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Abstract: Pattern formation in clouds is a well-known feature, which can be observed almost every day. How-
ever, the guiding processes for structure formation aremostly unknown, and also theoretical investigations of
cloud patterns are quite rare. Frommany scientific disciplines the occurrence of patterns in non-equilibrium
systems due to Turing instabilities is known, i.e. unstable modes grow and form spatial structures. In this
study we investigate a generic cloud model for the possibility of Turing instabilities. For this purpose, the
model is extended by diffusion terms.We can show that for some cloudmodels, i.e special cases of the generic
model, no Turing instabilities are possible. However, we also present a general class of cloud models, where
Turing instabilities can occur. A key requisite is the occurrence of (weakly) nonlinear terms for accretion. Us-
ing numerical simulations for a special case of the general class of cloudmodels, we show spatial patterns of
clouds in one and two spatial dimensions. From the numerical simulations we can see that the competition
between collision terms and sedimentation is an important issue for the existence of pattern formation.

Keywords: linear stability analysis, pattern formation, spatial patterns, cloud schemes, numerical simula-
tions

1 Introduction
Pattern formation is a general feature in nature. We find patterns in many different locations and re-
search fields, e.g. sand ripples at sand dunes or at the beach, stripes on zebras and fishes, convective
cells in Rayleigh-Benard convection, spiral states in chemical reaction systems as e.g. the famous Be-
lousov–Zhabotinski system, and many other examples. The generation of structures is a common feature
for systems out of thermodynamic equilibrium. In contrast to states at equilibrium, which tend to be homo-
geneous, an external forcing driving a system out of equilibrium has the potential to form new structures.
These structures can have different forms, i.e. homogeneous or inhomogeneous in space and stationary or
oscillatory in time [see, e.g., 1]. Pattern formation is an emergent process, and is usually not predictable a
priori from the underlying micro states of the system; the structures on larger scales often appear in a spon-
taneous way. Research on pattern formation is an important field in many disciplines in natural sciences e.g.
mathematical biology [2], chemistry [3], fluid dynamics [e.g. Rayleigh-Benard convection, see 4] and many
other fields.

There are several approaches to represent pattern formation in models. One of the first approaches was
presented by Turing [5] in his seminal article onmorphogenesis. Chemical reactions are represented by a sys-
temof ordinary differential equations (ODEs). This set of equations is extendedbydiffusion terms, i.e. a Lapla-
cian in spatial directions is added to each equation representing the concentration of a chemical species. It
can be shown by linear stability analysis that under certain conditions (e.g. different diffusion coefficients)
stable stationary points of the ODE system can be destabilised, i.e. some Fourier modes become unstable
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and grow, until they become saturated by nonlinear effects. Since only wave numbers out of a finite interval
become unstable, spatial structures become visible. This phenomenon is called Turing instability. There are
other attempts to represent structures in models; a whole zoo of structure equations is available [see, e.g.,
the review by 1]. However, these approaches are often empirical and the variables are not directly linked to
physical quantities. Sometimes, it is possible to reduce or reformulate an underlying physical system of equa-
tions to a known structure equation [6]. The approach of using reaction-diffusion equations is more direct,
but often ignores other feedback due to the simplistic starting point. Nevertheless, reaction-diffusion equa-
tions provide an important class of equations for pattern formation, and are directly linked to the physical
variables.

In atmospheric physics, a very prominent example of emerging structures is pattern formation in clouds,
which canbe seennicely fromsurface observation aswell as obtainedby remote sensing techniques (e.g. from
satellites). Surprisingly, the investigation of pattern formation in clouds is currently not a widespread topic
in atmospheric physics. During the 1980s and 1990s several investigations and empirical studies on pattern
formation in liquid clouds were carried out, see e.g. the review on cloud streets in the planetary boundary
layer [7] or the series on cloud clustering [8, 9, 10, 11, 12]. There are only few newer studies on pattern forma-
tion, mainly in connection with investigations of open and closed cells in marine stratocumulus [see, e.g.,
13, 14]; however, rigorous and theoretic investigations on the formation of patterns for clouds are lacking.
This is surprising, since internal structures of clouds constitute a serious uncertainty in terms of radiative
feedback. Radiative transfer in homogeneous media is completely different than in inhomogeneous media.
For the investigations of Earth’s energy budget, clouds play a major role due to scattering and reflection of
sunlight as well as trapping infrared radiation by absorption and re-emission. In structured clouds, many
assumptions of radiative transfer in homogeneousmedia do not work anymore; for instancemultiple scatter-
ing occurs frequently, and horizontal radiative transport becomes more important. Thus, in this respect the
investigation of structured (i.e. inhomogeneous) clouds and their origin and evolution is quite essential for
meaningful estimations of cloud radiative forcings.

There is another difficulty concerning the representation of cloud patterns in models. Clouds constitute
an ensemble of many water particles. In cloud physics, one often considers processes on the scale of indi-
vidual particles, which are only partly understood until now. The description of the statistical ensemble of
cloud particles, forming the macroscopic “object” cloud, is not very precise, and is lacking a rigorous for-
mulation. There are some attempts based on Boltzmann-type evolution equations [see, e.g., 15, 16], however
there is no general theory of clouds and no basic set of equations as a common ground to start is available
in cloud physics. In contrast when the motion of dry air shall be described, the Navier-Stokes equations can
be used. For the description of clouds, often averaged variables such as the number concentration or mass
concentration of particles are used. It is possible to relate these quantities to general moments of the un-
derlying size/mass distribution of the particle ensemble [see, e.g., 16, 17]. For these averaged variables, the
process rates of the cloud processes are often formulated by nonlinear terms. With these parameterisation at
hand the temporal evolution of the averaged quantities can be described by a system of ordinary differential
equations, where the process rates form the right hand side of the ODE system, also called the reaction term.
Since a basic theory is lacking, the formulations of the process rates differ among the available cloud mod-
els, and often they are not mathematically consistent. For instance, the uniqueness of solutions of the ODE
system is not always guaranteed, and often requires a more rigorous treatment [see, e.g., 18]. Nevertheless,
these cloud models are often used, and they are useful for scientific investigations as well as for operational
weather forecasts or climate predictions.

In this study, we investigate the potential of generic cloud models, formulated in a former study [19], to
form spatial structures. We couple the model equations with diffusion terms, i.e. Laplacians in the spatial
directions; this leads to reaction-diffusion equations for cloud physics schemes, which will be investigated
in terms of Turing instabilities.

The study is structured as follows: In the next section we will briefly describe the generic cloud model
and the represented processes. In section 3 we present the approach of linear stability theory, leading to
conditions for Turing instabilities in reaction-diffusion equations. The generic cloud model always allows
a trivial equilibrium (no clouds, only rain); in section 4 we show that this equilibrium state cannot form
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Turing instabilities. In section 5 we present a special case of a cloud model, which does not show pattern
formation; this case contains standard cloud models. In contrast, in section 6 we present a general class of
cloudmodels allowing Turing instabilities and thus pattern formation. In addition, a special case is explored
for investigating several features of the model. In the following section 7 this cloud model is numerically
simulated for a 1D and a 2D scenario, and these results are shown. We end the study with a summary and
some conclusions.

2 Generic cloud model
We present the generic cloudmodel formulated in the former study by Rosemeier et al. [19]. Themodel repre-
sents clouds consisting exclusively of liquid water droplets, so-calledwarm clouds. The droplet population is
divided into two different regimes, namely cloud droplets and rain drops, respectively. Cloud droplets are wa-
ter droplets of small sizes (radius smaller than ∼ 40 µm), whereas rain drops are larger water particles. This
separation can be seen in detailed simulations [see, e.g., 16, his figure 4], and partly in measurements. All
water particles fall in vertical direction due to gravity. Since for small droplets the fall velocities are very small
due to friction of air, we can assume that these droplets are stationary, in contrast to large rain drops, which
fall out faster. This separation was first proposed by Kessler [20] in an ad hoc manner; however, it could be
justified by the simulationsmentioned above. We consider themass concentrations of these two populations
as variables in the model. The phase transitions (water vapour vs. liquid water) are guided by the saturation
ratio Sl = pv

ps(T) , i.e. the ratio of partial pressure of water vapour, pv, and its temperature dependent satu-
ration vapour pressure, ps(T). Thermodynamic equilibrium, i.e. coexistence of gaseous and liquid water, is
then fulfilled at Sl = 1; for simplification of the notation, we also introduce the supersaturation S := Sl − 1,
i.e. equilibrium is reached for S = 0. For liquid clouds, the following processes must be taken into account.
• Condensation and diffusional growth/evaporation

Cloud droplets are formed at thermodynamic conditions slightly beyond thermodynamic equilibrium,
i.e. at supersaturation (S > 0); actually, aerosol particles are activated and after passing a critical size,
as given by Köhler theory [21], they constitute cloud droplets. In simple cloud models, this process of
condensation is simplified and represented together with diffusional growth. Cloud droplets can grow or
shrink by uptake or evaporation of water vapour, which is provided by diffusion; this process is also
driven by the supersaturation, which controls the thermodynamic equilibrium. Diffusional growth is
quite inefficient for large droplets, thus this process is only relevant for small droplets, i.e. for the cloud
droplet category. Both processes, condensation and diffusional growth (or on the contrary evaporation
for S < 0) are represented by a rate C = c′Sqc with a suitable constant c′ depending on temperature and
pressure only. For simplification, we assume in our investigations a permanent source of supersatura-
tion, e.g. driven by a vertical upwardmotion. Thus, we can also neglect evaporation of water droplets for
the system.

• Collision processes
Since water particles fall with different velocities depending on their masses, there will be collisions
between neighbouring particles of different size, and these particles will eventually form a single droplet
after collision (so-called collision-coalescence). Because of the artificial splitting of the whole droplet
ensemble into two categories, we have to consider two (artificial) processes:
(1) Two cloud droplets collide and form a large rain drop; this process is called autoconversion. (2) A large
rain drop collects a small cloud droplet by collision; this process is called accretion. These processes are
usually modelled in the spirit of population dynamics, using nonlinear terms; however, derivations from
integrals over size/mass distributions lead to similar descriptions [see, e.g., 22, 16]. Autoconversion can
be represented by terms A1 = a1q𝛾c with a suitable constant a1 > 0 and an exponent 𝛾 > 0. For accretion,
the terms can be formulated as A2 = a2qβcc qβrr with a suitable constant a2 > 0 and exponents βc , βr > 0,
mimicking a generalised predator-prey process.
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• Sedimentation of particles
For the representation of rain drops falling out of a cloud level, in general we would have to consider
a hyperbolic term in the vertical direction. For simplicity, we assume just one atmospheric layer with a
prescribed vertical extension. Thus, we discretise the hyperbolic term and assume a constant flux ofmass
from above. Then, the sedimentation term can be approximated by D = B − dqζr , with constants B, d > 0
and an exponent ζ > 0. Note, that terminal velocities of cloud particles can be parameterised by power
laws [see, e.g., 23].

Using the representation of the processes as stated above, we obtain the generic cloud scheme described in
Rosemeier et al. [19]:

dqc
dt = c′Sqc − a1q𝛾c − a2q

βc
c qβrr , (1a)

dqr
dt = a1q𝛾c + a2q

βc
c qβrr + B − dqζr . (1b)

To simplify the notation we will write c instead of c′S in the remaining of the study. For the analysis of the
equations, we assume constant environmental conditions, i.e. constant temperature, pressure, and supersat-
uration (S > 0), respectively. This assumption leads to an idealised situation, however it could be shown that
similar conditions can be encountered in the atmosphere [see, e.g., 24] for quite long times. Assuming these
constant conditions allows us to investigate the asymptotic states of the system.

The ODE system (1) was discussed in detail in Rosemeier et al. [19]. In the presented work the equations
(1) are extended by diffusion terms, so we obtain the following system

dqc
dt = cqc − a1q𝛾c − a2q

βc
c qβrr + D1∇2qc (2a)

dqr
dt = a1q𝛾c + a2q

βc
c qβrr − dqζr + B + D2∇2qr . (2b)

This is a reaction-diffusion system (or Turing system). Note, that the added diffusion terms do not represent
molecular dynamics, as in chemical systems. Actually, these terms can be seen as a representation of un-
resolved (dynamical) processes, as e.g. small eddies or turbulence. For the representation of turbulence in
subgrid scale schemes or entrainment due to unresolved eddies, often gradient terms are used [see, e.g.,
25, 26]. This approach leads to diffusion terms in the equations for the mean variables. The different values
of the diffusion constants for the two water species can be motivated as follows:

Small clouds droplets will mainly follow the small scale motions in the system, thus the diffusion coef-
ficient D1 for this species should be large. On the other hand, rain drops are mostly accelerated by gravity,
thus they are less affected by small scale motions. For this species, the diffusion coefficient D2 can be chosen
different from the coefficient D1, e.g. we would assume D2 < D1.

In the sequel the system (2) is investigated with respect to pattern formation. The occurrence of patterns
cannot be guaranteed for the generic model, i.e. for all possible choices of parameters, but in some cases
linear stability analysis predicts pattern formation. These findings can be confirmed by numerical simula-
tions. In addition, numerical simulations with an extended parameter range might lead to further insights
into potential pattern formation.

3 Linear stability analysis
The ideas of linear stability analysis [e.g. 5] can be used for the determination of stable and unstable modes
of the system of equations. A classical example for the analysis of reaction-diffusion equations using linear
stability analysis is the investigation of the Brusselator as a simple systemdescribing chemical reactions [see,
e.g., 27, pp. 105-108]. In this section we mostly follow the exposition given in Cross and Greenside [27] for a
2D system of reaction-diffusion equations, as, e.g., given by (2).
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The subsequent 2D reaction-diffusion system is given by

du1
dt = f1(u1, u2) + D1∇2u1 (3a)

du2
dt = f2(u1, u2) + D2∇2u2. (3b)

In a first step, we determine the stationary and homogeneous equilibrium states, thus we omit the diffusion
terms. By neglecting the Laplacians, we obtain a system of ordinary differential equations

du1
dt = f1(u1, u2) (4a)

du2
dt = f2(u1, u2). (4b)

The right hand side is called the reaction term. We want to derive conditions for a stable equilibrium of (4)
which can be destabilised by diffusion terms. First, we consider an equilibrium solution ue1, ue2 of the system
(4). By definition it satisfies the equations

0 = f1(ue1, ue2) (5a)
0 = f2(ue1, ue2). (5b)

Next we compute the Jacobian of (4) evaluated at the equilibrium solution ue1, ue2

Df |(ue1 ,ue2) =
(︃
a11 a12
a21 a22

)︃
, (6)

where the entries of the matrix are determined by

aij =
∂fi
∂uj

(ue1, ue2). (7)

The (potentially complex) eigenvalues of the Jacobian at the equilibrium state are denoted by σ1, σ2. The
equilibrium solution ue1, ue2 is asymptotically stable if and only if the following relations are fulfilled

tr(Df ) := a11 + a22 = σ1 + σ2 < 0 (8a)
det(Df ) := a11a22 − a12a21 = σ1 · σ2 > 0. (8b)

This is equivalent to the more common condition for asymptotic stability, i.e. Re(σi) < 0 for i = 1, 2.
Nowweconsider the system (3) including thediffusion terms. For this purpose,weuse spatial coordinates

x = (x1, . . . , xn)T and a generalised wave number vector k = (k1, . . . , kn)T . For each spatial direction, we

consider linear waves with wave lengths λi = 2π
ki . The Laplacian is defined by ∇2 =

n∑︁
i=1

∂2

∂x2i
. The spatial

dimension is given by n ≥ 1.
For the linear stability analysis of the reaction-diffusion system, we replace the reaction term by its lin-

earisation evaluated at ue1, ue2, i.e. with the linearisation u = ue + up, with a small perturbation up around
the constant equilibrium state ue, we obtain

∂up1
∂t = a11up1 + a12up2 + D1∇2up1 (9a)

∂up2
∂t = a21up1 + a22up2 + D2∇2up2. (9b)
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We want to derive conditions for the destabilisation of ue1, ue2 due to the diffusion terms. For simplification
we assume periodic boundary conditions; therefore a Fourier discretisation in space with a superposition of
linear wave modes exp(ikx) can be applied. The system (9) shall be solved by a separation ansatz

up =
(︃
u1q
u2q

)︃
exp(σq t) exp(ikx). (10)

using the eigenvalues σq representing a single Fourier mode. Such a Fourier mode is an eigenfunction of the
Laplacian, hence the equation

∇2 exp(ikx) = −
(︃ n∑︁

i=1
k2i

)︃
exp(ikx) = −q2 exp(ikx) (11)

holds, with the sum over all squared wave numbers q2 =
∑︀

k2i ; the values q serve as an index. Substituting
(11) into the linearized equation (9) leads to the eigenvalue problem

Dfq uq = σquq , (12)

for the coefficient uq of the Fourier mode (10) where the matrix Dfq is given by

Dfq =
(︃
a11 − D1q2 a12

a21 a22 − D2q2

)︃
. (13)

For the determination of the eigenvalues σq of the matrix Dfq the roots of the quadratic polynomial

0 = det(Dfq − σq I) = σ2q − (tr(Dfq))σq + det(Dfq). (14)

must be determined. The eigenvalues σqi are given by

σq1/2 =
1
2 tr(Dfq) ±

1
2

√︁
(tr(Dfq))2 − 4det(Dfq). (15)

It follows that the mode which belongs to the wave number q is asymptotically stable if and only if

tr(Dfq) := a11 + a22 − (D1 + D2)q2 = σq1 + σq2 < 0 (16a)

det(Dfq) :=
(︁
a11 − D1q2

)︁(︁
a22 − D2q2

)︁
− a12a21 = σq1 · σq2 > 0. (16b)

Remember, that the condition can also be formulated in terms of determinant and trace of the original ODE
system, i.e.

tr(Dfq) := tr(Df ) − (D1 + D2)q2 (17a)
det(Dfq) := det(Df ) − (D1a22 + D2a11)q2 + D1D2q4 (17b)

Weare interested in conditions for thedestabilisationof amode q. Equation (16a) is satisfiedbecause equation
(8a) is valid and D1, D2, q2 > 0. The only way for destabilisation is to violate condition (16b), thus we look
for a mode which fulfills (︁

a11 − D1q2
)︁(︁

a22 − D2q2
)︁
− a12a21 < 0. (18)

The left hand side of (18) defines a quadratic polynomial in q2,

p2(q2) =
(︁
a11 − D1q2

)︁(︁
a22 − D2q2

)︁
− a12a21. (19)

All modes q with p2(q2) < 0 are unstable. The quadratic polynomial admits a minimum at
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q2

det(Dfq)

unstable modes
Fig. 1: The quadratic polynomial (19), which gives the determinant of the Jacobian (13), is shown. No unstable modes occur if
the minimum of p2 is positive (blue line). Unstable modes are possible if the minimum of p2 is negative (orange line).

q2m = D1a22 + D2a11
2D1D2

, (20)

which constitutes the “most unstable” Fourier mode. Inserting the relation (20) into (18) yields the condition

D1a22 + D2a11 > 2
√︀
D1D2(a11a22 − a12a21) (21)

or in the reformulated version

D1a22 + D2a11 > 2
√︀
D1D2 det(Df ) (22)

There is a chance to find an unstable mode q if (21) holds, see figure 1. The conditions (8a) and (21) can be
satisfied when a11 and a22 have opposite signs.

4 The trivial equilibrium of the generic cloud model
We now show that the trivial equilibrium of the generic cloud model (1) in case of a stable stationary point
never leads to Turing instabilities. We start with the generic cloud model (1), leading to the stationary point

qce = 0, qre =
(︂
B
d

)︂ 1
ζ

. (23)
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Since this implies no cloud, just rain, in the atmospheric layer, this state is called trivial equilibrium. Actually,
this stationary point is only valid for linear stability analysis for values of the exponents 𝛾 ≥ 1 and βc ≥ 1.
Otherwise, the partial derivatives with respect to qc do not exist at qc = 0. Cloud models with 𝛾 < 1 or
βc < 1 also lack Lipschitz continuity. Therefore, the Picard-Lindelöff theorem does not guarantee the unique
solvability of the ODE system when the initial value for qc is given by qc = 0. For discussions of such cloud
models and possible extensions to uniqueness, see the recent study by Hanke and Porz [18]. In the remainder
of the study developed here we will always assume 𝛾 ≥ 1, βc ≥ 1. For linear stability analysis we have to
consider the Jacobian Df |(qce ,qre). As discussed by Rosemeier et al. [19] the Jacobian always has the form

Df |(qce ,qre) =
(︃
a11 0
a21 a22

)︃
:= A, (24)

with a22 = −dζ
(︀ B
d
)︀ ζ−1

ζ < 0. As βc ≥ 1 is assumed, we obtain a12 = 0. If even the conditions 𝛾 > 1 and βc > 1
hold, we obtain a21 = 0, otherwise a12 > 0; for details, see calculations in appendix A. Nevertheless, it is
clear that the eigenvalues σi are given by σ1 = a11, σ2 = a22 < 0 and thus det(Df ) = a11a22 = σ1σ2, and
Tr(Df ) = a11 + a22 = σ1 + σ2, respectively. For a stable stationary point, both (real) eigenvalues must be
negative, leading to the criteria (8); this might be fulfilled for the choice of parameters c < a1 in case of 𝛾 = 1;
otherwise the stationary point cannot be stable (see also appendix A). However, the stable stationary point
can not lead to Turing instabilities via destabilisation. The criterion for the existence of destabilisation (21)
can be reduced to the following form:

D1a22 + D2a11 > 2
√︀
D1D2(a11a22). (25)

Since a11 = σ1 < 0 and a22 = σ2 < 0, this leads to a contradiction. This proves that the trivial stationary point
(if it exists) cannot be destabilised by diffusion, and thus it cannot serve for Turing instabilities.

From a physical point of view, in this situation the source for cloud droplets represented by the term cqc
is too weak and collision processes (terms A1 and A2) reduce the cloud water such efficiently that diffusion
cannot change the quality of the stable stationary point (i.e. no cloud with rain).

If the parameters c, a1 are chosen such that a11 = σ1 = c − a1 > 0, an unstable equilibrium state can be
obtained. Physically, this means that condensation and diffusional growth is much stronger than autocon-
version, i.e. more cloud mass is generated by condensation than is lost by collision processes. This situation
usually occurs in scenarios with a persistent updraught, leading to a steady source of supersaturation and
thus permanent cloud droplet formation and growth. In case of an unstable trivial equilibrium, the modified
Jacobian at the equilibrium admits the following form:

Dfq|(qce ,qre) =
(︃
a11 − D1q2 0

a21 a22 − D2q2

)︃
. (26)

The second eigenvalue σq2 = a22 − D1q2 is still negative, since D1, q2 ≥ 0. The first (real) eigenvalue can be
negative for Fourier modes q fulfilling the following condition

σq2 = a11 − D1q2 < 0 ⇔ a11 < D1q2 ⇔ a11
D1

< q2. (27)

Thus, the absolute value of the diffusion constant D1 > 0 decides about the stability of the modes.

5 A case without destabilisation
We set 𝛾 = 1 and βc = 1 in the system (1) and show that it is not possible to destabilise an asymptotically
stable equilibrium of this model by diffusion terms with arbitrary coefficients D1, D2 > 0. The cloud scheme
of the operational numerical weather prediction model COSMO [28] of the German weather service (DWD)
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and the research model by Wacker [29] admit this special form of the cloud scheme examined in the sequel.
Particularly we consider

dqc
dt = cqc − a1qc − a2qcqβrr , (28a)

dqr
dt = a1qc + a2qcqβrr + B − dqζr . (28b)

Besides the trivial equilibriumstate (see discussion in section 4) the only non-trivial equilibriumof the system
(28) is given by [see 19]

qce =
d
c

(︂
c − a1
a2

)︂ ζ
βr
− B
c qre =

(︂
c − a1
a2

)︂ 1
βr
. (29)

Note, for the existence of this (non-negative) equilibrium state two conditions must be fulfilled, i.e.

c > a1, and d
(︂
c − a1
a2

)︂ ζ
βr
> B. (30)

Physically, thismeans that, as before, the clouddroplet source cqc is stronger than the sink of autoconversion.
Additionally, the rain flux from above B must not be too strong, otherwise no equilibrium state is reached,
i.e. the rain will collect almost all cloud droplets.

Again we compute the Jacobian at the equilibrium state

Df |(qce ,qre) =
(︃
a11 a12
a21 a22

)︃
, (31)

where

a11 = c − a1 − a2qβrre = 0, (32a)

a12 = −a2βrqceqβr−1re < 0, (32b)

a21 = a1 + a2qβrr,e = c > 0, (32c)

a22 = a2βrqceqβr−1re − dζqζ−1re

= a2βr

⎛⎝d
c

(︂
c − a1
a2

)︂ ζ
βr
− B
c

⎞⎠(︂ c − a1
a2

)︂ βr−1
βr

− dζ
(︂
c − a1
a2

)︂ ζ−1
βr
. (32d)

As a11 = 0, condition (8a) gives a22 < 0; note, that condition (8b) is fulfilled. On the other hand in this case,
condition (21) reduces to

D1a22 > 2
√︀
D1D2(−1)a12a21. (33)

This yields a contradiction. Thus, for schemes with 𝛾 = βc = 1 pattern formation via Turing instabilities is
impossible.

Generally, it is of interest if and when the matrix entry a22 changes its sign, since this entry determines
the quality of the stationary point. For this purpose we further investigate a22 in detail

a22 =
a2βrd
c

(︂
c − a1
a2

)︂ βr+ζ−1
βr

− dζ
(︂
c − a1
a2

)︂ ζ−1
βr
− a2βr

c B
(︂
c − a1
a2

)︂ βr−1
βr

=
(︂
βrd
c (c − a1) − dζ

)︂(︂
c − a1
a2

)︂ ζ−1
βr
−a2βrc B

(︂
c − a1
a2

)︂ βr−1
βr

⏟  ⏞  
<0

. (34a)
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For the determination of the sign of a22 the following term must be examined

βrd
c (c − a1) − dζ = d

(︂
βr −

a1βr
c − ζ

)︂
. (35)

We can now conclude that βr ≤ ζ is sufficient for a22 to be negative. This condition holds for the Wacker and
COSMO schemes.

The trivial equilibrium state is given by

qc = 0, qr =
(︂
B
d

)︂ 1
ζ

. (36)

It is unstable for the COSMO and Wacker schemes, but several modes q are stabilised by the diffusion terms,
depending on the diffusion constant D1. However it is not generally unstable for an arbitrary choice for the
prefactors. The stable case was already discussed in section 4, it cannot trigger Turing instabilities.

6 A cloud scheme with pattern formation
In this section we present a general class of cloud schemes of the form (1) which allow pattern formation via
Turing instabilities. Again the method described in section (3) is applied. Cloud schemes of the form

dqc
dt = cqc − a1qc − a2qβcq

β
r (37a)

dqr
dt = a1qc + a2qβcq

β
r − dqr (37b)

are considered, where β > 1. Thus, accretion is parameterised by the term a2qβcq
β
r , which can also be found

in some standard cloud models [see, e.g., 30, with β = 1.15 as used in the IFS]. For simplification, we addi-
tionally assume a linear autoconversion (𝛾 = 1) according to Kessler [20]. However, we will discuss later that
this restriction is not crucial. Note, that we also assume β = βr > ζ = 1 as indicated in section 5. Finally, we
first omit the constant rain flux from above (i.e. the term B) for simplification; we will discuss the inclusion of
this term at the end of this section and also in section 7 for a special set of parameters. The ODE system (37)
is extended by diffusion terms and the resulting reaction-diffusion system is given by

∂qc
∂t = cqc − a1qc − a2qβcq

β
r + D1∇2qc (38a)

∂qr
∂t = a1qc + a2qβcq

β
r − dqr + D2∇2qr . (38b)

The system (37) has the following nontrivial equilibrium

qre =
c
d qce , qce =

(︂
dβ

cβ
c − a1
a2

)︂ 1
2β−1

. (39)

To guarantee the existence of a positive equilibrium we assume

c > a1. (40)
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This is the first constraint on the admissible set of parameters. As before, condensation is dominant over
autoconversion of cloud droplets. The Jacobian evaluated at the abovementioned equilibriumhas the entries

a11 = (1 − β)(c − a1) < 0 (41a)

a12 = −β dc (c − a1) < 0 (41b)

a21 = a1 + β(c − a1) > 0 (41c)

a22 = d
(︁
β c − a1c − 1

)︁
. (41d)

Turing instabilities can arise if a22 > 0. This is equivalent to the condition

1 < β c − a1c . (42)

Note that condition (42) is equivalent to the formulation 1 − 1
β > a1

c , which implies β > 1 as already assumed;
thus, the prefactors a1, c > 0 can be chosen accordingly. The trace of the Jacobian is given by

tr(Dfq) = a11 + a22 = (1 − β)(c − a1) + d
(︁
β c − a1c − 1

)︁
. (43)

The condition (8a) for negative trace holdswhen d is chosen small enough. It can be shown that for the system
(37) the condition on the positive determinant (8b) is equivalent to 0 < 2β − 1 which is always satisfied for
β > 1. Consequently it is possible to chose a1, c and d aswell asD1 andD2 in (38) such that Turing instabilities
can arise.

As a concrete example for investigating the details we consider the case β = 2, i.e. the cloud scheme

dqc
dt = cqc − a1qc − a2q2cq2r (44a)

dqr
dt = a1qc + a2q2cq2r − dqr . (44b)

The corresponding reaction-diffusion system has the form

∂qc
∂t = cqc − a1qc − a2q2cq2r + D1∇2qc (45a)

∂qr
∂t = a1qc + a2q2cq2r − dqr + D2∇2qr . (45b)

Applying relation (39) gives the non-trivial equilibrium

qce =
(︂
c − a1
a2

)︂ 1
3
(︂
d
c

)︂ 2
3

(46a)

qre =
(︂

c
a2d

)︂ 1
3

(c − a1)
1
3 (46b)

for c > a1 as indicated in equation (40).
In the next step the Jacobian of (44) evaluated at the equilibrium (46) is considered. The condition a22 > 0

is equivalent to
c > 2a1. (47)

This amounts to a further constraint on the prefactors. Additionally, the trace of the Jacobianmust be negative
when (8a) is supposed to hold, i.e.

a11 + a22 = a1 − c⏟  ⏞  
<0

+ d
(︂
1 − 2a1

c

)︂
⏟  ⏞  

>0

. (48)
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c

d

c = a1 c = 2a1

d = c c−a1
c−2a1

Fig. 2: Constraints on the prefactors. We assume that a1 is given.

When d is chosen sufficiently small, i.e.
d < c c − a1

c − 2a1
, (49)

the relation (8a) holds. Thus with an appropriate choice of d according to (49) we can satisfy the conditions
(8), and (21) can be fulfilled for a proper choice of the diffusion constants D1, D2. In summary, we have de-
rived three limiting conditions (40), (47), and (49), which are illustrated in figure 2. For values of c and d
in the blueish domain of the parameter space, the equilibrium state is stable and in general allows Turing
instabilities.

From eq. (49) as well as from the phase diagram in figure 2 we see that the strength of the sedimenta-
tion (parameter d) plays a major role for the existence of Turing instabilities. If sedimentation is too strong
compared to condensation, diffusion is not effective enough to distribute the cloud spatially for generating
instabilities.
Remarks:
1. If we investigate the first equation of the generic ODE System (1a) we can identify a relation satisfied by

the non-trivial equilibrium qce , qre which holds for any admissible set of parameters. If the condensation
term in the original formulation is slightly extended to obtain the final equation

dqc
dt = cq𝛾c − a1q𝛾c − a2q

βc
c qβrr , (50)

i.e. the condensation and the autoconversion term have the same exponential behaviour, then we detect
the following identity for the nontrivial steady states satisfying dqc

dt = 0

c − a1
a2

= qβc−𝛾ce qβrre . (51)

This means that a certain combination of qce and qre is constant in the set of the admissible exponents
βc , βr and 𝛾, provided the prefactors a1, a2 and c are held constant. Therefore, the value c−a1

a2 will be
denoted as a conserved quantity in the sequel. Note that the validity of the identity (51) is unaffected by
the inclusion of a term B in (1b).

2. In case of 𝛾 = 1, we obtain for the conserved quantity in equation (51) the term
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c − a1
a2

= qβc−1c qβrr . (52)

This leads to a strong simplification of the first column in the Jacobi matrix Df , since with relation (52)
the dependence on qce , qre can be eliminated easily (a11 = (1 − βc)(c − a1), a21 = a1 + βc(c − a1)). This
property holds for all values of βr > 0.

3. Including the rain flux from above B into equation (38b) leads to the modification

dqr
dt = a1qc + a2qβcq

β
r + B − dqr . (53)

Thus, the determination of the non-trivial stationary point becomes more complicated. For the special
case β = 2we investigate (53) explicitly. The stationary points shall be computed. Following the strategy
at the beginning of the section, we add the two ODE equations (44a) and (53), which were set to zero
before. This leads to the problem of finding real roots of the general cubic polynomial

p3(qre) = dq3re − Bq2re − c
c − a1
a2

. (54)

Using Cardano’s formulas [see, e.g., 31, chapter 6], we can determine the roots of the polynomial directly
using the following terms:

p = −13

(︂
B
d

)︂2
(55)

q = −
2B3 + 27d3c c−a1a2

27d3 (56)

∆ =
(︁q
2

)︁2
+
(︁p
3

)︁3
=
27d2c2 (c−a1)

2

a22
− 4B3c c−a1a2

108d4 (57)

whereas the parameter ∆ decides about the quality of the roots (e.g. one real root and two complex con-
jugates for ∆ > 0). One real root is given by

u = 3

√︂
−q2 +

√
∆, v = 3

√︁
− q
2 −

√
∆, qre = u + v + B

3d . (58)

Since the sign of parameter ∆ decides about the number of real roots, there is in general a bifurcation at
B1, which can be calculated using equation (57):

27d2c2 (c − a1)
2

a22
= 4B31c

c − a1
a2

⇔ B1 = 3

√︂
27
4 d2 c(c − a1)a2

. (59)

However, the condition (21) for the existence of a Turing instabilitymight be violated at different values of
B as can be seen in the numerical simulations in the next section. The equilibrium states can be inserted
into the Jacobi matrix for determining the eigenvalues. Using the relation (52), we see that the entries a11
and a21 do not depend on B. Therefore when the impact of B on the existence of Turing instabilities shall
be investigated, we only have to consider the entries a12(B), a22(B). The sign of a22(B) is again the key
parameter, and depends on the rain flux B. Actually, for a certain setting of parameters c, a1, a2, d we
will determine the qualitative behaviour and the possibility of Turing instabilities numerically (see next
section).

4. The choice of exponents βc > 1, βr > 1 in the accretion term is motivated by existing models as e.g. the
operational weather forecasting model IFS [32], which contains such exponents. However, since the rep-
resentation of collision processes in bulk models is not well-defined from a basic theory, there is actually
no restriction of the choice of parameters. It is conceivable that the parameters also vary for different
environmental regimes.
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5. A nonlinear autoconversion generally affects the nontrivial stationary point aswell as the entries a11, a21
of the Jacobian. However, an analytical derivation of general conditions for the occurrence of Turing in-
stabilities appears at least cumbersome through the nonlinear equation for the equilibrium, i.e.

d − a1
(︂
d
c

)︂𝛾

q𝛾−1r − a2
(︂
d
c

)︂β
q2β−1r = 0, β > 1, 𝛾 > 1. (60)

Numerical studies for different values of parameters β, 𝛾 indicate that pattern formation is not restricted
to the case 𝛾 = 1. We could detect patterns in two simulations where βc = βr = 1.25 and 𝛾 = 2 or 𝛾 = 3.
The other parameters were chosen as in the 1D test case in the next section. The arising patterns are very
similar to the patterns illustrated in the next section. This observation suggests that patterns can also
evolve when the parameterisation of the autoconversion process is nonlinear. However, for an accretion
term of the form A2 = a2qcqr one can show that even for exponents 𝛾 > 1 these schemes do not allow
Turing instabilities.

7 Numerical simulations of cloud patterns
Setup:We carry out 1D and 2D numerical simulations for investigating the special case (β = 2) of the general
cloudmodel allowing Turing instabilities, discussed in section 6. A pseudo-spectralmethod is applied for the
numerical solution of the system, see appendix B. We choose a domain length of L = 50 for the 1D case and
a quadratic domain with length of L = 50 for the 2D case, respectively. In both cases, the domain is cyclic as
assumed in the linear stability analysis above. For the 1D simulations, we specify the parameters as follows:
a1 = 1, a2 = 1, c = 5, d = 0.1, D1 = 103 and D2 = 10−1. In this scenario, the non-trivial stationary point is
asymptotically stable and the parabola p2 defined by equation (19) is negative for wave numbers q2 = 4π2

L2 n
2

with n ∈ {2, . . . , 7}. Therefore, these modes give rise for linear instability and thus lead to Turing instability.
For the 2D simulations we choose d = 0.13, D1 = 102, D2 = 2.5 ·10−2. The other parameters are like in the 1D
case. This slightmodification does not change the qualitative behaviour. As initial condition for both caseswe
prescribe the equilibrium of the ODE systemwith spatial, normally distributed perturbations with amplitude
of order 0.01. In a first step, the system (45) is simulated, i.e. there is no rain flux from above (B = 0). In a
second step we will discuss the impact of the rain flux on the pattern formation in the simulations.
Results of 1D simulations without rain flux (B = 0): First, we investigate the numerical simulations in one
spatial dimension. In figure 3 the time evolution of the two variables qc (left panel) and qr (right panel) is
shown. The horizontal axis represents the spatial extension of the 1D domain (with cyclic boundary condi-
tions), the vertical axis represents time. The values of the cloud variables are represented by the colour code.
Note, that we always consider dimensionless variables qc , qr, thus the absolute values of these variables have
no specific physical meaning.

The time evolution clearly shows the formation of spatial structures at times t > 200 (in dimensionless
time). The spatial structure is forming out of the noise, i.e. the destabilised modes suddenly grow to larger
sizes until they are saturated (and thus stopped) by the nonlinear terms. Their spatial distribution slightly
changes during time until at around t ∼ 1200 the situation is consolidated, i.e. the pattern stays quite sta-
tionary. In figure 4 the simulations at times t = 20/200/2000 are shown. Here, the evolution can be seen
clearly as well as the final “wavy” structure at t = 2000. Note, that the variables qc and qr have contrary be-
haviour: for high values of qc the rain variable qr is quite small and vice versa. This can be explained by the
collision terms, which act as in a generalised predator-prey system. If the predator population (i.e. the rain)
is small, the cloud water survives and grows to larger values due to condensation only, since autoconversion
is weak. If the rain becomes larger, it reduces the prey (the cloud water) due to collisions.

Using Fourier analysis (not shown) we see that only a part of the Fourier spectrum has reasonable am-
plitudes, whereas higher modes are of very low amplitudes. However, we do not see the distinct spectrum
as predicted by linear stability theory. The reason for this is the nonlinear interaction of the different modes,
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(a) qc (b) qr

Fig. 3: Time evolution of the variables qc (left panel a) and qr (right panel b) in 1D. The spatial dimension is displayed on the
horizontal axis (cyclic domain of length L = 50).The time is displayed on the vertical axis. At t ∼ 200 spatial structures form,
which finally lead to a kind of wavy pattern at the end of the simulation
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Fig. 4: Spatial variation of the variables qc (top row) and qr (bottom row) for times t = 20 (left), t = 200 (middle), and t = 2000
(right), respectively. Note the different scaling of the vertical axes. Actually, at t = 20 there is almost no variation of qc , qr
visible, whereas at t = 2000 the change in qc , qr is obvious.

which leads to non-vanishing amplitudes ofmodes which are stable according to the linear stability analysis.
Nevertheless, we see that only a small part of the Fourier spectrum is present in the simulations.
Results of 2D simulations without rain flux (B = 0): In a second simulation we use the 2D setup with white
noise as before to investigate pattern formation in a 2D domain.

Qualitatively, we see the same behaviour for the 2D simulations of a quadratic domain of length L =
50 with cyclic boundary conditions. After a short time, the simulation leads to growing unstable modes,
which are then saturated by nonlinear terms in themodel; thesemodes form spatial structures, which change
only slightly over time until they stay stationary. Thus, pattern formation due to Turing instabilities can be
observed as expected from theory. The structures in cloudwater qc are less pronounced than in the rainwater
qr. Nevertheless, the spatial patterns remain stationary, even for longer times.
Results of 1D simulations for including the rain flux (B > 0): In a last series of simulations we investigate the
impact of the rain flux B, which was set to zero in section 6 for simplification of the analysis. Using the fixed
parameters c, a1, a2, d we can calculate the roots of the cubic polynomial determining the stationary points.
One real root can be calculated as qre = u + v + B

3d , see (58). The bifurcation value can be calculated as
B1 ∼ 1.10521. Actually, we additionally find that the eigenvalues σi (for i = 1, 2) always have negative real
part for 0 < B < B1. Thus, the nontrivial stationary point is always asymptotically stable for rain fluxes from
above in the relevant parameter range.
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(a) t = 1 (b) t = 10

(c) t = 60 (d) t = 120

Fig. 5: Spatial distribution of cloud water qc in 2D for different simulation times (t = 1/10/60/120). Note, that the pattern is
already forming at times t ∼ 10. For longer times, the pattern stays stationary although the absolute variation of the cloud
water variable is very small over the whole 2D domain.
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(a) t = 1 (b) t = 10

(c) t = 60 (d) t = 120

Fig. 6: Spatial distribution of rain water qr in 2D for different simulation times (t = 1/10/60/120). The spatial structure for this
variable is more pronounced than for the cloud water, i.e. the spatial variation of qr is quite large.
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Fig. 7: The cloud variables qc (left panel a) and qr (right panel b) after 2000 time units for different values of the rain flux B in
1D simulations. The x-axis displays the spatial direction, the y-axis represent different values of the rain flux B. The values of
the cloud variables are given by the colour code.

As described in section 6, the entries a11 < 0, a21 > 0 of the Jacobi matrix are constant, the entries
a12(B), a22(B) depend on the rain flux. For fulfilling the criterion for Turing instabilities (21), the sign of entry
a22 decides about the existence or non-existence of instabilities. For values B < B2 ∼ 0.137 we obtain
a22(B) > 0 (i.e. Turing instability is possible), whereas for B > B2 the entry is negative.

We confirm these findings with a series of numerical simulations using different values 0 < B < 0.17 for
the set of parameters as specified at the beginning of the section. As predicted, for values B < 0.137 we find
Turing instabilities, whereas for B > 0.137 there are no Turing instabilities. In Figure 7 the simulations at time
t = 2000 (i.e. steady state) depending on the parameter B are shown. The absolute values of the pattern in qc
and qr slightly varywith changing B; however, the quality of the pattern remains the sameuntil values B ∼ B2
are reached. Passing this values, a homogeneous state in both variables can be seen and no pattern formation
occurs. Note, that the boundary B2 is not sharp, since the occurrence of the Turing instability depends also
on the values of D1, D2. Due to the large ratio of these coefficients, the transition in the simulations is very
close to B2.

8 Summary and conclusion
In this study we investigate a generic cloud model for pure liquid clouds on the possibility of Turing instabil-
ities for forming spatial patterns. This kind of investigation is carried out for the first time for cloud pattern
formation. For the theoretical andnumerical investigations, the generic cloudmodel formulated in the former
study Rosemeier et al. [19] is extended by diffusion terms, consisting of Laplacians in spatial directions. The
model is analysed using stability theory for the linearisation around the steady states of the underlying two-
dimensional ODE system. Analytical conditions for the existence of Turing instabilities can be determined.
Since the model contains quite complex nonlinear terms with several parameters determining the overall
quality of the steady states, it is very hard to find general conditions for the existence of Turing instabilities.
However, the generic model always admits a trivial stationary point in terms of “no clouds, just rain falling
through the layer”. This stationary point could be either stable or unstable, depending on the set of param-
eters. However, even in the stable case, the steady state cannot be destabilised by diffusion; thus, this state
does not admit Turing instabilities. In addition, we can specify a class of models, which do not allow Turing
instabilities at all. This class is characterised by a linear autoconversion term A1 = a1qc and also a linear con-
tribution of cloud water qc in the accretion term A2. Well-known cloud models such as the standard COSMO
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cloud scheme [28] or the research model by Wacker [29] belong to this class. However, we can also provide a
general class of cloud models, which allow Turing instabilities. If the exponents in the accretion parameter-
isation are chosen to be larger than 1 (i.e. β = βc = βr > 1), the model can allow Turing instabilities and thus
pattern formation. These theoretical findings could be confirmed by numerical simulations in one and two
spatial dimensions. The inclusion of rain flux from above turns out to be an additional restriction for the in-
stabilities. This is investigated for the special case β = 2. If the rain flux becomes too large (i.e. if it surpasses a
certain threshold B > B2), the criterion for the existence of Turing instabilities is violated, as can be seen also
in a series of 1D numerical simulations. This observation leads to the interpretation that collision processes
in combination with the sedimentation of cloud particles play the major role for pattern formation; only if
these processes can interact in a proper nonlinear way, Turing instabilities are possible. A strong rain flux
from above can prevent the formation of cloud patterns; this might be explained by stronger collision terms,
which finally almost extinct the cloud droplet population, thus diffusion can not counteract this process.

We can conclude that the generic cloud model admits Turing instabilities in special cases. However, sev-
eral standard cloud models used in research and operational weather forecasts do not admit pattern forma-
tion due to Turing instabilities. It is still unknown how patterns in clouds form, especially, which processes
lead to the emergence of cloud structures. The use of diffusion terms is motivated by the parameterisation of
subgrid scale processes; this approach might be too simplistic for representing the underlying processes in a
meaningful way. On the other hand, it is conceivable that pattern formation in clouds is dominated by Turing
instabilities; in this case it might be a major drawback to use cloud models, which do not allow this type of
pattern formation. Since pattern formation in clouds is far away from being understood, this observation has
to be taken into account, and itmight have an impact on the choice of cloudmodels for further investigations.
For the investigation of cloud patterns, more theoretical studies are needed for a better understanding of the
underlying processes and their interaction, which leads to the emergence of cloud structures.
Acknowledgement: We thank Maria Lukacova and Manuel Baumgartner for fruitful discussions. We ac-
knowledge support of the Transregional Collaborative Research Center SFB/TRR 165 “Waves to Weather”,
funded by the “Deutsche Forschungsgemeinschaft” (DFG), within the sub-project “Structure Formation on
Cloud Scale and Impact on Larger Scales” (Project A2).

A Jacobian of ODE system (1)

The Jacobian Df of the generic cloud model (without diffusion) can be calculated as

Df =
(︃
c − 𝛾a1q𝛾−1c − a2βcqβc−1c qβrr −a2βrqβcc qβr−1r
a1𝛾q𝛾−1c + a2βcqβc−1c qβrr a2βrqβcc qβr−1r − dζqζ−1r

)︃
. (61)

In case of the trivial equilibrium state qce = 0, qre =
(︀ B
d
)︀ 1

ζ the Jacobian reduces to(︃
a11 0

a21 −dζ
(︀ B
d
)︀ ζ−1

ζ

)︃
(62)

Remember, that the Jacobian of the trivial state is only defined for values 𝛾 ≥ 1, βc ≥ 1; otherwise the partial
derivatives with respect to qc do not exist and the initial value problem is potentially not uniquely solvable,
since the right hand side of the ODE system (1) is not Lipschitz continuous. For the entries in the matrix (62),
we have to discriminate between different cases. First, we determine the value of a11.
• For 𝛾 = 1, βc = 1we obtain a11 = c − a1 − a2

(︀ B
d
)︀ βr

ζ . In this case, the trivial stationary point can be stable

(c < a1 + a2
(︀ B
d
)︀ βr

ζ ) or unstable (c > a1 + a2
(︀ B
d
)︀ βr

ζ ).
• For 𝛾 = 1, βc > 1we obtain a11 = c − a1. In this case, the trivial stationary point can be stable (c < a1) or

unstable (c > a1).
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• For 𝛾 > 1, βc = 1 we obtain a11 = c − a2
(︀ B
d
)︀ βr

ζ . In this case, the trivial stationary point can be stable

(c < a2
(︀ B
d
)︀ βr

ζ ) or unstable (c > a2
(︀ B
d
)︀ βr

ζ ).
• For 𝛾 > 1, βc > 1 we obtain a11 = c. In this case, the trivial stationary point is always unstable.

Second, the entry a21 is investigated.
• For 𝛾 = 1, βc = 1 we obtain a21 = a1 + a2

(︀ B
d
)︀ βr

ζ .
• For 𝛾 = 1, βc > 1 we obtain a21 = a1.
• For 𝛾 > 1, βc = 1 we obtain a21 = a2

(︀ B
d
)︀ βr

ζ .
• For 𝛾 > 1, βc > 1 we obtain a21 = 0.

In any case, the entry a21 does not affect the stability of the trivial stationary point.

B Pseudo-spectral method
The pseudo-spectral method is applied to the following type of semilinear equations

dx
dt = L(x) + R(x). (63)

where L is a linear operator and R a nonlinear operator. Themodel equation (2) represents such a system, the
linear operator L and the reaction term R admit the form

L(qc , qr) =
(︃ (︀

c + D1∇2)︀qc
D2∇2qr

)︃
(64)

and

R(qc , qr) =
(︃

−a1q𝛾c − a2q
βc
c qβrr

a1q𝛾c + a2q
βc
c qβrr − dqζr + B

)︃
. (65)

For the spatial discretisation a Fourier expansion is applied

y(t, x) =
∑︁
n

φ(t) exp(iknx). (66)

Thus we obtain a system of ordinary differential equations

dφn
dt (t) = lnφn(t) + Rn(t), n = −N2 , . . . ,

N
2 , (67)

where ln is the matrix

ln =
(︃

c − D1k2n 0
0 −D2k2n

)︃
. (68)

The nonlinear operator R can be expressed with Fourier modes

R(qc(t), qr(t)) ≈
N
2∑︁

n=− N
2

Rn(t) exp(iknx). (69)

Therefore, the formulation of equation (67) requires a Fourier transform. In addition after each time step
the solution in the Fourier space, given through (67), can be transformed back and the reaction term can be
computed for that time step. The transformations can be done with a Fast Fourier Transform.
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The system (67) can be solvedwith the exponential integrator scheme [33] of second order (ETD2 scheme).
The ETD2 scheme is a two stepmethod. Thefirst step canbe computedwith the exponential integrator scheme
of first order (ETD1 scheme).
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