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Pretreatment of Diabetic Adipose-derived
Stem Cells with mitoTEMPO Reverses
their Defective Proangiogenic Function
in Diabetic Mice with Critical Limb Ischemia

Kun Lian1,*, Qin Wang2,*, Shuai Zhao1, Maosen Yang1, Genrui Chen1,
Youhu Chen1, Congye Li1, Haokao Gao1, and Chengxiang Li1

Abstract
Adipose-derived stem cells (ADSCs) have the ability to migrate to injury sites and facilitate tissue repair by promoting
angiogenesis. However, the therapeutic effect of ADSCs from patients with diabetes is impaired due to oxidative stress.
Given that diabetes is a group of metabolic disorders and mitochondria are a major source of reactive oxygen species
(ROS), it is possible that mitochondrial ROS plays an important role in the induction of diabetic ADSC (dADSC)
dysfunction. ADSCs isolated from diabetic mice were treated with mitoTEMPO, a mitochondrial ROS scavenger, or
TEMPO, a universal ROS scavenger, for three passages. The results showed that pretreatment with mitoTEMPO
increased the proliferation, multidifferentiation potential, and the migration and proangiogenic capacities of dADSCs to
levels similar to those of ADSCs from control mice, whereas pretreatment with TEMPO showed only minor effects.
Mechanistically, mitoTEMPO pretreatment enhanced the mitochondrial antioxidant capacity of dADSCs, and knockdown
of superoxide dismutase reduced the restored mitochondrial antioxidant capacity and attenuated the proangiogenic
effects induced by mitoTEMPO pretreatment. In addition, mitoTEMPO pretreatment improved the survival of dADSCs
in diabetic mice with critical limb ischemia, showing protective effects similar to those of control ADSCs. Pretreatment
of dADSCs with mitoTEMPO decreased limb injury and improved angiogenesis in diabetic mice with critical limb
ischemia. These findings suggested that short-term pretreatment of dADSCs with a mitochondrial ROS scavenger
restored their normal functions, which may be an effective strategy for improving the therapeutic effects of ADSC-based
therapies in patients with diabetes.
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Introduction

Adipose-derived stem cells (ADSCs) are mesenchymal stem

cells that are derived from subcutaneous fat tissues. Since

ADSCs are abundant in humans and can be easily isolated,

they show promise for biological engineering, especially

stem cell-based clinical applications1–3. ADSCs are multi-

potent stem cells, and isolated ADSCs are capable of differ-

entiating into adipocytes, osteoblasts, and endothelial cells,

and thus are candidates for clinical stem cell-based thera-

pies4. Owing to their high in vivo proliferation efficiency,

ADSCs have recently gained popularity over other stem cells

for the treatment of peripheral arterial disease (PAD), in

which the arteries that carry blood to the limbs become

narrowed or clogged due to atherosclerosis2,5–8. ADSCs
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have the ability to migrate to injury sites and facilitate tissue

repair by promoting angiogenesis, which increases oxygen

and the nutrient supply in ischemic areas6,9,10.

Diabetes is a major risk factor for PAD11. The prevalence

of PAD in patients with diabetes varies between 20% and

30%, depending on the study population12. In addition,

patients with PAD with diabetes are at higher risk for lower

extremity amputation than those without diabetes13.

Although ADSC-based therapy is a potential strategy for

salvaging limbs from amputation due to PAD, it has been

reported that the therapeutic effects of diabetic ADSCs

(dADSCs) are impaired14,15. Thus, it is of great interest to

identify tools to improve the function of dADSCs. Several

studies have demonstrated that a major cause of dysfunction

in dADSCs is oxidative stress, which impairs their prolifera-

tion capacity and angiogenic potential6,8,16,17. It was

reported that infection of dADSCs with a lentivirus over-

expressing glyoxalase-1, an enzyme that detoxifies methyl-

glyoxal and reduces reactive oxygen species (ROS), reverses

their defective proangiogenic function in a diabetic mouse

model of critical limb ischemia, which is a type of severe

PAD with typical ischemic symptoms and damage8. Given

that diabetes is a group of metabolic disorders characterized

by high blood glucose levels over a prolonged time period

and mitochondria are a major source of ROS18,19, it is pos-

sible that mitochondrial ROS play an important role in the

induction of dysfunction in dADSCs. However, the role of

mitochondrial ROS in the dysfunction of dADSCs is cur-

rently unknown.

Here, we hypothesized that pretreatment of dADSCs with

mitoTEMPO, a mitochondrial ROS scavenger, may improve

their function. We found that pretreatment of dADSCs with

mitoTEMPO for three passages enhanced their proangio-

genic function and improved their protective effects against

critical limb ischemia in streptozotocin (STZ)-induced dia-

betic mice. This finding suggested that a short-term pretreat-

ment of dADSCs with a mitochondrial ROS scavenger

restored their proangiogenic capacity both in vitro and in

vivo.

Materials and Methods

Animals

The animal experiments were performed in accordance with

the Guidelines for the Care and Use of Laboratory Animals of

the National Institutes of Health, and the protocol was

approved by the Committee on Animal Care of Fourth Mili-

tary Medical University. Diabetes was induced in 8-week-old

C57 mice by a single i.p. injection of STZ (in citrate buffer,

pH 4.5; 100 mg/kg body weight) as described previously20.

Two weeks after diabetes induction, blood glucose levels

were measured with a glucose meter (Life-Scan, Milpitas,

CA, USA). Only mice with blood glucose levels >16.7 mM

(300 mg/dl) were considered to be diabetic and then subjected

to ADSC isolation and induction of critical limb ischemia.

Isolation, Culture, and Characterization of ADSCs

ADSCs were obtained from the subcutaneous adipose tissues

in the inguinal area of 10-week-old STZ-induced diabetic

and control C57 mice as described previously21. Isolated

ADSCs were plated at 5�105 cells/cm2 in DMEM with low

glucose (5 mM). To determine the phenotype of the

dADSCs, the ADSCs were washed with phosphate-

buffered saline (PBS) and incubated with phycoerythrin-

conjugated anti-mouse antibodies against CD11b, CD29,

CD31, CD44, CD90.1, CD133, and major histocompatibility

complex II (MHC-II) for 25 min at 4�C in the dark. The cells

were then washed with PBS and collected for flow cytometry

analysis (Beckman Coulter, Fullerton, CA, USA). Cultured

ADSCs were passaged when they reached 75–80% conflu-

ence. The initial confluent culture was designated passage 0.

Cultured dADSCs from passage 3 were treated with either a

general antioxidant, 4-Hydroxy-TEMPO, formally 4-

hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO,

Sigma-Aldrich, St Louis, MO, USA) (1 mM) or a mitochond-

rially targeted antioxidant, (2-(2,2,6,6-Tetramethylpiperidin-

1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium

chloride (mitoTEMPO, Sigma) (1 mM) for three passages

and then used in experiments. The nADSCs were not treated

with TEMPO or mitoTEMPO during the experiments.

Cell Viability Assay

The proliferation of ADSCs was assessed using the cell

counting kit-8 assay (CCK-8; Dojindo Laboratories, Shang-

hai, China) according to the manufacturer’s instructions.

Multidifferentiation Potential of ADSCs

ADSCs from passage 5 were incubated in adipogenic or

osteogenic medium to evaluate their potential for multidif-

ferentiation as described previously22. Osteoblast formation

was evaluated after 3 weeks by assessing calcium accumula-

tion using alizarin red (Sigma-Aldrich). Adipogenic differ-

entiation was assessed using Oil Red-O (Sigma-Aldrich)

staining. Endothelial cell differentiation was evaluated by

culturing the cells in Endothelial Cell Growth Medium-2 for

2 weeks23. Then, the endothelial cell phenotype was evalu-

ated by examining the expression of the endothelial cell

markers Pecam-1, vWF, and Cd105 by RT-qPCR.

Scratch and Cell Migration Assays

ADSCs at 90% confluence were used for the scratch assay as

described previously8, and a standard, 3 mm scratch was

made, bisecting the ADSC cultures. Photographs were taken

under an inverted microscope (Olympus Microscopes,

Tokyo, Japan). The cell migration assay was performed

using Transwell chambers (24-well, 8-mm pore size; Corn-

ing, NY, USA). DMEM containing 10% serum was used as

an attractant and was placed in the lower chamber. ADSCs

(105) in DMEM containing 0.5% serum were added to the
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upper chamber of the insert and incubated at 37�C for 24 h to

allow the cells to migrate toward the underside of the insert

filter. After incubation, ADSCs that did not migrate through

the pores were gently removed with a cotton swab. Cells on

the lower side of the filter were fixed with 4% paraformal-

dehyde and stained with 1% crystal violet in 2% methanol.

Proangiogenic Analysis of ADSCs

The capacity of the ADSCs to stimulate angiogenesis was

assessed in a tube formation assay using Matrigel (BD Bios-

ciences, San Jose, CA, USA) as previously described8. In

brief, conditioned medium was collected from confluent cul-

tures of normal ADSCs, dADSCs, and mitoTEMPO-treated

dADSCs after 48 h of hypoxia (1% O2). Then, the levels of

vascular endothelial growth factor A (VEGFA), hepatocyte

growth factor (HGF), and fibroblast growth factor 2 (FGF2)

were measured using enzyme-linked immunosorbent assays

(R&D Systems, MN, USA). Next, human umbilical vein

endothelial cells (HUVECs) were seeded on Matrigel (Corn-

ing) and incubated in ADSC-conditioned medium for 16 h.

Images were taken using an inverted phase contrast micro-

scope. The expression levels of the proangiogenic genes Hif-

1a, Vegfa, and Sdf-1a were detected using RT-qPCR.

Establishment of a Critical Limb Ischemia Model in
Diabetic Mice

STZ-induced diabetic mice were anesthetized with 3% pen-

tobarbital sodium (50 mg/kg), and limb ischemia was

induced as described previously21. Briefly, the left femoral

artery and its branches were ligated. Sham-operated mice

received an incision without artery ligation. After arterial

ligation, the ischemic hind limb was intramuscularly injected

with either PBS or cultured ADSCs (5�106 cells in 100 ml).

Bioluminescence Imaging of ADSCs In Vivo

The survival of engrafted ADSCs in diabetic mice with crit-

ical limb ischemia was tracked by bioluminescence as

described previously21. The engrafted ADSCs were infected

with a lentivirus carrying a luciferase gene. Then, the mice

were anesthetized and intraperitoneally injected with D-luci-

ferin (150 mg/kg). Using an IVIS, images were acquired at

3-min intervals until the peak signal was observed.

Confocal Imaging

An inverted confocal microscope (Zeiss LSM 800) equipped

with a 40�, 1.3 NA oil-immersion objective was used for

imaging. To detect mitochondrial ROS in isolated ADSCs,

the cells were loaded with mitoSOX (5 mM) for 20 min and

then washed. To detect mitoSOX fluorescence, the excita-

tion and emission wavelengths were 488 nm and 540–625

nm, respectively. To detect intracellular ROS in isolated

ADSCs, the cells were loaded with DCFH (5 mM) for 10

min and then washed. To detect DCF fluorescence, the cells

were exposed to the excitation and emission wavelengths

(488 nm and >500 nm, respectively) generated using a

low-intensity laser to minimize the photochemical reaction

of DCF. Paraffin sections of the left gastrocnemius muscle

were obtained and sequentially analyzed by immunohisto-

chemical staining using a rat monoclonal anti-CD31 anti-

body (1:50, ab7388; Abcam, Cambridge, USA) to

visualize the CD31-positive cells. All experiments were per-

formed at room temperature.

Western Blotting

Protein expression was measured by Western blotting as

described previously24. The immunoblots were probed with

anti-superoxide dismutase 2 (SOD2), anti-catalase, anti-

glutathione peroxidase (GPx), anti-VEFG, or anti-GAPDH

antibodies overnight at 4�C and then incubated with the

corresponding secondary antibodies at room temperature for

1 h. The blots were visualized with ECL-plus reagent.

Statistical Analysis

All values are presented as the mean+SEM. Data were

compared by one-way ANOVA or two-way ANOVA, fol-

lowed by an unpaired t-test, as appropriate. The data distri-

butions were analyzed for normality by the Kolmogorov–

Smirnov normality test. Bonferroni’s correction for multiple

comparisons was also used. Differences were considered

significant at p-values less than 0.05.

Results

Pretreatment of dADSCs with mitoTEMPO Scavenged
Mitochondrial ROS and Improved Multidifferentiation
Potential

Flow cytometry analysis showed that the isolated ADSCs

were positive for the stem cell surface antigens CD29,

CD44, and CD90.1, with little contamination by inflamma-

tory, hematopoietic, or immune cells as indicated by the low

expression levels of CD11b, CD31, CD133, and MHC-II

(Fig. S1). Compared with ADSCs from normal control mice

(nADSCs), dADSCs displayed higher ROS levels in both the

intracellular space and mitochondria as assessed by DCF and

mitoSOX fluorescence, respectively (Fig. 1A). Compared

with nADSCs, dADSCs showed impaired cell viability (Fig.

1B) and decreased multidifferentiation potential, including

adipogenic and osteogenic potential (Fig. 1C, D), suggesting

that diabetes impaired the differentiation potential of

ADSCs.

To test whether mitochondrial ROS plays an important

role in the induction of dADSCs dysfunction, cultured

dADSCs were treated with either TEMPO (1 mM), which

scavenges intracellular ROS, or mitoTEMPO (1 mM), which

scavenges mitochondrial ROS, for three passages (passages

3–5). As shown in Fig. 1A, pretreatment with TEMPO and
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mitoTEMPO decreased intracellular and mitochondrial ROS

levels, respectively. Importantly, incubation of dADSCs

with TEMPO or mitoTEMPO for three passages improved

cell function, as evidenced by the increased cell viability and

multidifferentiation potential (Fig. 1B–D). In particular,

mitoTEMPO-pretreated dADSCs (mitoT-dADSCs) dis-

played viability and multidifferentiation potential similar

to that of nADSCs (Fig. 1B–D), suggesting that mitoTEMPO

pretreatment restored the function of dADSCs in vitro.

Pretreatment of dADSCs with mitoTEMPO Improved
Migration Capacity

As the migration of stem cells from the transplant site to the

injured area is essential for successful stem cell-based ther-

apy, we detected whether mitoTEMPO could increase the

migration capacity of dADSCs by using scratch and Trans-

well assays. In the scratch assay, the mitoT-dADSCs showed

faster migration than the dADSCs (Fig. 2A). Similarly, the

Transwell assay results showed that more mitoT-dADSCs

migrated through the Transwell membrane than dADSCs

(Fig. 2B). In contrast, TMEPO pretreatment had little effect

on the cell migration of dADSCs (Fig. 2A, B). These results

reinforced the notion that mitoTEMPO pretreatment restored

the function of dADSCs in vitro.

Pretreatment of dADSCs with mitoTEMPO Enhanced
Proangiogenic Capacity

Angiogenesis, which involves the migration, growth, and

differentiation of endothelial cells, has been suggested as a

major mechanism underlying stem cell-promoted tissue

repair25,26. Pretreatment with mitoTEMPO promoted the dif-

ferentiation of dADSCs into endothelial cells as evidenced

by the higher expression levels of the endothelial

cell-specific genes Pecam1, vWF, and Cd105 (Fig. 3A).

Figure 1. Pretreatment of diabetic ADSCs with mitoTEMPO improved cell viability and multidifferentiation capability in vitro.
A. TEMPO and mitoTEMPO pretreatment scavenged intracellular and mitochondrial ROS in diabetic ADSCs, respectively. Intracellular ROS
was monitored by assessing DCF fluorescence, and mitochondrial ROS was monitored by assessing mitoSOX fluorescence. Abbreviations:
nADSCs, normal ADSCs from nondiabetic mice; dADSCs, diabetic ADSCs; T-dADSCs, TEMPO-pretreated dADSCs; mitoT-dADSCs,
mitoTEMPO-pretreated dADSCs. Scale bar, 50 mm. B. Proliferation curve of dADSCs pretreated with either TEMPO or mitoTEMPO. C.
Pretreatment with TEMPO and mitoTEMPO increased the osteogenic capability of dADSCs. D. Pretreatment with TEMPO and mito-
TEMPO increased the adipogenic capability of dADSCs. n ¼ 6. *p < 0.05; **p < 0.01.
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Pretreatment with mitoTEMPO also enhanced the angio-

genic potential of endothelial cells (Fig. 3B, C). The expres-

sion levels of the proangiogenic genes Hif-1a, Vegfa, and

Sdf-1a were higher in mitoT-dADSCs than in dADSCs under

hypoxia (Fig. 3B). In addition, mitoTEMPO pretreatment

increased the levels of VEGFA, HGF, and FGF2 in the con-

ditioned medium of dADSCs (Fig. 3C).

A tube formation assay was performed with HUVECs.

The HUVECs were incubated with conditioned medium

from nADSCs, dADSCs, or mitoT-dADSCs. Compared

with tube formation in the presence of conditioned

medium from dADSCs, conditioned medium from

mitoT-dADSCs induced greater tube formation, which

was comparable to that formed in medium from nADSCs

(Fig. 3D). These results suggest that mitoTEMPO pre-

treatment effectively restored the proangiogenic potential

of dADSCs in vitro.

Enhancement of Mitochondrial Antioxidant Capacity
Contributed to the Proangiogenic Effects of
mitoTEMPO Pretreatment on dADSCs

The mitochondrial redox balance is not only dependent on

ROS generation, but also antioxidant capacity, which deter-

mines ROS scavenging ability27. The major antioxidant

enzymes in mitochondria are SOD2, catalase, and GPx. The

levels of these antioxidant enzymes were lower in dADSCs

than in nADSCs (Fig. 4A). Pretreatment with mitoTEMPO

Figure 2. Pretreatment of diabetic ADSCs with mitoTEMPO improved their migration capacity in vitro.
A. Pretreatment of dADSCs with mitoTEMPO increased their migration as assessed by a scratch assay. Abbreviations: nADSCs, normal
ADSCs from nondiabetic mice; dADSCs, diabetic ADSCs; T-dADSCs, TEMPO-pretreated dADSCs; and mitoT-dADSCs, mitoTEMPO-
pretreated dADSCs. B. Pretreatment of dADSCs with mitoTEMPO increased their migration as assessed by a Transwell assay. n ¼ 6.
**p < 0.01.
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increased the mitochondrial antioxidant capacity of

dADSCs, as evidenced by increased levels of these anti-

oxidant enzymes (Fig. 4A). To test whether the enhanced

antioxidant capacity is involved in the proangiogenic effect

of mitoTEMPO pretreatment, SOD2 expression in

dADSCs was silenced by siRNA (Fig. 4B). SOD2 knock-

down had little effect on cell viability in untreated

dADSCs, but decreased cell viability in mitoTEMPO-

pretreated dADSCs (Fig. 4C). SOD2 knockdown decreased

the expression levels of the proangiogenic genes Hif-1a,

Vegfa, and Sdf-1a in mitoT-dADSCs under hypoxia, but

showed little effect on the expression of these genes in

dADSCs (Fig. 4D). In addition, conditioned medium from

SOD2-knockdown mitoT-dADSCs showed impaired

proangiogenic effects on HUVECs compared with the neg-

ative control (Fig. 4E). These results suggested that

enhancement of mitochondrial antioxidant capacity con-

tributed to the proangiogenic effects of mitoTEMPO pre-

treatment on dADSCs.

Pretreatment of dADSCs with mitoTEMPO Improved
their Survival in Diabetic Mice with Critical Limb
Ischemia

To test whether mitoTEMPO pretreatment could enhance

the function of dADSCs in vivo, a model of critical limb

ischemia was induced in diabetic mice. After the operation,

the ischemic hind limb was intramuscularly injected with

PBS, nADSCs, dADSCs, or mitoT-dADSCs (5�106 cells

in 100 mL). Then, the survival of the engrafted ADSCs in

the diabetic mice was evaluated by bioluminescence ima-

ging. As shown in Fig. 5, the intensity of the biolumines-

cence signal did not differ significantly among the groups at

3 days after cell transplantation. However, in the subsequent

days, the signal intensities in the dADSCs group were lower

than those in the nADSCs and mitoT-dADSCs groups. In

particular, no bioluminescence signal was detected in the

dADSCs group at 28 days after cell transplantation, while

bioluminescence signals were still detectable in mice treated

Figure 3. Pretreatment of diabetic ADSCs with mitoTEMPO increased their proangiogenic capacity.
A. The expression levels of proangiogenic genes in ADSCs under hypoxic conditions. Abbreviations: nADSCs, normal ADSCs from
nondiabetic mice; dADSCs, diabetic ADSCs; and mitoT-dADSCs, mitoTEMPO-pretreated dADSCs. B. Pretreatment with mitoTEMPO
increased the levels of proangiogenic proteins in the conditioned medium of dADSCs. C. Conditioned medium from mitoTEMPO-
pretreated dADSCs enhanced tube formation by HUVECs. n ¼ 6. *p < 0.05; **p < 0.01.
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with either nADSCs or mitoT-dADSCs, suggesting that

mitoTEMPO pretreatment improved the survival of dADSCs

in diabetic mice with critical limb ischemia.

Pretreatment of dADSCs with mitoTEMPO improved
their Proangiogenic Effects in Diabetic Mice with
Critical Limb Ischemia

To further validate the restored angiogenic capacity of

dADSCs induced by mitoTEMPO pretreatment in vivo,

ischemic injury and angiogenesis were assessed in diabetic

mice with critical limb ischemia. Nearly all mice in the PBS

group experienced limb loss or necrosis at 28 days post

operation, whereas less limb necrosis and loss and higher

salvage rates were observed in mice in the nADSCs and

mitoT-dADSCs groups than in the dADSCs group (Fig.

6A). We further detected the proangiogenic capacity of

mitoT-dADSCs by Western blotting and histological analy-

sis of microvessel densities (Fig. 6B, C). The levels of

VEGF, a key promoter of angiogenesis, were higher in the

nADSCs and mitoT-dADSCs groups than that in the

dADSCs group (Fig. 6B), suggesting that mitoTEMPO pre-

treatment restored the proangiogenic effects of dADSCs in

vivo. This was further reinforced by the histological CD31

staining results, which showed more microvessels in the

nADSCs and mitoT-dADSCs groups than in the dADSCs

group (Fig. 6C).

Discussion

Diabetes impairs the proangiogenic function of ADSCs, lim-

iting their clinical application for the treatment of ischemic

diseases. Here, we found that short-term pretreatment of

dADSCs with mitoTEMPO restored their biological function

by reducing mitochondrial ROS accumulation and enhan-

cing mitochondrial antioxidant capacity. Pretreatment of

dADSCs with mitoTEMPO improved their viability and

their differentiation, migration, and proangiogenic capacities

to levels similar to those of nondiabetic ADSCs. Moreover,

Figure 4. Pretreatment of diabetic ADSCs with mitoTEMPO improved proangiogenic capacity by enhancing mitochondrial antioxidant
capacity.
The expression levels of the major mitochondrial antioxidant enzymes (superoxide dismutase 2 [SOD2], catalase, and glutathione perox-
idase [GPx]) in normal ADSCs from nondiabetic mice (nADSCs), diabetic ADSCs (dADSCs), and mitoTEMPO-pretreated dADSCs (mitoT-
dADSCs). B SOD2 expression in dADSCs was silenced by specific SOD2 siRNAs. C.Knockdown of SOD2 decreased cell viability in
mitoTEMPO-pretreated dADSCs. D. Knockdown of SOD2 attenuated the proangiogenic effects of mitoTEMPO as evidenced by the
expression levels of proangiogenic genes in dADSCs under hypoxia. E. Knockdown of SOD2 attenuated the proangiogenic effects of
mitoTEMPO pretreatment as evidenced by the assessment of HUVEC tube formation in conditioned medium. n ¼ 6. *p < 0.05; **p < 0.01.
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mitoTEMPO pretreatment restored the protective effects of

dADSCs, as mitoTEMPO-pretreated dADSCs could reduce

limb ischemic injury and enhance angiogenesis in diabetic

mice with critical limb ischemia. This study has provided a

solution to the impaired angiogenic capacity of transplanted

dADSCs and the application of dADSC-based therapy for

patients with diabetes.

Diabetes is a lifestyle disease that currently affects 8.3%
of the world’s adult population, and the prevalence is

increasing at an alarming rate, making it one of the most

common non-communicable diseases in the current era28.

It is not only a metabolic disorder characterized by hyper-

glycemia, insulin resistance, and pancreatic beta cell

dysfunction, but also a complex syndrome accompanied by

systemic inflammation, oxidative stress, nitrative stress, and

the formation of advanced glycation end products29–31.

dADSCs exhibit impairments in viability, differentiation,

and other functions16,32,33. The mechanism underlying

diabetes-induced ADSC dysfunction remains unknown.

However, it has been suggested that oxidative stress plays

a causal role in insulin resistance and can be induced by

hyperglycemia, inflammation, and advanced glycation end

products31,34. In addition, increasing evidence has shown

that oxidative stress contributes to the development of var-

ious pathological processes35. Thus, the elimination of ROS

might be a critical factor in restoring of the effectiveness of

Figure 5. Pretreatment of diabetic ADSCs with mitoTEMPO increased survival in diabetic mice with critical limb ischemia.
Longitudinal bioluminescence imaging was used to track ADSCFluc survival in diabetic mice with critical limb ischemia in vivo. Typical images
are shown on the left and a quantitative analysis of the Fluc optical signals is shown on the right. n ¼ 6. *p < 0.05; **p < 0.01 vs. the dADSCs
group. Abbreviations: nADSCs, normal ADSCs from nondiabetic mice; dADSCs, diabetic ADSCs; and mitoT-dADSCs, mitoTEMPO-
pretreated dADSCs.
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dADSC-based therapy. In fact, several studies have demon-

strated that oxidative stress is a cause of dysfunction in

dADSCs that impairs their proliferation capacity and angio-

genic potential6,8,16,17. These studies suggest that oxidative

stress plays a causal role in the induction of dysfunction in

dADSCs, and rebalancing the redox status in dADSCs may

be a potential strategy for improving the function of

dADSCs.

Given that diabetes is a group of metabolic disorders and

mitochondria are a major source of ROS18,19, it is possible

that mitochondrial ROS plays an important role in the induc-

tion of dysfunction in dADSCs. However, the role of mito-

chondrial ROS in dADSC dysfunction is unknown. Recent

studies have shown strong support for the direct involvement

of mitochondria in the regulation of stem cell function36–38.

Here, we provided a solution for restoration of the impaired

proangiogenic capacity of dADSCs. Cultured dADSCs were

pretreated with either TEMPO or mitoTEMPO for three

passages, and the results showed that mitoTEMPO pretreat-

ment restored the function of dADSCs, whereas TEMPO

pretreatment had only minor effects, suggesting that

mitochondrial ROS plays a more important role in the induc-

tion of dysfunction of dADSCs. These findings are consis-

tent with several studies showing that scavenging

mitochondrial ROS improves stem cell function37,39.

Although a previous study showed that overexpression of

glyoxalase-1 induced by lentivirus infection in dADSCs

reverses its defective proangiogenic function in a diabetic

mouse model of critical limb ischemia8, our study showed

that scavenging mitochondrial ROS reestablished the func-

tion of dADSCs in vitro. It appears that mitoTEMPO pre-

treatment restored the function of dADSCs by remodeling,

whereas overexpression of glyoxalase-1 enhanced the func-

tion of ADSCs by increasing their survival under oxidative

stress. Short-term treatment of dADSCs with mitoTEMPO

improved their viability and differentiation, migration, and

proangiogenic capacities. The mitoTEMPO-pretreated

dADSCs showed characteristics similar to those of non-

diabetic ADSCs.

Stem cells are characterized by two key properties, self-

renewal (i.e., the ability to proliferate without lineage com-

mitment) and pluripotency (i.e., the ability to differentiate

Figure 6. Pretreatment of diabetic ADSCs with mitoTEMPO improved their proangiogenic capacity in diabetic mice with critical limb
ischemia.
A. Representative images of ischemic limbs from different groups of mice at days 28 after ligation and ADSC therapy are shown on the left.
The percentages of ischemic outcomes are shown on the right. B. The expression of CD31 and VEGF in the gastrocnemius muscle of
ischemic limbs in diabetic mice with critical limb ischemia. C. Histological CD31 staining in the gastrocnemius muscle of ischemic limbs in
diabetic mice with critical limb ischemia. Scale bar, 100 mm. n ¼ 6. *p < 0.05; **p < 0.01.
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into more than one cell type)40. dADSCs showed impaired

capacities for both self-renewal and pluripotency. However,

mitoTEMPO pretreatment for three passages restored the

function of dADSCs, suggesting that dADSCs could be

remodeled in vitro and that mitoTEMPO pretreatment chan-

ged dADSCs to normal ADSCs. These results provided a

solution for the restoration of dADSC function in vitro.

However, as there are multiple risk factors in diabetes, such

as inflammation, hyperglycemia, and oxidative stress, the

restoration of dADSC function may not be sufficient to

improve the therapeutic effects of transplanted ADSCs.

Therefore, additional strategies to enhance the function of

dADSCs in the diabetic environment should be pursued.

It should be noted that in the clinic, patients with diabetes

often go through a long course before the development of

limb vascular disease. The long course of hyperglycemia and

other environments in diabetes remodel ADSCs and impair

their function in patients with diabetes. Here, we only iso-

lated ADSCs from diabetic mice 2 weeks after STZ injec-

tion. This cannot totally mimic the true situation in clinical

patients. Further studies are warranted to explore the poten-

tial application of mitochondrial ROS scavenger in remodel-

ing of diabetic ADSC function in clinic.

Conclusions

This study provided direct evidence that pretreatment of

dADSCs with mitoTEMPO for three passages can effec-

tively restore their impaired cell viability and migration,

differentiation, and proangiogenic capacities both in vitro

and in vivo, leading to a better prognosis for diabetic

ischemic diseases. These findings suggest that short-term

pretreatment of dADSCs with a mitochondrial ROS scaven-

ger may be an effective strategy for improving the therapeu-

tic effects of ADSC-based therapy in patients with diabetes.
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