic mode
starts at every baroclinic time step.

3.1 Tracer Conservation and Constancy-Preservation

In an incompressible fluid the equation for material tragezan be written in two forms, respectively
emphasizing the Lagrangian-parcel and volume-integmnagevation properties:

. _ dq
advection form: a5t + (u V)q =0 (3.2)
conservation form: (c?)t +V-(ug) =0. (3.2)

The continuity (nondivergence) equati®- u = 0 plays the role of a compatibility condition making
these two forms equivalent. ifis initially uniform in space, parcel conservation implibst it remains
so: the property of constancy-preservation.

Oceanic models always use the conservation form as thetypettor discrete equations,

1 ntl a q, q,
A%Z_Z zn;_k A/yjk%]k At qi“l‘%ij"l‘ .k qz—*JkU—*aJ}k_Fqivj"' kvj+ ok

(3.3)
-1, ki g%k + q”k+ Wi,j,k—i—% - q@',j,k—%Wi,j,k—%} ’
where discrete concentration valugs, are understood as averages over the local control-volul#gs;;
1 . _ . .
T / q(z,y,z) d*7. The tilde operatof, 1 ; . denotes an appropriate translation al-
.7, kA7/
i,7,k

gorithm from grid-box averages to interface values, eitsen simple spatial interpolation or as one in-
volving both space and time in a semi-Lagrangian apprd@gh gk Vit Wijepy are volume fluxes
across grid-box interfaces. The discretized continuityadign,

i.e., qijk =

AYIl = AN = At Uy = U,

(3 2

~ljk T V]+ & Vi ng;+f Wz‘,j,k—%} ) (3.4)

wk ij—L .k

is formally consistent with (3.3) fog; ;, = 1; therefore, that as long as (3.4) holds, this time-stepping
scheme has both conservation and constancy-preservation.

The control volumesAY; ;. = H, ;Ao ; in (3.3) and (3.4) are time-dependent because grid-box
heightsH, ; . depend org(z, y, t),
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(0)
Zi gkt d

(0) ) _I__ Czj 1 +

Zi g ki z
Hijk = 251 — %1 Where S ks hi (3.5)
0 _
ZZ(7J)7]€+% :Z(O) <£i,j777i,j78k+%) s k:O,l, ..N.
The z(© comprise a set of unperturbeide(, corresponding t@ = 0) isosurfaces of a terrain-following
vertical coordinatesk% € [—1,0]. The lowest surface;ij% = ,Z((;)l = —h,, follows the bottom to-
2y 1, 5]

pography. Sincezzz.(g)]\[+l = 0, the highest surfaceijmé = (;; follows the oceanic top. Otherwise
I 2 W

the vertical coordinate transformation is a general ond318) the grid-box heights are proportionally

stretched relative to their unperturbed valugs, Sk 1464,

Hz‘,j,k’ - Hz(])k: (1 + }CL > (36)
i,J

The loss of constancy-preservation in (3.3) can occ 'A,jj;l does not come from (3.4), but rather is

computed with a barotropic mode that uses a different timye ahd time-stepping algorithm and, further-
M+
more, is averaged in fast-time, replacigg- (¢)"** = Z a,,¢™, to prevent aliasing of the barotropic

m=1
frequencies unresolved by the baroclinic time-steppingeical summation of (3.4) yields

N
CZJJ'A - Z { Uit T Vijiin— ‘/i,jfé,k} : (3.7)

This is not necessarily consistent with the fast-time-aged free surface computed by the barotropic
mode, implying that

()" # (O = At - div(U), (3.8)

where indices: andn + 1 correspond to the slow (baroclinic) time step, and the aveilbU means a
vertically integrated volume flux.

Conversely, (3.4) is used for the computation of verticabesy: start WithVVm-é = 0 at the bottom
and recursively proceed with

2,
Wi,j,k—i—% - Z At

k {A‘//’}fk} VAVALY
k'=1
for all k=1,2,...,N.

+ U+ gk T Ui—%,j,k‘/ + Vj+ K ‘/;7]‘_;’]@/} (39)

This essentially defined’; ; kil @S the finite-volume, finite-time-interval volume flux acsdBe moving

interface between vertically adjacent grid box&¥; , . and A7 ; ,.11. This procedure does not automati-
cally guarantee that the surface kinematic boundary cimmglit

7,

is satisfied ifA”I/Z.Zf,j comes from the barotropic mode with a different time-stegpi
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a. =2, g=4 AT T . . . :
m P 1 1 () Fig. 13. Relationship between the primary,

r=0.28462 {a,n}, and secondary,{b,,}, fast-time-averaging
M
weights. By definition,(()"*! = Y a,,¢(™ and

m=1

<<U>>"+2 = Z b, U". In order to satisfy normal-

JJJJJJMLLLLL“ ization and centr0|d conditions (3.16), the integration
of the barotropic mode must go beyond thet+ 1th
(.- baroclinic step, hencé/* > M. In this example the
am, are negative at the beginning of their sequeneg, (
they have a S-shape). The value of this negative lobe
n 'n,—‘l-l and the meaning of parametersy, r are explained in

m=0 m=M M* Sec. 3.3.

To ensure that slow-time continuity equation (3.4) is cstasit with the barotropic mode we must
impose a constraint on the vertical integrals of the volumweel,U;, 1 ;, andV; ;1 ,,

I
n+1

N —wnid N el
kzz:l Uit dgk = <<U>>i+;j and kz::l Vigie = <<V>>i7j+"’% , (3.11)
so that
A —\n % an % Cwn % Cwm %
L I vl L) VR GO (6 W U 312)

is consistent with the change {g) between two consecutive baroclinic time steps. To definesé¢oend
averaging operatq(...)), we note that a summation of consecutive barotropic timgssgeelds

A A m—1 ﬂn
= — ence = iv 2 .
¢l = ¢ Mt divO™ h ("= (0 — At d +3 (3.13)

wherem is the fast-time index and/ is the integer mode-splitting ratio.€., ratio of commensurate
baroclinic and barotropic time-step sizes). The= 0 starting field(° corresponds to the baroclinic step
n, and the barotropic mode restarts at the end of every baiotime step,(¢, U, V)" — SRR
After applying fast-time averaging..) to both sides of (3.13),

M* At M* m 1
()"t = > anl™ = 0 — A ~div Y [ Z 2] (3.14)
m=1 m=1 /=1
This translates into
M* ) 1 M
(O™ = ()" — At-div > by, U™ where b, = i > an (3.15)
m/=1 m=m/

Vm' = 1,.., M*. The coefficienta,,,m = 1,..., M*} are the primary averaging weights (Fig. 13) that
satisfy normalization and centroid conditions,

M*

M m

m=1
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but they are otherwise arbitrary thus faf* > M is the fast-time index of the last non-zerg. We define

(U)* = fz*l b 0" % (3.17)

Using this in the integral constraint (3.11) with (3.15) pargees that (3.4) holds exactly between baro-
clinic steps: andn + 1 and, therefore, guarantees both conservation and coggta@servation properties
in (3.3). In practice, after completion of the barotropimé-stepping at every baroclinic time step, five
fields (¢)" L, (U)" L, (V)rtt <<U>>n+§, and<<V>>n+§) must be available for the baroclinic integration
since(...) fields cannot be expressed directly in termsg.ofj fields.

3.2 Mode-Splitting Error in the Pressure-Gradient Force

Vertical mode-splitting separates the vertically inteégda hydrostatic, horizontal PGF,

¢
F =FV(, ¢, Vup(z), p(2)] = L V,Pdz = -

q
Po_h Po

¢
/ Voo () dz’] dz (3.18)

into a “fast” term ,—gDV,(, and the remaining “slow’{....} terms (these are also known as “coupling”
or baroclinic-to-barotropic forcing terms),

J (Du)
ot

The fast terms are recomputed at every barotropic stepewtal slow terms are held constant since they
change only once per baroclinic time stép= h + ( is total depth of a vertical column. If the functional
. contains nonlinear combinations ¢fandp (i.e., 9>.% /0¢ 9p # 0), freezing the slow terms can cause
a mode-splitting error,

b= —gDViC+ {gDvxuﬁ}. (3.19)

—gDV, (" + {gDVacCJrgZ V¢, ¢, Vup(z), p(Z)]} # F [V, ' Vip(2), p(2)] ; (3.20)

i.e., at the end of barotropic time-stepping wher- (’, the PGF seen by the barotropic mode no longer
matches the vertical integral of the total PGF from the sarard the new. Consequently, at the begin-
ning of the new time step when the full PGF is recomputed dttical integral is no longer in equilibrium
with the state of the barotropic mode PGF even in the case tieee is no change of thelevel p values
between consecutive baroclinic steps. The mismatch betthedwo contaminates the forcing terms com-
puted and the new time step, and subsequently affects tigeastharotropic mode one step later, thereby
closing the feedback loop.

In isopycnic coordinates Higdon & Bennett (1996); Higdon &Simeke (1997); Hallberg (1997) found
an instability of the linearized mode-split system with raissipative time-stepping schemes (FB, LF).
Their diagnosis and proposed remedies were thah¢de-splitting can cause artificial mode-coupling;
(i) for some time-stepping schemes the mode-coupling mayecayhase lag that induces a numerical
instability similar to that of a forward time step for a hypelic system; ifi) a perturbation analysis of
weakly coupled linear system shows that the instabilitynesmnance of an aliased barotropic mode sub-
sampled at the baroclinic stepg;)(the remedy is to redefine barotropic mode PGF to make it baleégqu
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the vertical integral of the 3D PGF; and) @ dissipative time-stepping scheme that filters the bapatr
mode to prevent aliasing or a dissipative predictor—ctoorescheme (Hallberg, 1997) can be a useful way
to achieve stability.

The common justification for (3.19) i§ < D andy = p — po < po, hence the magnitude of
the mismatch in (3.20) i® (max {(p'/po)VaC , (Vup'/po}) relative toO (V,¢). Among other restric-
tions this implies thap, must be chosen sufficiently close to the actual density avoid a “leakage”
of barotropic signals into the baroclinic mode (Higdon, 2DGBuppose that both modes are time-stepped
within but close to their CFL limits of stability taken inddally. This implies a choice a¥/ in (3.13)
as the ratio of the barotropic and first-baroclinic gravitsive phase speeds adjusted by the ratio of the
stability limits of their respective time-stepping algbms. The coupled system may still be unstable if
M > O (po/ |p — pol)- Thisis because in a Boussinesq model using splitting (3hEXarotropic pressure
gradient term arising from free-surface gradi®ig creates an acceleration equaHgV, ( independently
of the choice ofpy. On the other hand the net vertically integrated PGF conaplyefull (baroclinic +
barotropic) 3D scheme from a given density field and givetestd free-surface has slightly different
sensitivity toV,.¢, in creates acceleration more similartgV,. [(1 + p*'/po) (] wherep* depends on the
deviation of local density fromp, in @ manner quantified later in this section. This leads tdfdloethat
phase speed of surface gravity waves as seen by the 3D ph# obtle is different from that seen by the
barotropic mode. To avoid numerical instability, the diffiece in phase increment per one baroclinic time
step At between the two must be smaller that allowed by CFL criter@ritie time stepping scheme for
the baroclinic mode. Since the density variation due to damec effects can be estimated as large as 3%
(i.e.,comparable, and in some situations larger that the ratiegpBpeeds of barotropic and the first baro-
clinic modes) this potentially may force to chose a smaflethan required for stability of the baroclinic
mode taken alone.

Furthermore, even if the mismatch in (3.20) is small in mastes, the primary concern here is that it
still may cause a numerical instability everpifariations are small ang, is chosen so that the preceding
M-criterion is respected. This is due to phase delays in cangpthe mismatch term associated with
the organization of the coupled time-stepping algorithmother remedy to mitigate the consequences of
this type of error is the use of a dissipative time filter foe tharotropic mode (Sec. 3.3): however, this
unavoidably degrades the numerical accuracy. Either wesyalways desirable to remove or minimize the
mismatch.

Eq. (3.20) suggests a general guideline for eliminating ttuele-splitting PGF error by replacing
—gDV,( in (3.19) with the variational derivative of = .7 [V,(, (, ...,

0F 0F
)
a(v.o” VOt

¢ andV,( are treated as independent variables for the functionéibpdifferentiation. In the discretized
version this corresponds to haviggand(;,; as independent degrees of freedom that are alternatively
expressible as their differengg , — ¢; and averagé(; 1 + ¢;)/2. Substitution of (3.21) into (3.20) makes

it into a Taylor-series expansion,

0F =

5 5C. (3.21)

o 07 , 0F ., . o
TVt Gt gV C -0+ 3 (- x TN ¢ (3.22)

resulting in a cancellation of the dominant part of the megdktting error: recall that the mismatch be-
tween l.h.s. and r.h.s. of (3.22) can be estimate@ @Vx (¢ - C))Q) +0 ((C’ — C)Q).
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=T $ort - 2=0
-
% =Y Fig. 14. Left A segment of the vertical grid used
/ Fir1 Pt in derivation of total vertically-integrated PGF (3.23).
Dashed lines correspond to the unperturbéd=( 0)
”””””””””””””” vertical coordinate and solid lines to the coordinate
. perturbed according to (3.6Right Computation of
‘l. . .
2-way vertically averaged densities (3.25) for a strat-
ified water column. Thep, are interpreted as con-
T 2=—hyy trol-volume averages, hence the area of hatched rect-
angle is equal to the shaded area left from the contin-
uous profile. Note that for a stably-stratified profite
g is systematically smaller that as illustrated here.
i+1/2
z=—h;

Note that the net horizontal force applied to fluid elemerkio 14 can be calculated as

Gi Git1 Tit1 ah(@
Fi1 = /P(azi,z)dz—/ P(xiiq1,2)dz —l—/ P(z,—h(zx) dx
I ) ’ J ( ) o (3.23)
T i+1 7
=7 —Zipa + I¢+% )
whereP;(z) is hydrostatic the pressure calculated separately in eatical column,
Gi
Pi(z) = g/pi(z’) dz' . (3.24)
By introducing
1 Gi 1 Gi Gi
plx) = D / pi(2)d2 and pf = 72 / /pi(z/)dz/ dz (3.25)
Z_hi 2 Z—hi %
whereD; = (; + h;, the net force (3.23) be expressed as
Ti1
T piD} _ :0:+1Dz'2+1 /7 %
Fi1=g [ 5 5 +x. oD 8wd$ : (3.26)

This corresponds to the continuous form,
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2 Lo 2

) *D? h? h?
o (D) + .. = _9 [Vx (p ) —pDth] A [pr* (" =P) Vary (3.27)
Z) (¢=0 part

p*<2
2

Y

LY, (5°C) + Vi ( ) (o =)

Z' (perturbation due t@so)

where we have separatg@®) which is independent af and the remainderZ’. Since the mode-coupling
algorithm already performs a vertical integration of thennemtum r.h.s. terms, including the full PGF,
Z0) is not further required. Howevef’ satisfies (3.21) and is therefore a valid replacementfpb Vv, ¢

in (3.19) (as expected, one can easily verify tidtreverts back te-g DV,.C if pis uniform,p* = p = po).

The accuracy of mode splitting using the decompositioot= .#(© + Z’ fundamentally comes
from the fact that changes {nfrom one time step to the next do not the modify grid-box valokdensity
pi.j.k- In a purely barotropic motion fluid parcels move up and doeltowing changing free surface, and
the grid-box locations move together with the parcels (3€gulting in no change ip; .. Hence,p* and
7 in (3.25) are also nearly independent(ofwhich justifies keeping them constant during the fast-time
stepping of barotropic mode. To ensure numerical stalality at least second-order accuragy, p*, and
p must be time-centered at+ 1/2 in baroclinic time.

An analogous discrete derivation (Shchepetkin & McWillgr2005) yields

. . pinCla pi¢
(Pi+1Ci+1 - poZ) + +12 +1 5

(p;‘kﬂ B pz‘+1) Gr1+ (0] — Pi) G 4 (ﬁi+1 - ﬁz‘) (Cit1 — Q)} } (3.28)

i hiJrl + hl
i+3 Po 2

+ (hig1 — hi) [

2 6

The particular form of (3.28) depends on the discrete scHen&D PGF (Sec. 5). In principle, the splitting
error can be eliminated entirely rather than just the legdirder term cancellation in (3.22). However,
doing so imposes severe restrictions on the discretizatioite for the 3D PGF that basically would then
be limited to pressure-Jacobian schemes (Shchepetkin &iNMakvs, 2003). This is undesirable because
it raises the overall error in the PGF. For example, the sehiarhin (1997) results in (3.28) without the last
term inside]...] on the second line. Although this term is formafy(Ax?)-small §.e.,two orders higher
than the preceding term), itis desirable to keep it sincakes (3.28) exact jf is a linear function of depth
and horizontal coordinate, unlike the scheme in Lin (1987)ensity-Jacobian scheme (as in Blumberg
& Mellor (1987)) does not allow separatingvalues belonging to different horizontal indices, so that
the vertical integral of# cannot be expressed in termsgfandp computed independently within each
vertical column. The standard PGF scheme in ROMS (Shchiep&tkcWilliams, 2003) uses a 4-point
stencil in the horizontal and nonlinear interpolation ofisi¢y to avoid spurious oscillations; both attributes
make it impractical to derive an exactly consistent PGF sehér the barotropic mode. Nevertheless,
practical experience with (3.28) indicates that it is sigfitly accurate and stable.

For flat topography* is the only relevant density for the barotropic mode. Thisicé is similar
to (3.2) in Higdon (1999), but is differs from Bleck & Smith (@9) which uses the vertically averaged
density (analogous here 1) and from Griffieset al. (2001) that uses the local density at the top-most grid
cell instead ofp*. All other split-explicit models just usg,. The terms proportional t¥,/ in (3.27) and
(3.28) reflect the dynamical coupling between barotropetzaroclinic motions; it depends on the density
differencep* —p, and thus itis part of what is sometimes referred to as the\le&fect, (Holland, 1973).
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3.3 Design of the Fast-time Averaging Filter

Averaging of the barotropic mode in a split-explicit mode ( choosinga,, in (3.14) distinct from a
delta-functiond,,,; = {1, m = M; 0, m # M} is sometimes viewed as a “necessary evil” (Hallberg,
1997; Higdon, 1999; Griffiest al., 2001): while it yields a stable and robust numerical cadedesirably
degrades the temporal accuracy of the resolved barotraptions and often introduces a numerical dissi-
pation comparable to that of implicit backward-Euler tistepping. We identify three reasons for averag-
ing. First, although the effort is made to remove mode spjterror in PGF (Sec. 3.2), the split is never
perfect in practice. If both the barotropic and barocliniod-stepping algorithms are non-dissipative,
barotropic aliasing may introduce numerical instabillygdon & Bennett (1996), whereas fast-time av-
eraging excludes the possibility of a coincidence of charatic roots\ by placing the barotropic roots
from the aliased range deep inside the unit circle, (Seg. $€cond, depending on the stage when the
time-stepping algorithm computes the vertically-intégdamomentum advection terms that are kept con-
stant during the barotropic time-stepping, they may incdelay effectively like a forward time step for
these terms. This leads to numerical instability of the siype as for a forward-in-time, centered-in-space
advection equation. Fast-time-averaging provides a nmestmeto control this instability. This aspect puts
an emphasis on damping at the low-frequency end, which isyadiferent requirement for the filter
design compared to its anti-aliasing role. Third, depegdin the algorithm for taking the first time step
(typically forward-in-time), the recurrent restart of tharotropic mode at each baroclinic time step may
introduce yet another numerical instability. Net dissipatin the barotropic time-stepping scheme and
fast-time averaging can suppress this instability.

We now examine the design principles for the barotropic tiitbers. For simplicity of analysis, we
assumelM > 1, neglect the truncation error in the barotropic time-stegpand replace the discrete
summation over fast-time indices with a continuous timegnation.A(7) is defined as the continuous
analog of{a,,| m = 1, ..., M*} with 7 ~ m/M andr, ~ M*/M. A barotropic Fourier componeunt, gets
a phase increment = w;, At in one baroclinic time step\t. After fast-time averaging, its step multiplier
becomes

Tx

Ma) = / e~ A(7) d7 = R(a)e ™, (3.29)
0

wherefR(«a) is the response function. Idealif(a) ~ 1 for a < ag ~ 1 andQR(«) — 0 rapidly in «
oncea > ay. In the vicinity ofa = 0, 1 — R(a) = O (™), wheren is the temporal order of accuracy.

- : o . o2 iadTe .
Substitution of a Taylor-series expansient®” = 1 — iar — 5 + 5 + ... for |a| < 1in (3.29)
leads to

. o? . iad . ot . i "
AMa)=1—ia— ?Jg + ?Jg, + ﬂh +... where 7, = /7’ A(r)dr, (3.30)
0

with 3, = J; = 1 due to the normalization and consistency conditions amalego (3.16). Using the
identity, 7> = (7 — 1)? 4+ 27 — 1, and the relatior2J3; — J, = 1, we find that

Ty = /TZA(T) dr =1+ /(r C1)?A(r)dr=1+e. (3.31)
0 0
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If A(7) is non-negative, the integrands are non-negative too;éhere 0, with equality reached only if
A(r) is adelta-functiong(m —1). Substitution ofJ, into (3.30) leads to the appearance af a coefficient
in the leading-order truncation term at second order.0 corresponds to numerical dissipation. Therefore
any choice of a positive-definitd(7), results in at most first-order accuracy for the fast-timeraged
barotropic modei(e., A\(«) agrees witke = only up toO (a?)).

To achieve second-order accuracy, we introduce a shapédnrtbat allows some of the primary
weights to be negative,

o= {(ZY - ()] %)

wherep andq are independent parametesy, 7o, andr are then chosen to satisfy normalization, centroid,
and second-order accuracy conditions in (3.82),73, = 1 forn = 0, 1, 2. In practice we initially specify

(p+2)(p+q+2)

=0 and = ,
' T D (prqr)

(3.33)

(this choice ofr, centersA(r) atT = 1; i.e.,, J;/Jo = 1), then computed, from the normalization
condition. Using this initialA(7) we adjust, Ay, andr, with an iterative procedure — adjusto minimize
e = J5 — 1; recomputed, andr, to restoreJ, = J; = 1; and repeat untik — 0 — to satisfy theJ,
conditions. This yields a family = r(p, ¢) of second-order filters such as the following tabulaiegd -
triplets.

p=2|qg=1|r=0.1696907 | |p=2|qg=4|r=02846158
2 2 0.2346283 2 6 0.2961888
2 3 0.2664452 3 8 0.1369941

The alternative choiceg, ¢ = 2,4 or 2,2, are the settings in ROMS for most applications; Fig. 13 is
one of the corresponding shape functions.

Fig. 15 compares the step multipliers for some fast-timeraying algorithms with an S-shaped filter
designed as described in this section. Ideally) ~ 1 for a < 2 (the baroclinic time-stepping stability
range), and\(«) < 1 thereafter. As expected, a flat averaging aar (left panel) results in very strong
damping of the resolved frequencies (Griffegsal., 2001). A Hamming window (Oppenheim & Schafer,
1989) (middle panel) has much smaller dissipation for resblifrequencies and provides an efficient
damping for the aliasing range. Theg = 2, 4 filter (right panel) has virtually no damping for| < 7 /4,
and it as efficient as the Hamming window in its anti-aliasiatg. Another effect of having a negative
lobe is thatA(7) makes the model more efficient by reducing the duration ob#retropic integration
beyondt, ., (i.e.,, M* — M): thep, ¢ = 2, 4 filter takes only 30% of the extrat step, while the Hamming
window needs 50% and flat averaging needs 100%.

3.4 Comparison with an Implicit Free-Surface Model

An implicit free-surface models entirely eliminates aimgsby simply restricting the phase increment
of the barotropic mode. A particular scheme from the CFD comityuthe theta-method (Casulli & Cat-
tani, 1994), is
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p=2,q=4,r =0.28461

n n+1 n n+1

Fig. 15. Step multipliet\(«) for three different choices of the of fast-time-averaging weightdt flat averaging
over 2At; middle Hamming window;right: S-shaped weights from Fig. 13. The bold solid line on the diagrams
turns dashed when entering the aliasing range.

Fig. 16.\(«) for the theta-method
with two differentd values in the
same format as Fig. 15. Compar-
ing left and right panels shows
that, while the dissipation in-
creases witl# — 1/2|, the phase er-
ror changes little witl#. The phase
of A(«) asymptotes to-m when

a — 00; S0 A(a) never enters the
aliasing range.

"+ dabutt = Y —da(l - O)u” N AMa) = 1—a?0(1 —0) +ia

(3.34)
untl 4 iOéQCn+1 — u" — iOz(l _ Q)Cn 1+ o202

It is unconditionally stable ifi /2 < § < 1 and is second-order accurate fbr= 1/2. However, if used
with « > 1, thed = 1/2-scheme is prone t@A¢ oscillations, usually addressed by slightly biasing
0 above 1/2, which makes it first-order accurate and dissaSettingd = 2/3 (Fig. 16, left) has a
dissipation comparable to flat averaging o2eYt (Fig. 15, left). A standard CFD practice is to use-
0.55 (Fig. 16, right). Its damping is comparable (about twice agl) to the Hamming window. Since no
third- or higher-order, unconditionally stable, implialgorithm exists ff.b.,an implicit AM3 scheme is
asymptotically unstable for a purely hyperbolic problethg theta-method is the only possibility for an
implicit free-surface model, which constrains its accyrcasymptotically approach second order when
0 — 1/2. Therefore, a split-explicit model can be made inherenttyeraccurate in representing even the
relatively slow barotropic motions resolved by the bamcltime step €.g.,tides and topographic Rossby
waves) than an implicit model.

33



Fig. 17. Schematic diagram explaining the alterna-
tive LF-AM3 step: At first,(n — 1)th andnth-step
variables are interpolated linearly to — 1/2 + 2v,
which is used as the initial condition. It is advanced to
n-+1/2 using r.h.s. terms computedreth step (predic-
tor; v = 1/12). Subsequently, theth field is advanced
ton + 1 using the r.h.s. at + 1/2 (corrector).

4 Time-Stepping the Nonlinear System

4.1 Implementation of LF-AM3

The time-stepping algorithms in Sec. 2 are multi-time-levethods, relying on temporal interpolation
or extrapolation of the r.h.s. terms computed at severaewutive steps to achieve the desired accuracy.
This in principle can be applied to nonlinear systems as (@dinutoet al, 1988): compute and store
the entire nonlinear r.h.s. at discrete time levels andpolate it using these fields. On the other hand,
mode-splitting in Sec. 3 restricts the choice of time-steglgorithms to logically forward-in-time, two-
time-level methods where the only available degree of fveeds the time placement of the tracer flux
variables in (3.3) and similar quantities in momentum eiguat Since tracer fluxes are products of volume
fluxes and tracer values and volume fluxes are constraine8l by)(to satisfy the finite-volume continuity
equation (3.4), it is no longer possible to compute the cetepiracer r.h.s. tendency terms at several
consecutive time steps and interpolate the result. Thexefioe algorithms from Sec. 2 must be adjusted
for compatibility with mode-splitting.

The LF-AM3 scheme (2.21)-(2.22) is rewritten as

(e = (; - 27) ¢+ (; + 27) " —ia(l—2y)u"

. . 4.1)
wrh = (-2 u (G2 w —a (-2 ¢ B (20 =30 )]
followed by
ntl _ pno_ g0 omtk
e o 1 (4.2)

u"t = U — - {(1 —¢€) A K; - 7) ¢+ (2 + 27) " - 7@"_1] } :
after which the provisional valugg+z andu"*z are discarded. This alternative algorithm has a simple
geometrical interpretation as a combination of interpotatind two consecutive LF-like steps (Fig. 17).
It eliminates the need to store the full r.h.s. terms from me step to another, making the code more
efficient. It is completely equivalent to the original algbm if applied to a linear systemrm(b., for the
actual problem the symbolic operatari...] here translates into a r.h.s. computation), while for aineal
system it differs by computing r.h.s. terms from the timeeipolated prognostic variables rather than an
interpolation of the complete r.h.s. fields.

A comparison with LF-TR steppingg., (4.1)-(4.2) with~y = 0, offers another interpretation of Fig.
17: the2 bias relatively ta» — 1/2 in setting the initial condition introduces a pre-distortithat cancels
the second-order truncation errors of the subsequentcddlgiLF” corrector stage, yielding an overall
third-order accuracy of the algorithm as a whole.
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Another difficulty with LF-AM3 is that the fluxes satisfyingé discrete continuity equation (3.4) are
available only during the corrector time step, not predistep. Hence, it is impossible to achieve simulta-
neous conservation and constancy preservation for trdoeirsy a predictor sub-step. Since the predicted
values of the prognostic variables are used only to compluteaive fluxes during the subsequent correc-
tor step, the predictor sub-step does not necessarily loave & conservative algorithm for the complete
step to be conservative. A non-conservative, pseudo-cessjinie, predictor sub-step for tracers is

n+3 1 1 n 1 n— n
qz’,j,lf AA/Jrk {A/Vz]k [(2 + 27) Qijr T (2 - 2’7) %,j,k} (1—27) At [ Z+ J, kUl+2 gk
0.,
_qz—f Js k:(]n 5 j,k’ + a;?j-i-%,k‘/iz-l-%,k &:,1]—— kvn 1,k: (43)
+q7, J k-&-lVVz J k-&-f qi,j,k—% iT,lj,k—%} } ’

whereA”I/ijk is obtained from an artificial continuity equation,

+ n n n n
A%Jk Aﬂj/Jk:F( )At |:U’L+ ok U +Vzg+ k Vz‘,j—l,k
: (4.4
g, - s
The latter “absorbs” incompressibility errorsli/W e Vil ey andW” el The result is a conservative,
2

constancy-preserving algorithm f@ .1 Once the computatlon fqg],j is completed A7~ i isdiscarded

and recomputed during the next tlme step. Because there isaramgee tham/z i isthe same agl/, |

during the next time step, (4.3) does not maintain the voluEeA%j,kqi’j’k . However, the complete
1,7,k
algorithm — (4.3) in combination with corrector step via33— does.

4.2 Implementation of AB3—AM4

The AB3-AM4 forward-backward scheme (2.32) is the methodhafiee for the barotropic mode
because the time-step restriction imposed by the phasd spbarotropic waves dominates all other limi-
tations (.e.,advection velocity and Coriolis frequency) by such a larggrele, that the other terms receive
no consideration except for avoiding unconditionally ab$t schemes. Its practical version consists of an
AB3-extrapolation of prognostic variables,

m+% m m—1 m—2

)G () o) e

.

u

u

computation of finite-volume fluxes,

TTm

D™ = b4 (S U2 = Dt A VR Dt AR (4.6
77

free-surface update,
— 1
¢ =™ — At - divO" 2 (4.7)
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computation of provisiona] for the PGF,

(= <; ++ 26) ¢ 4 (; — 2y — 3e> (™M (M2 (4.8)

and the momentum step,

ﬁm+1 _ 1
- Dm+l

{Dmam + At - [F () = D™ E fk xaE 4]} (4.9)

In the last step, the PGF ((’) is from (3.28), and the dots denote the other r.h.s. term&idn, viscous
diffusion, etc). This algorithm naturally accommodates advection (aedt®r upstream-biased) and the
Coriolis force; it is stable without the need for viscosityumstream-bias for thE terms in thel equation;
and it eliminates the need to store r.h.s. terms from one sig@to another.

A similar algorithm is applied for 3D mode in Kanars&gal. (2007), except that unlike (4.5)—(4.9), it
starts with the update of momentum equation followed by fh@ate of tracers. In that approach the tracer
fields were actually extrapolated towdrd+ 1/2)th step twice using two different sets of AB3-like coeffi-
cients: the first time to compute density and then barocpressure gradient (using coefficients optimized
for stability of forward-backward step), and the seconcetim compute advection terms for tracer equa-
tions (using coefficients chosen more close to the conveaitidB3 set). This dual extrapolation removes
the competitive requirements in setting®in (2.32) discussed in Sec. 2.4.

5 Pressure-Gradient Force

The discrete PGF error for a hydrostatic model in generdlizgtical coordinates (including the
family, e.g.,ROMS) is widely recognized as a significant algorithmic peot (Mesinger, 1982; Arakawa
& Suarez, 1983; Mesinger & Janjic, 1985; Blumberg & Mellor8¥9Haney, 1991; Melloet al.,, 1994;
Stelling & van Kester, 1994; Lin, 1997; Slordal, 1997; So&§98; Song & Wright, 1998; Kliem &
Pietrzak, 1999; Shchepetkin & McWilliams, 2003; Chu & FanQ2) It is often attributed to so-called
hydrostatic inconsistency,e., a failure of the discretized PGF to vanish when isopycnidasas are
horizontal. Because of deviation of quasi-horizontal cowtes from either geopotential-height) (or
isopycnic p) surfaces, the PGF in the horizontal momentum equationsaappn the form of two large
terms that tend to cancel each other,

1 OP

po Oz

op
Ox

_ 9P 0z
0z axs

1
z Po

1 : (5.2)
In the usual way the partial-derivative subscripheans that it is computed with respect to a constant
surface, and the subscriptmeans that the differentiation is performed along the idase of the trans-
formed vertical coordinate, = const.

The most common focus has been on achieving accurate cammelbf the two terms in (5.1) in the
special case of a horizontally uniforme(, flat) stratification,p = p(z), where the correct answer is zero
velocity (a state of rest). In this context Mellet al. (1998) points out a Sigma-coordinate Error of the
Second Kind (SESK), which is the growth in time of a mainlydiespic flow with no mechanism of
advective self-compensation (in contrast to a barocliacéency to redistribute horizontalsurfaces by
a flow generated by the PGF error to partially cancel the @eilfflow). A small initial error does not
guarantee that the error remain small at a later time. Thpemance brought attention to the integral
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Fig. 18. Stencil in thex-z plane for comput-
ing the baroclinic PGF in the density-Jacobian
scheme. The Jacobian is approximated as a con-
tour integral around the shaded ared, ;s ;12

—Ax Az - Fys(p,2) = %p(m,z)c}z. The contour

integral is approximated using one-dimensional cubic
polynomial fits for bothp(x, z) and z as functions of
the coordinates ands along each of the four curvilin-
ear facets bounding/; 5 1.11/2- Since a cubic fit re-
quires a 4-point one-dimensional stencil, the whole Ja-
cobian is evaluated using 12-pointst:a4 grid without
corners. Each of the line integratsX, FC, (5.4) par-
ticipates in the computation of the density Jacobians
for the two cell adjacent in either horizontally or ver-
tically. The Jacobians are then integrated (via a simple
summation) to compute PGF.

i1/ i i+1 i+2

properties such as material conservation and consistemersion between potential and kinetic energy.
Despite the vast published experience there is not yet aosns approach nor resolution of the problem.
The approaches tend to fall into four major categorigsn¢rease the order of accuracy in all coordinate
directions(Beckmann & Haidvogel, 1993; Chu & Fan, 2003); hhlis can be quite successful in idealized
test cases, it has earned a reputation of being uselessal@ticeoceanic modeling (Kliem & Pietrzak,
1999); (i) compute the PGF in-coordinate space (Kliem & Pietrzak (1999) and its refeesic(ii)
use a finite-volume, flux-form, pressure-Jacobian fornmatin (1997); Chu & Fan (2003); ony) use

a density-Jacobian discretization of an alternative foomHGF that computes the horizontagradient
first then integrates it vertically (Blumberg & Mellor, 1983ong, 1998). The last two approaches rely on
symmetric discretizations, mimicking the symmetries @f dlacobian operator, to reduce PGF error.

We found a successful technique to reduce PGF error. It isnargbzation of the density-Jacobian
approach going to higher-order accuracy while retainingtod the symmetries of its original schemes
(Shchepetkin & McWilliams, 2003). It can also be viewed aob/pomial reconstruction of the field
with subsequent analytical contour integration. A simdpproach was applied to construct a high-order
analog of the pressure-Jacobian in Lin (1997); howevergéreralized density-Jacobian is more attrac-
tive because of smaller truncation error and, more impdgtaslower error growth in time for the flat
stratification test cases. In this method the PGF is forradlé&imilar to Blumberg & Mellor (1987)) as

1 0P 1 0P g C op| ., g ol g ¢ dp dp 02 ,
P L - - Ay = o P
po O | po Ox i P/ Oz |, Po | or  po / x|, 02 Or|,
where the last term can be rewritten as
g 7 Op| 0z 0Op 0z g 7
_9 [|er) oz _dp oz ds’:——/ o 2) & 5.2
po dx |, Os asﬁxj posj’@Z) (5-2)

to justify the classification of the scheme as a density{Jiacatype. The transformed vertical coordinate
s € [—1,0] is assumed in (3.5) to be neither isopycnic nor geopotestiahat both terms inside the
left-side integral in (5.2) are nontrivial. To discretizestwe introduce a control element_; 5 .1 1/» (the
shaded area in Fig. 18) and apply Green’s theorem,
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—Ax Az 7o 5(p,2)

it3k+3

~ // /%S(pa z)dzdv = j{ pdz = FX;p — FXii1p
o X% (5.3)

(3

+m¢+%,k+1 - m'+§,k .
FX and FC are the line integrals along the vertical and quasi-hotalocurvilinear segments bounding

;12 k41/2

Zi k+1 (,9)it+1,k
0z
FXipy) = /sza FCi 1y = / P or

Zik (wvs)i,k:

dv. (5.4)

The problem thus reduces to interpolationsgoet p(z, s) andz = z(z, s) along the integration contours.
If linear interpolation is used for both and z, the resultant scheme is equivalent to Blumberg & Mellor
(1987). The natural extension is to use a cubic polynomtetpolation,

pi dpa—d; [3 d; + d, dyi1 —d,
p(f)zpj 2p]+1— j+18 J+[(Pj+1—f)j)— ! 4]+1 £+ ng ¢ (5.5)

2
+[dj 4+ djp1 — 2 (pj1 — pj)] €7,

where¢ defined for—1 < ¢ < +1 is eitherz or s; the index; is either: or k (see Fig. 18), and by
construction

9p

_ dp
= Pi+1 o€ ar

j o€

Il
Sy

p(§) = pj p(€)

= dj4+1 (5.6)

£=+3

e=+ ¢=—3

ol

yields p values and derivatives at the side boundary#Af; 2 ..1/2. Once (5.5) interpolates boghandz,
the segment integrals (5.4) are evaluated analyticallgnms ofz; ., p; », and their first spatial derivatives
at the same location (see Shchepetkin & McWilliams (2008jdt formulas).

The most important issue is the estimator for the derivatjyespecially ifp is not smooth on the grid.
Using an algebraically-averaged slope, the formula,

d — Apﬁ% + 40]'—%

/ 2
is sufficient to achieve the desired order of accuracy witmaahp field and nearly uniform grid spac-
ing. However, ifp is not smooth, it admits spurious oscillations of the intdapt (5.5) that contaminate
the PGF scheme as negative stratification patches, evengvitepoint stratification values are positive

everywhere, and this may result in numerical instabilityatidition, (5.7) loses second-order accuracy if
the grid spacing is not uniform. In contrast, a harmonic ager

where Ao, 1 =pj—p; V], (5.7)

240]'%@1%
dj = Aijr% + Apfé

0 otherwise

it A1 1 >0
j+3Fi-3 (5.8)

has the property that 'kﬂpj_% andApj_% have the same sigd, is no greater than twice the smaller of the
two in magnitudej.e.,
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|d;| <2 ’minmod (Apﬁ% ,Apjfé) . (5.9)

This guarantees that¢) in (5.5) is a monotonic, continuous function over the whaksaof its definition.

Harmonic averaging (5.8) also escapes the loss of accussnciated with non-uniformity of the
vertical grid. This is extremely valuable for oceanic maaggkince it is a common practice to choose only
a moderate number of vertical levels with a grid spacirghat may change by as much as two orders of
magnitude over the vertical column. Suppose that dis@etialues, are defined at locations,, such
thatAz,H% = Zpy1 — 2k F Azk_% = 21 — 2z,_1. A Taylor series expansion arounggives

1 1
Pk+1 = Pk + p,AZk:t% + ip”AZZ:t% + 6pmAzi:|:% + ... s (510)
_ Pe+1 — Pk 1 1 5
Oy =g T T My g ey
= Oh — pr1 1 1 , : (5.11)
— — / // /1!
This leads to a second-order accurate approximatiofifod- at the locatioryy,
op Ay 10py 1+ Ay 10py 1 , 1, 3
2 v U e R G 5.12)
Z=Z 2 2
which is just a linear interpolation @fp on a non-uniform grid. On the other hand, since
0 dp/0s|._
Op|  _ 9p/08ls, (5.13)
0z| _ 0z/0s| _
Z=2zp 5=Sk
the use of (5.7) makes the estimator into
dp ARSI A
— = . 2 = A WA A O (A2) . 5.14

This is only first-order accurate. It evaluates the denegaéit the locatioriz 1 + z,_1) /2 rather than the
desiredz,. In contrast, (5.13) and (5.8) applied to the elementarfgdihces’y and A leads to

B Apk—o—%Apk—% (AZkJr% + Azk—%) B apk+%apk—% (Azk+% + Azk—%) (5.15)
2=z N (A/)k+% + Apk—%) A'Zk—i-%AZk—% B apk+%&k+% + apk—%&k—% . .

@
0z

We assume thaty, , 1 andApkfé have the same sign and that p(z) is sufficiently smooth on the grid
scale to be accurateQIy represented by a Taylor series. $benally translates into the assumptions that

p" - A <P and

Pl A2 < p| (5.16)

since the high-order derivatives in the Taylor series aesymed to be finite. Substitution of (5.11) into
(5.15) yields
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2 p/ Azk,_% + Azk_% 6 pl AZ]C_% + Azk_%
1 1(p")*
=0t <6p'" ~3 (ppf) ) Doy ey +0 (A7) (5.17)

indicating second-order accuracy of the estimatorapr6z|Z:Zk. The leading order truncation term of
(5.17) consists of two parts: the first one proportional'tas exactly the same as in (5.12), and the second
is a nonlinear term,

1 (p”)2 , o1 — Dpy 1 ’
—Z ; Azk_l_%AZk_%%—p 2 2 .
P Apk_s_% + Apk_%

The second formula always tends to reduce the estimatedhtleei and acts as a slope limiter if consecu-
tive differences change abruptly on the grid scale. Becdwesedame interpolation algorithm is applied to
p andz, the discrete Jacobian guarantees the symmefty,(p, z) = — _#,s(z, p). Although PGF can-
not be eliminated entirely, it can be verified that for flagsfrcation, the cancellation of terms in (5.1) is
fourth-order accurate, and the new scheme is robustlyaotef “hydrostatically inconsistent” grids with
(Axz/Az)- 0z/0x|, > 1 (Haney, 1991).

6 Impact of Compressibility

The compressibility of seawater in the EOS raises two ingmirtlesign issues for oceanic models.
The first is that the monotonicity constraint fefz) interpolation in (5.5) and (5.8) no longer guarantees
positive stratification for the interpolated profile if thersstraint is applied to tha situ p, even if the
point-wise stratification is strictly positive. This is lase the grid-scale smoothnessyas judged by
the ratio of consecutive differencedy, . » and4p,_1, both containing a component associated with bulk
compressibility (e.,a vertical change d situ density that occurs even when potential temperatuaad
salinity S are spatially uniform). As a resulty ~ — Az - gpy/c? — Az - pyN? /g (c, is speed of sound and
N is Brunt-Vaisila frequency), and the first term dominates under most ezeanditions (Dukowicz,
2001). This obscures the detection of abrupt changes itifisi@éion. The second issue is a consequence of
the mode-splitting algorithm (3.21)-(3.28) wherandp, do not change in fast time, being kept constant
at a time centered at+ 5 to achieve second-order temporal accuracy during the iogiottime-stepping.
When p is compressible, it depends gnthough hydrostatic effects on pressure These changes are
unaccounted for in the barotropic integration and thus aradalitional source of mode-splitting error.

6.1 Compressibility and Baroclinic PGF

The EOS for seawater expressesitu p in terms of©, S, andP,

p=p(O,57P). (6.1)
For oceanic modeling situ p is very interesting by itself, but it plays intermediatea®in several r.h.s.

terms for prognostic variablesjz., horizontal PGF, stratification in vertical mixing paranretations,
and inclination of neutral surfaces along which lateral imgxoccurs. The Boussinesq approximation

40



replacesin situ p by a representative constan everywhere except in the gravitational force gravity;
l.e., it retains the “gravitational’p in the gravitational force, but it approximates the “inaftip in the
Lagrangian acceleration by a constanthat can be absorbed into PGF and otherwise disappear fem th
model. This approximation limits the EOS exclusively to theee purposes stated above, and the model
is only sensitive to adiabatic gradients o{defined in (6.6) below), but not tp itself. A consequence

of the Boussinesq approximation is the replacement of masseceation with an equivalent volume
conservation based on a constant inegjal

A common OGCM approximation is the replacemenirositu P in (6.1) with its bulk background
value Py = —gpoz, Viz.,

p=p(©,5 ), (6.2)

justified byp — pg < po. Free-surfaces-coordinate models (Mellor, 1991; Robinsetal., 2001; Shchep-
etkin & McWilliams, 2003) often use an EOS in the form,

p:p<®7S7C_Z>7 (6.3)

that selectively includes the barotropic contributiontte £ used in the EOS but disregards the baroclinic
part. The motivation for this choice comes not entirely frarphysical consideration.€., gpy( is often
small compared td?), but more from a coding convenience where the vertical dioate system is re-
generated at every time step fr@ghand then used in the EOS routine. The use of standard EOS eshem
either as (6.1) or (6.2), implies a nonlinear dependengeooiz even if© andS are spatially uniform. For
o-coordinate models with coarse vertical resolution (oftéh a grid size as large as 500 m in the abyss),
compressibility can cause significant PGF errors throughrdstatic non-cancellation in (5.1) (Shchep-
etkin & McWilliams, 2003). This type of error also exists Bopycnic models due to the non-equivalence
of isopycnic and neutral surfaces caused by compresgifilliberg, 2005).

Consider for simplicity an EOS form within the approximatidass of (6.2),
p(0,8,2)=p + 10,9+ Y (¢ +4,(8,8)) =" (6.4)
m=1

p©, andg®, m = 1,2, ..., are constant background values chosen sodfats o/, ¢{” > ¢/, etc. In
practice these are chosen by specifying representatidamrvalues fo® and.S and treating (6.4) as a
series expansion around theqbo.) is the same agp® /c2 (with ¢, a background value fat,). With this
EOS form, the density-Jacobian (5.2) is

Fesl2) = Jodd D+ 3 Fed) -2 (65)

Note thatp(®) and¢'? contribute nothing.

Jackett & McDougall (1995) definad situadiabatic derivatives of as differences of potential density
with a local reference pressune.lf.,it is impossible to define potential density with any gloleference
pressure as a meaningful basis for determining stratibisatinlike with the EOS for an ideal gas). In
terms of (6.4), the adiabatic derivative with respect todleeordinate is

dp (©,5,2) 8p1 @ S) & aqm (0 S)

0s Z

(6.6)

ad
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A similar expression applies to the horizontal (aleng const) derivativedp (0, S, z) /9¢|,4- The baro-
clinic PGF (6.5) can be expressed entirely in termadditu adiabatic derivatives gf. For comparison,
substituting the EOS (6.2) into (5.2) yields

Fas(p,2) = =8 _F0(0,2) + B _F.4(S, 2) . (6.7)

Herea = — 0p/00|s,. andB = 8p/05|@7z are adiabatic thermal expansion and saline contractidarfac
(n.b.,these differ from the conventional ;5 coefficients by an addedmultiplier). On the other hand, if the
exact EOS (6.1) is used instead of (6.2), then the r.h.s..@j (s an additional term;(1/c2) 7, (P, z)
(i.e.,x k in (6.17) below). This shows that the ability to express thsoblinic PGF entirely in terms of
adiabaticp derivatives inherently relies on the EOS approximattor- z in (6.2). If the approximation in
(6.2) is assumed valid (this aspect will be addressed in iahetia@l in Sec. 6.3), then (6.7) indicates that the
only requirement for accurately relating the gradient®@indS to the PGF is the correct computation of
& andj, including their dependence dhor = (i.e.,thermobaric effect). Thim situ p by itself is irrelevant.
This is also seen by the independence of (6.5) from the backgrterms© andq(©).

Most of vertical change gf and much of the horizontal (along= constant) change occur due to the
bulk compressibility terms,e., 0p;, situ /02 # 01n (6.5). Consequently, a non-oscillatory profilesf .
does not necessarily correspond to monotonic stratificaiiberefore, itis meaningless to apply harmonic
averaging (5.8) to consecutive differencesoditu p and to expect that monotonic positive stratification is
guaranteed, even if the grid-box valuespadre positively stratified. To achieve a monotonic stratifora
profile, we introduce elementary adiabatic differencesjlar to (6.6) abovee.g.,for m = 1

Zik+1 T Zik

ad
Apgkl% = plli,k—H - plli,k + (qlli,k:—i-l - qim) B (6.8)
The averaged gradient (5.8) translates into
(ad) (ad)
_0Op 2Api,k+% 'Api,k;—% L 0z (6.9)
ik = 5 _ = d d qlz‘,]g a_ ) .
s, . APZ(Z% + Apiakz% Fs|;

where the adiabatic and compressible parts are separdiest,ahterpolated separately, and recombined
at the end. This guarantees monotonicity of stratificat@rttie interpolated profile. Because of the non-
linearity in (6.9), the resulting PGF scheme is incompativith the common practice of subtracting a
horizontally uniform background profilg,.. = pr.x(z) in an attempt to reduce-coordinate PGF error.
Similarly, the use of (6.7) as a basis for the PGF scheme islesitable because separate computations
of the Jacobians foP and.S cannot ensure monotonicity of stratification if tReand S profiles are in-
terpolated separately. For example, if there is a “spiceihaaly with large, smootl® and .S gradients
largely canceling each other to yieldpagradient that is small but non-smooth on the grid scale, then
the monotonicity algorithm separately applied@cand S will fail to detect the sudden change in the
gradient.

6.2 Compressibility and Barotropic Mode-Splitting

The mode-splitting algorithm described in Sec. 3.2 is datiusing the assumption thatdoes not
depend org. This is no longer the case if the exdetdependence is included in the EOS (6.1) or even in
its simplified version (6.3). Although the magnitude of thaoge is always small, a danger comes from
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the sensitivity of the EOS t¢ that implies a PGF contribution whenis computed at the previous time
step and kept constant during the barotropic time-stepfiag effectively receiving a forward-in-time
treatment). Consider a purely barotropic case witihanges due only to compressibility,

p=p(P)=p" +3 VP, (6.10)
Wherepgo) and arey?) are spatially uniform. Without loss of generality, this danreplaced with

p= p(0)+Zq(°) —2)", (6.11)

because the hydrostatic balané#,/0- = —gp, makes it possible to remap (6.10) into (6.11) with an al-
ternative set of coefficients, (e.9.,0 = p1+ ¢, P translates intp = p,exp {gq:1 (¢ — 2)}) 2. A derivation
similar to (3.23) yields the net PGF applied to the fluid elat{€ig. 14),

o) D; + DZ+1 D"+ DDy + ... + D;Dy + DY

F1=q(C—C 0) .(6.12
J1+§ g (Cz Cz+1) [ P1 Z (m 4 1)<m + 2) (6 )
This corresponds to the continuous form,
_ (O)D+Z (0) Dt V¢ = —¢gpDV,( (6.13)
g |P1 . m ma 1] = gpLivaG .

Dm o g : .
wherep = pg‘” +> qum is identified as the vertically averagedTherefore, we conclude that,f

non-uniformity is caused exclusively by compressibilihenV,.( generates exactly the same acceleration,

1 0

—h

. . . . . 1
as in a uniform-density, shallow-water fluid. Furthermae,acceleration by the full PGF-V, P = —¢V.,.(,

p
is independent of depth throughout the vertical column ¢weagh both? = P(z) andp = p(z) are non-
linear functions of:; hence, a purely barotropic€., vertically uniform) flow can remain barotropic.

Note that (6.11) is similar to (6.4), except that now it is @axged in powers of perturbed depth- z,
rather than just, and therefore, from (6.11Y/,p # 0 as long asv,¢ # 0. Still the ¢(9-terms in the EOS
do not change the acceleration caused by the PGF. Here —eunlike baroclinic case (6.4)-(6.5) — the
absence of spurious acceleration by the barotropic PGHitsasly in the non-Boussinesq case, witho
defined ag-averaged rather thanaveraged velocity. The Boussinesq replacement of thaahartsitu p
with p, creates a spurious multipligy po in the PGF that destroys this property. At a first glance (6.14)

12 Another consequence of thid < = remapping is that it eliminates acoustic waves regardless whether or not the
Boussinesq approximation is used. This makes it possible to build a hydrpst@ii@oussinesq codes with rela-
tively small additional effort. Non-hydrostatic, non-Boussinesq modelst mse other means to deal with unwanted
acoustic waveseg(g.,implicit time-stepping, or the use of anelastic approximation), that may causeremaatic
increase in code complexity.

13 This situation is similar to Case A of Dewat al. (1998) discussed in Sec. 6.3 but in reverse: the dependency
p = p(P) in (6.21) brings in PGF error when used within the modified Boussinesq model.
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suggests that taking into accoynmon-uniformity in the barotropic mode wiitt andp in (3.28) offers no
benefit relative to the use of the shallow-water-like PGkter g DV,.(. However, (3.28) and (6.14) are
derived under two opposite assumptions aboutpts&ucture: (3.28) assumes that {h@on-uniformity
comes purely from baroclinic effects, and the flow is incoaggible, hencg is conserved as Lagrangian
tracer; whereas (6.14) assumes that all non-uniformityesaxclusively from the bulk compressibility.
Besides the spurious/p, factor, we identify two types of dangerous errd): the mode-splitting error
due to thep = p(...,{ — z) dependency, since the computation of the 3D PGF in (3.213ssdbon the
previous-time( and thus receives a forward-in-time treatment; andaf erroneous sensitivity @f. and

p to the vertical increase an situ p by bulk compressibility that is mistaken for vertical stfiaation.

The magnitude of the mode-splitting error of typei¢ estimated from the vertical integral of the PGF
due to¢ modulated by compressibility,

; g(C—=2")\ ., 1 gD
—gVQCC-/eXp I8 E g~ — gDV, — - - 22 gDV (6.15)
—h o “fast” 2 G

The “fast” term is treated within the barotropic mode usingnzall time step. The “slow” term is never
computed explicitly, but is rather an outcome of computimg\ertical integral of 3D PGF based pwith
the EOS using thé at the old time step — the most recent available value befaretiopic time-stepping
begins. As aresultit remains unchanged during barotrape-stepping even though it contains a gradient
of (. D = 5 km andc, = 1500 m/s yield an error estimate @fD/(2¢?) = 0.01, about1% of the PGF
due to the( perturbation. This is comparable with levels of other meghtting errors discussed in Sec.
3.2. It is expected to stay within the Courant-number limibafoclinic (slow) time-stepping, leaving its
forward-in-time treatment as the primary remaining conc@éhis type of splitting occurs whether or not
the barotropic mode accounts fenon-uniformity, and furthermore, it occurs in non-Boussipenodels
as well. For example, Robinsat al. (2001) identifies a similar error (although they do not afgss as
mode-splitting error) and an associated instability in @eithat uses a shallow-water form for the PGF in
the barotropic mode. The instability is manifested as d tielsponse with spuriously elevated amplitude.
The source of instability is traced back to an inconsistdyetyveerp and the horizontally-averagedz)
profile (subtracted out in hopes of reducing PGF error); tinsnér is computed using instantanequand
the latter using = 0. Their proposed remedies include abandonment of the aa#pég) subtraction — a
relatively minor effect — and total suppression of compitabty in the EOS — sulfficient to suppress the
instability but not acceptable in OGCMs because of loss otlieemobaric effect. Griffiest al. (2001)
and McDougallet al. (2002) advocate the use of the exact EOS (6.1) with thhat includes dynamic
components due to bothandp taken from the previous time step. However, we believe thatlirings

a similar mode-splitting error and potential instabilibhat most likely is only controlled by their heavy
barotropic-mode time-filtering by averaging over two béroc time steps (Sec. 3.3).

A better treatment for both typé@) @nd (i) errors is presented in Sec. 6.3 after an analysis of alieena
forms for the EOS.
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6.3 Consistency of EOS and Boussinesq Approximation

The EOS form (6.2) as an approximation to (6.1) was challémyeDewaret al. (1998) !4 . Consider
the response of a compressible barotropic fluid with uniférand S to an imposed surface PG, p,
(their Case A, Fig. 1). If (6.2) is used for the EOS, the PGF sstant and equal to its surfak&p, value
throughout the vertical column. However, compressibilégds to changes ip, and if the EOS more
correctly usedn situ P, thep changes depend on the PGF itself, and the true PGF will chaitigelepth.
Substituting their Eq. (2.3) into (2.2) yields

P
V; &' (6.16)

0
VxP = Va:ps +g/

This has the solutiolV, P = V,p, - e 9%/ i.e., now the PGF has an exponential amplifier with depth.
With typical abyssal values ef = 1500m/s andz = —5000m, the amplification factor is about 1.022,
which is comparable to a typical PGF error due to the Bousgiapproximation. However, the pressure
gradient does not appear in the PGF by itself but in the coatioin(1/p)V, P. Thus, by using the exact
in situ p that has the same compressibility amplifying factor, iadtef the Boussinesg, without it,
the depth-amplification effect is canceled in the PGF. Fange, the balancing geostrophic velocity
(cf., their Eq. (2.3)) does not change at all between a Boussinet® with an approximate EOS and a
non-Boussinesq code with the exact EOS. Their Cases B and Cl,Rigyolve baroclinic variations of
© and S. In contrast to the purely barotropic Case A, these cases thawe an exact cancellation of
the compressibility errors. However, as shown by DukowR20(), more tha®0% of the error can be
eliminated by a further modification of the EOS, so the damdgmtified by Dewaet al. (1998) is largely
avoidable.

The approach of Dukowicz (2001) splits the compressibidagfficients into two parts?,

1 3P> (P)
k=—|== , k=r"(P)+0k(©,S,P), (6.17)
Jor) (P) + 6x(0,5, P)

wherex(") is much larger thadk. The exact EOS (6.1) can be rewritten with tyéactors,

Without any approximation the PGF, hydrostatic balance, B®S can be alternatively be expressed in
terms ofp® and a related pressure quantiy:

14 Although ROMS uses an intermediate approximation to EOS (6.3), this criticism is stilhcern because of
the absence of the (1/c2) 7, s(P,z) term in (6.7) and its counterpart in (6.5). Secs. 5.1-5.2 of Shchepetkin &
McWilliams (2003) introduce two PGF schemes. One computes the densityidachrectly and then integrates it
vertically (hence, entirely avoiding computation®f, and the other is a primitive form that first explicitly computes
P. These two schemes are identical for an incompressible EOS, but the statbaiehe PGF can be expressed
entirely in terms of adiabatip differences applies only to the first scheme. Unless the EOS is modified Italexc
bulk compressibility, the primitive form implicitly contains an equivalent of th@ /c2) 7, (P, z) component.

15To avoid confusion withp* in the barotropic PGF in Secs. 3.2 and 6.2, we modified the original notation of
Dukowicz (2001) byp* — p*®* andP* — P*.

45



1VIP o i.vxP (6.19)
p p
opr opr* .
_ o(espr) .
p=p©,5P) < p°= (P =p%(©,5,P°%). (6.21)

The relations in the right column have the same functionahfoas the original ones in the left column,
and the scaling factor( P) does not explicitly appear.

The practical value of the approximate EOS (6.4)adortiori the factored EOS (6.18), for oceanic
simulations comes from a dramatic narrowing with depth efrémge of realistic values fé@ and.S (cf.,
Fig. 19 in Shchepetkin & McWilliams (2003) and Fig. 2 in MchOgall et al. (2003 )). For the factored
EOS form,r(P) can be chosen so that”) strongly dominatesx in (6.17) in the abyss; hence, the
nonlinear dependence pfon P or z is mostly absorbed into(P), which is subsequently scaled out in
thep, P — p°®, P* transformation (6.21). In the upper oce@nand S are more variable, and factoring
is not as effective in keepingx small compared ta("); however, the nonlinear compressibility is not
as important there, and useful approximations to the EOSeanade without sacrificing accuracy. We
choose the definition,

7(P) = pmos (O, So, P) /pamos (O, So, 0) (6.22)

wherepos(0, S, P) refers to the particular form of the EOS in Jackett & McDoli@ga995), ando,
and .S, are representative abyssal valueg(,0, = 1.5 and .S, = 34.74 are good choices for global or
basin-scale modeling). Then

p* = pmes(©, S, P)/r(P) (6.23)

has a substantially narrower dynamical range than theraligi = pj\05(0, .S, P), and, even more im-
portantly, it does not grow withP or z. In the terminology of Dukowicz (2001), this procedure ffsti
ens” the EOS. In a Boussinesq model based on (6/21i5 replaced with the reference valug (e.g.,
po = 1027.8kg/m3 is consistent with th@, and S, choices above and is closer to the actpfathan
the more widely useg, values of1000 or 1025 kg/m?). Thein situ P used inside the EOS routine is
approximated with a backgrourfé)(z) computed from

dF,
CTZO = —gpo - 7"(Po) . (6.24)

This approximates the EOS in (6.23) as

p* =p"(0,85,2). (6.25)

This is the same functional form as (6.2), but it accountdtiermain effect ofp variation in computing
P in the EOS; thus, it is closer to the exact EOS (6.1) in reprisg the changes af and 3 with depth.
Finally, as in the PGF algorithm in Shchepetkin & McWilliaf&03), the resulting EOS (6.25) is split
as in (6.4), except that the expansion in powers isfreplaced with ¢ — z) expansion that is truncated
after the linear term. To minimize round-off errors, the E@8xpressed as a perturbation relativedo
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This form of the EOS in (6.25) allows computation of adiabatdifferences (6.8). These are averaged
with a harmonic mean (6.9) that is subsequently needed strean cubic interpolants (5.5), segment inte-
grals (5.4), and discrete density-Jacobian. The intenpadaguaranteed to maintain positive stratification
as long as the discrete density field is positively stratifi®though removing the dominant part of the
bulk compressibility, (6.21) makes point-wise differes@d p* much closer to adiabatic differences, one
might be tempted to compute the baroclinic PGF directly frgwithout using adiabatic differencing.
However, our experience has shown that this is neither gritly accurate in practice, nor robust when
there are sudden changes in stratification.

The transformation (6.21) offers a natural, simple remedsetiuce the mode-splitting errors of both
types () and {i) in Sec. 6.2: the elimination of bulk passive compresgipih the EOS effectively removes
the second r.h.s. term in (6.15), but unlike the remedy of Rsimet al. (2001), it retains a physically
accurate representation of the thermobaric effect. Comguti andp from p* is sufficient to eliminate
their biases due to bulk compressibility, hence to avoidpe ) error.

Despite the multi-stage transformation described here,fainctional forms of the EOS and PGF
schemes in Shchepetkin & McWilliams (2003) remain unchdngequiring only a refitting of the poly-
nomial coefficients in the EO'S.

6.4 Accuracy of the Boussinesq Approximation

The accuracy and utility of using the Boussinesq approxngior an OGCM is assessed in several
papers (McDougall & Garret, 1992; Greatbatch, 2001; Mcdieg al,, 2002; Greatbatch & McDougall,
2003), identifying, among other issues, an inherent cdrifitween the assumption of constancypof
(hence replacement of mass conservation with volume ceaisen) and the need to use the fully com-
pressible EOS that implies 5% variation inp. This limits the accuracy of the Boussinesq approximation,
and there has emerged a slow but steady advocacy for noniBesgOGCMs¢.g.,Griffieset al. (2001)
and the citations above).

In this situation Dukowicz (2001) stands out because it tttarties a revision of the Boussinesq approx-
imation as traditionally applied to OGCMs that include a coesgible EOS in aad hocmanner, breaking
the internal consistency of the Boussinesq approximatide. révision restores consistency by bringing
the properties of the EOS close to that for an incompressihie while still including the thermobaric
effect. This approach stays within the spirit of the Boussinepproximation by making the approxi-
mate PGF close to the full non-Boussinesq version withouli@iyp including any non-uniformity of the
inertial p. The bulk compressibility ratio(P) is not used anywhere except in thg < 2 remapping
(6.24)-(6.25) for the stiffened EOS, which brings a mindeef relative to the more traditional choice of
replacingPy = —pggz in EOS.

This aspect of Dukowicz (2001) was criticized by McDougdllal. (2002) — in essence advocating
discarding-(P) — since it leaves “no choice but to interpret the horizon&beity vector as the Eulerian-
mean horizontal velocity, but not as the mass flux per und’arehis is viewed as a drawback because it
prevents a re-interpretation of the prognostic varialbies Boussinesq model as density-weighted rather

16 Although more recent and supposedly more accurate versions of B@®aeome available, (McDougai al.,
2003 ; Jacketet al, 2006), the EOS functional form in Jackett & McDougall (1995), itleerfrom the UNESCO
EQOS, is preferable as the approximation standard because it is alreadyatbe desired factored form, comprised
of p(©, ) at1 atm (P = 0 in our terms) multiplied by terms that account for compressibility effects. Ttienal
functional form used in the newer EOS mixBderms together witl® and.S terms and makes it harder to separate
out P effects.
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than Eulerian averages. When a solution reaches a statistadeythe difference between the re-interpreted
Boussinesq model and a non-Boussinesq model disappe#aiSec. 4-5 in McDougalkt al. (2002), as
well as similar approaches for including some non-Boussjfects in Boussinesg models (Lu, 2000;
Greatbatch, 2001)). This re-interpreted equivalenceigsphat the actual Boussinesq errors are less than
the usual estimate et 5% associated with the standard formulation. The use® @ndr(p) in a Boussi-
nesq model prevent this re-interpretation.

This limitation of Dukowicz (2001) can be substantially igéted in a finite-volume code by replacing

Hijr = 21 — 251 N (3.5) with

Zi ; 1 + Zi Y §
i I 2)1 . (6.26)

H;jr = (Zi,j,k—&-% - Zi,j,k—%) T [Po (Cm' - 5

This replacement automatically, and without additionahpatational effort, implies a redefinition of the
control volumesAY; ; ., interfacial contact surfaces, horizontal flu&%’j’k, V,H%J’k), and vertical flux

7

Wi ikt (3.9) as mass-weighted by= r(P,(z)). This yields the major part of non-uniform inertjain

)

transforming volume conservation into approximate massexvation With/// r(Py(2)) d*7 .

Density-Jacobian schemes use a contour integration t@xippate Az Az - _Z, (p, z) which is then
integrated vertically (via a simple summation) to compubénpwise pressure gradient. The later one
is subsequently multiplied by a horizontally averagéd, ; to convert it into the force applied the the
control volume. This makes the PGF be invariant with respeet change of definition fof; ; ; from
the original to (6.26) because the velocity component is atsiltiplied by the samé/, ; ;. The change
in H, ;, also leaves the transformation (6.21) unaffected. Theyaisabf Dukowicz (2001) only consid-
ers instantaneous errors associated with an inconsistertdfua fully compressible EOS in a Boussinesq
model, but this is not a guarantee that the error will not gnowme. Recently, de Szoeke & Samelson
(2002); Loschet al. (2004) pointed out that the hydrostatic, Boussinesq equstiioz are isomorphic
to the hydrostatic, non-Boussinesq equations in pressumgic@ates. This implies that the solution dif-
ferences between Boussinesq and non-Boussinesq modelsl staylbounded in time sinc and =
differences do so. Because (6.26) merely introduces a niattior in the vertical coordinate while retain-
ing the mathematical structure Boussinesq code, we expatthtt Boussinesq errors using (6.26) also
stay bounded.

The preceding discussion shows that the theoretical diffegs between Boussinesg and non-Boussinesq
hydrostatic models are much less than the initial estin@tdkDougall & Garret (1992) and Dewat al.
(1998). The differences can be further reduced by apptinaif the transformation (6.21) in combination
with the quasi-Boussinesq P)-remapping (6.26). The Boussinseq apprroximation offergvgrortant
advantage for a cleaner mode-spliting algorithm to avopet§) and (i) errors (Sec. 6.2). Conversely,

a more fundamental non-Boussinesq code does not escapedtidanassure monotonic stratification
profiles with higher-order Jacobian PGF schemes in gererhirertical coordinates and a compressible
EOS that includes thermobaric effects. In summary, we dpregently see a strong case for preferring a
non-Boussinesq OGCM.

7 Final Remarks

In this paper we have discussed many of the central algogtelements — the computational kernel
—inan OGCM designed for large computations of highly turbufeows. Our currently preferred choices
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for these elements are summarized in Sec. 1 and discussedjtt In the ensuing sections. A key aspect of
OGCM design is the interplay among the kernel elements, viaitindant possibilities for both destructive
interference and constructive synergy. This perspectiwéotinds any simple expectation that better code
modularity is the principal software step toward better OGCMhile a modular structure may facilitate
code adaptation, the most important design consideratitheioverall model performance in physical and
numerical accuracy and computational efficiency.

The use of oceanic models has historically followed a pattrsheard in scale, from basins and global
domains to flows with smaller space and time scales and mdpalént dynamics. At the present time
the simulation battle front is at mesoscale-eddy resatutioit we can anticipate continuing scale refine-
ments through a combination of larger computers, furthgordhmic advances, multi-scale (nested-grid)
methods, and, of course, improved dynamical understarafitige simulated phenomena. We intend to
participate in these developmental directions and menitiariosing, a newly constructed, non-hydrostatic
version of ROMS (Kanarsket al., 2007).
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