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Abstract

Model Validation is at the heart of the System Identi�cation process� Re�
cently� much renewed interest has been expressed in so called �identi�cation
for control�� This means that the design variables associated with the identi�
�cation process are tailored to achieve models that are well suited for control
design purposes� A separate� but closely related issue is to devise validation
tests that give information about the model�s quality and suitability for con�
trol design� This paper shows and discusses how a basic and classical residual
test gives such information�
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� Introduction

�Identi�cation for Control� has since long been of main concern in the system
identi�cation literature� The identi�ed model always has some intended ap�
plication� and if it is control design� the model quality issues must be focused
on that�

Model quality has two sides� One is that several design variables in the
identi�cation process a�ect the model properties in di�erent ways� and we
need to understand these in�uences� There is a very active� recent and re�
newed interest in various way to adapt the identi�cation process to control
design� See� e�g������ ���� ����� ����

Model validation is the other side of model quality� It has always played a
major role in System Identi�cation� as a basic instrument for model structure
selection and as the last �quality control� station before a model is delivered
to the user ����� ����� Methods for robust control design have pointed to the
need for reliable model error bounds� for linear models preferably described as
bounds on the frequency functions� A large number of approaches have been
developed for this� See� e�g�� ���������������������� For recent work on model
validation in a worst�case context see ���� and ����� Many of the contribu�
tions use deterministic frameworks to describe the noise and disturbances
appearing in the system in order to avoid probabilistic� �soft�� bounds� Ap�
proaches like �unknown�but�bounded� noises �the disturbances are assumed
to be bounded� but no other assumptions are invoked�� see e�g� ��
�� lead to
set�membership procedures� which determine all models that are consistent
with the noise bound given� see� e�g� ���� ����� �����

In this contribution we shall review some of the basic issues in this pro�
cess� In Section � guidelines for selecting appropriate design variables for the
identi�cation process are brie�y reviewed� Section � deals with the underly�
ing principles of model validation in general terms� while Section � reviews
a recent result on how a classical validation test can be translated to the
frequency domain� In Section � we discuss some issues around model vali�
dation for FIR models and unknown�but�bounded disturbances� Section �
deals with the question of performing the validation directly in the frequency
domain�
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Some Notations

We shall use the following notation�The input will be denoted by u�t� and
the output by y�t�� The data record thus is

ZN � fy���� u���� � � � � y�N�� u�N�g ���

The input sequence fu�t�� t � �� � � � � Ng will throughout this paper be con�
sidered as a deterministic sequence� unless otherwise stated� We denote its
periodogram by

jUN ���j� �
�

N

�����
NX
t��

u�t�e�i�t
�����
�

���

The given model �G will be assumed to be linear� and a function of the shift
operator q in the usual way� �G�q�� The simulated output will thus be

�y�t� � �G�q�u�t� ���

It may be that the model contains a noise assumption� typically in the form
of an additive noise or disturbance v�t� with certain properties� It would
then be assumed that the actual output is generated as

ym�t� � �G�q�u�t� 
 v�t� ���

The model could contain some �prejudice� about the properties of v�t�� but
this is not at all essential to our discussion� A typical� conventional assump�
tion would be that v�t� is generated from a white noise source through a
linear �lter�

v�t� � �H�q�e�t� ���

Most of the model validation tests are based on simply the di�erence
between the simulated and measured output�

��t� � y�t� � �y�t� � y�t� � �G�q�u�t� ���

For added generality� we shall consider possibly pre�ltered model errors�

��t� � L�q��y�t� � �y�t�� � L�q��y�t� � �G�q�u�t�� ���

For example� if the model comes with a noise model ���� then a common
choice of pre�lter is L�q� � �H���q�� since this would make ��t� equal to
the model�s prediction errors� This choice of pre�lter is however not at all
essential to our discussion�

In any case we shall call ��t� the Model Residuals ��model leftovers���
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� Design of the System Identi�cation Process

in the Frequency Domain

There is a recent interest in system identi�cation directly from frequency
domain data� as described in e�g�� ����� ����� Most �classical� approaches
otherwise take place in the time domain� both when it comes to the mod�
els� algorithms and model validation techniques� On the other hand� the
model properties for control design are most of the time best expressed and
evaluated in the frequency domain�

Most links between the time domain �prediction error� identi�cation meth�
ods and the model�s frequency domain properties follow from the property

Model� y�t� � G�q� ��u�t� 
 H�q� ��e�t� �
�

Criterion� VN��� ZN� �
�

��

Z �

��

�

�
j��GN�e�i�� �G�ei�� ��j�QN��� ��d� ���

where
��GN�ei�� �

YN���

UN���
����

and QN��� �
jUN���j�
jH�ei�� ��j� ����

�see� e�g�� eq ������ in ������ Here UN ��� is the discrete time Fourier transform
of the input

UN��� �
�p
N

NX
t��

u�t�e�i�t ����

The resulting model parameters are then given by

��N � arg minVN��� ZN� ����

The design variables associated with the identi�cation process are then
primarily the experimental conditions �in open loop� the input spectrum� and
the data pre�lters �which� for SISO systems are equivalent to the noise model
H�q� ��� and closely related to the predictors� prediction horizon see �������

An identi�cation task to optimize the model quality for a particular pole�
placement control design can then be formulated as in eq ������� in �����

min
Z �

��
Ej �G�ei�� �G��e

i��j� jR�ei��j�!r���

jG��ei��j�j� 
 G��ei��F��ei��j�d� ����
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Here !r is the spectrum of the reference signal and R�q� is the desired closed
loop system� while F��q� is the feedback part of the �as yet unknown� regu�
lator� �Consequently

�

� 
 G��q�F��q�

is the �unknown� sensitivity function��
The minimization in ���� is to be carried out over all available identi�ca�

tion design variables� including possible feedback controls� The solution is�
according to Theorem ���� in ���� to perform an open loop experiment with
input spectrum

!u��� � ��
jR�ei��j!r���

jG��ei��jj� 
 G��ei��F��ei��j
q

!r���!v��� ����

�!v is the additive disturbance spectrum� and a pre�lter�noise model

jH�ei��j� � ��
!v���

!u���
����

A problem with this " as most of the time with optimal design " is that the
solution depends on unknown quantities �like G��� Several iterative schemes
for the design have therefor been developed� See� among many references�
���� ����� ����

However� in this contribution� the validation of the resulting model is our
main concern� rather than the identi�cation design� Our main result will
actually concern the translation of the basic� classical validation test to the
frequency domain� in much the same way as �
��

� Some Principles of Model Validation

We place ourselves in the following situation� A model is given� Let it be
denoted by �G �more speci�c notation will follow later�� We are also given a
data set ZN consisting of measured input�output data from a system� We
do not know� or do not care� how the model was estimated� or constructed
or given� We might not even know if the data set was used to construct the
model�

Our problem is to �gure out if the model �G is any good at describing
the measured data� and perhaps also to give a statement how �far away�
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the model might be from a true description� We would like to approach this
problem as naked as possible� and strip o� common covers� such as �prior
assumptions�� �probabilistic frameworks�� �worst case model properties� and
the like� What are we then left with#

Well� a natural start is to consider the model�s simulated response to the
measured input signal� Let that simulated output be denoted by �y� We
would then compare this model output with the actual measured output and
contemplate how good the �t is� This is indeed common practice� and is
perhaps the most useful� pragmatic way to gain con�dence in �or reject� a
model� This will be the starting point of our discussion�

In the end� all we really have to our disposal for model validation is the
sequence of residuals� computed on �historic data�� We can give di�erent
kind of statistics for these residuals� like the maximum absolute value� or
the mean square value� The implication would be that there is some kind
of �invariance principle� for the system� so that these statistics will be valid
also in the future use of the model�

This is one part of the essence of model validation� The other part is to
�gure out if there is reason to believe that this �invariance� also will be valid
if the character of the input is changed�

�Here is a model� On past input�output data it has produced
model errors with certain statistics� If I change the input u� will
then the errors be signi�cantly di�erent#�

To check the part of the residuals that might originate from the input the
following statistics are frequently used �see e�g�� ������

Let
	�t� � �u�t�� u�t� ��� � � � � u�t�M 
 ���T ����

and

RN �
�

N

NX
t��

	�t�	�t�T ��
�

Now form the following scalar measure of the correlation between past inputs
�i�e� the vector 	� and the residuals�

$
MN �
�

N

�����
NX
t��

	�t���t�

�����
�

R��
N

����

�



Note that this quantity also can be written as

$
MN � �rT�uR
��
N �r�u ����

where
�r�u � ��r�u���� ���� �r�u�M � ���T ����

with

�r�u��� �
�p
N

NX
t��

��t�u�t� �� ����

It is clear that the induction about the size of the model residuals from
one data set to another is much more reasonable if the statistics $
MN has a
small value�

To come up with measures of how well the model describes the true
system� we shall assume that the data ZN have been generated by a �true
system�

y�t� � G��q�u�t� 
 v�t� ����

and we de�ne the discrepancy as

$G�q� � G��q� � �G�q� ����

Some Basic Limitations

Model validation is really about model falsi�cation� That is� we try to es�
tablish convincing evidence that a certain model cannot have produced the
observed data� A model that �so far� has not been falsi�ed can be seen " for
the moment " as �validated��

It is also the case that the process of validation hinges upon prior knowl�
edge or prior hypothesis of di�erent kinds� This is unavoidable� A trivial way
to realize that this must be the case is the time%frequency uncertainty prin�
ciple� After having seen N data points we know nothing about the model�s
frequency behavior with a resolution less than ���N radians%sampling inter�
val� The validation process must then be complemented either by priors on
model order or on frequency function smoothness� The latter is related to
the rate of decay of the impulse response�

With statistics like ����� we are only probing dynamics up to lag M � This
means that we do not check the impulse response beyond this lag� Any state�
ment about the model quality must thus hinge upon assumptions%knowledge
about the tail of the impulse response�
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� Translating the Basic Model Validation Test

to the Frequency Domain

The question now is� what can be said about the model error $G based on the
information in ZN �

The procedure will be to form

��t� � L�q��y�t� � �G�q�u�t��

and then $
MN as in ���������� In these calculations replace u�t� outside the
interval ��� N � by zero� Assume that RN 
 �I� It is then shown in ���� that

�
�

��

Z �

��

��� $G�ei��
���� ���L�ei��

���� jUN���j� d�
����

�

� �� 
 ��
�

�

N
$
MN

����

 �� 
 ��xN 
 �� 
 ��Cu

�X
k�M

j�kj ����

Here

� xN �
��� �
N

PN
t�� $v�t�	�t�

���
R��
N

� $v�t� � L�q�v�t�

� �k is the impulse response of L�q� $G�q�

� jUN j� is the periodogram ����

� � � CuMp
N�

� Cu � max��t�N ju�t�j�
If the input is tapered so that u�t� � � for t � N � M 
 �� ���N � the

number � can be taken as zero�
Let us make a number of comments�

� The result is really just a statement about the relationship between the
sequences $v�t� � L�q��y�t��G��q�u�t��� and ��t� � L�q��y�t�� �G�q�u�t��
on the one hand and the given transfer functions L�q�� G��q�� �G�q� to�
gether with the given sequences u�t�� y�t� on the other hand� There are
as yet no stochastic assumptions whatsoever� and no requirement that
the �model� �G may or may not be constructed from the given data�






� By the choice of pre�lter L�q� we can probe the size of the model
error over arbitrarily small frequency intervals� However� by making
this �lter very narrow band� we will also typically increase the size of
the impulse response tail� �Narrow band �lters have slowly decaying
impulse responses��

� In practical use the often erratic periodogram jUN j can be replaced by
smoothed variants�

� For the quantities on the right hand side� we note that $
MN is known by
the user� as well as ��N and Cu� The tail of the impulse response �k
beyond lag M is typically not known� It is an unavoidable term� since
no such lag has been tested� The size of this term has to be dealt with
by prior assumptions�

� The only essential unknown term is xN � We shall call this �The cor�
relation term�� The size and the bounds on this term will relate to
noise assumptions and we will deal with these in some detail in the two
following sections�

The implications of this result under varying assumptions about the additive
disturbance v�t� are discussed in ����� We shall here make some comments
related to control design applications� We shall then concentrate on a non�
probabilistic framework�

� Example application� FIR models and unknown	

but	bounded disturbances

The term xN measures the correlation between the input u and the �ltered
disturbance $v� In a deterministic setting it is not so easy to formalize what we
should mean by �uncorrelated disturbances�� One could of course postulate
that the disturbance sequence that we expect to enter the process is such
that quantities like xN decay like ��N or logN�N or in any other way�

From ���� we also have the following results�
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A simple bound

Suppose that $v�t� is any sequence� and all that is known about it is an
amplitude or an energy bound�

xN �
�

�

N

NX
t��

$v��t�

����
����

A bound on disturbance power or amplitude will thus directly give a hard
model error bound in �����

The Case of Periodic Input

If the input is periodic with period P � then

xN � CN � max
�

j $V ���j ����

where $V ��� is the discrete time Fourier transform of $v�t�� �cf ����� and

CN �
� 
 log�N�P 
 ��p

N
�
p
MPp
�

� Cu ��
�

The lemma says that for periodic input and for noises with suitably
smooth spectrum� the model error essentially decays like O� �p

N
�� This is the

same type of result that is obtained in the classical stochastic framework�

Model Validation with FIR Models

The result ���� can be used in a variety of ways� We will see in the next
section how a given model can be probed using validation data and di�erent
pre�lters�

Another illustration is as follows� Suppose that the data has been gener�
ated by a system

y�t� � G��q�u�t� 
 v�t� ����

where all that is known about v�t� is that it is bounded�

jv�t�j � Cv ����
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Suppose that the model �GN is estimated using ZN as an M �th order FIR
��nite impulse response� �lter using the least squares method� Then by
construction� $
MN is zero� By ���� and ���� we then have the following result�

�
�

��

Z �

��

���G��e
i�� � �GN�ei��

���� jUN���j�d�
����

�

� �� 
 ��Cv 
 �� 
 ��Cu

�X
k�M

j�kj ����

where �k is the impulse response of G��q�� The variable � was de�ned fol�
lowing eqn �����

Under such very weak assumption about the disturbance� we cannot�
with this result� come below a certain lower limit for the �t� no matter how
large we choose N and M � On the other hand� a good signal to noise ratio
�Cv�jUN j small� can give very good �ts by making M su&ciently large� �To
keep � small� N must increase faster than M���

It might also be noted that without further assumptions about v� we
don�t gain much ��certi�ed�� model quality by concentrating the �t to certain
frequency bands� If the data is pre�ltered before used for estimation� so that
the power of jUN���j is concentrated to certain frequency bands� the right
hand side of ���� does not decrease� This follows from the fact that the power
of v� as measured in ���� could be concentrated to the same frequency bands
as those selected by the pre�lter�


 Model Validation in the Frequency Domain

The traditional way of validating models is� as we have seen� �gures like
Fig �� where the cross correlation between residuals and input �regressors� is
plotted� From a control design point of view� it would be much more natural
to rather look at the Fourier transform of this plot� i�e� the cross spectrum
between input and residuals� That will tell not only the integrated size of
the model error $GN�ei��� as in $
 in ����� but also how it is distributed over
frequencies� The usefulness of looking at this cross spectrum was pointed out
by Kosut in �
�� but has not been further elaborated� The idea is illustrated
by the following example�

Example ��� The fourth order system

y�t� � ���y�t� �� 
 ����y�t� �� � ��
�y�t� �� 
 ������y�t� ��

��



� u�t� �� 
 ���u�t� �� ����

was simulated with a binary� white input and negligible additive noise� Two
second order ARX models were estimated� one based on the original data set
and one based on the data �ltered through a �	th order� Butterworth
 low
pass �lter with cut�o� frequency ����� The amplitude Bode plots of these two
models� together with the true system are shown in Figure ��

10
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10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

Figure �� Bode amplitude plots� Solid� True system� Dashed� Model based
on un�ltered data� Dash�dotted� Model based on �ltered data�

The standard cross�correlation residual tests �both performed for the orig�
inal� un�ltered data
 are shown in �gures 
 and �� Applying the result �
	

would give a large value of the test quantity $
 and � correctly so � tell us that
there is a signi�cant discrepancy between both models and the true system�
when evaluated over the whole frequency range �The periodogram jUN ���j is
�at
� The test would not tell us the character of the discrepancy�

Estimating the transfer function from u to � using spectral analysis� gives
the results shown in Figures � and 	�

We see that these two �gures give correct information about the reliability
of the transfer function estimates� The information is consistent with Figure
� �which of course will not be known to the user�


To use the classical residual test� and result �
	
� supposing we were in�
terested in the model �t over the frequency range �� ������ we should pre�lter
the residuals� so that L�q� in �
	
 picks out the desired range� Residual plots
for such pre�ltered data are shown in Figures � and ��
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Figure �� Residual test for the second order model estimated using the un�
�ltered data
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Figure �� Residual test for the second order model estimated using the �ltered
data� The test is performed on the original data
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Figure �� Amplitude plot with con�dence interval corresponding to � stan�
dard deviations for the transfer function from input to residuals from the
second order ARX model� estimated from un�ltered data�
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Figure �� As Figure �� but using residuals from the model obtained by �ltered
data�
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Figure �� Residual test for the second order model estimated using the un�
�ltered data� Test performed on �ltered data�
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Figure �� Residual test for the second order model estimated using the �ltered
data� Test performed on �ltered data�
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Note that the measure $
 only uses the correlation for positive lags� Con�
sequently the ��ltered model� in Figure � will pass the test� and � correctly
so � tell us that the model �t over the frequency range of interest is good�
according to �
	
�

� Conclusions

The classical paradigm for model validation tells us that we should build
more and more complex models �like increasing the model order� until a
model is found that passes model validation tests� like

$
MN � C� ����

The �identi�cation�for�control� movement has in a sense rejected this atti�
tude� by stressing that control design might require simpler models than so�
and that we can very well live with model errors that are statistically signi��
cant� It is just a matter of choosing the identi�cation design variables so that
these model errors fall into frequency regions that can be well handled by
feedback� The challenge is then to evaluate the model errors without having
access to a validated model�

Looking back at ����� we see a result that tells us the �weighted frequency
domain� quality of a given model� regardless of whether it is �validated� or
not� To use it we must invoke knowledge%assumptions about the nature of
the disturbances �for xN � and about the tail of the true system�s impulse
response� Such assumptions in one or another form are unavoidable�

We also see how the classical validation criterion ���� becomes natural in
this context� It makes the two �rst terms of the right hand side of ���� balance
each other under the typical probabilistic assumptions about v �making xN
behave like ��

p
N�� Note that this also covers the deterministic case �����

In this light it is always natural to press the model to such a point that ����
holds� Then we have the best possible knowledge about its discrepancy from
the true system� If the model is too complex to be used for control design� it
can always to reduced� In that case we know exactly the di�erence between
the validated model and the reduced one� That can be translated to a less
conservative error bound on the reduced order model� used for the control
design�

In fact� the process illustrated in Section �� with spectral analysis of the
transfer function from u to the residuals is of the same nature� If we had done

��



FIR modeling of the transfer function from u to � the sum of the nominal
model �G and the one estimated using � would have constituted a validated
model�

The bottom line seems to be that even for control oriented model valida�
tion there is no real escape from the classical paradigm� Obtain an unfalsi�ed
model� reduce it if necessary�
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