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Since the seminal research of R. S. Woodworth (1899), 
there has been little doubt that visual-response-produced 
feedback is important for the online regulation of goal-
directed reaching or aiming (see Elliott, Helsen, & Chua, 
2001, for a review). Specifically, the accuracy and trial-
to-trial spatial consistency of rapid movement suffers if 
visual information is eliminated upon movement initia-
tion (e.g., Elliott & Allard, 1985; Zelaznik, Hawkins, & 
Kisselburgh, 1983). Also, visual perturbations during 
movement execution, such as displacing the visual field 
(e.g., Hansen, Elliott, & Tremblay, 2007), modifying the 
target size (e.g., Hansen & Elliott, 2009), and changing 
the characteristics of the visual environment (e.g., Grier-
son & Elliott, 2009), all have reliable effects on limb reg-
ulation if the performer has enough time to process the 
new visual information. Of greater controversy than the 
overall importance of vision are the specific neural and 
information-processing events that provide the foundation 
for visual performance advantages. Intimately related to 
this theoretical issue is the manner in which the process-
ing events responsible for these visual advantages can best 
be identified and measured.

In a recent review article, Khan et al. (2006) examined 
some of the ways that movement scientists have attempted 
to quantify human goal-directed behavior using 1-, 2-, and 
3-D data acquisition and analysis protocols designed to 
capture the characteristics of limb-aiming trajectories. 

The most common research strategy has been for inves-
tigators to manipulate the availability and/or the type of 
visual feedback available to a performer and to compare 
not only performance differences (e.g., speed and accu-
racy), but also the kinematic characteristics of the limb 
movements that provide the foundation for these differ-
ences. Typically, the measurement protocol is driven by 
the specific model of limb control under investigation. 
For example, a study conducted within the framework of 
Meyer, Abrams, Kornblum, Wright, and Smith’s (1988) 
optimized submovement model would generally focus on 
the characteristics of individual limb trajectories, with the 
specific goal of identifying discontinuities in accelera-
tion that might reflect a correction to an initial preplanned 
movement impulse (e.g., Elliott, Hansen, Mendoza, & 
Tremblay, 2004). Investigations designed to identify less 
discrete regulatory processes are more likely to examine 
the trial-to-trial spatial variability over multiple aiming 
trials (Khan, Elliott, Coull, Chua, & Lyons, 2002). Vari-
ability is examined throughout the movement trajectory, 
and then an attempt is made to determine where, in the 
course of the trajectory, experimental conditions differ 
(Hansen, Elliott, & Khan, 2008).

Rather than adopt a particular theoretical framework 
that posits late discrete (e.g., Meyer et al., 1988) or early 
continuous (e.g., Elliott, Carson, Goodman, & Chua, 1991) 
control, in this methodological study we selected two ex-
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participants were self-declared right-handers and had normal or 
corrected-to-normal vision.

Apparatus and Procedure
The target-aiming apparatus was situated on an ordinary table-

top in front of the seated participant. Participants were required to 
perform a series of discrete aiming movements with a stylus held 
in their right hands (stylus length  115 mm). They moved from 
a home position directly in front of them to a 5-mm-square target 
40 cm away. Both the home position and the target were at the mid-
line, so the aiming movement primarily involved elbow extension. 
An infrared light-emitting diode was placed on the tip of the stylus 
so that we could track its position using an optoelectric system sam-
pling at 500 Hz (Optotrak 3020). We chose a 40-cm movement to a 
small target because previous work from our lab, and elsewhere, has 
indicated that these specific task requirements would challenge, but 
not exceed, the limits of visual information processing. Specifically, 
our goal was to create a situation in which movement times of ap-
proximately 400 msec were required for relatively error-free aiming 
under full-vision conditions.

Participants were instructed to execute their movements as quickly 
and accurately as possible. A trial began with a verbal “Ready” sig-
nal from the experimenter, who simultaneously began the trial by 
depressing a computer key. The keypress marked the beginning of 
a 200- to 1,000-msec variable foreperiod, after which a 100-msec 
tone sounded, which signaled the participant to begin his/her aim-
ing movement. The optoelectronic recording began at the initiation 
of the tone. Participants wore a pair of liquid crystal goggles (Mil-
gram, 1987) that were able to change from a clear state to a closed/
translucent state in 3 msec. The home position was equipped with 
a microswitch so that vision could be eliminated at movement ini-
tiation by the goggles’ changing state (i.e., open to closed) for the 
no-vision trials. On these trials, the goggles remained closed until 
the movement was complete, after which they opened to provide the 
participants with terminal feedback about their performance.

After several practice trials in order to become familiar with the 
two vision conditions and the overall task requirements, each partici-
pant performed 40 experimental trials. These trials were organized 
into two blocks of 10 trials with vision and two blocks of 10 trials 
without vision. Vision and no-vision blocks were alternated, with 
starting order counterbalanced across participants. Prior to each 
new block of trials, participants were informed as to whether or not 
vision would be eliminated. Participants were given a short rest be-
tween trials, as required.

Initial Data Reduction and Analysis
We filtered 3-D position data with a Butterworth filter with a 

low-pass cutoff of 8 Hz. The distance–time profile, as well as the 
distance profiles in each of the three individual axes, were then 
differentiated to obtain velocity and differentiated again to obtain 
acceleration. The velocity profile in the primary direction of move-
ment was used to identify the beginning and the end of each move-
ment and, thus, movement time. Movement initiation was defined 
as the sample at which instantaneous velocity exceeded 10 mm/sec 
and remained above that criterion for 10 consecutive samples (i.e., 
20 msec). Movement end was defined as the sample at which veloc-
ity fell below 100 mm/sec and remained there for 20 msec (Hansen, 
Elliott, & Khan, 2007). Reaction time was defined as the time be-
tween tone onset and movement initiation, whereas movement time 
was the interval between movement initiation and the termination 
of the movement.

The spatial position of the stylus at the end of the movement was 
used to calculate a signed error score in both the primary direction of 
the movement (i.e., amplitude error) and the direction perpendicular 
to the prime direction (i.e., directional error) for each trial. This cal-
culation used the center of the target as the reference point. Positive 
amplitude errors reflect target overshoots, whereas negative errors 
reflect undershoots. For directional error, negative scores reflect er-
rors to the left and positive scores errors to the right. Means and 

perimental conditions that have repeatedly yielded large 
performance differences in terms of endpoint accuracy/ 
consistency. In other words, we examined manual aim-
ing movements under no-vision and vision conditions. 
We then compared methodologies designed to identify 
the source of these performance differences in the move-
ment trajectories. Thus, participants produced a number 
of goal-directed aiming movements to a small target under 
conditions in which they had full visual information and 
under conditions in which liquid crystal goggles elimi-
nated visual information about the limb and movement en-
vironment upon movement initiation. We then compared 
the two experimental conditions using a number of kine-
matic methods. What is unique about this article is that the 
same data were used for each of the analytic approaches 
(cf. Khan et al., 2006). Our goal was to determine not 
only which methods are most sensitive to visual regula-
tory processes, but also to identify important common-
alities and differences between these standard kinematic 
approaches to data treatment and analysis. Although we 
chose to manipulate vision by eliminating it, these same 
analytic techniques have been and can be used in a number 
of different contexts to distinguish between preplanned 
and online limb regulation (see Khan et al., 2006).

With respect to the structure of this article, we begin 
by describing our data acquisition procedures and general 
method of data processing and reduction. We then present 
movement outcome findings that quantify how the two 
conditions differed in terms of movement speed (i.e., reac-
tion time and movement time) and accuracy/consistency.

Once we have established that our manipulation was 
effective in producing the expected outcome effects, we 
examine some of the traditional measures that have been 
used to isolate the specific processes associated with these 
effects. These include the symmetry of the limb trajectory, 
discontinuities in the trajectory, and the effectiveness of 
these discrete corrective events. Before reporting on each 
individual measure, we put the use of that specific vari-
able into a theoretical context designed to set the stage for 
the subsequent discussion of each result.

Next, we present variations of two new approaches to 
the study of online limb regulation. One approach involves 
examining how spatial variability in limb position unfolds 
over the course of the limb trajectory. The other approach 
involves using correctional methods to determine how 
well early kinematic events predict later spatial outcomes. 
Once again, we present the theoretical rationale behind 
each of these approaches in the context of our findings.

Finally, we make some across-technique comparisons 
and provide some recommendations designed to guide 
future work on the visual regulation of goal-directed aim-
ing. We also highlight how the analytic approaches used 
in the present context might apply more broadly to motor 
control research.

METHOD

Participants
Participants were 9 male and 8 female students and young staff 

members from McMaster University (mean age  21.5 years). All 
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able ( 0.09 mm) [F(1,16)  11.91, p  .01, 2  .192]. 
Variable error was also greater under no-vision conditions 
(8.04 mm, vision  4.06 mm) [F(1,16)  33.28, p  .001, 

2  .331]. These results were not surprising, given the 
robust nature of this particular visual manipulation (see, 
e.g., Elliott et al., 2001).

The analysis of directional variable error also revealed 
a robust main effect of vision condition [F(1,16)  37.48, 
p  .001, 2  .301]. Once again, variability was twice 
as large under no-vision conditions (6.29 mm, vision  
3.05 mm). For constant error, there was an overall tendency 
for participants to aim to the right of the target (grand 
mean  1.87 mm). A significant vision condition  block 
interaction [F(1,16)  6.75, p  .05, 2  .023] indicated 
that this tendency was slightly reduced during Block 2 
of no-vision aiming (Block 1: vision  1.86 mm, no vi-
sion  2.73 mm; Block 2: vision  2.08 mm, no vision  
0.79 mm).

Overall. Overall, participants performed with a greater 
degree of precision when vision was available for online 
control during movement execution. This added precision 
did not cost participants any extra time. In fact, partici-
pants took less time to prepare their aiming movements 
when they knew in advance that vision would be available 
for online control. In the following section, we examine a 
number of different approaches used to explain and quan-
tify the nature of vision versus no-vision differences in 
limb control.

Kinematic Differences
Symmetry of the trajectory. Many dual-process 

models of limb control hold that the early portion of a goal-
directed aiming movement is under central regulation and 
that feedback-based regulation becomes more important 
as the limb approaches the target area (e.g., Woodworth, 
1899). A number of investigators have demonstrated that 

standard deviations of these signed error scores were calculated for 
each of the two visual conditions and each of the two blocks of trials. 
These measures of central tendency and trial-to-trial variability are 
referred to as constant and variable error, respectively.

A custom program was used to identify a number of specific kin-
ematic events, including resultant peak acceleration, peak veloc-
ity, and peak deceleration, as well as the 3-D spatial position of the 
stylus at each one of these specific markers. Along with movement 
initiation time, it was also possible to calculate the time taken to 
achieve each one of these kinematic events.

For most single outcome and kinematic measures, separate 2 (vi-
sion condition)  2 (blocks) repeated-measures ANOVAs were con-
ducted on the mean or the standard deviation of the 10 individual 
trials. For approaches developed to investigate differences between 
the two visual conditions over the whole course of the movement, an 
additional factor of kinematic marker or the percentage of the trajec-
tory was included in the analysis. Because some of these analyses 
involved a complex composite variable such as an R2 or a volume 
based on three different standard deviations, we collapsed over block 
prior to conducting our initial calculations. This approach was taken 
to increase the reliability of each datum (e.g., R2 values were based 
on 20 rather than 10 pairs of observations). In these analyses, it is 
the vision condition  kinematic marker/percentage of the trajec-
tory interaction that is of most interest, rather than the main effect 
of vision condition.

Because it was not possible to directly compare dependent vari-
ables measured in different units, we also calculated omega-squared 
values ( 2) for each of our significant effects. This statistic provides 
an indication of the overall variance in the dependent variable ex-
plained by the effect, and thus its importance relative to other sys-
tematic effects and error (see Tables 1A and 1B). It is worth noting 
that because the 2 for any effect represents the proportion of vari-
ance that the effect explains within the entire model, 2 values will 
be lower when there is a variable in the model that is extremely pow-
erful, such as kinematic marker or percentage of the trajectory.

RESULTS AND DISCUSSION

Outcome Differences
Reaction time. The reaction time analysis revealed 

a main effect of vision condition [F(1,16)  25.28, p  
.001, 2  .159], as well as a vision condition  block 
interaction [F(1,16)  9.11, p  .01, 2  .013]. Over-
all, participants initiated their movements sooner when 
they knew that vision would be available during move-
ment execution. This vision/no-vision difference was 
more pronounced in Block 2 than in Block 1 (Block 1: 
vision  282 msec, no vision  314 msec; Block 2: vi-
sion  260 msec, no vision  317 msec). This finding is 
similar to previous results from our lab (e.g., Elliott & Al-
lard, 1985; Hansen, Glazebrook, Anson, Weeks, & Elliott, 
2006; Khan et al., 2002) and has been interpreted to mean 
that participants take the time to prepare a more precise 
initial submovement when they know that there will not be 
an opportunity for online visual regulation during move-
ment execution.

Movement time and error/consistency. The move-
ment time analysis failed to reveal any significant effects. 
The grand mean was 407 msec.

The analyses of amplitude error yielded only main ef-
fects of vision condition. The constant error analysis in-
dicated that participants undershot the center of the target 
when vision was eliminated upon movement initiation 
( 4.99 mm), but were accurate when vision was avail-

Table 1A 
Omega-Squared Values for the Main Effect of Vision Condition 

for Variables Examined at a Single Point in Time

 Variable  Omega Squared ( 2)  

Outcome differences
 Reaction time .159
 Constant error (amplitude) .192
 Variable error (amplitude) .331
 Variable error (direction) .301

Proportional time after peak velocity .098

Discontinuities .105

Index of error correction effectiveness .193

 R to z score (Elliott et al., 1999)  .128  

Table 1B 
Omega-Squared Values for the Vision Condition by Kinematic 
Marker/Percentage Movement Time Interaction for Variables 

Examined at Multiple Points in the Trajectory

 Variable  Omega Squared ( 2)  

Amplitude variability .043
Directional variability .068

 3-D variability  .038  
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.02, 2  .105]. Almost half the trials had some sort of 
discrete correction/ discontinuity when vision was avail-
able (4.71 trials/block, or 47.1%), compared with only one 
third of the trials when vision was eliminated upon move-
ment initiation (3.35 trials/block, or 33.5%).

Whether or not there are more corrective submove-
ments associated with full-vision than with no-vision aim-
ing conditions, it is clear that any corrections that do occur 
should be more error reducing when vision is available. To 
examine this notion, we employed a procedure developed 
by Khan, Franks, and Goodman (1998), which they termed 
the index of error correction effectiveness (IECE). The 
procedure can be used only when a discrete correction, 
such as those described earlier, occurs. It involves find-
ing the difference between the position of the limb at the 
beginning of the corrective process, or early error (EE), 
and the error at the termination of the movement, or final 
error (FE). The score is then normalized for the overall 
degree of error.1 Using the notation just presented, the 
formula is as follows:

 IECE  (EE  FE)/(EE  FE).

Following the calculation of a mean IECE for each 
participant in each condition, we decided to pool data 
from the two blocks for this analysis because there were 
2 participants who had no corrections in one or the other 
block. This analysis revealed an effect for vision condition 
[F(1,16)  7.63, p  .02, 2  .193], with corrections 
associated with the full-vision condition being more error 
reducing (.870) than corrections made without vision 
(.814). Taken together with the number of discontinuities 
analysis, these findings indicate that discontinuities in the 
trajectory were more than just a by-product of feed forward 
processes associated with movement planning (e.g., Pla-
mondon & Alimi, 1997). That is, at least some discon-
tinuities reflect corrective processes associated with the 
processing of response-associated feedback.

Unfolding spatial variability across multiple repe-
titions. In recent years, it has become apparent that visual 
regulation can begin quite early in an aiming movement 
and that corrective processes are not always discrete in 
nature (e.g., Elliott et al., 1991; Grierson & Elliott, 2009; 
Hansen et al., 2006; Khan et al., 2002; Khan et al., 1998; 
Proteau & Masson, 1997), especially when a perturbation 
of the target changes the physical requirements of the task 
(e.g., Hansen & Elliott, 2009; Heath et al., 1998). This type 
of finding has motivated researchers to consider method-
ological approaches that do not depend on the identifica-
tion of discrete discontinuities in aiming profiles. Khan 
and colleagues have championed an approach to move-
ment analysis that examines trial-to-trial spatial variability 
as movements unfold (e.g., Khan et al., 2002; Khan et al., 
2006; Khan et al., 2003). The primary assumption of this 
approach is that there is neural–motor noise associated 
with the execution of any goal-directed movement. This 
noise will lead to variability in the path of the movement 
trajectory across multiple attempts to achieve exactly the 
same movement goal. If these movements unfold in an 
unregulated fashion, then the degree of spatial variability, 

when vision is available, performers tend to reach higher 
peak velocities earlier in the movement than when vision 
is not available for concurrent limb control (e.g., Elliott, 
Chua, Pollock, & Lyons, 1995). This strategy gets the limb 
into the target area quickly so that more real and propor-
tional time can be spent using visual feedback while the 
limb is in the target area. Because the time after peak ve-
locity is associated with online control (see Heath, Hodges, 
Chua, & Elliott, 1998), a number of investigators have used 
the symmetry of the velocity profile to index the degree of 
online regulation. This dual-process approach to limb con-
trol predicts that, for the same movement time, participants 
will spend more time decelerating the limb (i.e., time after 
peak velocity) than accelerating the limb (i.e., time be-
fore peak velocity) when vision is available.

As expected, the analyses of proportional time spent 
after resultant peak velocity revealed a significant main 
effect of vision condition [F(1,16)  26.78, p  .001, 

2  .098] (vision  .643, no vision  .610). Presumably, 
the extra time after peak velocity associated with the full-
vision condition reflects the extra processing time required 
to reduce any discrepancy between the limb and the target 
position late in the movement (e.g., Carlton, 1992).

Discontinuities in the trajectory and their effec-
tiveness. A number of models of limb control hold that 
visual regulation is achieved via either single (e.g., Beggs 
& Howarth, 1972) or multiple discrete corrections to the 
movement trajectory (e.g., Keele, 1968; Meyer et al., 
1988). Corrections are typically inferred from the pres-
ence of discontinuities in the movement trajectory. Al-
though there are minor differences in the way discontinui-
ties are identified (e.g., Chua & Elliott, 1993, vs. Walker, 
Philbin, Worden, & Smelcer, 1997; see also van Donkelaar 
& Franks, 1991), generally, researchers have attempted 
to isolate changes in velocity and acceleration that meet 
some minimal temporal and amplitude criteria. For ex-
ample, Chua and Elliott (1993) identified three types of 
corrections: (1) second zero-crossings in the acceleration 
profile (second accelerations that are needed when the ini-
tial submovement falls short of the target); (2) a negative 
velocity in the primary direction of the movement (this 
feature of a velocity profile reflects a reversal that occurs 
if the initial movement impulse overshoots the target); and 
(3) a significant deviation in acceleration without a zero-
crossing (this type of discontinuity reflects a noticeable 
change in acceleration sometime after peak velocity). Fol-
lowing Chua and Elliott, these discontinuities had to last 
a minimum of 70 msec (i.e., temporal criterion) and be at 
least 10% of the peak acceleration amplitude (i.e., ampli-
tude criterion; see Chua & Elliott, 1993, for an explana-
tion for why these specific criteria were chosen).

The notion associated with most discrete models of 
limb control is that when vision is available, there should 
be greater probability of one or more corrections within 
the movement trajectory. Thus, we counted the number 
of trials in a block with one or more corrections associ-
ated with individual aiming movements and compared 
the two vision conditions. This analysis revealed a mod-
est main effect of vision condition [F(1,16)  6.74, p  
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from the reaction time results that precision planning may 
not be as necessary when the participant knows that vi-
sion will be available for online control (see Hansen et al., 
2006).

The directional variability analyses revealed a main ef-
fect of kinematic marker [F(3,48)  62.58, p  .001, 2  
.466] and a significant interaction of kinematic marker 
and vision condition [F(3,48)  13.26, p  .001, 2  
.068]. The spatial variability increased between PA and 
PD under both full-vision and no-vision conditions (Fig-
ure 1B). However, variability in the movement direction 
decreased significantly at the movement endpoint only 
when vision was available, and only at the termination of 
the movement was there a significant difference between 
the two feedback conditions (Tukey’s HSD, p  .05).

This type of spatial variability analysis associated with 
the work of Khan and colleagues was initially developed 
to examine 1-D movement and, thus, has limitations when 
it is used with movement trajectories that vary in three di-
mensions (see Khan et al., 2006, for a review). This limita-
tion occurs because the x-, y-, and z-axes are defined by 

as indexed by the standard deviation in spatial position, 
should systematically increase as movement progresses 
(e.g., the standard deviation of amplitude will increase in 
proportion to the mean amplitude covered; see Khan et al., 
2002). Thus, spatial variability should increase from peak 
acceleration (PA) to peak velocity (PV) to peak decelera-
tion (PD) and, in fact, be greatest at the termination of 
the movement (End). However, this outcome would not 
occur if the unfolding movement is regulated via visual 
or other types of feedback. In this case, variability should 
level off, or even decrease, as corrective processes begin 
to have an impact.

The general approach taken by Khan and colleagues 
(Khan et al., 2002; Khan et al., 1998; Khan et al., 2003) has 
been to examine the standard deviation of the limb’s spa-
tial position at the specific kinematic markers mentioned 
above (i.e., PA, PV, and PD) as well as at the end of the 
movement. When the movements are made in 3-D space 
(e.g., Khan et al., 2002), the general procedure has been 
to use resultant kinematic markers as reference points, but 
to separately examine spatial variability in the primary 
direction of the movement (i.e., amplitude variability) and 
perpendicular to the primary direction of the movement 
(i.e., directional variability). This approach was taken be-
cause these two movement dimensions may be controlled 
separately (see, e.g., Bard, Hay, & Fleury, 1985; Elliott 
et al., 2001; Ghez, Gordon, Ghilardi, & Sainburg, 1995). 
Thus, our analysis consisted of a 2 (vision condition)  
4 (kinematic marker: PA, PV, PD, End) repeated measures 
ANOVA on the standard deviations associated with move-
ment amplitude and those associated with left–right di-
rectional position. Of interest was where in the movement 
trajectory trial-to-trial spatial variability begins to level 
off or even decrease in the two feedback conditions.

The amplitude variability analysis revealed a main ef-
fect of kinematic marker [F(3,48)  35.90, p  .0001, 

2  .492] as well as a kinematic marker  vision condi-
tion interaction [F(3,48)  5.19, p  .01, 2  .043]. As 
is evident in Figure 1A, variability increased between PA 
and PD under both vision and no-vision conditions. How-
ever, the increase was greater when vision was available 
than when it was eliminated upon movement initiation. 
Participants also exhibited significantly greater variability 
at PD when vision was available. Variability decreased 
significantly after PD. However, this reduction in spatial 
inconsistency was much more dramatic with than without 
vision (see also Khan et al., 2002). As we also know from 
the variable error analysis, participants were significantly 
more consistent at the termination of their aiming move-
ment when they had vision available for online regulation 
(Tukey’s HSD, p  .05). Presumably, the early differences 
between vision and no vision reflect visual online control 
processes designed to amend the errors associated with 
individual aiming attempts. These feedback-based cor-
rective processes are effective because, by the end of the 
movement, spatial consistency (i.e., as indexed by variable 
error) is greater when vision is available. As suggested 
by Khan et al. (2002), some of the greater inconsistency 
associated with the full-vision condition at PD may also 
reflect a less precise movement-planning process. Recall 
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Figure 1. Within-condition spatial variability (in millimeters) 
of the trajectory of the finger and standard error of the mean 
at resultant peak kinematic markers (PA, peak acceleration; PV, 
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ment percentages: 4%, 8%, 12%, . . . , 100%) repeated 
measures design.

This 3-D variability analysis yielded main effects of 
vision condition [F(1,16)  5.95, p  .03, 2  .012] 
and movement percentage [F(24,384)  30.55, p  .001, 

2  .566], as well as a vision condition  movement per-
centage interaction [F(24,384)  10.01, p  .001, 2  
.038]. As is evident in Figure 2, there was very little vari-
ability in either movement condition for the first 20% of 
the movement (approximately 80 msec). This point was 
about the time of PA. After PA, participants were more 
variable under full-vision conditions. This difference in 
variability was significant at 32% of the movement (i.e., 
approximately 130 msec), and the two conditions remained 
different until 64% of the movement was complete (i.e., 
approximately 260 msec; Tukey’s HSD, p  .05). During 
limb deceleration, the advantage associated with having 
full vision became apparent, with participants exhibiting 
less variability and also less amplitude bias when vision 
was available (i.e., see variable error and constant error 
results). Similar to our interpretation of the vision con-
dition  kinematic marker interaction discussed earlier, 
the added variability associated with vision, as early as 
130 msec into the movement, probably reflects a correc-
tive process associated with the online regulation of the in-

the researcher conducting the study, and by the associated 
target-aiming layout. These dimensions may not reflect 
the control strategy adopted by the performer. More-
over, it is also arbitrary to partition the movement into 
segments defined by kinematic markers associated with 
resultant acceleration profiles. For these reasons, Hansen 
et al. (2008) developed a procedure to examine how 3-D 
variability unfolds over the entire movement trajectory. 
Hansen et al.’s (2008) procedure involves normalizing the 
movement times of an individual performer’s aiming at-
tempts and then calculating standard deviations in spatial 
position for x, y, and z at multiple points in the trajectory, 
to be used as the radii for the ellipsoids. The standard de-
viations, along with the mean position of the limb, are 
used to create ellipsoids at specific percentages of the nor-
malized movement times. Essentially, the volume of these 
ellipsoids is an index, to one standard deviation unit, of 
the variability in the limb’s position in three dimensions, 
as the movement unfolds. As with the 1-D procedure, the 
goal is to examine how and where variability increases, 
and then perhaps decreases, as feedback-based regula-
tion begins to have an impact on the movement trajectory. 
Our inferential statistics in this case involved treating the 
ellipsoid volumes as dependent variables and analyzing 
these volumes using a 2 (vision condition)  25 (move-
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potential to isolate where in the trajectory feedback-based 
regulation begins to have an impact. Following Heath 
et al.’s (2004) procedure, we calculated r2 values for each 
participant for each condition and then used these values 
as data in a 2 (vision condition)  3 (kinematic marker: 
PA, PV, PD) repeated measures ANOVA.

This analysis failed to reveal any significant effects. 
However, the grand mean was low (r2  .127) and not re-
liably different from zero. This outcome indicates that for 
both vision conditions there was a high degree of online 
control from very early in the movement. Although Heath 
and colleagues have shown reliable vision–no-vision dif-
ferences using this method, the main thrust of much of 
their work has been to identify differences in limb con-
trol associated with memory-driven movements. In their 
protocols, they have also employed multiple target am-
plitudes (Heath et al., 2004) and conditions in which the 
target remained illuminated while the limb was occluded 
(Heath, 2005). In this context, they have found that even 
very brief no-vision periods prior to movement initiation 
result in decreased online control. Moreover, in most of 
their work, they based their r2 values on more trials than 
we have used here. In principle, their method should be as 
effective in detecting differences between vision and no-
vision conditions as was the Elliott et al. (1999) method 
upon which it is based.2

SUMMARY AND CONCLUSIONS

Our primary goal was to compare and contrast various 
methods of data analysis that have been used to examine 
the visual regulation of goal-directed reaching and aiming 
movements. Perhaps not surprisingly, all the approaches 
we used were sensitive enough to detect the difference 
between vision and no-vision conditions (see Table 1). 
Some of the approaches, however, entail assumptions that 
can no longer be met, given the current theoretical state 
of the literature. For example, it has been clear for more 
than a decade (see Elliott et al., 1991; Proteau & Masson, 
1997) that, over and above any discrete corrective pro-
cess associated with limb control (see, e.g., Meyer et al., 
1988), there are also more continuous control processes 
that are not associated with discrete discontinuities in 
the movement trajectory. The presence and effectiveness 
of this type of continuous control will simply be missed 
if a scientist depends on indices of limb control that re-
quire the identification of discontinuities in velocity or 
acceleration. Although these measures are suitable for use 
when one wants to distinguish discrete from continuous 
limb control, when used in isolation, they are not sensitive 
to the latter form of regulation. Moreover, for a method-
ological point of view, the specific criteria one sets for 
including a discontinuity can be problematic, and depend 
not only on the nature of the movement (e.g., movement 
time, movement amplitude), but also on the noise associ-
ated with the particular measurement device. In detecting 
discontinuities, sampling frequency and filtering proce-
dures are a much bigger issue than when using a more 
straightforward measure of late limb control, such as the 
proportion of time after peak velocity (see Hansen, Elliott, 

dividual aiming attempts. The idea is that these processes 
will reflect the type and magnitude of the aiming error 
associated with the initial submovement toward the target. 
The strength of this approach to data analysis is that it not 
only detects differences between aiming with and without 
vision, it also precisely identifies where in the movement 
trajectory these difference begin to be realized.

The relationship between early and late spatial 
positions. Like some of the earlier approaches that were 
driven by the two-component explanation of limb control 
(Woodworth, 1899), Elliott, Binsted, and Heath (1999) 
reasoned that if a movement is preplanned and then ex-
ecuted without the benefit of online regulation, then early 
spatial position in a movement trajectory should positively 
predict late spatial position and thus endpoint error. How-
ever, if the limb has traveled farther than intended at PV 
and the movement error was detected from the sensory 
feedback, then the movement will be terminated earlier 
than originally planned. The opposite should be true for 
visually regulated movements that covered less distance 
than intended by the acquisition of PV. In an initial study, 
Elliott et al. (1999) measured the distance covered (i.e., in 
the primary direction of the movement) by PV and then 
the distance covered between PV and the end of the move-
ment in the individual movement trajectories. The idea 
was that if feedback-based regulation is operating, there 
should be a negative relationship between the distances 
covered between movement initiation and PV, and PV and 
the end of the movement. This outcome is exactly what 
they found. Moreover, this negative relationship was more 
robust when vision was available than when it was elimi-
nated upon movement initiation (Elliott et al., 1999).

Following the procedure used by Elliott et al. (1999), 
we calculated these early and late movement amplitudes 
for each participant in each condition. We then computed 
a Pearson product–moment correlation coefficient that we 
then converted to a z score for inferential analysis.

The analysis of these z scores revealed a main effect of 
vision condition [F(1,16)  16.34, p  .001, 2  .128], 
with a stronger negative relationship in the vision con-
dition (z  1.66) than in the no-vision condition (z  

1.19). Both with respect to the probability of a Type I 
error and the amount of variance explained, this method 
appears to be at least as powerful in detecting differences 
between the vision conditions as either the proportion of 
time after PV or the number of corrections analyses.

Building on the Elliott et al. (1999) procedure, Heath, 
Westwood, and Binsted (2004) calculated cumula-
tive amplitudes at a number of kinematic markers (i.e., 
PA, PV, PD) and then separately correlated these ampli-
tudes with the amplitude achieved at the end of the move-
ment. Because the amplitudes were cumulative, early am-
plitude error was posited to predict late amplitude error if 
there was limited online regulation of the movement based 
on feedback (i.e., a robust r2 value). However, coefficients 
of determination (r2 values) should approach zero as the 
performer is able to reduce any initial aiming bias via 
online regulation. By examining the degree of relation-
ship between movement amplitudes at three sequential 
kinematic events, Heath et al.’s (2004) approach has the 
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this article, it becomes a more important determinant of 
performance when the perturbation associated with the 
independent variable is directional (e.g., shifting real or 
perceived target or limb position), as opposed to simply 
creating variability by eliminating specific sources of in-
formation (see Grierson & Elliott, 2009; Hansen, Elliott, 
& Tremblay, 2007; Mendoza, Elliott, Meegan, Lyons, & 
Welsh, 2006).
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NOTES

1. Unlike the Khan et al. (1998) index, which was calculated in only 
one dimension, the error scores here reflect the 3-D radial distance be-
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fact negative. This would be expected due to random variation if the true 
state of affairs is the r  0. By squaring negative r values, one shifts any 
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dence), it would be more powerful to use the r values or their transform 
(z scores; see, e.g., Elliott et al., 1999) than r2 values.
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