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To help address programming plagiarism and collusion, students should be informed about acceptable practices and about
program similarity, both coincidental and non-coincidental. However, current approaches are usually manual, brief, and
delivered well before students are in a situation where they might commit academic misconduct. This paper presents an
assessment submission system with automated, personalized, and timely formative feedback that can be used in institutions
that apply some leniency in early instances of plagiarism and collusion. If a student’s submission shares coincidental or
non-coincidental similarity with other submissions, personalized similarity reports are generated for the involved submissions
and the students are expected to explain the similarity and resubmit the work. Otherwise, a report simulating similarities is
sent just to the author of the submitted program to enhance their knowledge. Results from two quasi-experiments involving
two academic semesters suggest that students with our approach are more aware of programming plagiarism and collusion,
including the futility of some program disguises. Further, their submitted programs have lower similarity even at the level
of program low, suggesting that they are less likely to have engaged in programming plagiarism and collusion. Student
behavior while using the system is also analyzed based on the statistics of the generated reports and student justiications for
the reported similarities.
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→ Near-duplicate and plagiarism detection.
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1 INTRODUCTION

Academic integrity is evidenced when students fully utilize all learning opportunities, apply their best eforts to
completing assessment tasks, and engage productively with people at their institution [32]. Breaching academic
integrity is a concern, and is widespread among students [1]. Roberts [43] discovered that at his institution,
such misconduct occurs most frequently in computing courses. This might be due to the speciic nature of
programming assessments, in which the requirements of academic integrity are often interpreted diferently [48].

To maintain academic integrity in programming, students must at least be educated about acceptable practices
[51], and are then liable to be penalized if they perpetrate academic misconduct. Student education can take
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place at any time, but is typically placed either at the beginning of the course or after a new assessment task is
issued. Penalizing students usually happens after all student submissions have been collected, if there is evidence
that the cases are not a result of coincidence [21]. This evidence typically consists of undue and/or uncommon
similarities shared among suspected programs, which can be conveniently lagged by a similarity detector such
as JPlag [42] or MOSS [46].

The common approach to educating students about programming plagiarism and collusion has at least three
limitations. First, it relies heavily on human efort, which can be demanding for the instructors. Second, its
information tends to be unduly general and is presented before students actually undertake the assessment,
so some students may not see the connection with their own particular cases. Third, there is no clear way of
warning students about plagiarism or collusion when they are potentially committing it, the most crucial time in
determining whether misconduct will occur.

In response to these limitations, this paper presents an approach in which personalized similarity feedback is
generated automatically and immediately for each submission. If the submitted program is suiciently similar
to the most recent submissions of other students, all involved students will receive similarity reports, each
personalized to their own program. Further, they are encouraged to resubmit and explain why the similarity
arises. If there are no such similarities, the submitter will get a report that simulates common similarities, with
comparable information to enhance their knowledge.

This gives rise to three research questions:

RQ1 Are students subjected to the immediate similarity feedback approach more aware of programming
plagiarism and collusion?

RQ2 Are students subjected to the immediate similarity feedback approach more aware of common yet futile
program disguises?

RQ3 Are students subjected to the immediate similarity feedback approach less likely to engage in programming
plagiarism and collusion?

2 LITERATURE REVIEW

Our approach generates similarity feedback to educate students about programming plagiarism and collusion.
Hence we review three streams of the literature: programming plagiarism and collusion, code similarity detectors,
and formative feedback generators in programming.

2.1 Programming Plagiarism and Collusion

Programming plagiarism and collusion involve the reuse of code segments without properly acknowledging
the source; the diference is that with collusion, the original authors are aware of the copying [13]. Albluwi [1]
summarizes recent studies on the topic, grouping them according to which side of the fraud triangle [6] they
primarily address. According to the theory, fraud (in this case, plagiarism or collusion) takes place when there are
both the opportunity and the pressure to commit fraud, and a rationale can be provided to justify the misbehavior.
Misconduct can be prevented by removing at least one of the sides (opportunity, pressure, and rationalization).

There are many reports on attempts to reduce the opportunity to cheat, perhaps because it is the easiest of the
three to control. Instructors can make it harder to cheat in their assessments by allowing students to choose their
own case studies [5] or by randomly generating diferent versions of the assessment task [12].

Some studies propose additional grading methods to conirm the authorship of the submitted work. Grunwald
et al. [17] introduce one-to-one interviews between instructors and students. Halak and El-Hajjar [18] require
students to do oral presentations of their work.

To further reduce the opportunity to cheat, code similarity detectors such as MOSS [46] are often used. These
tools automatically identify programs with undue similarity, which are then subject to manual investigation
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[29]. If the similarity is conirmed to be a result of academic misconduct, all involved students will be penalized
according to the course’s policy. Details about how these detectors work can be seen in subsection 2.2.

Pressure, the second side of the fraud triangle, is addressed by only a few studies. Spacco et al. [53], for example,
address time pressure by incentivizing early submission. To alleviate pressure caused by the diiculty of the
work, Allen et al. [2] propose an approach that involves many small assessments rather than a few large ones.

Rationalization, the third side of the fraud triangle, is typically addressed by informing students about the
issues [51]. Instructors are advised to explicitly state their expectations regarding academic integrity and how
those expectations apply in each course.
Some authors recommend including education about academic integrity in the ethics components that are

taught as part of the computing curriculum [15]. However, since this is not always efective, some automated
tools have been developed to enhance students’ education about the issue. Tsang et al. [56] developed a mobile
application to educate students about ethics via modules and quizzes, while a tool introduced by Le et al. [34]
attempts to show the futility of copying and disguising code by reporting program similarity to students before
their inal submission.

2.2 Code Similarity Detectors

Novak et al. [39] provide a comprehensive review of studies related to similarity detectors, noting which of these
detectors are publicly available. Common examples mentioned in the literature are JPlag [42], MOSS [46], and
Sherlock from the University of Warwick [21]. JPlag and Sherlock are standalone applications and can be used
oline. MOSS, on the other hand, relies on a web service whereby instructors upload student programs to the
server and are then shown the similarity reports online. In general, MOSS is perhaps more practical to use since it
covers the greatest number of programming languages and it requires no local installation. However, instructors
should be aware that their data is uploaded to the server and stored temporarily, which can raise data privacy
concerns in some countries [49].
Novak et al. [39] classify code similarity detection techniques into 16 categories; but as their classiication is

very ine-grained, and some types can overlap, we adapt a classiication from Karnalim et al. [29], who group the
techniques into four categories: attribute-counting-based, structure-based, hybrid, and creation-process-based.

Attribute-counting-based techniquesmeasure the similarity by comparing frequencies of occurrence of program
attributes. An early technique by Ottenstein [40], for example, considers two programs as similar if they share the
same numbers of operators and operands, while Flores et al. [11] detect similar programs using latent semantic
analysis, a technique from the ield of information retrieval.

Structure-based techniques rely on program structure to detect similar programs. JPlag [42] converts programs
to token strings and compares them with a string-matching algorithm. A similar technique is used by MOSS [46].
Aiming for higher efectiveness, a number of techniques use more complex representations such as syntax trees
[38] and program dependency graphs [35].
Hybrid techniques combine an attribute-counting-based technique with another technique that is structure-

based, seeking to improve performance by combining the beneits of both techniques. Rosales et al. [44] use
the result of a structure-based technique as an attribute for an attribute-counting-based technique, arguing that
the combination can result in higher efectiveness. To reduce the processing time required by structure-based
techniques, Mozgovoy et al. [36] irst ilter the input programs with an attribute-counting-based technique.
As the name indicates, creation-process-based techniques compare aspects of how programs are developed.

Tahaei and Noelle [54] argue that perpetrators often change a substantial amount of code at one time, and that
can be detected via their pattern of resubmission. Yan et al. [59] capture snapshots of student programs and use
them as an additional consideration when detecting program similarity.
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2.3 Formative Feedback Generators in Programming

Feedback can be either formative or summative [31]. Formative feedback, given while the student is still learning,
aims to improve the learning process. Summative feedback, given after the due date of the assessment, is typically
an assessment score and perhaps a description of how well the student has addressed the assessment criteria.
Formative feedback tends to be less supericial, and can therefore be more efective for learning.

Keuning et al. [31] review formative feedback generators in programming and classify the feedback messages
based on the feedback content categories of Narciss [37]: knowledge about task constraints, concepts, mistakes,
how to proceed, and metacognition.

Task constraints are perhaps the irst thing that students should know about when undertaking an assessment
task, and there are feedback generators that provide knowledge of that type. For example, Le et al. [33] emphasize
the task requirements by highlighting some keywords in the task statement when students implement a method
header incorrectly, and Fischer and von Gudenberg [10] alert students when they use methods that have been
explicitly barred.
Knowledge about concepts is typically represented either as an explanation of the subject matter or as an

example illustrating a concept. The former can be found in Ask-Elle [14], an educational tool that suggests
relevant web pages when a particular programming language construct is encountered; the latter can be found in
FIT Java Tutor [16], which suggests an example of a correct solution in response to an erroneous one written by
the student.
Knowledge about mistakes is the most common type of feedback found in programming educational tools.

Jurado et al. [22] customize the Eclipse environment to report the output of JUnit tests as feedback following test
execution. Truong et al. [55] identify incorrect program constructs by comparing the student’s solution with a
model solution.
Once a student fully understands why their work is wrong, they need to know how to ix it, and here the

feedback must address knowledge about how to proceed. Keuning et al. [30] developed an intelligent tutoring
tool for code refactoring. Another tool, presented by Antonucci et al. [4], gradually reveals larger portions of the
model solution along with incremental hints.

Knowledge about metacognition is knowledge about why a particular type of thinking is used to complete the
work. Keuning et al. [31] found only one programming educational tool supporting such feedback: HabiPro [57],
which simulates a student responding to a solution.

3 THE ASSESSMENT SUBMISSION SYSTEM

Our approach is embodied in an assessment submission system that educates students about programming
plagiarism and collusion by way of automated, personalized, and timely formative feedback. As the system is
fully automated, instructors are not required to spend a great deal of time in educating students about academic
integrity. Further, the system’s feedback should be easy to digest as it is personalized to each student based on the
program they submitted. In addition, the system efectively warns students when they are potentially committing
academic misconduct since the feedback is provided immediately after the submission. If a large part of the code
is reported as similar, the student might experience guilt or a fear of being caught. In response, some students
might be freshly motivated to act with integrity and to write their own program for the next submission.
The assessment submission system deals with the rationalization side of the fraud triangle [6] by informing

students about programming plagiarism and collusion and showing them the futility of copying and disguising
code. Unlike other tools, it also explains coincidental similarity, which can occur due to compilation requirements,
legitimate code reuse, intuitive implementation of an algorithm, and/or implementations suggested by instructors
[49]. This can be valuable since in practice, code similarity is unduly emphasized as a sign of academic misconduct
[60]. The assessment submission system removes long common code segments from the comparison process,
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ensuring that the remaining legitimately common code segments are shorter than inappropriately copied code
segments. Therefore, coincidental similarity will generally not be a valid explanation for academic misconduct,
as the code segments are diferent in terms of size. The longer the reported segments are, the less likely it is that
their similarity is coincidental.
At irst glance, our assessment submission system is similar to the tool of Le et al. [34], as both report code

similarity before the submission due date; but our system has at least ive further beneits. First, while Le et al.
anonymize students’ programs before displaying them to other students, we believe that some programs might
remain recognizable by their programming style, and might therefore betray student privacy. To avoid this issue,
our system illustrates similarities not by displaying other students’ programs but by disguising the submitter’s
own program. Second, as Le et al. show anonymized students’ programs, some students might be able to see
better solutions and use them for their own advantage. Again, this is solved in our system by disguising the
submitter’s own program instead of showing them another student’s work. Third, our system explains code
similarity in natural language, as students are often unable to see the underlying similarities in code segments
that are diferent on the surface. Fourth, our system informs students about how to proceed, while providing
richer knowledge about task constraints, concepts, and mistakes. Last, our system immediately warns students
when they are potentially committing plagiarism or collusion, as the feedback is given right after the submission,
whereas the system of Le et al. gives feedback at preset intervals.

Currently, the assessment submission system accepts submissions written in Java or Python, the two most
common introductory programming languages in Australasian and UK institutions [50]. Each submission can
be a single program or a zip ile containing multiple program iles. In the latter case, the program iles will be
concatenated to one large ile before being processed, a technique adapted from an existing similarity detector
[26]. The report itself is written in English or Indonesian.
We acknowledge that educating students about programming plagiarism and collusion might lead some

students to try to trick the detection of such misconduct. Our system attempts to mitigate this issue by showing
no information about other students’ details and programs, so colluding students cannot be sure that their
collusion has been detected even if they are both alerted to similarities. Further, the similarity detection is
intentionally designed to be less precise than that of common similarity detectors for detecting plagiarism and
collusion (e.g., JPlag [42] or MOSS [46]), which can still be used following the submission deadline. In addition,
based on our observations of the similarity detectors listed in a recent literature review [29], diferences introduced
to disguise the copying, and reported by our system, are often overlooked by existing similarity detectors as they
generalize aspects of the code prior to comparison.

Figure 1 shows that our system works in six consecutive steps for each student submission:

(1) A student submits a program to the assessment submission system.
(2) The program is then converted to two intermediate representations: syntax index and token string. The

syntax index, which is used to eiciently detect similar programs, is generated via the indexing step of
our similarity detector [24]. First, the program’s syntax tree is constructed and all directly-connected
sets of three adjacent internal nodes are extracted. Occurrence frequencies of those are counted and then
combined into a single index. The token string is used to exclude highly common code from being reported
as similar and to highlight shared code segments. It is constructed by simply tokenizing the program. Both
conversions are conducted with the help of ANTLR [41] and their results are stored in the database along
with the original program.

(3) The submitter’s program and the most recent versions of all other students’ programs are sent to the
similarity feedback generator. While the generator is detecting similarities, segments of code of substantial
length that are common to many submissions are removed from the list of matched tokens.
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(4) If the submitter’s program is similar to the most recent submissions of one or more other students, the
generator generates similarity reports for all involved students, personalized to their own programs. This is
either to provide other students with real examples of coincidental similarity or to warn other students if a
large portion of similar code is found. If there is no similarity, the system generates a report that simulates
the similarity (a simulation report), but only for the submitter. This is to ensure that students with unique
programs are not deprived of the educative aspect of the system.

(5) The link to the similarity report or the simulation report is emailed to the submitter. In the case of a
similarity report, the submitter is encouraged to revise and resubmit the program and explain why the
similarity occurred. Resubmission is allowed to provide another chance for students who are potentially
committing academic misconduct. Being perceived as academic integrity violators may severely afect
students’ mental state. Based on the experience of one of the authors as a programming instructor, some
students drastically alter their behavior when given another chance, validating the educative purpose
of the system. The resubmission is really required only for students who are potentially committing
academic misconduct, but it is generalized to all students with similarity reports due to the diiculty of
diferentiating coincidental and non-coincidental similarity. The requirement to explain is intended mainly
to deter students from engaging in academic misconduct, as this might lead to diiculties in explaining the
similarity. It is also useful for students’ own relection. Both earlier submissions and student responses
regarding the reported similarities are available for the instructors as an additional consideration while
detecting academic misconduct.

(6) Other involved students who are sent similarity reports as a result of this submission are encouraged to
revise and resubmit while explaining the similarity. However, those who have already been sent a report
for this assessment task and have not responded to it will not be further notiied, as they might ind it
distracting to receive multiple similarity reports, one each time a new submission shares the same similarity.

Fig. 1. System overview with six consecutive steps per submission

The similarity feedback generator consists of four components, as shown in Figure 2. The similarity detector
identiies similar programs while the long common code remover prevents long common code segments from
being reported as similar. If the submitted program is similar to at least one other program and the shared code
segments are not common and long, similarity reports will be generated for all involved students. Otherwise, a
simulation report will be generated solely for the submitter.
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Fig. 2. Overview of similarity feedback generator

3.1 Similarity Detector

Our similarity detector needs to be time-eicient as each program will be compared on submission to the most
recent programs from all other students. Further, it needs to be less precise than common similarity detectors for
identifying plagiarism and collusion (e.g., JPlag [42] or MOSS [46]) so that students cannot easily learn how to
evade suspicion of plagiarism and collusion. Our detector uses a technique from the ield of information retrieval,
applied to syntax trees [24]. The information retrieval technique, cosine similarity [8], is known for its time
eiciency, partly because it uses the indexes as the basis for comparison; and the comparison is typically linear in
time because it compares just the submission in question with all other submissions, rather than comparing all
submissions pairwise. The submitted program will be considered similar to another program if their average
similarity is greater than or equal to both 75% and the average similarity degree of all program pairs. This
threshold was shown in our study to be efective, but is easily modiied when using the system. The use of syntax
trees can increase recall (the proportion of retrieved copied programs to all copied programs), although at a cost
of reduced precision. Both of these beneits have been empirically conirmed [24] in comparison to the technique
used by JPlag [42], a common similarity detector.

3.2 Long Common Code Remover

This component prevents long common code segments from being reported as similar. It is adapted from a module
to semi-automatically remove common segments [25]. The component works in three stages. First, common code
segments are selected based on the programs’ token strings once identiiers, constants, and some primitive data
types have been generalized to mitigate the impact of supericial variation.
Next, common segment candidates are formed by concatenating sets of 10 to 30 adjacent tokens, but only

those that begin with an identiier or keyword, start at the beginning of a line, and end at the end of a line. The
settings are explained in an earlier publication [25].

Finally, common segments, identiied as those that occur in at least 75% of student programs, are excluded from
comparison by explicitly marking them as mismatches. The threshold needs to be fairly high because the removal
of common code segments takes place entirely without human validation, so a strict constraint is necessary
both to reduce false results and to expedite the removal process [25]. Our manual observation conirms that the
threshold is suitable for our data sets.

3.3 Similarity Report Generator

If the submitted program is unexpectedly similar to other students’ latest programs and there is at least one similar
segment that was not removed by the long common code remover, a similarity report is generated in ive steps.
First, the submitted program is paired to the most recent submission of every other student. For each program
pair, the matched segments are detected based on their token strings from the long common code remover.
The similarity algorithm uses running Karp-Rabin greedy string tiling (RKRGST) [58], selected for its ability to
prioritize long matches (which are unlikely to arise by coincidence) and deal with code segment relocation in a
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reasonable amount of time [26]. The algorithm’s minimum matching length is set to cover approximately two
program statements: 20 tokens for Java and 10 for Python [25]. All adjacent matches will be merged.

Second, for each matched segment, the diference between programs is classiied as one of four disguise types:
level 0, level 1, level 2, and level 3 or higher. These levels are derived from Faidhi and Robinson’s taxonomy of
code disguises [9]. Level 0 similarity, which occurs when the segments are identical at surface level, is detected
by comparing the original forms of the segments. Level 1 similarity, which occurs when the segments difer only
in comments and white space, is detected by comparing the segments at token level but without any tokens
generalized. Level 2 similarity occurs when the segments also difer in terms of identiier names, and is detected
by comparing the segments’ token strings with all identiiers generalized. Level 3 or higher similarity occurs
when the segments contain other disguises in addition to lower level disguises. However, since we want the
system to be somewhat lacking in precision, it only reports modiications to constants and data types. This
detection works by comparing the segments’ token strings after generalizing constants and some data types.
At the third step, matched segments from all program pairs are mapped to the submitted program. All

overlapping segments are merged, with their similarity level assigned to the lowest level of the involved segments.
For example, if there are three overlapping segments with level 2, level 1, and level 2 similarity, the merged
segment will have level 1 similarity. This is to ensure that if there are any segments with obvious similarity, they
are still reported as they are.
Fourth, each matched segment mapped to the submitted program is associated with an explanation about

the similarity (see Figure 3 for an example). The explanation starts by stating that the segment is also found
in some other students’ submissions with their diferences generally described based on the similarity type.
An illustrating code example is provided as a case study, to encourage deeper understanding. The example is
generated by disguising the segment of the submitter’s own code based on the similarity type. For example, if
the segment’s similarity type is level 2, the disguises will be about identiier renaming, comment modiication,
and/or white space modiication. The disguised segment is placed below the explanation text. The explanation
ends with a statement about how the similarity can be suspicious.

Fig. 3. Example of similarity explanation that will be placed right above the illustrating code example

For the disguising process, we adapt CSD, a disguising tool to educate students about code similarity [23]. It
covers ive code components: comments, white space, identiiers, data types, and constants. The irst two generate
code with level 1 similarity; the third is for level 2; and the rest are for level 3 or higher. Level 0 similarity does
not need any disguises as it is a verbatim copy. Students are expected to easily understand the code example
since the disguises are natural and reasonably common among student programs. Out of sixty disguises, ive are
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not used in this process. Three disguises that remove some comments can be replaced with their counterparts
that remove all comments. A disguise that replaces spaces with tabs results in changes that are unlikely to be
visible to students. A disguise that reformats the code indentation is time-ineicient.

The disguises to be applied are selected by listing modiiable code components for the similarity level (e.g.,
identiiers, comments, and white space for level 2). For each such component, a disguise will be randomly selected
from the relevant disguises that can supericially change the given code segment, listed by recognizing modiiable
code content [23].
Finally, the submitted program, the matched segments, the explanation, and the illustrating examples are

embedded in an HTML page that forms the similarity report. The report’s layout is a modiied version of the
side-by-side comparison view of STRANGE [26], and is illustrated in Figure 4. The report has six panels containing
general information, the submitted code, a similarity table, a list of similarity explanations, a list of illustrating
code examples, and a random fact.

Fig. 4. Layout of similarity report where the matched segments are highlighted and observable. The figure provides a brief

overview of the report without expecting the text to be readable. The labels in boxes are added for clarity and the displayed

code is taken from Sedgewick and Wayne [47].

The general information panel contains submission metadata (student ID, course, and assessment information),
along with some general knowledge about programming plagiarism and collusion. Speciically, the knowledge
covers why the report is generated (since the program is unexpectedly similar to some other students’ programs),
what actions the student might have taken that would lead to this similarity (listing possible reasons for both
non-coincidental similarity [48] and coincidental similarity), and what action the student is expected to do next
(revise and resubmit while explaining the similarity). Each item of information can be accessed by clicking its
corresponding ‘details’ button.

The submitted code is displayed with Google Prettify1 to enhance its readability. Further, similar code segments
are highlighted in red to draw the student’s attention. Clicking a segment will highlight its corresponding entry
in the similarity table, update the explanation, and update the illustrating code example.

1https://github.com/google/code-prettify
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The similarity table panel lists any similar code segments found in the submitted code. Each segment is
represented by four information components. The segment ID facilitates convenient referencing in any inquiries
between the student and the instructor, as the report is accessible to both. The similarity type measures how
similar the segment is to other students’ segments based on Faidhi and Robinson’s disguise taxonomy [9]. Since
the levels are not self-explanatory for students, they are changed to ‘very strong’ for level 0, ‘fairly strong’ for
level 1, ‘strong’ for level 2, and ‘moderate’ for level 3 or higher. Segment length captures how many characters
are involved in the segment; this is generally inversely related to the likelihood of coincidental similarity. The
length is given in characters, not tokens, since students are not familiar with the latter term. Warning level
represents the segment’s priority for manual investigation. Longer segments with more obvious similarity (i.e.,
lower disguise level) are more likely to be prioritized. The level is generated by ranking all the segments based
on the formula (6 − level ) ∗ lenдth, where level is the segment’s disguise level, six is the maximum disguise level,
and length is the segment’s length.

The remaining panels are fairly self-explanatory. The similarity explanation panel displays relevant explanation
about the selected code segment, as illustrated in Figure 3. The illustrating code example panel shows the disguised
form of the selected segment. The random fact panel randomly displays one fact taken from the general information
panel.
Upon investigating the similarity report, the student is expected to revise and resubmit their program while

providing their own explanation of the similarity.
The generated similarity report can contain both coincidental and non-coincidental similarity, and we leave

students to justify which is which, for two reasons. First, the two types cannot be diferentiated simply by segment
length since they depend heavily on the design and context of the assessment task [49]. Second, non-coincidental
similarity needs to be manually validated prior to being reported as it can be used as evidence for raising suspicion
(burden of proof [21]).

The similarity report can provide four types of knowledge from Narciss’ feedback content categories [37].
Knowledge about concepts can be found in the general information panel, in the random fact panel, and in
observation of the reported code segments with their illustrating code examples. Knowledge about task constraints
and knowledge about mistakes implicitly occur if many of the reported segments are unusually long with obvious
similarity. Knowledge about how to proceed is explicitly mentioned in the general information panel, requiring
the student to resubmit the program while explaining the reasons for the reported similarity.

3.4 Simulation Report Generator

If a submitted program is not found to be unduly similar to any other student’s program, a simulation report
will be generated in four steps. First, the submitted program’s ‘matched’ segments will be randomly selected
from the token string previously generated for the long common code remover. For the purpose of readability,
segments will be constrained to consist of one or more whole lines. Further, to make each segment comparable to
those in the similarity report, its length is no less than RKRGST’s minimum matching length (20 tokens for Java
and 10 for Python, see subsection 3.3). If no code segments fulill both criteria, the irst step is re-executed with
a template program. In this manner, the simulation report will still be generated even for programs that only
contain long common code and programs whose length is less than the minimum matching length. The student
will be informed via code comments that the program is not theirs and is provided only for the purpose of the
simulation.
Second, the submitted program’s modiiable code components are listed and each is given a 50% chance of

having an artiicial diference applied to it. Each of the generated diferences is then classiied as one of the
four similarity types described in subsection 3.3. The mechanism is somewhat similar to the second step of the
similarity report generator.
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The inal two steps are similar to the fourth and the ifth steps of the similarity report generator. Each matched
segment is provided with an explanation and an illustrating code example, and the segments are embedded in an
HTML page along with the submitted program.
Figure 5 shows an example of the simulation report. Its layout is similar to that of the similarity report.

It contains panels for general information, the submitted code, similarity table, similarity explanation, and
illustrating code examples. However, there are several diferences to ensure that students do not misinterpret it as
a similarity report. First, the highlighting color is green instead of red, implying less urgency to observe. Second,
all segments’ similarity types are described as ‘simulation only’. Third, each similarity explanation explicitly
states that it is based on assumption, not on actual code similarity. Fourth, instead of showing a random fact, a
notice explicitly states that this is just a simulation. Fifth, the general information panel only contains submission
metadata and a list of actions that may result in code similarity.

Fig. 5. Layout of simulation report with comparable information to that of similarity report. The figure provides a brief

overview of the report with labels in boxes added for clarity; the text is not expected to be readable.

The simulation report only provides knowledge about concepts as no mistakes are detected, no task constraints
are relevant, and no actions are required of the student after observing the report.

4 THE APPROACH

At the beginning of the course, the instructors explain their expectations regarding academic integrity. However,
only general explanations are required as the assessment submission system will provide the details later. They
should also inform the students that the assessment submission system will be used and it will report program
similarities, with the likelihood of coincidental similarity inversely related to program length, since legitimately
long common segments are automatically excluded.
For each assessment, students are only expected to respond to a similarity report once. It would not be

appropriate to require students to keep resubmitting until no similarities are detected, for two reasons. First, the
detection of common code segments is not perfectly accurate as it is fully automated. Second, some relatively
short similar segments are coincidental but not common to multiple programs.
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If the course issues many small assessment tasks rather than a few large ones, it can be daunting to respond
to the similarity report once for each assessment task. Consequently, the requirement to respond can be made
entirely voluntary ś but any responses might still be considered when detecting plagiarism and collusion. Thus
students will only respond to the similarity report if they submit the program early and/or they are at risk of
being suspected.

Reporting program similarities while allowing resubmission might be seen as suggesting that plagiarism and
collusion are somewhat acceptable. We try to mitigate this by informing students that the reported similarities are
not inal, and a stronger similarity detector will be used to check the inal submissions for evidence of plagiarism
and collusion. Programs that are deemed unique by our assessment submission system might be found similar to
others when checked using the stronger detector.
Along with educating students about programming plagiarism and collusion, it is important to detect such

misbehavior and apply the appropriate penalties. Otherwise, the knowledge becomes less relevant to students as
they will not beneit from it during the course. Detecting programming plagiarism and collusion can be aided
with a similarity detection tool. For assessments that allow many distinct solutions at algorithmic level, MOSS
[46] and JPlag [42] are commonly used. Otherwise, detectors capturing iner variation (e.g., looping variance) are
preferred [28], like Sherlock’s detection modes without program tokenization [21] and STRANGE [26]. Instructors
can also use earlier submissions, along with student responses regarding the reported similarities, as additional
considerations when checking for academic misconduct.
Our approach motivates students who are potentially committing plagiarism or collusion to re-attempt the

assessment with their own work. We believe that they are unlikely at this stage to base their work on another
student’s solution as they know that a stronger similarity detector will be used when checking for plagiarism
and collusion. Of course for this particular assessment task they have already seen another student’s work, and
that might inluence their work; but we hope and expect that, at two assessment tasks a week, they will soon
acquire the habit of completing the tasks without inappropriate assistance.
There are approaches that allow students to plagiarize in formative assessment, using the plagiarism as an

early opportunity to educate the students about academic integrity [20, 34], and our own approach shares some
features with such approaches. While we do not encourage students to plagiarize or collude, we acknowledge
that some will do so as they struggle to understand what is acceptable and what is not, and our goal is to help
them attain that understanding. Of course some students might use this early feedback to see what misconduct
they can get away with; but because we use a stronger similarity detector on their inal submissions, this is likely
to lead to disappointment and disciplinary consequences.

5 EVALUATION

Our system and intervention were evaluated by two quasi-experiments conducted over two academic semesters;
the control group (87 students) is from the second semester of 2019 while the intervention group is from the second
semester of 2020 (76 students). As with many quasi-experiments, we assume that the control and intervention
groups have students with comparable academic skill; as explained in the next paragraphs, this is because in
one case they are enrolled in diferent oferings of the same course and in the other because they are the same
students in diferent courses. None of the instructors are part of the research team, and all evaluation has been
granted the appropriate ethics approval.

In the course-focused experiment, the control and intervention groups are from consecutive oferings of the same
course, introductory programming. This is a compulsory course for irst-year information systems undergraduates.
Each assessment task is to be completed in Java and then translated to Python; both languages are heavily used
in the information systems major and the instructors believe that this mechanism can help students to learn
both at once. While the choice to translate the solutions to another programming language is clearly subject to
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discussion, no further explanation will be given here as it is not within the scope of this study. The control group
has 26 students while the intervention group has 33 students. Assessments of the control group are comparable
to those of the intervention group since they are given in the same course by the same lead instructor. We have
explicitly checked the assessment speciications and found only minor changes between oferings.
Each introductory programming assessment has three programming tasks: an easy task, to implement the

new syntax constructs covered in the lecture; a medium task, requiring students to think about how to solve
the problem in addition to implementing the new syntax constructs; and a challenging task, similar to but more
diicult than the medium task. To illustrate this, consider an assessment about single looping. The easy task is
łgiven a number N, print 1 to N ž; the medium task is łgiven a number N, print the irst N ibonacci numbers
without using an arrayž; and the challenging task is łgiven a number N, create a 2D right triangle of asterisks, of
size N, using only one loopž.

Each task usually only allows a few solutions at algorithmic level. However, this does not mean that all student
submissions must be similar. Our approach still considers syntactic variation (e.g., looping forms) and small
details (e.g., the use of parentheses). Further, the approach automatically excludes long similar segments that are
common among student submissions such as łpublic static void main (String [] args)ž. Moreover, per submission,
solutions for all three tasks are concatenated prior to comparison.

In the student-focused experiment, the control and intervention groups consist of essentially the same students
in consecutive courses. The control group consists of 61 students enrolled in a diferent introductory programming
course, a compulsory irst-year course for information technology undergraduates. The assessment design is
similar to that of the course-focused experiment except that it only uses Python as the programming language.
The intervention group consists of 43 students enrolled in advanced algorithms and data structures, a compulsory
second-year course that uses Java as its programming language. Most of the students in this course had been in
the control group in the preceding course. Each assessment is about implementing a data structure (e.g., stack or
linked list) to solve a task (e.g., simple arithmetic operation for stack) based on a particular template.

In this experiment, the assessments of the intervention group clearly difer from those of the control group; in
the control course, the assessment tasks are expected to result in fairly distinct solutions [27]. On the other hand,
assessment tasks in the intervention course rely on template code provided by the lecturer, have more constraints,
and result in longer programs, so similarities among programs are more likely. However, these diferences do not
harm the validity of the experiment since they disfavor our approach; in the intervention group it is less likely
that we will be able to detect the sort of similarity that suggests academic dishonesty, so our approach needs to
be particularly efective to have a perceptible impact.
All courses in the evaluation issue two assessments each week. The lab assessment task is to be completed

during the two-hour lab session, and the homework assessment task is to be completed before the following lab
session. In just one of the courses, advanced algorithms and data structures, the homework assessment is similar
to the lab counterpart, and students are expected to carefully check their lab solutions and add any features that
they had failed to complete in the lab.

At the beginning of each course ofering, control and intervention, the instructors verbally informed students
about acceptable practices in their courses, including penalties for those who breach the rules. This took around
15 to 20 minutes of the irst laboratory session. The information was occasionally repeated in later sessions to
remind the students. Such repetition occurred more frequently with the control groups as the approach presented
in this paper was not available to help guide the students.
During the intervention period, our approach was used for all assessments. Because there were so many

assessment tasks, student responses to any reported similarities were set to be voluntary, and were considered
only when detecting programming plagiarism or collusion. The detection was performed with STRANGE [26],
which focuses on iner granularity (e.g., loop variance) than a common similarity detection tool such as JPlag
[42]. The iner-grained tool is more efective on assessments such as ours, which do not allow many possible
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solutions at algorithmic level [28]. Students whose programs seemed to be a result of misconduct would be
awarded no marks for that assessment task. Further, they would be personally warned if the misconduct recurred.
The instructors also used student responses regarding the similarity reports as an additional consideration. If the
programs are similar but the reasons are logical, the students are not suspected of academic misconduct. However,
the instructors chose not to consider earlier submissions for each assessment item since these submissions were
perceived as ‘work in progressâĂŹ.
It is worth noting that the intervention period was during the covid-19 pandemic and all class sessions were

conducted online. While department policy, teaching designs, and assessment designs were still comparable to
those before the pandemic, interactions between instructors and students became more challenging. This might
have reduced students’ capability to understand the course materials, possibly increasing their temptation to cheat
[19]. However, this increases the validity of our indings rather than reducing it, as our approach needed to be
particularly efective in order to bring about a measurable decrease in detected similarities when the temptation
to cheat might be higher.
While there is an increasing number of discussions about academic integrity during the pandemic, it is

unlikely to favor our approach during the intervention period. Our instructors believe that they gave comparable
information about academic integrity at the beginning of the courses. Moreover, most of the discussions are
among instructors, not students. In addition, the increase in discussion of academic misconduct is still small
compared to the increase in discussions of general issues such as public health and the economy. Nevertheless,
we are still open to two small possibilities. First, that the instructors unintentionally took more efort to warn
students about academic integrity, making them more aware of programming plagiarism and collusion. Second,
that a few students read relevant news and became more aware of the matter.
At the end of each of the four course oferings, students were invited to complete a short survey. In order to

maintain the validity of the survey, students were not subsequently told which answers are correct; those in the
student-focused experiment addressing RQ1 and RQ2 (subsections 5.1 and 5.2) would be invited to complete
the survey once more, while others might inform students who had not taken the survey. Although we worked
to make the survey questions as clear as possible, we acknowledge the possibility that some students might
misinterpret them, resulting in low-quality answers.

To further understand student behavior while using the system, statistics of the generated reports are described.
We also summarize the kinds of justiication used to explain the reported similarities. While it would be interesting
to conduct further analysis into how students used the system, we are unable to do that since our ethics approval
does not permit analysis that involves student identiication and behavior tracking.

5.1 RQ1: Improved Student Awareness of Programming Plagiarism and Collusion

Student awareness of programming plagiarism and collusion is measured via a voluntary survey given at the end
of each course ofering in our quasi-experiments.
The survey adapts questions from Simon et al. [48] asking whether students believe particular scenarios are

academically acceptable. Three of the 14 original questions were not used, as our approach does not cover copying
from online sources and the courses do not speciically use message boards in their learning management system.
The remaining questions have been slightly modiied to focus on plagiarism and collusion among students. Each
question has three answer options: ‘yes’, ‘no’, and ‘do not know’. These questions do not have universally correct
answers, as instructors are known to difer on what they ind acceptable in their own courses [52].

Table 1 shows the questions, along with the answers deemed correct by the instructors in these courses. The
correct responses were determined via informal discussions between the instructors and one of the authors
before the semesters started (mid-2019 and mid-2020). The instructors were given the survey questions and the
correct responses were discussed until consensus was reached.
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Table 1. Survey questions about general knowledge of programming plagiarism and collusion, with the answers deemed

correct by the instructors of these courses

ID Is this academically acceptable? Answer

GQ01 Purchasing code written by other students to incorporate into your own work No
GQ02 Paying another student to write the code and submitting it as your own work No
GQ03 Basing an assessment largely on work that you wrote and submitted for a previous

course, without acknowledging this
No

GQ04 Incorporating the work of another student without their permission No
GQ05 Copying another student’s code and changing it so that it looks quite diferent No
GQ06 Copying an early draft of another student’s work and developing it into your own No
GQ07 Discussing with another student how to approach a task and what resources to use,

then developing the solution independently
Yes

GQ08 Discussing the detail of your code with another student while working on it Yes
GQ09 Showing troublesome code to another student and asking them for advice on how

to ix it
Yes

GQ10 Asking another student to take troublesome code and get it working No
GQ11 After completing an assessment, adding features that you noticed when looking at

another student’s work
Yes

Table 2. Statistics of the survey responses

Experiment Group Responses Total students

Course-focused Control 25 26
Intervention 27 33

Student-focused Control 47 61
Intervention 39 43

Table 2 summarizes the numbers of responses for both the course-focused and student-focused experiments.
Although the survey was voluntary, the response rate is quite high, perhaps because students were interested in
the survey’s subject matter. Further, the survey was directly distributed by one of the authors (physically for
2019 and virtually for 2020), who explained to the students that participation might positively afect their future
approach to learning.

Participants in the student-focused experiment were invited to complete the survey twice, once at the end of
each course, and it is possible that their second response was inluenced by their irst. We took three steps to try
to mitigate this possibility: we did not inform the control group that they would be invited to take the survey
again a year later; we did not reveal the correct answers; and in the second course we did not inform students
that the survey was the one they had taken a year earlier.

In the analysis, the average proportion of correct answers of the intervention group is compared with that of
the control group for the full set of questions and for each individual question. Diferences between the groups
are measured with a two-tailed unpaired t-test with 95% conidence rate. The t-tests were performed under
several assumptions. First, the responses form a continuous scale for the full set of questions (proportion of
correct responses) and an ordinal scale for each individual question (correct or incorrect). Second, the responses
represent student awareness of programming plagiarism and collusion with and without our approach. Third, the
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Table 3. Statistically significant changes in proportion of correct answers about general knowledge

Experiment Question Control Intervention Variance P-value

Course-focused All 31% 64% Equal 0.01
GQ05 40% 81% Equal < 0.01
GQ10 16% 70% Equal < 0.001
GQ11 36% 77% Equal < 0.01

Student-focused All 29% 68% Equal < 0.001
GQ03 6% 23% Unequal 0.03
GQ04 77% 92% Unequal 0.04
GQ05 43% 79% Equal < 0.001
GQ07 70% 97% Unequal < 0.001
GQ09 76% 97% Unequal < 0.001
GQ10 15% 82% Equal < 0.001

responses are normally distributed. Fourth, the sample size is reasonable given that it involves 72 responses of
the control groups and 66 responses of the intervention groups. Fifth, the variance of the responses is considered
while measuring the test.

A t-test is preferred to other statistical tests since it is applicable to both analyses: the overall improvement
with continuous-scale responses and individual question improvement with ordinal-scale responses.

For the course-focused experiment, Table 3 shows that overall, students in the intervention group have a better
general knowledge of programming plagiarism and collusion, with a 33% higher average correct response rate.
However, only three individual questions show statistically signiicant changes: GQ10 with 54% improvement,
GQ05 with 41%, and GQ11 with 41%.

Many students in the intervention group view it as academic misconduct to ask a colleague to ix some errors
(GQ10). They are made aware that when part of the program is written by a colleague, this is collusion, and results
in similarity between their program and that of the colleague because, when ixing the errors, the colleague
typically re-implements their own solution. The correct response rate for the control group is particularly low
since some students thought it acceptable to have other students ix their code directly.
That knowledge also explains the signiicant improvements in GQ05 and GQ11. GQ05 is about copying a

colleague’s program and modifying it so that it looks diferent from the original. The intervention group see this
scenario as academic misconduct as the program is based on another student’s program. Changing the ‘look’ does
not change the ownership of the program as most of the modiications are not related to program low. GQ11 is
about implementing additional features noticed when looking at another colleague’s work. Many students in
the intervention group agree with the instructors that this is not academic misconduct since the features are
implemented individually.
For the student-focused experiment, when exposed to our approach, students are more aware of general

knowledge by 39%, with six questions showing statistically signiicant changes. As with the course-focused
experiment, GQ05 and GQ10 show the greatest improvement. In the intervention group (their second course in
the experiment) students are particularly aware that asking a colleague to ix errors and submitting a modiied
version of a colleague’s program are both academic misconduct.

GQ03, GQ04, GQ07, and GQ09 show signiicant increases just in the student-focused experiment. It is possible
that the intervention group hadmore opportunity to learn since the assessments entailed longer andmore complex
solutions. Further, the students had more programming experience. GQ03 is about basing an assessment on work
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submitted for a previous course without acknowledging the reuse. The scenario is related to self-plagiarism, a
topic that is widely misunderstood [7]. This is why the correct response rate is particularly low, even for the
intervention group. The improvement might be due to student awareness of code similarity as a primary source
of evidence for plagiarism and collusion. If the earlier submission and the current one are compared, they will
show undue similarity. GQ04 is about incorporating a colleague’s work without permission. The student’s work
is not entirely written by themselves and it is likely that the incorporated work will remain similar to that of the
colleague.
GQ07 and GQ09 are considered as acceptable scenarios since the program is written solely by the student.

GQ07 is about discussing with another student how to approach a task and what resources to use, then developing
the solution independently. Although the students use the same approach, their implementations are likely to
difer. GQ09 is about showing troublesome code to another student and asking them for advice on how to ix it.
The given advice still needs to be implemented in the program by its writer.

GQ11, which is about implementing additional features noticed when looking at another student’s work,
shows no signiicant diference in the student-focused experiment. While the instructors see this behavior as
acceptable, students remain uncertain, perhaps because they think that incorporating the features is presenting
the other student’s work as their own. Further, in data structures assessments, some features only have one
obvious implementation, and knowing the features means knowing how to implement them.

5.2 RQ2: Improved Student Awareness of Common yet Futile Program Disguises

Along with the questions discussed in the previous section, the survey included questions about program
similarities and attempts to disguise them. These questions can be seen as measuring student awareness of
common yet futile program disguises.

The disguises in question are those in the early levels of Faidhi and Robinson’s taxonomy of code disguises [9]:
verbatim copy (level 0), comment and white space modiication (level 1), identiier renaming (level 2), and code
segment relocation (level 3). These disguises are ignored by many code similarity detectors, which generalize
white space and identiier names before comparing programs, and which can often accommodate code relocation.
Each level of disguise is mapped to three questions, covering the irst three levels of Bloom’s revised taxonomy [3]:
remember, understand, and apply. Each question asks students whether they agree or disagree with a statement,
or do not know.

The questions are shown in Table 4, along with the answers deemed correct for these courses by the researchers.
The correct responses were conirmed by the instructors via informal discussions before the semesters started
(mid 2019 and mid 2020). CQ01śCQ04 are remember-type questions, CQ05śCQ08 are understand-type questions,
and CQ09śCQ12 are apply-type questions. In each category, the questions are ordered by the disguise level they
cover (e.g., CQ01 for level 0 and CQ02 for level 1).

Readers should remain aware that some survey questions might have diferent expected responses in diferent
courses. For example, CQ12 is agreed by our instructors since most of their assessments are simple, expecting the
solutions to be quite similar except perhaps for the order of program blocks. The responses were analyzed in
the same manner as those for RQ1. We had initially planned to measure the impact based on the learning levels;
however, that analysis showed no interesting patterns and is therefore not reported here.

Table 5 shows that in the course-focused experiment, student awareness of common yet futile program disguises
is improved by 41%, with most of the questions showing a statistically signiicant improvement. CQ02, CQ03
and CQ10 are the questions with the greatest improvement. Students in the intervention group are particularly
aware that both changing comments (CQ02) and changing variable names (CQ03) are futile. Variation just in
comments and variable names was often found among student programs, and thus was reported to the students.
They are also aware that trivial tasks such as printing łHello, world!ž are expected to result in high yet acceptable
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Table 4. Survey questions about knowledge of code similarity, with the answers that apply to the courses in the study

ID Statement Answer

CQ01 Copying source code from another student without modiication will lead to strong
suspicions of plagiarism or collusion.

Agree

CQ02 Source code comments can be changed, added, or removed without understanding
how the program works. Hence, two similar programs with diferent comments will
lead to suspicions of collusion.

Agree

CQ03 Variable names cannot be changed without understanding how they are used in the
program, so unique names guarantee that the author is not involved in plagiarism
or collusion.

Disagree

CQ4 The order of function/method declarations commonly afects how a program works,
so two programs with diferent orders of declaration are clearly both original.

Disagree

CQ05 The highest level of content similarity occurs when two programs share the same
syntactic program low, code layout, and comments.

Agree

CQ06 Source code comments describe in human language what the program is doing, so
in programs that do the same thing, the comments are expected to be very similar.

Disagree

CQ07 The names of functions/methods can be changed just as variable names can be
changed, so these names should be considered in the same way when checking for
plagiarism and collusion.

Agree

CQ08 Changing the order of function/method calls requires more programming knowl-
edge than changing the order of function declarations, so a diferent order of func-
tion/method calls is less likely to suggest plagiarism or collusion.

Agree

CQ09 Students are required to use one of three algorithms in a programming assessment.
Student A has known programming since high school and loves to use advanced
programming techniques. Student B copies Student A’s work and submits it as their
own, thinking that most students’ programs will be similar as there are only three
algorithms to choose from. Student B will not be suspected of collusion.

Disagree

CQ10 After completing a simple Hello World assignment, a student tries to make the
comments really distinctive because they are all that will make the program diferent
from those of other students. The studentâĂŹs thinking is valid.

Disagree

CQ11 Two international students who speak diferent languages are taking an introductory
programming course. In an assignment, their programs are identical except that the
variable names are written in their respective mother language. These two will be
suspected of plagiarism or collusion.

Agree

CQ12 A programming assignment involves calculating a course grade from the marks for
quizzes, tests, and assignments; each score will be calculated separately from its
respective sub-scores. Student A builds the program by calculating the quiz score,
test score, and assignment score sequentially as instructed. Student BâĂŹs program
is similar except that the quiz score is calculated last. These students will not be
suspected of plagiarism or collusion.

Agree
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Table 5. Statistically significant changes in proportion of correct answers about code similarity

Experiment Question Control Intervention Variance P-value

Course-focused All 31% 72% Equal < 0.001
CQ02 32% 89% Equal < 0.001
CQ03 16% 70% Equal < 0.001
CQ04 8% 37% Unequal 0.01
CQ05 48% 89% Unequal < 0.01
CQ06 4% 52% Unequal < 0.001
CQ07 44% 74% Equal 0.02
CQ08 44% 74% Equal 0.02
CQ09 44% 89% Unequal < 0.001
CQ10 12% 74% Equal < 0.001
CQ11 20% 63% Equal < 0.01

Student-focused All 34% 65% Equal < 0.001
CQ01 85% 100% Unequal < 0.01
CQ02 49% 74% Equal 0.01
CQ03 9% 69% Unequal < 0.001
CQ04 17% 49% Equal < 0.01
CQ05 45% 97% Unequal < 0.001
CQ08 32% 62% Equal < 0.01
CQ09 49% 82% Equal < 0.01
CQ10 11% 64% Unequal < 0.001
CQ11 21% 49% Equal < 0.01
CQ12 21% 51% Equal < 0.01

similarity (CQ10). Further, some of the assessment tasks in this course have only have a few possible solutions
due to their simplicity.

For the student-focused experiment, students in the intervention group are generally more aware of common
yet futile program disguises, with an increase of 31%. As in the course-focused experiment, CQ03 and CQ10
show the greatest improvement. Students are made aware that changing variable names is pointless, and that it
is acceptable to have similar programs for trivial assessment tasks. CQ05, which discusses the highest level of
content similarity, is another question with large improvement, as some template code segments are provided for
verbatim student use, and can be reported to students as coincidentally similar segments.

CQ01 and CQ12 are signiicant just in the student-focused experiment. The assessment tasks in the intervention
course have longer solutions with more variability in the order of code segments than those in the course-focused
experiment. Further, the tasks expect more method declarations. It is therefore less likely that two complete
programs will be coincidentally verbatim copies (CQ01), and, in the data structure course (the one with the
approach), semantically identical programs with diferent ordering of program blocks are more likely to be
independent given that the blocks usually represent method declarations (CQ12).

In contrast, CQ06 and CQ07 show no signiicant changes in the student-focused experiment. CQ06 is about the
fact that programs to do the same thing do not always have the same comments. Students in the intervention
course are unsure about this, as some data structures assessments involve direct translation from algorithm
instructions to program statements, which can result in similar comments. CQ07 is about the futility of changing
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the names of methods or functions. It shows no signiicant change as the student-focused control group was
already knowledgeable about the matter (68% correct responses, compared with 44% in the control group of the
course-focused experiment).

5.3 RQ3: Reduced Code Similarity Degree of Submited Programs

To address our third research question we need to measure the level of code similarity among student programs.
As there is no agreed measure of code similarity, we use a common classiication proposed by Roy et al. [45], which
introduces four types of similarity. Type I similarity means that the similar programs difer only in comments
and white space. Type II similarity allows diferences in identiier names, data types, and constants in addition
to those of type I similarity. Type III similarity occurs when the programs share the same logical low. Type
IV similarity is shown when programs display the same functionality, and is not applicable in our study as the
assessment tasks expect all students’ solutions to have the same functionality. There is a clear overlap between
this classiication and that of Faidhi and Robinson [9] as used in the previous section, but it seems appropriate to
use a taxonomy of code disguises when explicitly discussing code disguises, and a classiication of code similarity
types when discussing the observed levels of similarity among student programs.
The three similarity types are measured with the help of both JPlag [42] and STRANGE, a simpler similarity

detector that uses the same technique [26]. JPlag is used to detect type III similarity; STRANGE is used, without
generalizing program statements, to detect type II similarity; and its simplest version, which only tokenizes
programs and removes comments and white space, is used to detect type I similarity. JPlag uses RKRGST as the
similarity algorithm. Following our RKRGST setting in subsection 3.3, we set its minimum matching length to
the approximate length of two program statements (20 for Java and 10 for Python) [25]. The similarity degree
for each program pair is calculated with JPlag’s average normalization [42], as in Equation 1. A and B are the
involved programs; matches(A,B) is the total length of similar content; and length(A) and length(B) are the length
of A and B respectively. Average normalization is preferred to the alternative, maximum normalization, due to its
capability to consider all code diferences when calculating the similarity degree [26].

sim(A,B) =
2 ×matches (A,B)

lenдth(A) + lenдth(B)
(1)

For the purpose of comparison, each assessment task from the intervention group (which we shall call an
intervention assessment) is paired with a comparable assessment from the control group (a control assessment).
The comparable assessment should cover the same material for the course-focused experiment, or be drawn from
the same course week for the student-focused experiment. Statistics of the assessment pairs can be seen in Table
6.
For the student-focused experiment, the intervention assessments difer in three ways from their control

counterparts. First, the intervention assessments are all based on template code. Second, the intervention
assessments are more strongly directed, as simple tasks in data structures do not allow much variation. Third, the
intervention assessments use Java as the programming language while the control assessments use Python, which
typically lends itself to shorter program statements. While the irst diference is easily mitigated by removing
the template code prior to comparison with an automated tool [25], the other two diferences are not easy to
resolve and thus remain. Consequently, the intervention assessments are expected to result in higher similarity
by default, and therefore not to show the beneits of using our approach. In these circumstances, if code similarity
is less in the intervention group than in the control group, the system would seem to be particularly efective.

Analysis is conducted separately for each type of similarity. For each experiment, we calculate the diferences
in similarity between the control assessments and the corresponding intervention assessments, as follows:
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Table 6. Statistics of the assessment pairs

Metric Course-focused Student-focused

Assessment pairs

Lab
8 12

Homework
8 12

Total
16 24

Control group submissions

Lab
186 606

Homework
184 599

Total
370 1205

Intervention group submissions

Lab
159 475

Homework
184 442

Total
343 917

(1) For each pair of assessment tasks, the average similarity degree for the control assessment is measured by
comparing the most recent submissions in pairs at task level and averaging all of the reported similarity
degrees. The same computation is then done for the intervention assessment. We cannot compare complete
submissions as students in the control group submitted the programs as individual tasks. Merging the
programs is not possible, as we have access only to the individual de-identiied programs.

(2) The change in similarity is calculated by subtracting the intervention assessment’s average similarity
from that of the control assessment; the signiicance is determined via two-tailed unpaired t-test with 95%
conidence rate.

(3) All assessment pairs showing signiicant reductions are counted.

We also compute an overall diference, by averaging the average similarity degree of all intervention assessments,
and subtracting it from that of all control assessments. For this computation the signiicance is measured with a
paired t-test as each intervention assessment has a control counterpart.

We also analyzed the data based on the assessment type (lab or homework). However, the indings are somewhat
similar to those of the general analysis, and are therefore not reported here.

Reductions of type I and type II similarities are expected since they are reported to students by our assessment
submission system. However, they still show how efective our approach is. They are also useful to enrich our
indings by comparing reductions in each type of similarity. Type III similarity is not reported at all by our
approach, so its reduction can indicate that students with our approach are less likely to engage in programming
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Table 7. Summary for type I code similarity

Metric Course-focused Student-focused

Signiicant pairs with reduced similarity 16 17
Signiicant pairs with increased similarity 0 2
Insigniicant pairs 0 5
Average similarity degree of control 10% 12%
Average similarity degree of intervention 3% 5%
Overall similarity degree reduction 7% 7%
P-value for overall reduction < 0.001 < 0.01

plagiarism and collusion. Although it is unlikely, we acknowledge that any reduction in type III similarity might
be an accidental consequence of students’ deliberate reduction in type I and II similarities.
We are aware that similarities might occur for reasons other than plagiarism and collusion. To make the

similarity reduction meaningful, the assessments should be comparable, or at least disfavor the intervention
group (i.e., having higher similarity by default). Comparable assessments were applied in our course-focused
experiment while assessments that disfavor the intervention groupwere applied in the student-focused experiment
(see the assessment designs at the beginning of section 5).

While the number of identiied cases of plagiarism or collusion would be another promising metric, we have
not used it since the process of identifying plagiarism and collusion is diferent before and during the pandemic.
Before the pandemic, the instructors used much supplementary information, gained from physical interactions
in the classroom, that was not available during the pandemic. Further, we do not have access to the number of
identiied cases of plagiarism and collusion in the control groups as we did not ask the instructors to record it.
Finally, we, as the researchers, cannot check for plagiarism and collusion, because we are not involved with

the students and we do not know which similarities are coincidental. We can check only for program similarity,
which is what we have done.

5.3.1 Reduced Type I Code Similarity. Table 7 shows that in the course-focused experiment, type I similarity is
low regardless of the intervention; many students were already aware that two programs are considered similar
if they share the same surface representation. However, the intervention group showed a 7% reduction in surface
similarity, and the change is statistically signiicant for all assessment pairs. We would like to conclude that
students became more reluctant to engage in acts of plagiarism and collusion. However, as surface similarity can
be modiied without understanding the program, the inding might be a result of some students attempting to
trick the similarity detector by copying code and introducing unique identiier names. Findings on other types of
similarity are necessary to support our conclusion.

It is interesting that the reduction occurs even in the irst lab assessment. Although students had not seen their
own similarity reports at that time, during the course introduction they had been shown examples of reports and
informed that their programs would be checked for similarity that might suggest plagiarism or collusion.
In the student-focused experiment, the intervention group shows a reduction in type I similarity, suggesting

either that students were discouraged from plagiarizing or colluding or that they attempted to trick the similarity
detector. However, not all diferences are signiicant, and not all are reductions in similarity. As explained earlier,
this is expected as the assessments of the intervention group are more strongly directed, resulting in higher
intrinsic similarity.
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Table 8. Summary for type II code similarity

Metric Course-focused Student-focused

Signiicant pairs with reduced similarity 16 23
Signiicant pairs with increased similarity 0 1
Insigniicant pairs 0 0
Average similarity degree of control 35% 46%
Average similarity degree of intervention 15% 21%
Overall similarity degree reduction 20% 25%
P-value for overall reduction < 0.001 < 0.001

Two student-focused assessment pairs showed a signiicant increase in similarity. As both of these pairs are
from week 1 (lab and homework), it seems plausible that students in the intervention course became more
cautious after observing their irst-week similarity reports.
Although the reduction in similarity begins in the early weeks and we observe no relationship between the

reduction and the assessment week, the intervention still serves a purpose in the remaining weeks, maintaining
the students’ perspective and behavior.

5.3.2 Reduced Type II Code Similarity. In the course-focused experiment, Table 8 shows that similarity is lower
in the intervention group. The reduction is greater than that of type I similarity since the students were not
previously aware of type II similarity, where programs can still be considered similar despite variation in identiier
names, data types, and constants. In both control and intervention groups, the instructors did not explicitly
inform students about this kind of similarity at the beginning of the courses since it is overly technical and
detailed. The instructors stated only that not all programming aspects contribute to program similarity. In the
student-focused experiment the indings are somewhat similar except for one assessment pair (the week 1 lab)
where the intervention course shows a higher degree of similarity. Students in this second course were not fully
aware of the nature of the intervention until they saw their irst similarity report.

It is worth noting that on the week 1 homework, the intervention group shows an increase in type I similarity
but a reduction in type II similarity. This does not mean that students can change the syntax of a program
without afecting its supericial form. Rather, it shows the limitation of type I similarity detection in dealing with
short similar code segments. The control assessment simply requires students to print static text; given surface
variation in the string literals, many similar segments are too short to satisfy the predeined minimum matching
length criteria (20 for Java and 10 for Python) and thus are considered as mismatches.
The fact that the intervention group shows a reduction in both type I and type II similarity suggests that

the students are less likely to engage in plagiarism or collusion. However, observation of type III similarity is
still required, as there might be students who try to escape the detection of academic misconduct by modifying
syntactical features; for example, replacing a while loop with a for loop.

5.3.3 Reduced Type III Code Similarity. As shown in Table 9, most course-focused assessments show a reduction
in type III similarity in the intervention group. Although the system does not speciically report such similarity,
it appears that its use discourages students from plagiarizing or colluding. The 16% reduction is not as substantial
as the 20% shown for type II since the assessment tasks permit less variation in their logical low.

For the student-focused experiment, the intervention course still shows lower similarity, but its impact is less
substantial and a few assessment pairs show a increase in similarity. Assessment solutions in the intervention
group are expected to have more similar program low as a particular structure needs to be followed, template

ACM Trans. Comput. Educ.



1:24 • Oscar Karnalim, Simon, William Chivers, and Billy Susanto Panca

Table 9. Summary for type III code similarity

Metric Course-focused Student-focused

Signiicant pairs with reduced similarity 15 18
Signiicant pairs with increased similarity 0 5
Insigniicant pairs 1 1
Average similarity degree of control 77% 81%
Average similarity degree of intervention 61% 74%
Overall similarity degree reduction 16% 7%
P-value for overall reduction < 0.001 < 0.001

code is provided for the students, and some code segments can be readily and legitimately copied from external
resources.
As the intervention group also has reduced type I and type II similarity for most assessments, it can be

concluded that students in this course are less likely to engage in programming plagiarism and collusion. Students
are made aware of the futility of copying and disguising programs, and this discourages them from doing so.
While it remains possible that the reduction in similarity is the result of some students learning how to evade the
detection of academic misconduct, this is quite unlikely: changing the logical low of a copied program requires a
level of programming knowledge that is probably rare among students who feel the need to copy one another’s
work. Further, our system does not report type III similarity to students, so they would not be aware that it was
being detected.

5.4 Student Behavior When Using the System

This subsection describes student behavior while subject to our approach in both the course-focused and student-
focused experiments. Speciically, it shows statistics of the generated reports and summarizes student justiications
to the reported similarities.
Figure 6 shows the statistics of generated reports, grouped by experiment and assessment type. In general,

most of the generated reports are similarity reports and only a small portion of them received student responses
with justiications, except for the student-focused lab assessments. This general pattern is expected, as the criteria
leading to the generation of a similarity report are easily met (the submitted program is unexpectedly similar to
others), and student response and justiication were not mandatory.

In our use of the system, students were not expected to provide justiication of similarities for lab assessments
since the assessments were to be completed in class in the short time span of two hours. However, in the course-
focused lab assessments, a few students submitted their programs early and had time to respond to the similarity
report. Our system records 22 responses for the whole semester.

Regarding the student-focused lab assessments, the number of responses to similarity reports is considerably
higher since the lecturer explicitly encouraged students to justify the reported similarity as part of the description
when submitting their subsequent homework assessments. This gave students time to examine the similarity
report and provide the justiication. Further, they could provide the justiication without resubmitting the program,
as submission of lab assessments takes place only during the class time. Future work may involve asking students
to include a justiication for their most recent similarity report when they submit the next assessment item.

Students were expected to respond to similarity reports on homework assessments, but as this was voluntary,
the number of responses is still relatively low. Many students whose reports resulted from coincidental similarity
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Fig. 6. Statistics of the generated reports by task type (lab or homework) and experiment (course-focused, CF, or student-

focused, SF)

Table 10. Summary of student justifications

Category Example

Coincidental similarity The only way taught to do the task
Adapted from accessible sources for completing assessments
Simple and intuitive solution
Asked the same instructor for hints

Academic misconduct Discussed with some colleagues while completing the assessment
Asked some colleagues for help
Copied from the internet
Copied from previous assessments
Unaware of who copied the code

Ambiguous justiication Independently written
Incorrect/incomplete solution
Now changed to make the code more unique
Unused code that had not been removed

were not interested in explaining this as the process would also involve a resubmission. An alternative scenario
would be beneicial, whereby students can explain the similarity without resubmitting their programs.

As seen in Table 10, student justiications of the reported similarity can be classiied into three categories:
coincidental similarity, academic misconduct, and ambiguous justiication. Most of the justiications fall into the
irst and third categories.
Justiications of coincidental similarity typically argue that the code segments are the only way to do given

task (e.g., input and output), the code segments are adapted from accessible sources (e.g., template code or course
slides), or the solution is simple and intuitive. It is interesting that a few justiications argue that the similarity
occurred since students asked the same instructor for hints. Although the instructors typically provide only
general hints, it is possible that in some circumstances they might be unwittingly giving technical hints. All
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justiications of coincidental similarity are true for some submissions, though we are aware that they can also be
used as excuses in cases of academic misconduct.
Justiications regarding academic misconduct primarily cover collusion, with a few covering plagiarism. For

the former, students either discussed the solution in detail with colleagues or asked them for technical help. For
the latter, the code was either copied from previous assessments, copied by unknown colleagues, or copied from
the internet (assuming their colleagues might have done the same and used similar resources).

Ambiguous justiications do not directly address why the similarity has occurred. These are likely to be written
by students who are potentially committing academic misconduct, and are therefore unable or unwilling to
accurately explain the reason. Most of them insist that the code was independently written, with justiications
such as łI wrote the code by myself without any helpž or łI did not see other students’ programsž. Others state
that the reported code segments are part of an incorrect/incomplete solution, they are unused code that has not
been removed, or they have been further modiied for the current submission.

The instructors used the justiications as an additional consideration when detecting programming plagiarism
and collusion, and they believe that they are useful. There were a few cases where the instructors were unsure
whether a program pair resulted from academic misconduct despite its high similarity. If the students provided
plausible justiications, the suspicion was dismissed.

6 CONCLUSION

This paper presents an approach to educate students about programming plagiarism and collusion via automated,
personalized, and timely formative feedback. The system deals with the rationalization side of the fraud triangle
[6] by providing knowledge about rationalization and showing the futility of engaging in academic misconduct.
According to our two quasi-experiments conducted over two academic semesters, students subject to our

approach are more aware of programming plagiarism and collusion and of common yet futile disguises of copied
programs. They provide more correct answers in surveys about the matters than students who were not subject
to our approach. They are also less likely to have engaged in programming plagiarism and collusion as their
submitted programs have lower similarity than those in the control group, even at the level of program low
(type III similarity). If the program similarity was reduced only for types I and II, this might simply show that
students had learned how to trick the similarity detector.

Student justiication of reported similarities seems to be useful for instructors since it can act as an additional
consideration when detecting academic misconduct. However, many students with coincidentally similar program
are reluctant to say this in a justiication since it would involve resubmitting the program.

Besides the limitation mentioned at various points through the paper, our approach and its evaluation experi-
ments have a number of further limitations, which are to be be addressed in future work.

(1) The approach would not be suitable for institutions that have an honor code or a zero tolerance of plagiarism
and collusion, since it permits students to resubmit after receiving a report of code similarity. The approach
would need to be further modiied to render it useful for such institutions.

(2) The evaluation experiments were performed on early programming courses with weekly assessments, in
which the assessment tasks have only a few semantically distinct solutions. Diferent indings might be
obtained by conducting the experiments on courses with more advanced materials, larger assessment tasks,
and/or tasks that are open to many semantically distinct solutions.

(3) In the evaluation, the intervention period was during the pandemic while the control period was before
the pandemic. While the assessment designs are still comparable, we are aware that these external factors
might afect the result and might need further investigation.

(4) The evaluation was performed on 87 students of the control groups and 76 students of the intervention
group: all of the students accepted to the informatics faculty of the university in 2019. While we believe
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that these numbers are suicient, further evaluation on diferent student cohorts with greater numbers
might be useful to conirm the indings.

(5) In the evaluation, the reduced similarity degree is based only on the students’ inal submissions. Considering
earlier submissions in the analysis might enrich current indings. In particular, it might conirm that students
are learning not to plagiarize or collude rather than engaging in such conduct and then disguising any
reported similarities.

(6) The evaluation does not consider number of identiied cases of plagiarism and collusion as a metric. Adding
this metric to future comparisons might add more value to the indings.

(7) The evaluation experiments were performed only at one institution. Conducting the experiments at diferent
institutions might enrich the indings.

(8) As with many quasi-experiments, we acknowledge the impossibility of making the control and intervention
groups completely comparable. Further quasi-experiments might be needed to explore possible external
factors inluencing the indings.

(9) As previously mentioned, the number of student justiications of reported similarities is low. The system
will be changed to make it possible for students to explain the reported similarity without resubmitting the
program, either via the similarity report or via the submission page of the next assessment.

(10) The assessment submission system will be further developed for user convenience before being made
available for public use. Features to be added include integration to common similarity detectors, dynamic
coniguration settings, and automatic enrolment from class lists.

While this is not a response to a limitation, we also plan to introduce gamiication, to further promote students’
engagement with the system while encouraging them to write unique programs and to submit their programs
early. We are also exploring the possibility of adjusting the system so that more pressure is applied to students
who are more likely to be engaging in plagiarism or collusion.
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