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Abstract 33 

Successful human behavior depends on the brain’s ability to extract meaningful structure 34 

from information streams and make predictions about future events. Individuals can differ 35 

markedly in the decision strategies they use to learn the environment’s statistics, yet we have 36 

little idea why. Here, we investigate whether the brain networks involved in learning temporal 37 

sequences without explicit reward differ depending on the decision strategy that individuals 38 

adopt. We demonstrate that individuals alter their decision strategy in response to changes in 39 

temporal statistics and engage dissociable circuits: extracting the exact sequence statistics 40 

relates to plasticity in motor cortico-striatal circuits, while selecting the most probable 41 

outcomes relates to plasticity in visual, motivational and executive cortico-striatal circuits. 42 

Combining graph metrics of functional and structural connectivity, we provide evidence that 43 

learning-dependent changes in these circuits predict individual decision strategy. Our findings 44 

propose brain plasticity mechanisms that mediate individual ability for interpreting the 45 

structure of variable environments.  46 



Learning and experience are known to facilitate our ability to extract meaningful structure 47 

from streams of information and interpret complex environments. Despite the general 48 

consensus that ‘practice makes perfect’, there is striking variability among individuals in the 49 

extent to which they take advantage of past experience. In the laboratory, this variability has 50 

been demonstrated in tasks such as perceptual decision making
1,2

 or statistical learning of 51 

regularities (i.e. learning of probabilistic spatial or temporal structures) through mere 52 

exposure to the environment
3,4

. Previous work examining individual variability in decision 53 

making and probabilistic learning tasks, has highlighted the role of individual decision 54 

strategies
5–10

. In particular, humans and animals have been shown to engage in probability 55 

matching or maximization when making choices in probabilistic environments (e.g.
9,11,12

). 56 

Probability matching involves making choices stochastically to match the probabilistic 57 

distribution of all possible outcomes, while probability maximization involves choosing the 58 

most probable or frequently rewarded outcome in a given context.  59 

Individual variability in these decision strategies has mainly been investigated in the 60 

context of reward learning (e.g.
9,11,12

). Yet, reward-based learning captures only one aspect of 61 

human flexibility in natural environments, as feedback and rewards are often not explicit. 62 

Here, we test the role of decision strategies in statistical learning. In particular, we designed a 63 

statistical learning task that tests whether individuals learn to extract temporal structure from 64 

mere exposure to unfamiliar sequences without explicit reward (i.e. trial-by-trial feedback). 65 

We changed the temporal sequence statistics unbeknownst to the participants, to simulate 66 

structure in natural environments that may vary from simple regularities to more complex 67 

probabilistic combinations. That is, participants were first exposed to sequences determined 68 

by frequency statistics (i.e. one item in the sequence occurred more frequently than others) 69 

and then sequences that were determined by context-based statistics (i.e. some item 70 

combinations were more frequent than others). Participants predicted which item would 71 



appear next in the sequence. We modeled the participant responses to interrogate the decision 72 

strategy that individuals adopt during learning (i.e. how individuals extract temporal 73 

structure). We reasoned that individuals would adapt their decision strategies in response to 74 

changes in the temporal sequence statistics and the learning goal (i.e. learning frequency vs. 75 

context-based statistics).  76 

Previous work has implicated cortico-striatal circuits in sequence and probabilistic 77 

learning
13–16

. Here, we sought to determine whether these circuits are involved in statistical 78 

learning of temporal structures without explicit reward. We ask whether individual decision 79 

strategies (from matching to maximization) involve distinct cortico-striatal circuits and 80 

whether learning-dependent plasticity in these circuits can account for individual variability 81 

in learning to extract the environment’s statistics. We reasoned that brain plasticity, as 82 

expressed by learning-dependent connectivity changes in cortico-striatal circuits, would 83 

predict changes in decision strategy when learning frequency vs. context-based statistics. 84 

To test these hypotheses, we combined our statistical learning task with multi-session 85 

(before vs. after training) measurements of functional (resting-state fMRI: rs-fMRI) and 86 

structural (Diffusion Tensor Imaging: DTI) connectivity. rs-fMRI has been shown to reveal 87 

functional connectivity within and across brain networks that subserve task performance
17,18

. 88 

Moreover, there is accumulating evidence for changes in both functional and structural brain 89 

connectivity due to training (e.g. for reviews
19,20

), suggesting learning-dependent plasticity in 90 

human brain networks that mediate adaptive behavior. To map cortico-striatal circuits at fine 91 

scale we employed DTI-based segmentation analysis
21

 of the striatum into finer sub-regions 92 

and computed the functional connectivity between these striatal regions and cortical 93 

networks, as revealed by analysis of the rs-fMRI data. Our results show that individuals adapt 94 

their decision strategies (from matching towards maximization) in response to changes in the 95 

temporal statistics. These adaptive decision strategies relate to distinct cortico-striatal circuits 96 



for learning temporal statistics. That is, adopting a strategy closer to matching when learning 97 

frequency statistics relates to learning-dependent connectivity changes in the motor circuit. In 98 

contrast, deviating from matching towards maximization when learning context-based 99 

statistics relates to functional connectivity changes in the visual cortico-striatal circuit. 100 

We next combined graph theory analysis with a multivariate statistical analysis 101 

(Partial Least Squares-PLS regression) to determine multimodal predictors of decision 102 

strategy. This approach allows us to a) combine information from multivariate signals (rs-103 

fMRI, DTI)– rather than using data from each MRI modality alone, b) test whether plasticity 104 

in functional and/or structural connectivity in cortico-striatal circuits predicts– rather than 105 

simply relates to– individual decision strategy. In particular, we employed graph theory to 106 

extract metrics of brain connectivity that are comparable across brain imaging modalities and 107 

have been suggested to relate to learning and brain plasticity
22,23

. We then used PLS modeling 108 

to combine these multimodal graph metrics and identify brain connectivity predictors (rs-109 

fMRI, DTI) of individual decision strategy when learning temporal statistics. Our results 110 

demonstrate that learning-dependent changes in resting cortico-striatal connectivity 111 

(functional and structural) that predict individual decision strategy for statistical learning. In 112 

particular, we discern distinct brain plasticity mechanisms that predict: a) changes in 113 

individual decision strategy in response to changes in the environment’s statistics, b) 114 

individual variability in decision strategy independent of temporal statistics. Our findings 115 

provide evidence for adaptive decision strategies that involve distinct brain routes for 116 

statistical learning, proposing a strong link between learning-dependent plasticity in brain 117 

connectivity and individual learning ability. 118 

Results 119 

Behavioral improvement with statistical learning 120 



To investigate learning of temporal structures, we generated temporal sequences of different 121 

Markov orders (i.e. level-0, level-1 and level-2: context lengths of 0, 1 or 2 previous items, 122 

respectively) (Figure 1a, 1b). We simulated event structures that typically vary in their 123 

complexity in natural environments by exposing participants to sequences of unfamiliar 124 

symbols that increased in context length unbeknownst to the participants. That is, participants 125 

were first trained on sequences determined by frequency statistics (i.e. level-0: occurrence 126 

probability per symbol) and then on sequences determined by context-based statistics (i.e. 127 

level-1 and level-2: the probability of the next symbol depends on the preceding symbol(s)).  128 

Participants were asked to predict which symbol they expected to appear next in the 129 

sequence. Participants were not given trial-by-trial feedback, consistent with statistical 130 

learning paradigms. 131 

Figure 1 132 

We quantified participants’ performance in this prediction task by measuring how closely the 133 

probability distribution of the participant responses matched the distribution of the presented 134 

symbols
10

. This performance index (PI, see Supplementary Information) is preferable to a 135 

simple measure of accuracy as the probabilistic nature of the sequences means that the 136 

‘correct’ upcoming symbol is not uniquely specified. 137 

We then computed a normalized performance index by subtracting performance for 138 

random guessing. Comparing normalized PI across sessions and levels (two-way repeated 139 

measures ANOVA with Session (Pre, Post) and Level (level-0, level-1, level-2)) showed a 140 

significant main effect of Session (F(1,20)=117.9, p<0.001, ηp
2
=0.855) and Level 141 

(F(2,40)=17.9, p<0.001, ηp
2
=0.473), but no significant interaction between Session and Level 142 

(F(1.44,28.71)=2.7, p=0.098, ηp
2
=0.120, Greenhouse-Geisser corrected), suggesting that 143 

participants improved significantly after training and showed similar improvement across 144 

levels (Figure 2a). 145 



Decision strategies for learning: from matching to maximization 146 

Previous work on probabilistic learning
8–10

 and decision-making in the context of 147 

sensorimotor tasks
5–7

 has shown that individuals adopt decision strategies (from matching to 148 

maximization) when making probabilistic choice. Here, we test the role of these decision 149 

strategies in statistical learning (i.e. without explicit feedback or reward). In our statistical 150 

learning task, participants were exposed to stochastic sequences and therefore needed to learn 151 

the probabilities of different outcomes. Modeling the participants’ responses allows us to 152 

quantify their decision strategy, reflecting how the participants extract and respond to 153 

context-target contingencies in probabilistic sequences. In particular, participants may adopt: 154 

a) probability matching; that is, match their choices to the relative probabilities of the context-155 

target contingencies presented in the sequences, or b) deviate from matching towards 156 

maximization; that is, choose the most probable outcome in a given context. 157 

 We quantified participant’s decision strategy during training by comparing individual 158 

participant responses to two models: (i) a probability matching model, where probabilistic 159 

distributions of possible outcomes were derived from the Markov models that generated the 160 

presented sequences, and (ii) a probability maximization model, where only the most likely 161 

outcome is allowed for each context. We quantified each participant’s strategy choice during 162 

training based on the distance of the participant response distribution from the matching and 163 

maximization model. We then computed a single measure of strategy index as the integral 164 

between the participant’s strategy choice and the matching model across trials and training 165 

blocks. Therefore, strategy index is a continuous measure that captures the strategy that 166 

individuals adopt over time (i.e. during training) on a continuous scale between matching and 167 

maximization (Figure 2b, Supplementary Figure 1, Supplementary Figure 2). Zero 168 

strategy index indicates that the participant response distribution matches the probability 169 

distribution of the presented sequence (i.e. exact matching). Participant’s performance 170 



deviating from the matching model may result to a positive or negative strategy index. 171 

Overestimating the probability of the most probable context-target contingency in the 172 

sequence results in a positive strategy index indicating that the participant’s strategy ranges 173 

between matching and maximization. In contrast, underestimating the probability of the most 174 

probable context-target contingency in the sequence results in a negative strategy index 175 

indicating that the participant’s strategy ranges between matching and a random model of 176 

response (i.e. participants choose all context-target contingencies with equal probability). 177 

Thus, we interpret strategy index values close to zero as strategy closer to matching; while 178 

higher positive values as strategy deviating from matching towards maximization.  179 

 Figure 2b, c shows differences in strategy index across sequence levels and individual 180 

participants. A one-way repeated measures ANOVA with Level (level-0, level-1, level-2) 181 

showed a significant main effect of Level (F(1.44,28.79)=8.0, p=0.004, ηp
2
=0.286, 182 

Greenhouse-Geisser corrected), indicating higher strategy index for increasing context length. 183 

In particular, strategy index for level-1 was higher than strategy index for level-0 (t(19)=2.5, 184 

p=0.020, CI=[0.03, 0.30], Cohen’s d=0.567), but not for level-2 compared to level-1 185 

(t(19)=1.9, p=0.066, CI=[-0.01, 0.13], Cohen’s d=0.435). Further, the strategy indexes for 186 

level-1 and level-2 were highly correlated (r(19)=0.72, p<0.001, CI=[0.42, 0.89]), while no 187 

significant correlations were found for level-0 (level-0 vs. level-1: r(19)=-0.21, p=0.35, CI=[-188 

0.71, 0.28]; level-0 vs. level-2: r(19)=-0.15, p=0.52, CI=[-0.55, 0.34]). To avoid 189 

collinearity
24

, we computed a mean strategy index for level-1 and level-2 to generate a single 190 

predictor of learning context-based statistics for further regression analyses. This mean 191 

strategy index for context-based statistics was significantly higher than the strategy index for 192 

frequency statistics (t(19)=3.2, p=0.005, CI=[0.07, 0.32], Cohen’s d=0.711). Further, the 193 

strategy index for frequency statistics was not significantly different from matching (i.e. zero 194 

strategy index; one sample t-test: t(20)=-0.23, p=0.82, CI=[-0.08, 0.07], Cohen’s d=-0.050). 195 



In contrast, the strategy index for context-based statistics was significantly higher than zero 196 

(one sample t-test: t(20)=4.01, p<0.001, CI=[0.08, 0.26], Cohen’s d=0.874). Taken together, 197 

these results provide evidence that participants adapted their decision strategy in response to 198 

changes in temporal statistics across sequence levels; that is, individuals adopted a strategy 199 

that deviated from matching towards maximization for learning first frequency and then 200 

context-based statistics.  201 

These differences in decision strategy across sequence levels could not be simply 202 

explained by changes in reward processing, cognitive strategy training or differences in 203 

performance improvement across sequence levels. Specifically, the participants were not 204 

given explicit reward (i.e. no trial-by-trial feedback) or explicitly trained on effective 205 

cognitive strategies to boost task performance. Further, there were no significant differences 206 

in performance index across levels after training (see Learning frequency and context-based 207 

statistics) and participant performance after training did not correlate significantly with 208 

decision strategy (level-0: r(19)=0.21, p=0.36, CI=[-0.21, 0.58]; level-1: r(19)=0.06, p=0.81, 209 

CI=[-0.37, 0.42]; level-2: r(19)=0.15, p=0.52, CI=[-0.37, 0.52]). In contrast, we have 210 

previously shown that individual decision strategy is positively correlated with learning rate 211 

(i.e. how fast participants extract the correct sequence structure) in our statistical learning 212 

task
10

. Taken together, these results suggest that the adaptive decision strategies we observed 213 

in response to changes in temporal statistics reflect changes in the learning process (i.e. how 214 

individuals extract temporal sequence structure) rather than overall changes in task training. 215 

Figure 2 216 

Learning-dependent changes in DTI-informed resting-state connectivity 217 

Previous work has established distinct cortico-striatal circuits with dissociable functions
25

 that 218 

have been implicated in a range of learning tasks, including sequence and probabilistic 219 

learning
13–15

. Here, we investigated whether brain plasticity in these cortico-striatal circuits 220 



relate to individual decision strategy in statistical learning (i.e. without trial-by-trial 221 

feedback). In particular, to determine functional connectivity at rest we used: a) DTI-based 222 

segmentation to define striatal regions and b) ICA-based decomposition of the rs-fMRI 223 

timecourse to define functional cortical networks. 224 

 First, we used DTI data to segment the striatum into finer sub-regions that will then 225 

serve as regions of interest for the functional connectivity analysis of the rs-fMRI data (see 226 

Supplementary Information). In particular, we defined striatum (i.e. caudate and putamen) 227 

anatomically from the Automated Anatomical Labeling (AAL) atlas
26

 and segmented it into 228 

sub-regions based on their structural connectivity profile (Supplementary Figure 3). We 229 

derived four segments per hemisphere that corresponded to a) ventral striatum, b) head of 230 

caudate and anterior putamen, c) body and tail of caudate, and d) posterior putamen (Figure 231 

3a, Supplementary Table 1). This segmentation is in agreement with previous histological 232 

studies
25

. 233 

 We then identified functional brain networks during rest by decomposing the rs-fMRI 234 

timecourse into functionally connected components (i.e. components comprising voxel 235 

clusters with correlated timecourse) using Group Independent Component Analysis (GICA, 236 

see Supplementary Information). We followed the standard pipeline to perform the pre-237 

processing on the rs-fMRI data for GICA (see Supplementary Information). Following GICA, 238 

we selected components associated with known cortico-striatal circuits that have been 239 

implicated in learning
25

 (Figure 3b, Supplementary Table 2): a) Right Central Executive 240 

(CP_9, peak activations in right middle frontal gyrus and right inferior parietal lobule), b) 241 

Left Central Executive (CP_14, peak activations in left inferior frontal gyrus and left inferior 242 

parietal lobule), c) Sensorimotor (CP_4, peak activations in bilateral supplementary motor 243 

area), d) Lateral Motor (CP_5, peak activations in bilateral postcentral gyrus), e) Secondary 244 

Visual (CP_2, peak activations in bilateral middle occipital gyrus), f) Early Visual (CP_12, 245 



peak activations in bilateral calcarine sulcus), and g) Anterior Cingulate (CP_15, peak 246 

activations in bilateral anterior cingulate).  247 

We next tested whether learning-dependent changes in intrinsic and extrinsic 248 

functional connectivity within cortico-striatal circuits (i.e. between DTI-defined striatal 249 

segments and ICA-defined cortical components) relate to individual decision strategy. As 250 

strategy index is a continuous measure of decision strategy, we correlated changes in 251 

functional connectivity with individual strategy index rather than comparing between separate 252 

groups of participants (i.e. matchers vs. maximizers). Positive correlations indicate that higher 253 

increase in connectivity after training relates to maximization (top-right quadrant of the 254 

correlation plots), whereas negative correlations indicate that higher increase in connectivity 255 

relates to matching (top-left quadrant of the correlation plots).  256 

Figure 3 257 

Correlating intrinsic connectivity with strategy 258 

Intrinsic connectivity is a measure of signal coherence within a local network and quantifies 259 

activity correlation across voxels within the network. Previous work has shown that 260 

functional networks during task and rest are highly similar
27

, suggesting that task-related 261 

BOLD activity relates to intrinsic connectivity at rest. Further, variability in intrinsic 262 

connectivity has been suggested to explain task performance
28

. Here, we ask whether 263 

learning-dependent changes in intrinsic connectivity within each cortical network relate to 264 

individual decision strategy when learning temporal statistics. 265 

 We calculated an intrinsic connectivity measure for each cortical network indicating 266 

its local connectivity strength (N=7). We then correlated intrinsic connectivity change (Post 267 

minus Pre) with strategy for frequency and context-based statistics (Supplementary Table 268 

3a). For frequency statistics, learning-dependent changes in connectivity in the Lateral Motor 269 

network correlated positively with strategy index (r(19)=0.77, p<0.001, CI=[0.60, 0.89], 270 



surviving False Coverage Rate-FCR correction) (Figure 4a). For context-based statistics, 271 

learning-dependent changes in connectivity in the Secondary Visual network correlated 272 

negatively with strategy index (r(19)=-0.49, p=0.025, CI=[-0.74, -0.10]) (Figure 4a). In 273 

contrast, we observed positive (marginally significant) correlations of learning-dependent 274 

changes in connectivity in the Left Central Executive (LCEN) and Anterior Cingulate (ACC) 275 

networks with strategy index (LCEN: r(19)=0.42, p=0.059, CI=[0.01, 0.68]; ACC: 276 

r(19)=0.35, p=0.121, CI=[0.04, 0.63])  (Supplementary Figure 4).  277 

Correlating extrinsic connectivity with strategy 278 

Extrinsic connectivity is a measure of functional connectivity between brain regions. In 279 

particular, extrinsic connectivity is computed as the correlation of the brain signals in– 280 

typically distant– regions across time and quantifies the coherence of their activity
17,29

. 281 

Previous work suggests that extrinsic connectivity changes with training and relates to 282 

behavioral performance
19

. Here, we test whether learning-dependent changes in cortico-283 

striatal extrinsic connectivity relate to individual decision strategy. 284 

 We selected pairs of striatal (Figure 3a, Supplementary Table 1) and cortical areas 285 

(Figure 3b, Supplementary Table 2) based on known cortico-striatal circuits
25

 (N=14): a) 286 

motivational: ventral striatum to ACC, b) executive: caudate head and anterior putamen to 287 

RCEN and LCEN (i.e. dorsolateral prefrontal and parietal cortex), c) visual: caudate body and 288 

tail to Secondary Visual and Early Visual networks, and d) motor: posterior putamen to 289 

Sensorimotor and Lateral Motor networks (Supplementary Table 3b). These pathways have 290 

been identified by previous functional
30,31

 and structural connectivity
32,33

 studies. We 291 

calculated the Pearson correlation between the timecourses in these cortico-striatal areas, as a 292 

measure of extrinsic functional connectivity. We then correlated connectivity change (Post 293 

minus Pre, after Fisher z-transform) with the strategy index for frequency and context-based 294 

statistics. For learning frequency statistics, learning-dependent changes in connectivity 295 



between the right posterior putamen and the Lateral Motor network (r(19)=0.51, p=0.018, 296 

CI=[0.20, 0.74], surviving FCR correction) correlated positively with strategy index (Figure 297 

4b). In contrast, for context-based statistics, learning-dependent changes in connectivity 298 

between the left body/tail of caudate and the Early Visual network (r(19)=-0.46, p=0.034, 299 

CI=[-0.83, -0.13], surviving FCR correction) correlated negatively with strategy index 300 

(Figure 4b).  301 

Figure 4 302 

Relating adaptive decision strategies to brain plasticity  303 

Taken together, our results provide evidence that plasticity in distinct cortico-striatal circuits– 304 

as expressed by changes in intrinsic and extrinsic connectivity– relates to adaptive decision 305 

strategies when learning temporal statistics. We interpret this brain plasticity in the context of 306 

our behavioral findings showing that participants adapted their strategy from matching 307 

towards maximization when learning first frequency and then context-based statistics.  308 

 Our results showed that matching when learning frequency statistics relates to 309 

decreased intrinsic connectivity within the Lateral Motor network and decreased extrinsic 310 

connectivity between this network and posterior putamen. Previous work has implicated the 311 

motor circuit in habitual learning
34,35

 and stimulus-response associations
36

. Thus, decreased 312 

connectivity in this circuit may facilitate matching that involves learning the exact sequence 313 

statistics rather than reinforcing habitual responses. 314 

In contrast, deviating from matching towards maximization when learning context-315 

based statistics relates to decreased connectivity within the visual cortico-striatal circuit 316 

(intrinsic connectivity in Secondary Visual network, extrinsic connectivity between body/tail 317 

of caudate and the Early Visual network). Previous work has implicated the visual cortico-318 

striatal circuit in learning predictive associations
16

 and decision making
37,38

, highlighting its 319 

role in higher cognitive functions rather than simply processing of low-level sensory 320 



information. Thus, decreased connectivity in this circuit may facilitate selecting the most 321 

probable outcome when learning complex context-target contingencies rather than learning 322 

the exact probability distributions.  323 

Multimodal predictors of decision strategy 324 

Our results so far provide evidence that learning-dependent changes in resting functional 325 

connectivity relate to adaptive changes in decision strategies. Next, we test whether learning-326 

dependent plasticity in both functional and structural connectivity in these circuits predicts 327 

individual decision strategy, extending beyond the univariate and correlational approach we 328 

followed for our rs-fMRI connectivity analysis. 329 

To combine data from rs-fMRI and DTI, we employed graph theory that allows us to 330 

extract comparable metrics across participants and brain imaging modalities using the same 331 

topological brain structure (e.g. AAL parcellation). In particular, we constructed participant-332 

specific whole-brain binary graphs for each brain imaging modality (rs-fMRI, DTI). We then 333 

selected twelve nodes from these graphs per imaging modality corresponding to the cortico-334 

striatal circuits in the rs-fMRI analysis (Figure 3b, Figure 4): a) striatum: bilateral caudate, 335 

bilateral putamen; b) RCEN network: right middle frontal gyrus (MFG); c) LCEN network: 336 

triangular part of left inferior frontal gyrus (IFG); d) Lateral Motor network: bilateral 337 

postcentral gyrus; e) Early Visual network: bilateral calcarine sulcus; and f) ACC network: 338 

bilateral anterior cingulate gyrus (ACC) (Figure 5a, b). 339 

For each selected node, we computed a measure of global and local integration. In 340 

networks, global integration describes the extent to which nodes integrate information from 341 

the whole graph. Different metrics have been used to quantify global integration; for example, 342 

regions with high global integration may have many connections to the rest of the brain (i.e. 343 

high degree) or have fast routes to all other brain regions (i.e. low path length). Here, we 344 

focus on nodal degree (i.e. number of a node’s connections to the whole brain), as high 345 



degree nodes (also known as hubs) have been shown to play a key role in learning (e.g. for 346 

review
39

). In contrast, local integration quantifies the regional organization of a graph; for 347 

example, modules are defined as brain nodes that are highly connected with each other but 348 

less strongly to the rest of the brain, therefore forming a community
40

. Here, we focus on 349 

clustering coefficient which measures the proportion of a node’s first neighbors that are also 350 

connected to one another
41

. Both degree and clustering coefficient have been previously 351 

shown to relate to learning and brain plasticity
22,23

. 352 

Figure 5 353 

We next asked whether learning-dependent changes in the local and global integration 354 

of cortico-striatal networks predict variability in decision strategy across sequence levels (i.e. 355 

frequency vs. context-based statistics) and individuals. To identify the linear combinations of 356 

regional metrics of functional and structural brain connectivity that best predict individual 357 

strategy, we entered into a PLS regression model the difference in rs-fMRI and DTI graph 358 

metrics (degree, clustering coefficient) before vs. after training (i.e. post- minus pre-training 359 

values for degree and clustering coefficient). PLS regression
42

 is a statistical method that is 360 

used to relate a set of predictors to a set of response variables. That is, PLS identifies a set of 361 

independent components from the predictors (i.e. linear combinations of the rs-fMRI and DTI 362 

graph metrics) that show strongest association (i.e. maximum covariance) with the response 363 

variables of interest (i.e. strategy index for frequency and context-based statistics)
42

. This 364 

statistical method has been previously used in neuroimaging studies
43,44

 with multi-collinear 365 

predictors or high data dimensionality (i.e. the number of predictors exceeds the number of 366 

samples). We followed this methodology to combine nodal graph metrics derived from rs-367 

fMRI and DTI data and identify predictors of strategy, as the number of predictors exceeds 368 

our sample size (i.e. 48 predictors, 21 participants). 369 



We found that the first three PLS components (PLS-1, PLS-2, PLS-3) predicted 370 

significantly the strategy index for frequency and context-based statistics compared to a null 371 

model (p=0.024 for 10,000 permutations). These three components together explained 85% of 372 

the variance in strategy index (Supplementary Figure 5). For further analysis, we focused on 373 

the first two components (Supplementary Table 4), as they were robustly estimated across a 374 

range of density levels (10% to 30% density; Supplementary Figure 6) and two additional 375 

atlases (Shen and Brainnetome atlases) (see Supplementary Information). Figure 6a, b 376 

summarizes the weights (combinations of nodes and metrics) for PLS-1 and PLS-2 at 20% 377 

density (|z|>2.576 indicates significant predictors (p=0.01)
42

).  378 

Figure 6 379 

Our analyses showed that these PLS components predict: a) differences in decision 380 

strategy across sequence levels (i.e. frequency vs. context-based statistics) and b) differences 381 

in decision strategy across individuals independent of sequence statistics. Figure 7a shows 382 

that PLS-1 dissociates strategy across sequence levels; that is, a negative weight is assigned 383 

for frequency statistics vs. a positive weight for context-based statistics (i.e. the two strategies 384 

are separated by the y=0 axis). In contrast, PLS-2 predicts individual variability in strategy 385 

independent of the sequence statistics; that is, positive weights are assigned for both 386 

frequency and context-based statistics (Figure 7a).  387 

To further quantify these findings, we computed two complementary indexes. First, 388 

we calculated a strategy difference index, by subtracting strategy index for frequency 389 

statistics from the strategy index for context-based statistics (i.e. higher values indicate 390 

strategy closer to maximization for context-based than frequency statistics). Second, we 391 

calculated a mean strategy index, by averaging the strategy index for frequency and context-392 

based statistics (i.e. higher values indicate strategy closer to maximization across sequence 393 

levels). We found that PLS-1 correlates positively with the strategy difference index 394 



(r(19)=0.89, p<0.001, CI=[0.68, 0.96]) but not with the mean strategy index (r(19)=0.18, 395 

p=0.44, CI=[-0.27, 0.51]), suggesting that this component captures learning-dependent 396 

changes in brain connectivity that predict changes in strategy in response to changes in the 397 

sequence statistics (Figure 7b). In contrast, PLS-2 correlates positively with the mean 398 

strategy index (r(19)=0.79, p<0.001, CI=[0.49, 0.92]) but not with the strategy difference 399 

index (r(19)=0.13, p=0.58, CI=[-0.25, 0.48]), suggesting that this component captures 400 

learning-dependent changes in brain connectivity that predict variability in decision strategy 401 

across individuals independent of the sequence structure (Figure 7b). Supplementary 402 

Figure 7 provides a complementary illustration of the relationship between each PLS 403 

component (PLS-1, PLS-2) and decision strategy for frequency vs. context-based statistics.  404 

Figure 7c summarizes the brain nodes that correspond to significant predictors 405 

(|z|>2.576, p=0.01
42

) for PLS-1 and PLS-2 across imaging modalities (rs-fMRI, DTI) and 406 

graph metrics (degree change, clustering coefficient change). For PLS-1, the brain metrics 407 

that significantly predict change in decision strategy in response to changes in the sequence 408 

statistics include: a) degree change in left putamen (DTI), right calcarine (DTI) and left IFG 409 

(rs-fMRI); b) clustering change in left postcentral (DTI) and right ACC (DTI) (Figure 7c, 410 

Supplementary Table 4a). That is, global integration in the visual and left executive circuits, 411 

while local integration within the motor and motivational circuits predict changes in decision 412 

strategy in response to changes in sequence structure (i.e. learning frequency vs. context-413 

based statistics), as indicated by the positive correlation of PLS-1 with the strategy difference 414 

index (Figure 7b). In contrast, for PLS-2, the brain metrics that significantly predict 415 

individual variability in decision strategy independent of the temporal statistics include: a) 416 

degree change in left ACC (DTI), bilateral caudate (DTI) and right MFG (DTI); b) clustering 417 

change in left caudate (DTI) and left ACC (rs-fMRI) (Figure 7c, Supplementary Table 4a). 418 

Therefore, global integration in the motivational and right executive circuits, while local 419 



integration within the motivational circuit support learning by maximizing, as indicated by 420 

the positive correlation of PLS-2 with the mean strategy index (Figure 7b). 421 

These results showing that graph metrics in the visual and motor cortico-striatal 422 

circuits predict decision strategy are consistent with our previous correlational analyses 423 

(Figure 4), suggesting that learning-dependent plasticity in these circuits may facilitate 424 

switching from matching towards maximization for learning more complex context-based 425 

statistics. Further, the multivariate treatment of the data afforded by the PLS analysis supports 426 

the role of regions in motivational and executive cortico-striatal circuits in decision strategy, 427 

corroborating our correlational analyses that showed marginal effects for these regions 428 

(Supplementary Figure 4). These findings are consistent with previous work implicating the 429 

motivational circuit in goal-directed actions
34,45

 and individual strategy choice
35

, while the 430 

executive circuit in updating task rules
46,47

.  431 

Figure 7 432 

Finally, our findings generalized to other graph metrics that relate to global and local 433 

integration (see Supplementary Information). In particular, we tested: a) the average shortest 434 

path length and betweenness centrality as measures of global integration, b) the local 435 

efficiency as measure of local integration. The first two components of models including 436 

these measures were highly correlated with the components of the main model we tested that 437 

included degree and clustering coefficient (Supplementary Table 5). 438 

Comparing training vs. no-training control groups 439 

We conducted a no-training control experiment to investigate whether the brain connectivity 440 

changes we observed were training-specific rather than due to repeated exposure to the task. 441 

Participants in this group were tested with structured sequences in two test sessions (26.1 442 

±5.2 days apart) but did not receive training in between sessions. 443 



Comparing behavioral performance in the two test sessions for the no-training control 444 

group, we found no significant main effect of Session (F(1,20)=0.1, p=0.740, ηp
2
=0.006) nor 445 

a significant interaction between Session and Level (F(1.33,26.56)=0.2, p=0.695, ηp
2
=0.012, 446 

Greenhouse-Geisser corrected). Further, comparing performance between the two groups 447 

(training, no-training control) showed a significant main effect of Group (F(1,40)=39.0, 448 

p<0.001, ηp
2
=0.493) and a significant interaction between Group and Session (F(1,40)=73.0, 449 

p<0.001, ηp
2
=0.646). Taken together, these results suggest that behavioral improvement was 450 

specific to the trained group rather than the result of repeated exposure during the two test 451 

sessions. 452 

Further, we tested whether the learning-dependent changes we observed in the 453 

intrinsic and extrinsic connectivity analyses were specific to training. We conducted these 454 

analyses for the no-training control group and for the areas that showed significant 455 

correlations of brain connectivity changes with strategy for the training group (Figure 4). We 456 

computed strategy index for the control group from the post-training session, as there were no 457 

training data for this group. None of the correlations observed for the training group were 458 

significant for the no-training control group for either the intrinsic or extrinsic connectivity 459 

analysis. To compare these correlations of intrinsic and extrinsic connectivity with strategy 460 

index directly between groups, we performed a linear regression analysis with an interaction 461 

term (Group x Strategy). We observed significant differences between groups in key 462 

networks: a) intrinsic connectivity change in the Lateral Motor network (Group x Strategy 463 

interaction: F(2,35)=8.0, p=0.001, ηp
2
=0.316) and in the Secondary Visual network (Group x 464 

Strategy interaction: F(2,34)=5.6, p=0.008, ηp
2
=0.249); b) extrinsic connectivity change 465 

between the right posterior putamen and the Lateral Motor network (Group x Strategy 466 

interaction: F(2,34)=3.8, p=0.031, ηp
2
=0.184). 467 



 Finally, we conducted a PLS regression analysis to test whether changes in degree and 468 

clustering predict individual strategy for the no-training control group. This analysis did not 469 

show any significant model compared to the null model (10,000 permutations) for any 470 

number of PLS components. Further, we found no significant correlations when correlating 471 

each of the first two PLS components from the training group with the corresponding PLS 472 

components from the no-training control group (PLS-1: r(19)=-0.22, p=0.34, CI=[-0.48, 473 

0.11]; PLS-2: r(19)=-0.10, p=0.66, CI=[-0.50, 0.19]). Taken together, these results suggest 474 

that predicting individual strategy from changes in graph metrics of brain connectivity 475 

(degree, clustering coefficient) is specific to the training group. 476 

 477 

Discussion 478 

Here, we sought to identify the human brain plasticity mechanisms that mediate individual 479 

ability to  learn probabilistic temporal structures and make predictions in variable 480 

environments. Linking multimodal brain imaging measures (rs-fMRI, DTI) to individual 481 

behavior, we demonstrate that these task-free measures of plasticity in brain connectivity 482 

predict individual decision strategy when learning temporal statistics. Our findings advance 483 

our understanding of the brain plasticity mechanisms that mediate our ability to learn 484 

temporal statistics in variable environments. 485 

First, modeling the participants’ predictions in our statistical learning task provides a 486 

window into the mental processes that support learning (i.e. how participants extract temporal 487 

statistics and make choices in variable environments). Learning studies typically test changes 488 

in overall task performance (i.e. accuracy, learning rate) due to training. In contrast, 489 

characterizing individual decision strategy provides insight into the learning process (i.e. what 490 

information participants learn and how they make choices), extending beyond measures of 491 

overall behavioral improvement due to task training. We demonstrate that individuals adapt 492 



their decision strategy in response to changes in the environment’s statistics (i.e. changes in 493 

the sequence structure). In particular, participants deviate from matching towards 494 

maximization when learning more complex structures (i.e. context-based statistics). Our 495 

results could not be simply explained by task difficulty, as participants reached similar 496 

performance after training when learning frequency or context-based statistics. In contrast, 497 

our results reveal that individuals alter their choices to meet the learning goal in different 498 

contexts (i.e. learning frequency vs. context-based statistics). Although our experimental 499 

design does not allow us to dissociate sequence structure from decision strategy, considering 500 

variability in decision strategy across participants allows us to test the case where sequence 501 

structure remains the same but decision strategy differs across participants. The 502 

complementary case of the same decision strategy for different sequence structures could be 503 

tested by providing the participants with trial-by-trial feedback that has been shown to 504 

encourage maximization irrespective of sequence level9. 505 

Second, previous work has investigated these decision strategies in the context of 506 

reward learning (e.g.
9,11,12

). Here, we test the role of decision strategy in statistical learning; 507 

that is, without explicit feedback or reward. Our results demonstrate that learning predictive 508 

statistics proceeds without explicit trial-by-trial feedback and reveal adaptive decision 509 

strategies that cannot be simply explained by changes in reward processing or training on 510 

explicit cognitive strategies that aim to boost task performance, as we did not provide trial-511 

by-trial feedback nor instructed the participants to adopt a given strategy. Consistent with 512 

previous studies, we show that when making choices in stochastic environments individuals 513 

adopt a decision strategy (matching, maximizing) without having been explicitly instructed to 514 

follow one or the other (e.g.
11

). Further, previous work has shown that training results in 515 

changes in resting functional connectivity in a range of tasks (e.g. for review
19

); for example, 516 

perceptual
48,49

 and motor learning
50,51

. Yet, most of the previous work examining learning-517 



dependent changes in functional connectivity has focused on reward-based rather than 518 

statistical learning (i.e. training without trial-by-trial feedback). Here, we demonstrate that 519 

statistical learning by mere exposure to temporal sequences involves cortico-striatal circuits 520 

that have been previously implicated in probabilistic
13–15

 and reward-based learning
34,52

. We 521 

provide evidence that these circuits support adaptive decision strategies and learning even 522 

when the reward structure is uncertain. 523 

Third, combining modeling of individual behavior with functional brain connectivity 524 

analysis (i.e. DTI-informed analysis of rs-fMRI data), we investigate the brain plasticity 525 

mechanisms that relate to adaptive decision strategies. Using this approach, we extend 526 

beyond previous brain imaging studies that have typically investigated whether changes in 527 

task performance (i.e. accuracy, learning rate) due to training relate to learning-dependent 528 

changes in brain function. Our results demonstrate that changes in individual decision 529 

strategies in response to changes in the environment’s statistics relate to learning-dependent 530 

plasticity in distinct cortico-striatal circuits. That is, decreased connectivity in the motor 531 

circuit that is known to be involved in associative and habitual learning
34–36

 may facilitate 532 

matching for learning the exact frequency statistics rather than reinforcing habitual responses. 533 

In contrast, decreased connectivity in the visual cortico-striatal circuit that has been 534 

implicated in learning predictive associations
16

 may facilitate learning complex context-target 535 

contingencies by selecting the most probable outcome rather than learning the exact 536 

probability distributions. 537 

 Fourth, we provide evidence that plasticity in these cortico-striatal circuits—as 538 

indicated by learning-dependent changes in functional and structural connectivity at rest—539 

predicts individual decision strategy when learning temporal statistics. To identify 540 

multimodal imaging predictors of individual decision strategy, we extracted graph metrics 541 

from each imaging modality (rs-fMRI, DTI) and combined them in a multivariate analysis 542 



method (PLS regression). Our results demonstrate that graph metrics reflecting interactions 543 

within (as indicated by local integration metrics) and between (as indicated by global 544 

integration metrics) cortico-striatal circuits predict 85% of individual variability in decision 545 

strategy. In particular, this analysis reveals distinct brain plasticity mechanisms that predict: 546 

1) changes in the decision strategy from matching to maximization in response to changes in 547 

the environment’s statistics, 2) variability in decision strategy across participants independent 548 

of the sequence statistics. These mechanisms involve both functional and structural 549 

connectivity changes in motor and visual cortico-striatal circuits, in line with our rs-fMRI 550 

connectivity findings, as well as executive and motivational circuits, consistent with the role 551 

of these circuits in flexible rule learning (e.g. for review
52

). 552 

In sum, by interrogating individual decision strategy, we provide insights into 553 

individual variability in statistical learning. Our results provide evidence for distinct brain 554 

plasticity mechanisms that predict adaptive decision strategies to flexibly solve the same 555 

learning problem (i.e. learn temporal statistics). Importantly, brain plasticity in functional and 556 

structural connectivity accounts for variability in individual strategy when learning temporal 557 

statistics. This evidence for a strong link between plasticity in brain connectivity and 558 

behavioral choice demonstrates the brain’s capacity to adapt in variable environments and 559 

solve problems flexibly that could be harnessed to optimize adaptive human behavior. 560 

 561 

Methods 562 

Observers and Study Design 563 

Forty-four healthy volunteers (gender: 15 females, 29 males; age: 23.54 +/-3years) took part 564 

in the experiment; half in the training group and half in the no-training control group. The 565 

sample size was determined based on previous rs-fMRI studies of learning-dependent 566 

plasticity that employed similar data analysis methods
49,50,53

. Data collection and analysis 567 



were not performed blind to the experimental groups. Participants were randomly allocated 568 

into the two experimental groups and recruited by advertising to University students. The 569 

only exclusion criterion during recruitment was MRI safety. Data from one participant per 570 

group were excluded from further analyses due to excessive head movement, resulting in 571 

twenty-one participants in each group. All participants were naive to the study, had normal or 572 

corrected-to-normal vision and signed an informed consent. Experiments were approved by 573 

the University of Birmingham Ethics Committee. 574 

Participants in the training group took part in multiple behavioral training and test 575 

sessions that were conducted on different days. In addition, they participated in two MRI 576 

sessions, one before the first and one after the last training session. During the training 577 

sessions participants were presented with structured sequences of unfamiliar symbols that 578 

were determined by three different Markov order models. To test whether the training was 579 

specific to the trained sequences participants were presented with both structured and random 580 

sequences during the test sessions (see Supplementary Information). 581 

  582 

MRI data analysis 583 

Intrinsic connectivity analysis 584 

Following GICA (see Supplementary Information), we assessed the temporal coherence of 585 

cortical components by calculating intrinsic functional connectivity
54

. That is, intrinsic 586 

connectivity quantifies how correlated the activity across voxels within a network is. 587 

Therefore, we correlated the filtered timecourse of each voxel with every other voxel in the 588 

participant-specific component. We then applied Fisher z-transform to the correlation matrix 589 

and averaged the z-values across voxels; resulting in one component connectivity value for 590 

each participant and run. Lastly, we averaged the intrinsic connectivity values across runs to 591 

derive a single value for each participant and session. 592 



 We then tested whether changes in intrinsic connectivity with training (Post minus 593 

Pre) relate to individual decision strategy. In particular, we performed a semipartial 594 

correlation of intrinsic connectivity change with strategy index for frequency and context-595 

based statistics.. We computed skipped Pearson correlations using the Robust Correlation 596 

Toolbox
55

. This method accounts for potential outliers and determines statistical significance 597 

using bootstrapped confidence intervals (CI) for 1,000 permutations. 598 

 To correct for multiple comparisons, we used False Coverage Rate (FCR)
56

. FCR is 599 

equivalent to the False Discovery Rate (FDR) correction for multiple comparisons when 600 

significance is determined by CI rather than p-values. In particular, for N number of tests we 601 

sorted the p-values for all statistical tests in ascending order (i.e. p(1)≤…≤p(N)). We then 602 

computed the parameter R for significance level at a=0.05: R=max{i: p(i)≤i*a/N}. Finally, 603 

we assessed significance after multiple comparison correction based on the adjusted CI at 1-604 

R*a/N percent
56

. In particular, we found R=1 for the N=7 tests; therefore, FCR-corrected 605 

significance for intrinsic connectivity correlations was determined at 99.3% CI. 606 

Extrinsic connectivity analysis 607 

To investigate changes in cortico-striatal functional connectivity due to training, we 608 

correlated the resting-state timecourse of striatal segments (as determined by the DTI-based 609 

segmentation) with the timecourse of cortical components (as determined by the ICA of the 610 

rs-fMRI signals). We then standardized the correlation coefficients (Fisher z-transform) and 611 

averaged the z-values across runs to derive a single extrinsic connectivity value for each 612 

participant and session. 613 

 We followed the same semipartial correlation method as before (see Intrinsic 614 

connectivity analysis) to test for learning-dependent changes in cortico-striatal functional 615 

connectivity that relate to individual decision strategy. We used the Robust Correlation 616 

Toolbox
55

 to test for correlations between extrinsic connectivity change (Post minus Pre) and 617 



strategy index for frequency and context-based statistics. We tested whether these 618 

correlations were significant after FCR correction. FCR-corrected significance for extrinsic 619 

connectivity correlations was determined at 99.3% CI (R=2 for N=14 tests). 620 

Partial Least Squares regression analysis 621 

To test for significant predictors of decision strategy, we used PLS regression. PLS regression 622 

applies a decomposition on a set of predictors to create orthogonal latent variables that show 623 

the maximum covariance with the response variables
42,57

. In particular, we selected twelve 624 

(12) graph nodes (i.e. AAL areas): a) striatum: bilateral caudate, bilateral putamen; b) RCEN 625 

network: right MFG; c) LCEN network: triangular part of left IFG; d) Lateral Motor network: 626 

bilateral postcentral gyrus; e) Early Visual network: bilateral calcarine sulcus; and f) ACC 627 

network: bilateral ACC. For each selected node, we computed degree as measure of global 628 

integration and clustering coefficient as measure of local integration , respectively
58

. We then 629 

entered the change in degree and clustering (Post minus Pre) of the selected nodes as 630 

predictors in the PLS model and strategy index for learning frequency and context-based 631 

statistics as response variables. Predictors and response variables were standardized (z-632 

scored) before entered in the PLS model. 633 

 To test the significance of the model, we permutated the response variables 10,000 634 

times and performed a PLS regression for each permutation to generate a null distribution 635 

from our data
42

. We then tested whether our sample explains more variance in the response 636 

variables than the 95 percentile of the permutated samples. We computed the significance as a 637 

function of the number of latent variables (i.e. PLS components) to select significant 638 

components for further analysis. 639 

 Next, we assessed the stability of the predictor loadings (i.e. weights) to determine the 640 

significant predictors of the response variables. We generated 1,000 bootstrap samples from 641 

our data by sampling with replacement. We then performed a PLS regression for each 642 



bootstrap sample to generate a distribution per weight. To generate these distributions, we 643 

first corrected the estimated components for axis rotation and reflection across bootstrap 644 

samples using Procrustes rotation
59

. We normalized the weights of the observed sample (i.e. 645 

original data) to the standard deviation of the bootstrapped weights; resulting in z-score-like 646 

weights. We accepted as significant the predictors showing |z|>2.576 (p=0.01)
42

, for each 647 

component independently. 648 

Statistical analysis 649 

The sample size for all statistical tests was n=21 (i.e. number of participants per group) unless 650 

stated otherwise. All statistical tests were two-tailed and tested for normality. Correlational 651 

analyses were also tested for heteroscedasticity within the Robust Correlation Toolbox
55

 and 652 

validated by bootstrapping (1,000 permutations), as nonparametric testing is more appropriate 653 

than standard Pearson correlation (parametric test) under heteroscedasticity conditions55. All 654 

confidence intervals are reported at 95%. 655 

 656 

Data availability: Behavioral and imaging data in raw and pre-processed format are 657 

available upon request from the corresponding author. 658 

Code availability: Custom code used for data analyses is available upon request from the 659 

corresponding author. 660 

  661 
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Figures 828 

Figure 1: Trial and sequence design. (a) Trial design: Stimuli comprised four symbols 829 

chosen from Ndjuká syllabary. A temporal sequence of 8-14 symbols was presented followed 830 

by a cue and the test display. (b) Sequence design: the three Markov models used in the study. 831 

Zero-order model (level-0): each of the four symbols constitutes a different state (A, B, C, D) 832 

that occurred with a different probability . First- (level-1) and second- (level-2) order models: 833 

each state (indicated by circles) is associated with two transitional probabilities; one high 834 

(solid arrow) and one low probability (dashed arrow). Rows in the conditional probability 835 

matrix represent the temporal context, whereas columns the corresponding target. 836 

 837 

Figure 2: Behavioral performance. (a) Normalized performance index for the training 838 

group (n=21) is shown per level and test session (pre-training: grey bars, post-training: black 839 

bars). Error bars indicate standard error of the mean across participants. (b) Boxplots of 840 

strategy index show individual variability for each level (level-0, level-1, level-2). The upper 841 

and lower error bars display the minimum and maximum data values and the central boxes 842 

represent the interquartile range (25th to 75th percentiles). The thick line in the central boxes 843 

represents the median. Open circles denote outliers. The strategy index for frequency 844 

statistics was not significantly different from matching (i.e. zero strategy index; t(20)=-0.23, 845 

p=0.82, CI=[-0.08, 0.07], Cohen’s d=-0.050). Note that the variability across participants 846 

around zero could be due to fact that the task is probabilistic and the participants were not 847 

given trial-by-trial feedback. In contrast, the strategy index for context-based statistics (mean 848 

strategy index for level-1 and level-2) was significantly higher than zero (t(20)=4.01, 849 

p<0.001, CI=[0.08, 0.26], Cohen’s d=0.874). (c) Scatterplot of strategy index for frequency 850 

and context-based statistics. Individual participant data are shown with open circles (n=21). 851 



Points below the diagonal indicate participants that showed higher strategy index for context-852 

based compared to frequency statistics. 853 

 854 

Figure 3: Striatal segments and ICA components. (a) Four striatal segments as estimated 855 

by a DTI connectivity-based and hypothesis-free classification method. Segments are 856 

displayed in neurological convention (left is left) and overlaid on the MNI template (green: 857 

ventral striatum, blue: caudate head and anterior putamen, yellow: caudate body/tail, red: 858 

posterior putamen). (b) The 7 selected ICA components are depicted organized into known 859 

cortical networks. Group spatial maps are thresholded at z=1.96 for visualization 860 

purposes and displayed in neurological convention on the MNI template. The x,y,z 861 

coordinates denote the location of the sagittal, coronal and axial slices, respectively. 862 

 863 

Figure 4: Intrinsic and extrinsic connectivity analysis. Significant skipped Pearson 864 

correlations (two-sided, n=21) of (a) intrinsic connectivity change (post- minus pre-training) 865 

and (b) extrinsic connectivity change with strategy index for frequency and context-based 866 

statistics. Open circles in the correlation plots denote outliers as detected by the Robust 867 

Correlation Toolbox.  868 

 869 

Figure 5: Resting-state fMRI and DTI graphs. Whole brain graphs for (a) resting-state (rs-870 

fMRI) data and (b) DTI data. Graphs were generated based on the AAL parcellation (90 areas 871 

excluding Cerebellum and Vermis) and displayed at 5% density for visualization. The 872 

thickness of the edges is proportional to the average functional and structural connectivity, 873 

respectively. The selected nodes are colored to represent regions within known cortico-striatal 874 

circuits: caudate and putamen (magenta), right MFG and left IFG (red), postcentral gyrus 875 

(cyan), calcarine sulcus (blue), and ACC (yellow). Graphs are displayed in neurological 876 



convention (left is left) in axial and sagittal views. 3D movies illustrating the rs-fMRI and 877 

DTI graphs are included in the Supplementary Information. 878 

 879 

Figure 6: PLS weights for degree and clustering coefficient. Scatterplot of PLS-1 and 880 

PLS-2 weights for change (i.e. post- minus pre-training) in (a) degree and (b) clustering 881 

coefficient. PLS predictor weights for each selected node are indicated by symbols separately 882 

for DTI (circles) and rs-fMRI (squares) data. The color of the symbols corresponds to nodes 883 

(Figure 5) in cortico-striatal circuits: caudate and putamen (magenta), right MFG and left 884 

IFG (red), postcentral gyrus (cyan), calcarine sulcus (blue), and ACC (yellow). PLS predictor 885 

weights with |z|>2.576 (p=0.01) are marked by an asterisk to denote significant predictors for 886 

the respective PLS component. Supplementary Table 4a shows the numerical values of the 887 

PLS weights for each predictor. 888 

 889 

Figure 7: PLS components predicting decision strategy. (a) Scatterplot of PLS-1 and PLS-890 

2 weights (values akin to z-score) for the response variables (i.e. strategy index for frequency 891 

vs. context-based statistics). Supplementary Table 4b shows the numerical values of the 892 

PLS weights for each response variable. PLS-1 separates decision strategies for frequency vs. 893 

context-based statistics (i.e. negative vs. positive weight), capturing changes in decision 894 

strategy across sequence levels. PLS-2 weights equally the strategy for frequency and 895 

context-based statistics, capturing variability in decision strategy across participants 896 

independent of the sequence levels. (b) Pearson correlations (two-sided, n=21) of PLS-1 score 897 

with difference in strategy index for frequency and context-based statistics (r(19)=0.89, 898 

p<0.001, CI=[0.68, 0.96]) and PLS-2 score with mean strategy index (r(19)=0.79, p<0.001, 899 

CI=[0.49, 0.92]). (c) Significant predictors (|z|>2.576, p=0.01) for the first two PLS 900 

components are shown on the DTI graph for illustration purposes only (neurological 901 



convention: left is left). Red nodes indicate the significant predictors for PLS-1 and blue 902 

nodes for PLS-2, irrespective of imaging modality (i.e. rs-fMRI, DTI) or graph metric (i.e. 903 

degree change, clustering coefficient change). 904 
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Supplementary Methods 

Stimuli: Stimuli comprised four symbols chosen from Ndjuká syllabary (Figure 1a) that were 

highly discriminable from each other and were unfamiliar to the participants. Each symbol 

subtended 8.5o of visual angle and was presented in black on a mid-grey background. 

Experiments were controlled using Matlab and the Psychophysics toolbox 31,2. For the 

behavioral training sessions, stimuli were presented on a 21-inch CRT monitor (ViewSonic 

P225f 1280 x 1024 pixel, 85 Hz frame rate) at a distance of 45 cm. For the test sessions, stimuli 

were presented using a projector and a mirror set-up (1280 x 1024 pixel, 60 Hz frame rate) at 

a viewing distance of 67.5 cm. The physical size of the stimuli was adjusted so that the angular 

size was constant during training and test sessions. 

 

Sequence design: We generated probabilistic sequences by using a temporal Markov model 

and varying the memory length (i.e. context length) of the sequence, following our previous 

work3. The model consists of a series of symbols, where the symbol at time i is determined 

probabilistically by the previous ‘k’ symbols. We refer to the symbol presented at time i, s(i), 

as the target and to the preceding k-tuple of symbols (s(i-1), s(i-2), … , s(i-k)) as the context. 

The value of ‘k’ is the order or level of the sequence: 

P (s(i) | s(i-1), s(i-2), … , s(1)) = P (s(i) | s(i-1), s(i-2), … , s(i-k)), k<i 

 In our study, we used three levels of memory length; for k=0,1,2. The simplest k=0th 

order model is a memory-less source. This generates, at each time step i, a symbol according 

to symbol probability P(s), without taking into account the context (i.e. previously generated 

symbols). The order k=1 Markov model generates symbol s(i) at each time i conditional on the 

previously generated symbol s(i-1). This introduces a memory in the sequence; i.e. the 

probability of a particular symbol at time i strongly depends on the preceding symbol s(i-1). 

Unconditional symbol probabilities P(s(i)) for the case k=0 are now replaced with conditional 



ones, P(s(i)|s(i-1)). Similarly, an order k=2 Markov model generates a symbol s(i) at each time 

i conditional on the two previously generated symbols s(i-1), s(i-2): P(s(i)|s(i-1),s(i-2)). 

At each time the symbol that follows a given context is determined probabilistically, 

thus generating stochastic Markov sequences. The underlying Markov model can be 

represented through the associated context-conditional target probabilities (Figure 1b). We 

used 4 symbols that we refer to as items A, B, C and D. The correspondence between items 

and symbols was counterbalanced across participants. Note, that we designed the stochastic 

sources from which the sequences were generated so that the memory-conditional uncertainty 

remains the same across levels. In particular, for the zero-order source, only two symbols are 

likely to occur most of the time; the remaining two symbols have very low probability (0.05); 

this is introduced to ensure that there is no difference in the number of symbols across levels. 

Of the two dominant symbols, one is more probable (probability 0.72) than the other 

(probability 0.18). This structure is preserved in Markov chain of order 1 and 2, where 

conditional on the previous symbols, only two symbols are allowed to follow, one with higher 

probability (0.80) than the other (0.20). This ensures that the structure of the generated 

sequences across levels differs mainly in the memory length (i.e. context length) rather than 

the context-conditional probabilities. 

In particular, for level-0 (zero-order), the Markov model was based on the probability 

of symbol occurrence: one symbol had a high probability of occurrence, one low probability, 

while the remaining two symbols appeared rarely (Figure 1b). For example, the probabilities 

of occurrence for the four symbols A, B, C and D were 0.18, 0.72, 0.05 and 0.05, respectively. 

Presentation of a given symbol was independent of the items that preceded it. For level-1 (first-

order) and level-2 (second-order), the target depended on one or two immediately preceding 

items, respectively (Figure 1b). Given a context, only one of two targets could follow; one had 

a high probability of being presented and the other a low probability (e.g., 80% vs. 20%). For 



example, when Symbol A was presented, only symbols B or C were allowed to follow, and B 

had a higher probability of occurrence than C. 

 Note, that we designed the stochastic sources from which the sequences were generated 

so that the memory-conditional uncertainty remains the same across levels. In particular, for 

the zero-order source (level-0), only two symbols are likely to occur most of the time; the 

remaining two symbols have very low probability (0.05); this is introduced to ensure that there 

is no difference in the number of symbols across levels. Of the two dominant symbols, one is 

more probable (probability 0.72) than the other (probability 0.18). This structure is preserved 

in Markov chain of order 1 (level-1) and 2 (level-2), where conditional on the previous 

symbols, only two symbols are allowed to follow, one with higher probability (0.80) than the 

other (0.20). This ensures that the structure of the generated sequences across levels differs 

mainly in the memory length (i.e. context length) rather than the context-conditional 

probabilities. 

 

Procedure: Participants were initially familiarized with the task through a brief practice session 

(8 minutes) with random sequences (i.e. all four symbols were presented with equal probability 

25% in a random order). Following this, participants took part in multiple behavioral training 

and test sessions that were conducted on different days. In addition, they participated in two 

brain imaging sessions, one before the first training session and one after the last training 

session. Participants were trained with structured sequences and tested with both structured 

and random sequences to ensure that training was specific to the trained sequences. 

 In the first test session (pre-training), participants were presented with level-0, level-1 

and level-2 sequences and random sequences. Participants were then trained with level-0 

sequences, and subsequently with level-1 and level-2 sequences. Training on level-0 sequences 

involves learning frequency statistics (i.e. participants are required to learn the occurrence 



probability of each symbol), whereas training on level-1 and level-2 sequences involves 

learning context-based statistics (i.e. participants are required to learn the probability of a given 

symbol appearing depends on the preceding symbol(s)). For each level, participants completed 

a minimum of 3 and a maximum of 5 training sessions (840-1400 trials). Each training session 

comprised five blocks of structured sequences (56 trials per block) and lasted one hour. 

Training at each level ended when participants reached plateau performance (i.e. performance 

did not change significantly for two sessions). Participants were given feedback (i.e. score in 

the form of Performance Index) at the end of each block, rather than per-trial error feedback, 

which motivated them to continue with training. A post-training test session followed training 

per level (i.e. on the following day after completion of training) during which participants were 

presented with structured sequences determined by the statistics of the trained level and random 

sequences (90 trials each). In contrast to the training sessions, no feedback was given during 

test. The mean time interval (±standard deviation) between the pre-training and the post-

training test sessions was 23.3 (±2.5) days. 

For each trial, a sequence of 8-14 symbols appeared in the center of the screen, one at 

a time in a continuous stream (Figure 1a). This variable trial length ensured that participants 

maintained attention during the whole trial. The end of each trial was indicated by a red dot 

cue. Following this, all four symbols were shown in a 2x2 grid. The positions of test stimuli 

were randomized from trial to trial. Participants were asked to indicate which symbol they 

expected to appear following the preceding sequence by pressing a key corresponding to the 

location of the predicted symbol. 

 

Psychophysical training: To ensure that sequences in each block were representative of the 

Markov model order per level, we generated 10,000 Markov sequences per level comprising 



672 items per sequence. To quantify how close the generated sequence was to the ideal Markov 

model, we estimated the Kullback-Leibler divergence (KL divergence) as follows: 

𝐾𝐿 = ∑ 𝑄(𝑡𝑎𝑟𝑔𝑒𝑡)

𝑡𝑎𝑟𝑔𝑒𝑡

log (
𝑄(𝑡𝑎𝑟𝑔𝑒𝑡)

𝑃(𝑡𝑎𝑟𝑔𝑒𝑡)
) ⁡ 

for the level-0 model, and 

𝐾𝐿 = ∑ 𝑄(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

𝑐𝑜𝑛𝑡𝑒𝑥𝑡

∑ 𝑄(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)⁡𝑙𝑜𝑔⁡(
𝑄(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

𝑃(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)
)

𝑡𝑎𝑟𝑔𝑒𝑡

 

for the level-1 and level-2 models, where P( ) refers to probabilities or conditional probabilities 

derived from the presented sequence and Q( ) refers to those specified by the ideal Markov 

model. KL divergence is a standard measure of distance between distributions and values close 

to 0 indicate small differences between the distributions. We selected fifty sequences with the 

lowest KL divergence (i.e. these sequences matched closely the Markov model per level). The 

sequences presented to the participants during the experiments were selected randomly from 

this sequence set. 

 For each trial, a sequence of 8-14 symbols appeared in the center of the screen, one at 

a time in a continuous stream, each for 300ms followed by a central white fixation dot (ISI) for 

500ms (Figure 1a). This variable trial length ensured that participants maintained attention 

during the whole trial. Each block comprised equal number of trials with the same number of 

items. The end of each trial was indicated by a red dot cue that was presented for 500ms. 

Following this, all four symbols were shown in a 2x2 grid. The positions of test stimuli were 

randomized from trial to trial. Participants were asked to indicate which symbol they expected 

to appear following the preceding sequence by pressing a key corresponding to the location of 

the predicted symbol. Participants learned a stimulus-key mapping during the familiarization 

phase: key ‘8’, ‘9’, ‘5’ and ‘6’ in the number pad corresponded to the four positions of the test 

stimuli —upper left, upper right, lower left and lower right, respectively. After the participant’s 

response, a white circle appeared on the selected item for 300ms to indicate the participant’s 



choice, followed by a fixation dot for 150ms (ITI) before the start of the next trial. If no 

response was made within 2s, a null response was recorded and the next trial started. 

 

Test sessions: The pre-training test session (Pre) included nine runs (i.e. three runs per level), 

the order of which was randomized across participants. Test sessions after training per level 

included nine runs of structured sequences determined by the same statistics as the 

corresponding trained level and random sequences. Each run comprised five blocks of 

structured and five blocks of random sequences presented in a random counterbalanced order 

(2 trials per block; a total of 10 structured and 10 random trials per run), with an additional two 

16s fixation blocks, one at the beginning and one at the end of each run. Each trial comprised 

a sequence of 10 stimuli which were presented for 250ms each, separated by a blank interval 

during which a white fixation dot was presented for 250ms. Following the sequence, a response 

cue (central red dot) appeared on the screen for 4s before the test display (comprising four test 

stimuli) appeared for 1.5s. Participants were asked to indicate which symbol they expected to 

appear following the preceding sequence by pressing a key corresponding to the location of the 

predicted symbol. A white fixation was then presented for 5.5s before the start of the next trial. 

 

Performance index: We assessed participant responses in a probabilistic manner. We computed 

a performance index per context that quantifies the minimum overlap (min: minimum) between 

the distribution of participant responses and the distribution of presented targets estimated 

across 56 trials per block by: 

PI(context) = ∑ min (Presp(st|contextt), Ppres(st|contextt)) 

where t is the trial index and the target s is from the symbol set A, B, C and D. 

 The overall performance index is then computed as the average of the performance 

indices across contexts, PI(context), weighted by the corresponding context probabilities: 



PI = ∑ PI(context) · P(context). 

 To compare across different levels, we defined a normalized PI measure that quantifies 

relative participant performance above random guessing. We computed a random guess 

baseline; i.e. performance index PIrand that reflects participant responses to targets with a) equal 

probability of 25% for each target per trial for level-0 (PIrand = 0.53); b) equal probability for 

each target for a given context for level-1 (PIrand = 0.45) and level-2 (PIrand = 0.44). To correct 

for differences in random-guess baselines across levels, we subtracted the random guess 

baseline from the performance index (PInormalized = PI − PIrand). 

 

Strategy choice and strategy index: To quantify each participant’s strategy, we compared 

individual participant response distributions (response-based model) to two baseline models: 

(i) a probability matching model, where probabilistic distributions of possible outcomes are 

derived from the Markov models that generated the presented sequences (Model-matching), 

and (ii) a probability maximization model, where only the most likely outcome is allowed for 

each context (Model-maximization). We used KL divergence to quantify how close the 

response distribution is to matching and maximization distributions. KL divergence close to 0 

indicates small difference between the distributions. KL is defined as follows: 

𝐾𝐿 = ∑ 𝑀(𝑡𝑎𝑟𝑔𝑒𝑡)⁡𝑙𝑜𝑔(
𝑀(𝑡𝑎𝑟𝑔𝑒𝑡)

𝑅(𝑡𝑎𝑟𝑔𝑒𝑡)
)

𝑡𝑎𝑟𝑔𝑒𝑡

 

for the level-0 model, and 

𝐾𝐿 = ∑ 𝑀(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

𝑐𝑜𝑛𝑡𝑒𝑥𝑡

∑ 𝑀(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)⁡𝑙𝑜𝑔⁡(
𝑀(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

𝑅(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)
)

𝑡𝑎𝑟𝑔𝑒𝑡

 

for the level-1 and level-2 models, where R( ) and M( ) denote the probability distribution or 

conditional probability distribution derived from the human responses and the models (i.e. 

probability matching or maximization) respectively, across all the conditions. 



 We quantified the difference between the KL divergence from the response-based 

model to Model-matching and the KL divergence from the response-based model to Model-

maximization. We refer to this quantity as strategy choice indicated by ∆KL(Model-

maximization, Model-matching) and it reflects the participant’s preference towards matching 

or maximization. We then derived an individual strategy index by calculating the integral of 

each participant’s strategy curve across trials and subtracting it from the integral of the exact 

matching curve across trials, as defined by Model-matching. We defined the integral curve 

difference (ICD) between individual strategy and exact matching as the individual strategy 

index. That is, strategy index close to zero indicates a strategy closer to matching, while higher 

positive values indicate deviation from matching towards maximization. 

 Supplementary Figure 1 illustrates how the response probability distributions may 

yield negative or positive strategy index values. For example, for level-1, Table A shows the 

context-target probability distribution that defines the matching model; a participant response 

distribution matching this model would indicate exact matching strategy. Table B represents 

the exact maximization model; that is, a participant whose response distribution follows this 

model chooses consistently the most probable outcome. Table C represents a random response 

model; that is, the participant chooses all context-target contingencies with equal probability. 

Participants may demonstrate this random distribution of responses at the beginning of learning 

before they have extracted the structure of the sequence or the exact context-target 

contingencies. Following training, participants may show response distributions closer to 

matching or deviating from matching towards maximization. Underestimating the probability 

of the most probable context-target contingency (e.g. Table D) will result in response 

distributions between the matching and the random model and yield a negative strategy index. 

In contrast, overestimating the probability of the most probable context-target contingency (e.g. 



Table E) will result in response distributions between the matching and maximization models 

and yield a positive strategy index. 

 Further, response distributions during training (i.e. strategy choice per block: 

∆KL(Model-maximization, Model-matching)) from three representative participants are 

shown in comparison to these models (matching, maximization, random) (Supplementary 

Figure 1c). Note that the strategy index is computed as the integral between the values of 

participant strategy choice and the matching model across blocks. As a result, calculating the 

strategy index for a participant that starts with a strategy closer to random and then deviates 

closer to the matching model may result in a negative (e.g. participant A) or a positive value 

(e.g. participant B). For example, data from a participant A that underestimates the probability 

of the most probable context-target contingency during most of the training blocks yield a 

negative strategy index. However, data from a participant B that overestimates the probability 

of the most probable context-target contingency in some of the training blocks yield a positive 

strategy index, as the integral becomes positive when the participant strategy crosses the 

matching model curve. In contrast, strategy choice data for a participant C that deviates from 

matching towards maximization yields a higher positive strategy index. 

 Further, we provide a mathematical description of strategy index variability. In 

particular, we generated synthetic response data from a virtual participant and present a two-

parameter model characterizing the participant response distribution. Response distribution 

(denoted as P) is described as the mixture of two components, P1 and P2. To control the 

contribution of these two components, we define a parameter β as the weight of the two 

components (0≤β≤1): P = β P1 + (1-β) P2. The first component is the random model (i.e. equal 

probabilities for all context-target contingencies). Participants may follow this random model 

of responses at the beginning of training before they have learned the sequence structure and 

relative probabilities. The second component reflects the probability distribution of the items 



in the sequence presented to the participant, e.g. P2 = [0.2, 0.8, 0, 0]. This specification assumes 

that (1) only two items have non-zero probability; (2) the high probable target is four times 

more frequent than the less probable target. To capture how the participants learn these 

contingencies, we parameterized this distribution as follows: P2 = [1-α, α, 0, 0], where 0≤ α≤1. 

In particular, for (i) α = 1, the participant predicts always the most probable target (i.e. 

maximization); (ii) α = 0.8, the participant responses match the target distribution (i.e. 

matching); (iii) α = 0.5, the participant predicts equally the two possible (non-zero probability) 

targets; (iv) α < 0.5, the participant predicts the less probable target more frequently than the 

more probable target. In sum, we formulate our synthetic response model as follows: P = β 

[0.25, 0.25, 0.25, 0.25] + (1-β) [1-α, α, 0, 0].  

 To illustrate how the strategy index varies with parameters α and β, we computed the 

strategy index for all possible combinations of α and β values, where α and β vary between 0 

and 1. This generated a strategy index surface as a function of α and β (Supplementary Figure 

2). In particular, for β = 1 the strategy index is invariant to the parameter α and reflects equal 

responses for all targets (i.e. random model); yielding a strategy index value of -0.26. For β = 

0, the model is reduced to P = [1-α, α, 0, 0] and is fully described by the P2 component (see 

above). Therefore, (i) for α = 1 the model describes a maximization response (i.e. strategy index 

= 0.63), (ii) for α = 0.8 it describes a matching response (i.e. strategy index = 0), (iii) for α = 

0.5 it describes a random response between the two possible targets (i.e. strategy index = -0.26) 

and (iv) for α < 0.5 it describes predictions of the less probable target more frequently than the 

more probable target (i.e. strategy index < -0.26). Further, for 0.5<α<0.8 the participant would 

underestimate the probability of the most probable target and yield a strategy index between -

0.26 and 0; whereas for 0.8<α<1 the participant would overestimate the probability of the most 

probable target and yield a strategy index between 0 and 0.63. Note that the strategy index 

increases monotonically with α for a fixed β. 



 Supplementary Figure 2 presents data from three representative participants based on 

this two-parameter model. In particular, we present the evolution of their strategy index across 

training blocks as a walk on the model surface. That is, we fitted the two-parameter model on 

the participants’ response data per block and estimated the parameters α and β per participant 

and block. We then computed the participant strategy index as the difference between the 

participant strategy choice and the matching model. In particular, we observed that all 

participants started close to the random model (β≈1) and then deviated towards higher α and 

lower β values. However, the trajectory and end point of the individual participants varied and 

therefore yielded different strategy index values. That is, participant A showed 0.5<α<0.8 

throughout most of the training blocks (i.e. underestimated the highly probable targets) while 

α≈0.8 (i.e. close to matching) at the end of the training, yielding a negative strategy index. In 

contrast, participant B showed α≈0.8 consistently across blocks and therefore yielded a strategy 

index close to 0 (i.e. matching). Finally, participant C overestimated the highly probable targets 

(i.e. 0.8<α<1) and yielded a higher positive strategy index (i.e. closer to maximization). 

 

MRI data acquisition: Scanning was conducted using a 3T Philips Achieva MRI scanner with 

a 32-channel head coil. T1-weighted anatomical data (175 slices; 1×1×1 mm3 resolution) were 

collected during the first scanning session. Resting-state echo-planar imaging (EPI) data 

(gradient echo-pulse sequences) were acquired in both scanning sessions (whole brain 

coverage; 180 volumes; TR=2s; TE=35ms; 32 slices; 2.5x2.5x4 mm3 resolution; SENSE). The 

benefit of non-isotropic resolution is acquisition speed; that is, faster acquisition of fewer slices 

at higher in-plane resolution (keeping voxel volume constant and signal-to-noise ratio similar). 

This is advantageous for resting-state fMRI (rs-fMRI) that requires relatively high temporal 

resolution. We employed standard pipelines (i.e. SPM) that have been extensively used to 

model fMRI data at non-isotropic resolution. We employed a well-established volumetric 



analysis (i.e. Group Independent Component Analysis-GICA) to investigate functional 

connectivity at rest that has been developed and validated on non-isotropic data4–8. Finally, a 

recent study9 has shown highly similar ICA results between isotropic and anisotropic datasets. 

 We collected rs-fMRI from three runs that each lasted for 6 minutes. Participants were 

instructed to keep their eyes open and maintain fixation to a white dot presented at the center 

of the screen. Diffusion Tensor Imaging (DTI) data were also collected in both scanning 

sessions and the acquisition consisted of 60 isotropically-distributed diffusion weighted 

directions (b=1500 smm-2; TR=9.5s; TE=78ms; 75 slices; 2x2x2 mm3 resolution; SENSE) plus 

a single volume without diffusion weighting (b=0 smm-2, denoted as b0). The DTI sequence 

was repeated twice during each session, once following the Anterior-to-Posterior phase-

encoding direction and once the Posterior-to-Anterior direction. This acquisition scheme was 

implemented to allow correction of susceptibility-induced geometric distortions10. 

 

DTI connectivity-based segmentation of striatum: Previous work across species11,12 has shown 

that dissociable cortical projections from anatomically-defined striatal subdivisions mediate 

distinct brain functions. To investigate learning-dependent changes in these cortico-striatal 

connections, we defined the striatum (i.e. caudate and putamen) anatomically from the 

Automated Anatomical Labeling (AAL) atlas13. We then conducted a DTI connectivity-based 

segmentation to segment the striatum into finer subdivisions (i.e. segments) based on their 

whole-brain connectivity profile14. 

 We pre-processed and analyzed the DTI data in FSL 5.0.8 (FMRIB Software Library, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). We first corrected the data for susceptibility distortions, 

eddy currents and motion artifacts (FSL topup and FSL eddy)15 and rotated the gradient 

directions (bvecs) to correct for the estimated motion rotation16,17. We generated a distribution 

model in each voxel using FSL BedpostX18 with default parameters. 



 To simulate tracts from a seed defined in MNI space, we computed the transformation 

matrix from MNI to native space per participant (FSL flirt). We followed a 4-step registration 

procedure: (a) aligned the non-weighted diffusion volume (b0) of each session to their 

midspace and create a midspace-template (rigid-body)19,20, (b) aligned the midspace-template 

to the anatomical (T1) scan (affine), (c) aligned the T1 image to the MNI template (affine) and 

(d) inverted and combined all the transformation matrices of the previous steps to obtain the 

MNI-to-native registration. The results of each step were visually inspected to ensure that the 

alignment was successful. 

 We then simulated tracts (i.e. probabilistic streamlines) starting from the seed area (i.e. 

striatum) to the rest of the brain (i.e. target area) using the ProbtrackX algorithm21. Following 

a hypothesis-free classification method22, we down-sampled the target area (AAL atlas 

excluding the seed: bilateral caudate and putamen) to 4x4x4 mm3 resolution. As the seed areas 

were in MNI space, we provided the MNI-to-native transformation matrix and used the 

omatrix2 option to create a seed-by-target connectivity matrix (the ProbtrackX algorithm 

transforms the seed from MNI to native space and performs the probabilistic tractography 

simulation in native space; the results are then transformed back into MNI space). We used a 

mid-sagittal exclusion mask to prevent tracts from crossing hemispheres21 and length 

correction to account for the distance-from-the-seed bias towards shorter connections22. The 

parameters we used in ProbtrackX are: 5000 samples per voxel, 2000 steps per sample until 

conversion, 0.5mm step length, 0.2 curvature threshold, 0.01 volume fraction threshold and 

loopcheck enabled to prevent tracts from forming loops. We repeated this procedure for each 

hemisphere (Supplementary Figure 3). 

 This analysis generated a connectivity matrix from each voxel in the seed area to every 

voxel in the target area. Defining the seed in the MNI space guaranteed the same number of 

voxels in the seed across participants (after the data were transformed back from native to MNI 



space), alleviating differences in individual brain size. Subsequently, we concatenated the 

connectivity matrices across participants and groups and correlated the connectivity values 

from and to each voxel in the seed; generating a seed-by-seed correlation matrix. We then 

performed k-means clustering on the correlation matrix for 2 to 8 classes (squared Euclidean 

distance). Lastly, we converted each class to a binary mask in MNI space to create the striatal 

segments and down-sampled them to the resting-state resolution (3x3x4 mm3) for further 

analysis. 

 To find the optimal number of clusters, we computed the mean silhouette value per 

clustering by averaging the values across voxels23. The silhouette value shows how similar 

each voxel is to voxels of its class compared to voxels of other classes. Therefore, we selected 

the highest number of clusters that shows the maximum mean silhouette value averaged for the 

two hemispheres. This method resulted in 4 striatal segments per hemisphere (average 

silhouette value of 0.4) that corresponded to known anatomical subdivisions of the striatum 

(Figure 3a, Supplementary Table 1). 

 

Resting-state data pre-processing: We pre-processed the resting-state data in SPM12.2 

software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) following the optimized 

pipeline described in recent work5. We first processed the T1-weighted anatomical images by 

applying brain extraction and segmentation (SPM segment). From the segmented T1 we 

created a white matter (WM) mask and a cerebrospinal fluid (CSF) mask. For each resting-

state run, we corrected the EPI data for slice scan timing (i.e. to remove time shifts in slice 

acquisition, SPM slice timing) and motion (least squares correction, SPM realign). We co-

registered all EPI runs to the first run per participant (rigid body) and subsequently to the T1 

image (rigid body, resliced to 1 x 1 x 1 mm3) and calculated the mean CSF and WM signal per 

volume (SPM coregister & reslice). We then aligned the T1 image to the MNI space (affine) 



and applied the same transformation to the EPI data (SPM normalise). We resliced the aligned 

EPI data to 3 x 3 x 4 mm3 resolution and applied spatial smoothing with a 5mm isotropic 

FWHM Gaussian kernel (SPM smooth). Finally, we despiked any secondary motion artifacts 

using the Brain Wavelet Toolbox24, regressed out the signal from CSF and the motion 

parameters (translation, rotation and their squares and derivatives25) and applied linear 

detrending26. Note that the pipeline we followed5 does not include the global signal as a 

nuisance regressor, consistent with a recent review27 suggesting that global signal regression 

may not be appropriate for comparisons between sessions and groups. 

 

Independent Component Analysis (ICA): We used spatial GICA6,28 to extract participant- and 

session-specific hemodynamic source locations using the Group ICA fMRI Toolbox (GIFT) 

(http://mialab.mrn.org/software/gift/). Pre-processed EPI data from both groups (i.e. training, 

no-training control) from both sessions (i.e. Pre, Post) were included in the GICA. Following 

pre-processing of each run, the mean value per voxel was removed and dimensionality 

reduction was performed. We used the Minimum Description Length criteria (MDL)29 to 

estimate the dimensionality and determine the number of independent components. We used a 

two-level dimensionality reduction procedure using Principal Component Analysis (PCA); 

first at the participant level and then at the group level. The ICA estimation (Infomax 

algorithm) was run 20 times and the component stability was estimated using ICASSO30. 

 This procedure resulted in 22 spatially independent components. We then generated 

participant-specific spatial maps for each component using GICA3 back reconstruction4. 

Lastly, participant and group spatial maps were scaled to z maps for further analysis31. We then 

used a quantitative method, as described in previous work32, to remove components of non-

neuronal origin. We first thresholded the group spatial maps at z=1.0 and calculated the spatial 

correlation of each component with CSF and grey matter (GM) probabilistic maps (as extracted 



from the MNI template). We rejected any component with a spatial correlation of R2 > 0.025 

with CSF or of R2 < 0.025 with GM. To supplement this method, we visually inspected all 

rejected components to verify that they were not of neuronal origin. This method resulted in 5 

rejected components: 2 components had high spatial correlations with CSF and 3 components 

had low spatial correlations with GM. 

 We correlated the thresholded maps of the remaining components with known network 

templates and labeled each component based on its highest correlation value to these 

templates7,33. We selected 7 components (Figure 3b, Supplementary Table 2) that showed 

high correlation with templates of cortical regions involved in executive, motor, visual and 

motivational networks11,12. 

 To extract the resting-state timecourse for each cortical ICA-based component and 

DTI-based striatal segment, we used an autoregressive AR(1) model (SPM first-level analysis) 

on the pre-processed data before ICA to treat for serial correlations34. Following the whole-

brain modeling, we extracted the timecourse per voxel per component (SPM VOI extraction), 

as defined by participant-specific spatial maps thresholded at z=2.576 (p=0.01). We then 

applied a 5th order Butterworth band-pass filter, between 0.01 and 0.08 Hz to remove effects 

of scanner noise and physiological signals (respiration, heart beat)35. In addition, we extracted 

the first eigenvariate across all voxels in each component to derive a single timecourse per 

component for subsequent connectivity analysis. 

 

Graph analysis: To construct a functional connectivity matrix for each participant, we followed 

the same processing steps as for the extrinsic connectivity analysis. We extracted the first 

eigenvariate across all voxels in each AAL region (90 areas; excluding Cerebellum and 

Vermis) and constructed a 90x90 correlation matrix by correlating the timecourse of each AAL 

region with every other AAL region. We then standardized the correlation coefficients using 



Fisher z-transform and averaged the z-values across the three rs-fMRI runs to derive a single 

functional connectivity matrix for each participant and session. 

To construct a structural connectivity matrix for each participant, we simulated tracts 

(i.e. probabilistic streamlines) from each AAL area (i.e. seed mask) to any other AAL area (i.e. 

termination masks; excluding Cerebellum and Vermis) in native space using the Probabilistic 

Tracking algorithm (FSL ProbtrackX)21. The parameters we used in ProbtrackX are: 5000 

samples per voxel, 2000 steps per sample until conversion, 0.5mm step length, 0.2 curvature 

threshold, 0.01 volume fraction threshold and loopcheck enabled to prevent tracts from forming 

loops. To control for differences in volume across seeds and participants, we normalized the 

tract count (i.e. the number of streamlines reaching area j when seeded from areas i) by the 

total number of tracts started from the seed region36. Finally, we averaged the normalized tract 

count from area i to area j and from area j to area i to create a symmetric structural connectivity 

matrix for each participant and session. 

We then constructed participant-specific binary graphs based on the connectivity 

matrices for each modality (i.e. rs-fMRI, DTI). We first generated the Minimum Spanning 

Tree37 per matrix to create a connected graph for each participant and session. We then 

iteratively added the strongest edges irrespective of the sign (i.e. using the absolute functional 

connectivity value), until we reached a certain density level. Previous work in a similar-sized 

parcellation38 has shown that density lower than 15% may result in sparse graphs and higher 

than 25% in graphs without small-world topology. Thus, we generated graphs at 20% density 

and then evaluated the stability of our findings in a range of density levels: from 10 to 30% in 

increments of 5. We used the Brain Connectivity Toolbox39 to calculate graph metrics per 

participant and modality. 

We note that the DTI and rs-fMRI metrics used in our graph analysis were derived by 

data pre-processed at native vs. standard space. In particular, DTI tractography is typically 



performed in the native space to achieve best performance of the tracking algorithms21, whereas 

rs-fMRI data are typically normalized to a standard space (e.g. MNI) before computing 

functional connectivity5. Following previous studies, we analyzed the DTI data in native space, 

while the rs-fMRI data in standard space (i.e. data were normalized to MNI), as these data 

needed to be in a common space for group analysis across participants. While some recent 

studies recommend performing the rs-fMRI analysis in native space to minimize the effect of 

interpolation and improve localization40,41, others have found no difference with and without 

the inclusion of the normalization step42. Further, our analysis approach makes it unlikely that 

these differences in interpolation between data types (i.e. rs-fMRI, DTI) have a significant 

effect on our results. First, we selected brain regions for both the rs-fMRI and DTI graph 

analysis based on the AAL parcellation, resulting in larger size brain regions. This makes it 

unlikely that small differences in the interpolation step would significantly affect the 

connectivity values estimated across all voxels in each brain region. Second, for the rs-fMRI 

data we computed the first eigenvariate when we extracted the timecourse per brain region and 

computed functional connectivity from these values. This step extracts the most representative 

timecourse from all the voxels in each brain region based on their common variance; therefore, 

it minimizes the effects of noise and interpolation43. Third, for each imaging modality (i.e. rs-

fMRI, DTI) we generated binary graphs and compared the connectivity values to select the 

strongest connections within-modality rather than comparing connectivity across modalities. 

That is, we created binary graphs at 20% density level by selecting the edges with the top 20% 

connectivity values, for each modality and session. We computed degree and clustering 

coefficient from these graphs per modality and used these metrics in the PLS regression to 

combine data from both modalities. 

 



Partial Least Squares (PLS) modeling: control analyses: Results in the main text are presented 

for a network density of 20%. Here we show the robustness of these results in a range of 

densities (10%-30%) typically used in brain network analyses38. We calculated degree and 

clustering for 10% to 30% density in increments of 5% per session (Pre, Post). We computed 

the difference between the two curves (Post minus Pre) for each metric (degree, clustering 

coefficient)44 and performed the same PLS regression analysis as before. We tested for model 

significance using permutation testing (10,000 permutations) and then correlated the estimated 

PLS components and bootstrapped weights (1,000 samples) with the components and weights 

estimated for 20% density as shown in the main text. We found that the first PLS component 

across densities was significant compared to the null (p=0.05) and showed a high correlation 

with the PLS-1 component for 20% density (r(19)=0.94, p<0.001, CI=[0.85, 0.98]). Further, 

the predictor weights across densities showed a high correlation with the weights for 20% 

density (r(46)=0.84, p<0.001, CI=[0.67, 0.93]). PLS-2 across densities was not significant in 

comparison to the null model; however, it showed a high correlation with the PLS-2 component 

and its weights for 20% density (component: r(19)=0.89, p<0.001, CI=[0.75, 0.95]; weights: 

r(46)=0.89, p<0.001, CI=[0.83, 0.94]). Similarly, PLS-3 across densities was not significant 

compared to the null and showed weaker correlations with the PLS-3 component for 20% 

density (component: r(19)=0.77, p<0.001, CI=[0.63, 0.88]; weights: r(46)=0.48, p<0.001, 

CI=[0.11, 0.71]). We therefore restricted the main analysis to the first two components. 

Supplementary Figure 6 summarizes the weights (combinations of nodes and metrics) for 

PLS-1 and PLS-2 for the average metrics (10% to 30% density). 

 Further, to test whether our findings generalize to other parcellation schemes than the 

AAL atlas, we created graphs at 20% density using the Shen45 and Brainnetome46 atlases that 

provide a finer whole brain parcellation. We selected nodes that corresponded to the same 

anatomical areas as the selected AAL nodes and performed a similar PLS regression analysis. 



We found that both atlases yielded significant results (Shen: first three components; 

Brainnetome: first four components). Moreover, we found that the first two components for 

these atlases were highly similar to our results when using the AAL atlas (Shen: PLS-1: 

r(19)=0.75, p<0.001, CI=[0.42, 0.92], PLS-2: r(19)=0.83, p<0.001, CI=[0.53, 0.93]; 

Brainnetome: PLS-1: r(19)=0.73, p<0.001, CI=[0.44, 0.89], PLS-2: r(19)=0.87, p<0.001, 

CI=[0.68, 0.94]). Note that the Brainnetome atlas provides a parcellation of the striatum (i.e. 

ventral caudate, dorsal caudate, dorsolateral putamen and ventromedial putamen) that is 

comparable to our DTI-based segmentation (Figure 3a). Further, the significant predictors for 

PLS-1 were: a) degree change in right ventral caudate (rs-fMRI), left dorsal caudate (rs-fMRI), 

left ACC (DTI) and left postcentral (rs-fMRI); b) clustering change in right ventral caudate 

(DTI) and left postcentral (rs-fMRI); whereas for PLS-2 were: a) degree change in right MFG 

(DTI) and left postcentral (DTI); b) clustering change in left ACC (DTI), right dorsolateral 

putamen (rs-fMRI) and right ACC (rs-fMRI). Taken together, these findings suggest that our 

graph analysis is robust across parcellation schemes that segment the striatum at different 

scales, making it unlikely that our results were confounded by the selected parcellation atlas. 

 Finally, we tested whether our findings generalize to other graph metrics that relate to 

global and local integration. In particular, we tested: a) the average shortest path length (i.e. 

average number of a node’s transitions via graph edges to any other node in the network) and 

betweenness centrality (i.e. number of shortest paths that traverse through a certain node) as 

measures of global integration47,48, b) the local efficiency (i.e. how efficiently a node’s 

neighbors communicate if this node is removed) as measure of local integration49. These 

measures have been previously shown to relate to learning and brain plasticity50–52.We 

conducted similar PLS regression analyses as for our main model (i.e. Model-1: degree and 

clustering coefficient) for the following models based on combinations between global and 

local integration metrics: a) Model-2: average shortest path length and clustering coefficient, 



b) Model-3: average shortest path length and local efficiency, c) Model-4: degree and local 

efficiency, d) Model-5: betweenness centrality and clustering coefficient, e) Model-6: 

betweenness centrality and local efficiency. All models showed significant results when tested 

for 10,000 permutations (Model-2: first component, p=0.010; Model-3: first two components, 

p=0.044; Model-4: first three components, p=0.012; Model-5: first three components, p=0.026; 

Model-6: first component, p=0.022). Further, the first two components for these models were 

highly correlated to the components of the main model (Model-1) including degree and 

clustering coefficient (Supplementary Table 5). Thus, our findings showing that learning-

dependent plasticity in cortico-striatal networks predicts individual behavior (i.e. decision 

strategy) are not limited only to selected measures of global or local integration. 

Further, including all the above graph metrics in the same PLS model (Model-7: degree, 

average shortest path length, betweenness centrality, clustering coefficient and local 

efficiency), the model was significant for the first three PLS components compared to a null 

model (p=0.045, 10,000 permutations). In addition, the first two components for this model 

were highly correlated to the components of Model-1 (Supplementary Table 5), generalizing 

our results to a larger number of metrics that characterize whole-brain network connectivity. 

 

No-training control experiment: Scanning for the no-training control experiment was 

conducted using a 3T MRI scanner with a 32-channel head coil. T1-weighted anatomical data 

(175 slices; 1×1×1 mm3 resolution) were collected during the first scanning session. Resting-

state EPI data (gradient echo-pulse sequences) were acquired in both scanning sessions with 

the same sequence as the one used in the training experiment (whole brain coverage; 180 

volumes; TR=2s; TE=30ms; 36 slices; 2.5x2.5x4 mm3 resolution; GRAPPA). We collected rs-

fMRI from three runs that each lasted for 6 minutes. DTI data were also collected in both 

scanning sessions and the acquisition parameters were matched as closely as possible to the 



training group: 60 isotropically-distributed diffusion weighted directions (b=1500 smm-2; 

TR=8.9s; TE=91ms; 72 slices; 2x2x2 mm3 resolution; GRAPPA) plus a single volume without 

diffusion weighting (b=0 smm-2). The DTI sequence was repeated twice during each session, 

once following the Anterior-to-Posterior phase-encoding direction and once the Posterior-to-

Anterior direction. 

 To ensure that the data quality was similar between the two groups (training vs. no-

training control) that were tested using highly similar sequences and scanning parameters, we 

tested for differences related to a) head movement and b) spikes for the rs-fMRI data, and a) 

head movement and b) diffusion tensor model fit for the DTI data. For the rs-fMRI data, we 

calculated the maximum root mean square (rms) movement per run (based on x,y,z motion 

parameters estimated by SPM realign) and the maximum number of spikes per run (based on 

the Spike Percentage output of the Brain Wavelet toolbox24). For the DTI data, we calculated 

the root mean square (rms) movement per session (based on eddy’s restricted_movement_rms 

output) and the sum of squared errors (sse) from diffusion tensor model fit18. No significant 

differences were observed between groups for head movement (rs-fMRI: F(1,40)=0.31, 

p=0.578, ηp
2=0.008; DTI: F(1,40)=1.84, p=0.182, ηp

2=0.044), number of spikes (F(1,40)=1.19, 

p=0.283, ηp
2=0.029) or diffusion tensor model fit for the seed areas, the whole brain and the 

white-matter (F(1,40)=0.77, p=0.386, ηp
2=0.019). Thus, these analyses suggest that it is 

unlikely that differences in connectivity between groups could be due to differences in data 

quality. 
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Supplementary Tables 

Supplementary Table 1: Striatal segments. Four striatal segments for each hemisphere were 

estimated by a DTI connectivity-based and hypothesis-free classification method. The size of 

the segments and the MNI coordinates of their center of gravity are shown. 

Hemisphere Name voxels 
Center of gravity 

x y z 

Left 

ventral striatum 102 -13 13 -9 

caudate head, anterior putamen 117 -16 14 -1 

caudate body/tail 120 -16 7 13 

posterior putamen 208 -27 -1 5 

Right 

ventral striatum 99 14 13 -8 

caudate head, anterior putamen 126 17 15 -1 

caudate body/tail 129 14 6 15 

posterior putamen 197 27 1 4 

  



Supplementary Table 2: ICA components. Clusters within the 7 selected components are 

extracted from the group maps (z=1.96, p=0.05) and are organized into known functional 

groups7,33. The table shows the number of voxels within each cluster (clusters smaller than 20 

voxels are not included), the MNI coordinates, the label of the corresponding AAL area and 

the t-statistic of the peak voxel. 

Network Component Cluster voxels x y z t-value 

Executive 

CP_9 (RCEN) 

R MFG 718 39 23 50 3.87 

R IPL 477 48 -49 54 4.64 

L Cerebellum 39 -36 -70 -42 2.61 

R Cingulate 38 3 35 38 3.01 

R MTG 27 66 -25 -10 2.23 

CP_14 (LCEN) 

L IFG triangular 510 -51 17 30 4.55 

L IPL 413 -33 -70 50 3.81 

L MFG 55 -27 17 58 2.8 

L MTG 47 -60 -49 -10 2.46 

L SFG medial 25 -3 29 42 2.71 

Motor 

CP_4 (Sensorimotor) R SMA 853 0 -22 58 3.92 

CP_5 (Lateral Motor) 
R Postcentral 368 51 -25 54 3.55 

L Postcentral 330 -51 -31 54 3.8 

Visual 
CP_2 (Secondary) 

R MOG 726 33 -82 22 3.42 

L MOG 406 -24 -88 22 2.88 

CP_12 (Early) R Calcarine 606 12 -97 -2 3.39 

Motivational CP_15 (ACC) R ACC 620 0 44 -2 4.38 



Supplementary Table 3: Intrinsic and extrinsic connectivity correlations with strategy 

index. Semipartial Pearson skipped correlations are reported for (a) intrinsic connectivity 

change (post minus pre-training) and (b) extrinsic connectivity change with strategy index for 

frequency and context-based statistics. Significant correlations are determined based on 

bootstrapped confidence intervals (CI) and denoted in bold. The r-value and 95% CI are shown 

for each statistical test (n=21). 

a. Intrinsic connectivity analysis 

Network 
frequency statistics context-based statistics 

r CI r CI 

ACC 0.12 [-0.32, 0.51] 0.35 [0.04, 0.63] 

RCEN -0.17 [-0.61, 0.33] -0.16 [-0.57, 0.33] 

LCEN -0.01 [-0.39, 0.41] 0.42 [0.01, 0.68] 

Secondary Visual -0.09 [-0.43, 0.29] -0.49 [-0.74, -0.10] 

Early Visual -0.32 [-0.73, 0.16] -0.03 [-0.44, 0.40] 

Sensorimotor 0.20 [-0.13, 0.53] 0.23 [-0.22, 0.59] 

Lateral Motor 0.77 [0.60, 0.89] -0.07 [-0.50, 0.39] 

b. Extrinsic connectivity analysis 

Cortico-striatal pathways 
frequency statistics context-based statistics 

r CI r CI 

ACC - right ventral striatum -0.09 [-0.45, 0.28] -0.15 [-0.43, 0.12] 

ACC - left ventral striatum -0.31 [-0.65, 0.12] -0.14 [-0.53, 0.27] 

RCEN - right caudate head, anterior putamen -0.05 [-0.40, 0.36] 0.13 [-0.26, 0.42] 

RCEN - left caudate head, anterior putamen 0.34 [-0.03, 0.66] -0.14 [-0.41, 0.10] 

LCEN - right caudate head, anterior putamen 0.17 [-0.31, 0.52] 0.22 [-0.19, 0.52] 

LCEN - left caudate head, anterior putamen 0.03 [-0.34, 0.40] 0.01 [-0.35, 0.33] 

Secondary Visual - right caudate body/tail 0.15 [-0.38, 0.57] 0.38 [-0.09, 0.72] 

Secondary Visual - left caudate body/tail 0.19 [-0.25, 0.56] 0.21 [-0.28, 0.58] 

Early Visual - right caudate body/tail -0.04 [-0.50, 0.41] 0.05 [-0.41, 0.45] 

Early Visual - left caudate body/tail -0.19 [-0.60, 0.25] -0.46 [-0.83, -0.13] 

Sensorimotor - right posterior putamen -0.14 [-0.49, 0.26] 0 [-0.35, 0.35] 

Sensorimotor - left posterior putamen 0.01 [-0.55, 0.45] 0.03 [-0.37, 0.43] 

Lateral Motor - right posterior putamen 0.51 [0.20, 0.74] -0.19 [-0.59, 0.29] 

Lateral Motor - left posterior putamen 0.13 [-0.41, 0.65] 0.03 [-0.50, 0.46] 

  



Supplementary Table 4: PLS weights of the first two components: for (a) predictors and 

(b) response variables. Asterisks denote significant weights (|z|>2.576, p=0.01). 

a. Weights for predictors 

Node 
Graph 

metric 

PLS-1 PLS-2 

rs-fMRI DTI rs-fMRI DTI 

L Caudate Degree 1.79 -0.97 0.64 -2.84* 

L Caudate Clustering 1.18 1.05 -0.22 3.99* 

R Caudate Degree 2.30 -0.89 0.77 3.21* 

R Caudate Clustering 2.07 -0.10 0.03 -0.66 

L Putamen Degree 1.78 4.60* 1.38 -0.67 

L Putamen Clustering 0.29 -2.13 0.96 1.37 

R Putamen Degree 1.35 -2.06 0.31 0.34 

R Putamen Clustering -0.40 -0.03 1.24 -0.27 

R MFG Degree 0.41 -0.22 0.39 2.67* 

R MFG Clustering -1.92 -1.94 -0.49 -0.49 

L IFG triangular Degree 2.83* 1.50 0.11 1.24 

L IFG triangular Clustering 1.72 2.05 -0.57 1.32 

L Postcentral Degree -1.86 -2.01 -1.69 -0.90 

L Postcentral Clustering 0.20 2.66* -1.38 -0.44 

R Postcentral Degree -0.74 0.15 -1.11 -0.69 

R Postcentral Clustering -1.15 -1.71 -1.24 0.65 

L Calcarine Degree -0.39 1.46 -0.23 -1.64 

L Calcarine Clustering 0.95 0.50 1.96 0.64 

R Calcarine Degree 0.40 3.58* -0.67 0.02 

R Calcarine Clustering -1.04 -1.67 2.18 -0.95 

L ACC Degree 0.39 -0.27 1.38 3.67* 

L ACC Clustering 0.34 -0.52 2.84* 1.12 

R ACC Degree -0.18 2.16 2.55 1.21 

R ACC Clustering -0.56 -3.45* 1.44 -0.30 

 

b. Weights for response variables 

Behavior PLS-1 PLS-2 

Strategy 0 -2.85* 2.01 

Strategy 1&2 3.28* 2.47 

  



Supplementary Table 5: PLS results across graph metrics. Pearson correlation of the first 

two PLS components between models (Model-1 is the reference model for the comparisons). 

Model comparison PLS-1 PLS-2 

Model-2 vs. Model-1 r=0.94, CI=[0.81, 0.98] r=0.89, CI=[0.75, 0.95] 

Model-3 vs. Model-1 r=0.88, CI=[0.58, 0.97] r=0.86, CI=[0.66, 0.96] 

Model-4 vs. Model-1 r=0.99, CI=[0.96, 0.99] r=0.98, CI=[0.94, 0.99] 

Model-5 vs. Model-1 r=0.95, CI=[0.90, 0.98] r=0.93, CI=[0.82, 0.97] 

Model-6 vs. Model-1 r=0.92, CI=[0.80, 0.97] r=0.89, CI=[0.73, 0.97] 

Model-7 vs. Model-1 r=0.98, CI=[0.92, 0.99] r=0.97, CI=[0.90, 0.99] 

 



Model−maximization
Random model
Participant A (strategy index = -0.01) 
Participant B (strategy index = 0.06)  
Participant C (strategy index = 0.55)  

Model−matching

2 4 6 8 10 12 14 16 18 20
Block

−1

−0.5

0

0.5

1

Δ
KL

(M
od

el
M

ax
im

iz
at

io
n,M

od
el

M
at

ch
in

g)

c

Table A 
Target 

A B C D 

C
on

te
xt

 A  0.8 0.2  

B   0.8 0.2 

C 0.2   0.8 

D 0.8 0.2   

0

0 0

0 0

0

0

0

Table B 
Target 

A B C D 

C
on

te
xt

 A 0 1   

B   

C   

D   

0 0

0 0

0

0

01

1

1

0

0

0

0

Table C 
Target 

A B C D 

C
on

te
xt

 A   0.25  

B     

C     

D    

0.250.25 0.25

0.250.250.25 0.25

0.250.250.25 0.25
0.250.250.25 0.25

a
Table D 

Target 
A B C D 

C
on

te
xt

 A  0.7 0.3  

B   0.7 0.3 

C 0.3   0.7 

D 0.7 0.3   

0

0 0

0 0

0

0

0

Table E 
Target 

A B C D 

C
on

te
xt

 A  0.9 0.1  

B   0.9 0.1 

C 0.1   0.9 

D 0.9 0.1   

0

0 0

0 0

0

0

0

b

Supplementary Figure 1: Examples of participant responses for level-1 sequences. (a) Response tables for 

model-matching (Table A), model-maximization (Table B) and a random model (i.e. equal responses to all context-

target contingencies; Table C). (b) Table D shows example responses for underestimating the probability of the most 

probable contingency (i.e. responses between random and model-matching). Table E shows example responses for 

overestimating the probability of the most probable contingency (i.e. responses between model-matching and model-

maximization). (c) Participant strategy choice across training blocks  for three representative participants (blue: 

participant A; red: participant B; green: participant C) against the three models (solid black line: model-matching; 

dashed black line: model-maximization; dashed gray line: random model). We computed the strategy index as the 

integral between the values of participant strategy choice and the model-matching across blocks. 



Supplementary Figure 2: Two-parameter model of participant response distribution. 

The surface of a two-parameter model depicted here describes the strategy index of a virtual 

participant as a function of α and β (P = β [0.25, 0.25, 0.25, 0.25] + (1-β) [1-α, α, 0, 0]). α 

describes participant preference for the more over the less probable target: (i) α=1 indicates 

maximization, (ii) α=0.8 indicates matching, (iii) α=0.5 indicates equal responses to the two 

possible targets, (iv) α<0.5 indicates participant preference of the less probable target. β 

describes participant preference for the random model: (i) β=1 indicates random model of 

responses (i.e. equal responses for all targets), (ii) β=0 indicates no random responses (i.e. the 

model is described by the probabilities of the two probable targets). Colder colors (e.g. blue) 

denote lower strategy index values, whereas warmer colors (e.g. yellow) denote higher 

strategy index values. Individual data of three representative participants are displayed as 

walks on the surface (blue: participant A; red: participant B; green: participant C). Individual 

data points start from the right (i.e. β≈1) and deviate towards the left of the surface (i.e. β≈0) 

showing three distinct behaviors: participant A underestimates the highly probable targets 

(i.e. negative strategy index close to matching), participant B matches the target distribution 

(i.e. zero strategy index close to matching) and participant C overestimates the highly 

probable targets (i.e. positive strategy index close to maximization). 
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Supplementary Figure 3: DTI tractography for striatal segmentation. Striatal segments 

were estimated using a DTI connectivity-based and hypothesis-free classification method. 

Connection probability maps are displayed for each segment on the MNI template 

(neurological convention: left is left). Maps are thresholded at 0.1% of total tracts and 

averaged across groups and sessions. Whole brain tractography was computed separately for 

the left and right hemisphere and the maps were combined for visualization purposes (x=-20, 

y=-12, z=-2). 
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Supplementary Figure 4: Intrinsic connectivity analysis – supplementary results. 

Skipped Pearson correlations (two-sided, n=21) showed a magically significant relationship 

of intrinsic connectivity change (post- minus pre-training) in the Left Central Executive 

(LCEN) and Anterior Cingulate (ACC) networks with strategy index for frequency statistics 

(LCEN: r(19)=0.42, p=0.059, CI=[0.01, 0.68]; ACC: r(19)=0.35, p=0.121, CI=[0.04, 0.63]). 

Open circles in the correlation plots denote outliers as detected by the Robust Correlation 

Toolbox. Intrinsic connectivity was positive for all participants and sessions (pre-training, 

post-training); therefore, the sign of the change (Post minus Pre) indicates an increase (if 

positive) or a decrease (if negative) in the connectivity. In all but 5 cases (3 for posterior 

putamen - Lateral Motor connectivity; 2 for caudate body/tail - Early Visual connectivity) 

extrinsic connectivity change (Post minus Pre) had the same sign as the absolute connectivity 

change (|Post| minus |Pre|). Therefore, we interpret these correlations based on the change of 

the actual connectivity values (that is, Post>Pre is interpreted as increased connectivity). 

Performing the extrinsic connectivity analysis using the absolute connectivity change (|Post| 

minus |Pre|) showed similar results. That is, we found a) increased connectivity between the 

right posterior putamen and the Lateral Motor network correlated positively with strategy 

index for frequency statistics (r(16)=0.62, p=0.006, CI=[0.38, 0.79]), b) increased 

connectivity between the left body/tail of caudate and the Early Visual network correlated 

negatively with strategy index for context-based statistics (r(16)=-0.38, p=0.120, CI=[-0.74, -

0.02]). 
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Supplementary Figure 5: Goodness of fit of PLS regression. Top panel shows variance 

explained in the response variables as a function of PLS components. Bottom panel shows 

the significance of the PLS model as a function of PLS components. Significance was 

determined by permutation testing (10,000 permutations); p-values below 0.05 indicate 

significant results. 
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Supplementary Figure 6: PLS results across a range of density levels (from 10% to 

30%). Scatterplot of PLS-1 and PLS-2 weights for change (i.e. post- minus pre-training) in 

(a) degree and (b) clustering coefficient. PLS predictor weights for each selected node are 

indicated by symbols separately for DTI (circles) and rs-fMRI (squares) data. The color of 

the symbols corresponds to nodes in cortico-striatal circuits (Figure 5): caudate and putamen 

(magenta), right MFG and left IFG (red), postcentral gyrus (cyan), calcarine sulcus (blue), 

and ACC (yellow). PLS predictor weights with |z|>2.576 (p=0.01) are marked by an asterisk 

to denote significant predictors for the respective PLS component. 
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Supplementary Figure 7: PLS components related to strategy index. Illustration of the 

first two PLS components in relation to strategy index for frequency and context-based 

statistics (n=21). (a) Scatterplot of PLS-1 score with strategy index showing opposite patterns 

for frequency vs. context-based statistics. (b) Scatterplot of PLS-2 score with strategy index 

showing a similar pattern for frequency and context-based statistics. Note that the scatterplots 

between PLS components and strategy index are shown here for illustration purposes only. 

No further statistics were conducted to avoid circularity, as these two PLS components were 

shown to be significant predictors of the strategy index (Figure 7a, Supplementary Table 

4b). 
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b. PLS-2 component
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