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1. Introduction

The study of fixed points for multi-valued mappings was initiated and studied by
Nadler [17] wherein he proved a multi-valued version of Banach Contraction
Principle which is sometime referred as Nadler’s contraction principle. Since then
various well known metrical fixed point theorems were extended to multi-valued
mappings and by now there exists an extensive literature on this subject. For the
work of this kind one can be referred to Kaneko [9, 10], Sessa [18], Singh [15] and
others.

Recently some non-linear hybrid contractions, i.e., contractive conditions
involving single-valued and multi-valued mappings, have been studied by
Mukherjee [16], Rhoades et al. [19], Sessa et al. [20, 21] and Imdad-Ahmad [6].

In this paper, using certain weak conditions of commutativity (cf. [2], [7],
[8], [22]) we prove results on coincidence points for single-valued and multi-
valued mappings satisfying a general rational inequality which unify several well
known results due to Fisher [3, 4], Kannan [12, 13], Hardy-Rogers [5] and
others.

Our improvement is two fold: Firstly the contraction condition in examina-
tion is quite general secondly the number of involved maps are increased from two
to six. Apart from these two improvements, we employ weak conditions of com-
mutativity instead of commutativity which accomodates a wider class of map-
pings.



2. Preliminaries

Let CBðX Þ denote the family of all nonempty closed and bounded subsets of a
metric space ðX ; dÞ. The Hausdor¤ metric H on CBðX Þ induced by the metric d is
defined as

HðA;BÞ ¼ max sup
x AA

dðx;BÞ; sup
y AB

dðy;AÞ
( )

for A;B A CBðXÞ, where dðx;AÞ ¼ infy AA dðx; yÞ.
Clearly,

�
CBðX Þ;H

�
is a metric space, and if a metric space ðX ; dÞ is complete,

then so is
�
CBðXÞ;H

�
(cf. Kuratowski [14]).

Lemma 2.1 (Nadler [17]). Let A;B be in CBðXÞ. Then for all e > 0 and a A A there

exists a point b A B such that dða; bÞaHðA;BÞ þ e.

In what follows, I : X ! X and F : X ! CBðXÞ be single-valued and multi-
valued mappings, on a metric space ðX ; dÞ.

Definition 2.1 ([11]). The mappings I and F are said to be weakly commuting if for

all x A X, IFx A CBðX Þ and

HðFIx; IFxÞa dðIx;FxÞ;

where H is the Hausdor¤ metric defined on CBðXÞ.

Definition 2.2 ([2, 8]). A pair of self-mappings ðS; IÞ on X is said to be coincidently
commuting if both the partners S and I are commuting at the coincidence points of S

and I.

Definition 2.3 ([11]). The mappings I and F are said to be compatible if and only if

IFx A CBðXÞ for all x A X and HðFIxn; IFxnÞ ! 0, whenever fxng is a sequence in

X such that Fxn ! M A CBðX Þ and Ixn ! t A M.

Remark 2.1. If F is restricted to be a single-valued mapping on X in Definitions 2.1
and 2.3, then we deduce the concepts of weak commutativity (cf. [22]) and com-

patibility (cf. [7]) for single-valued mappings.

We also need the following:

Lemma 2.2 ([7]). Let f and g be mappings from a metric space ðX ; dÞ into itself. If f

and g are compatible and fz ¼ gz for some z A X, then

fgz ¼ ggz ¼ gfz ¼ ffz:

The following lemma (cf. [11]) is adopted for weak commutativity.
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Lemma 2.3 ([11]). Let I : X ! X and F : X ! CBðX Þ be weakly commuting. If

Iz A Fz for some z A X, then IFz ¼ FIz.

3. Results

Our results in this paper are amply motivated by a theorem of Fisher [3] which we
opt to state before presenting our results.

Theorem 3.1. Let S and T be two self-mappings of a complete metric space ðX ; dÞ
such that for all x; y in X, either

ðaÞ dðSx;TyÞa b½dðx;TyÞ�2 þ c½dðy;SxÞ�2

dðx;TyÞ þ dðy;SxÞ

if dðx;TyÞ þ dðy;SxÞ0 0, b; cb 0 and b þ c < 1, or

ðbÞ dðSx;TyÞ ¼ 0 if dðx;TyÞ þ dðy;SxÞ ¼ 0:

If one of S and T is continuous then S and T have a unique common fixed

point.

We use the following definition to prove our main theorem which merely
restricts the full force of idempotence.

Definition 3.1. A pair of self-mappings ðS; IÞ on X is said to be coincidently idem-
potent if both the partners S and I are idempotent at the coincidence points of S

and I.

We now prove our main result as follows:

Theorem 3.2. Let S;T ; I and J be self-mappings of a complete metric space ðX ; dÞ
with SI and TJ as d-continuous whereas F ;G : X ! CBðXÞ are multi-valued map-

pings such that

(i) GðXÞJSIðX Þ and F ðX ÞJTJðX Þ,
(ii) the pairs ðSI ;FÞ and ðTJ;GÞ are weakly commuting,

(iii) for all x; y A X,

HðFx;GyÞa a
fDðFx;TJyÞg2 þ fDðGy;SIxÞg2

DðFx;TJyÞ þ DðGy;SIxÞ

" #

þ b½DðFx;SIxÞ þ DðGy;TJyÞ� þ gdðSIx;TJyÞ: ð3:2:1Þ

If DðFx;TJyÞ þ DðGy;SIxÞ0 0, a; b; gb 0 with x0 y, Fx0Fy, Gx0Gy and

2aþ 2b þ g < 1.
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Then the following conclusions hold:
(a) There exists a point z A X such that SIz ¼ TJz A FzVGz, i.e., z is a coinci-

dence point of the pairs ðSI ;FÞ and ðTJ;GÞ.
(b) For each x A X either (i) SIx0 ðSIÞ2

x ) SIx B Fx (resp. TJx0 ðTJÞ2
x )

TJx B GxÞ or (ii) SIx A Fx ) ðSIÞn
x ! z for some z A X (resp. TJx A Gx )

ðTJÞn
x ! z for some z A X ), then z is a common fixed point of the pair ðSI ;FÞ

(resp. ðTJ;GÞ) provided F and G are H-continuous.
(c) Moreover, if the pairs of self-mappings ðS; IÞ; ðSI ;SÞ (resp. ðT ; JÞ; ðTJ;TÞ)

are coincidently commuting whereas the pairs ðS; IÞ (resp. ðT ; JÞ) are coincidently
idempotent then z is a common fixed point of S; I ;SI and F (resp. T ; J;TJ and G).

Proof. Assume y ¼ aþbþg

1�a�b
, let x0 A X and y1 be an arbitrary point in Fx0. Since

Fx0 JTJðX Þ, there exists a point x1 in X such that y1 ¼ TJx1 A Fx0 and so there
exists a point y2 A Gx1 such that

dðy1; y2ÞaHðFx0;Gx1Þ þ
1 � a� b

1 þ aþ b
y;

which is always possible in view of Lemma 2.1. Since Gx1 JSIðX Þ there exists a
point x2 A X such that y2 ¼ SIx2 and so we can find y3 A Fx2 such that

dðy2; y3ÞaHðGx1;Fx2Þ þ
1 � a� b

1 þ aþ b
y2;

Inductively, one can define a sequence fyng in X such that

y2n ¼ SIx2n A Gx2n�1; y2nþ1 ¼ TJx2nþ1 A Fx2n

Now

dðy2nþ1; y2nþ2ÞaHðFx2n;Gx2nþ1Þ þ
1 � a� b

1 þ aþ b
y2nþ1; ð3:2:2Þ

a a
fDðFx2n;TJx2nþ1Þg2 þ fDðGx2nþ1;SIx2nÞg2

DðFx2n;TJx2nþ1Þ þ DðGx2nþ1;SIx2nÞ

" #

þ b½DðFx2n;SIx2nÞ þ DðGx2nþ1;TJx2nþ1Þ�

þ gdðSIx2n;TJx2nþ1Þ þ
1 � a� b

1 þ aþ b
y2nþ1;

which on simplifying reduces to

dðy2nþ1; y2nþ2Þa a½DðFx2n;TJx2nþ1Þ þ DðGx2nþ1;SIx2nÞ�

þ b½DðFx2n;SIx2nÞ þ DðGx2nþ1;TJx2nþ1Þ�

þ gdðSIx2n;TJx2nþ1Þ þ
1 � a� b

1 þ aþ b
y2nþ1;
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so that

dðy2nþ1; y2nþ2Þa
aþ b þ g

1 � a� b
dðy2n; y2nþ1Þ þ

y2nþ1

1 þ aþ b

¼ ydðy2n; y2nþ1Þ þ
y2nþ1

1 þ aþ b
: ð3:2:3Þ

Also from

dðy2n; y2nþ1ÞaHðFx2n;Gx2n�1Þ þ
1 � a� b

1 þ aþ b
y2n: ð3:2:4Þ

and using (3.2.1), one can obtain

dðy2n; y2nþ1Þa ydðy2n; y2n�1Þ þ
y2n

1 þ aþ b
ð3:2:5Þ

Combining (3.2.3) and (3.2.5), we obtain

dðynþ1; ynþ2Þa y2dðyn; yn�1Þ þ
2ynþ1

1 þ aþ b
a � � �a yndðy1; y2Þ þ

nynþ1

1 þ aþ b
:

ð3:2:6Þ

Thus a straight forward computation shows that fyng is a Cauchy sequence in the
complete metric space ðX ; dÞ and so has a limit point z in X. On the otherhand,
subsequences fSIx2ng and fTJx2nþ1g of fyng also converge to z.

Now suppose that SI is continuous, then ðSIÞ2
x2n converges to SIz. Using weak

commutativity of the pair ðSI ;F Þ, we have SIðFx2nÞ A CBðX Þ; x2n A X , then it
follows that

H
�
FðSIx2nÞ;SIðFx2nÞ

�
aDðFx2n;SIx2nÞa dðy2nþ1; y2nÞ ! 0 as n ! y:

But D
�
SIðTJx2nþ1Þ;F ðSIx2nÞ

�
aH

�
SIðFx2nÞ;FðSIx2nÞ

�
. So in view of the

continuity of SI , we get

D
�
SIz;F ðSIx2nÞ

�
! 0 as n ! y: ð3:2:7Þ

Similarly, using weak commutativity of the pair ðTJ;GÞ, we get

D
�
TJz;GðTJx2nþ1Þ

�
! 0 as n ! y; ð3:2:8Þ

which is always possible in view of the continuity of TJ.
Using (3.2.1), we have
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D
�
F ðSIx2nÞ;TJz

�
aH

�
FðSIx2nÞ;GðTJx2nþ1Þ

�
þ D

�
GðTJx2nþ1Þ;TJz

�
;

a a

�
D
�
F ðSIx2nÞ;TJðTJx2nþ1Þ

��2 þ
�

D
�
GðTJx2nþ1Þ;SIðSIx2nÞ

��2

D
�
F ðSIx2nÞ;TJðTJx2nþ1Þ

�
þ D

�
GðTJx2nþ1Þ;SIðSIx2nÞ

�
" #

þ b
�
D
�
FðSIx2nÞ;SIðSIx2nÞ

�
þ D

�
GðTJx2nþ1Þ;TJðTJx2nþ1Þ

��
þ gd

�
SIðSIx2nÞ;TJðTJx2nþ1Þ

�
þ D

�
GðTJx2nþ1Þ;TJz

�
;

which on using (3.2.7), (3.2.8) and letting n ! y, reduces to

dðSIz;TJzÞa ð2aþ gÞdðSIz;TJzÞ;

a contradiction, giving thereby SIz ¼ TJz.
Further from (3.2.1), we get

DðSIz;FzÞaD
�
SIz;GðTJx2nþ1Þ

�
þ H

�
GðTJx2nþ1Þ;Fz

�
;

aD
�
SIz;GðTJx2nþ1Þ

�
þ a

�
D
�
Fz;TJðTJx2nþ1Þ

��2 þ
�

D
�
GðTJx2nþ1Þ;SIz

��2

D
�
Fz;TJðTJx2nþ1Þ

�
þ D

�
GðTJx2nþ1Þ;SIz

�
" #

þ b
�
DðFz;SIzÞ þ D

�
GðTJx2nþ1Þ;TJðTJx2nþ1Þ

��
þ gd

�
SIz;TJðTJx2nþ1Þ

�
;

which on using (3.2.7), (3.2.8), SIz ¼ TJz and letting n ! y, reduces to

DðSIz;FzÞa ðaþ bÞDðSIz;FzÞ;

a contradiction giving thereby SIz A Fz.
Again using (3.2.1), we have

DðTJz;GzÞaD
�
TJz;F ðSIx2nÞ

�
þ H

�
F ðSIx2n;GzÞ

�
;

aD
�
TJz;F ðSIx2nÞ

�
þ a

�
D
�
F ðSIx2nÞ;TJz

��2 þ
�

D
�
Gz;SIðSIx2nÞ

��2

D
�
F ðSIx2nÞ;TJz

�
þ D

�
Gz;SIðSIx2nÞ

�
" #

þ b
�
D
�
F ðSIx2nÞ;SIðSIx2nÞ

�
þ DðGz;TJzÞ

�
þ gd

�
SIðSIx2nÞ;TJz

�
;

which on using (3.2.7), (3.2.8), SIz ¼ TJz and letting n ! y, reduces to

DðTJz;GzÞa ðaþ bÞDðTJz;GzÞ;

a contradiction yielding thereby TJz A Gz. Thus we have shown that SIz ¼
TJz A FzVGz.
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For proving (b), assume that SIx0 ðSIÞ2
x which implies that SIx B Fx, we

deduce that SIx ¼ ðSIÞ2
x A SIðFxÞ ¼ FðSIxÞ, which is always possible in view of

Lemma 2.3. Assuming that SIx A Fx implies that ðSIÞn
x ! z for some z in X, then

it is straight forward to note that SIz ¼ z by continuity of SI . We assert that
ðSIÞn

x A FðSIÞn�1
x for each n. To see this, let ðSIÞ2

x ¼ SIðSIxÞ A SIðFxÞ ¼
FðSIxÞ. Also ðSIÞ3

x ¼ SI
�
ðSIÞ2

x
�
A SI

�
FðSIÞx

�
¼ F

�
ðSIÞ2

x
�
. Repeating this

argument, one inductively obtains ðSIÞn
x A F

�
ðSIÞn�1

x
�

which together with the
continuity of F gives

dðz;FzÞa d
�
z; ðSIÞn

x
�
þ d

�
ðSIÞn

x;Fz
�
a d

�
z; ðSIÞn

x
�
þ H

�
FðSIÞn�1

x;Fz
�
! 0;

i.e., z A Fz as Fz is closed. Hence z is a common fixed point of the pair ðSI ;FÞ
(resp. ðTJ;GÞ).

For proving (c), let us write

Sz ¼ SðSIzÞ ¼ SðISzÞ ¼ SIðSzÞ ¼ ISðSzÞ ¼ IðS2zÞ ¼ IðSzÞ ¼ SIz ¼ z;

Iz ¼ IðSIzÞ ¼ ISðIzÞ ¼ SIðIzÞ ¼ SðI 2zÞ ¼ SðIzÞ ¼ SIz ¼ z;

which show that z is a common fixed point of S; I ;SI and F. Similarly it can be
shown that z is also a common fixed point of T ; J;TJ and G.

Corollary 3.1. Theorem 3.2 remains true if contraction condition (3.2.1) is replaced

by any one of the following: for all x; y in X (with DðFx;TJyÞ þ DðGy;SIxÞ0 0).

ðAÞ HðFx;GyÞa a
fDðFx;TJyÞg2 þ fDðGy;SIxÞg2

DðFx;TJyÞ þ DðGy;SIxÞ

" #

þ b½DðFx;SIxÞ þ DðGy;TJyÞ�

with 2aþ 2b < 1, or

ðBÞ HðFx;GyÞa a
fDðFx;TJyÞg2 þ fDðGy;SIxÞg2

DðFx;TJyÞ þ DðGy;SIxÞ

" #
þ gdðSIx;TJyÞ�

with 2aþ g < 1, or

ðCÞ HðFx;GyÞa a
fDðFx;TJyÞg2 þ fDðGy;SIxÞg2

DðFx;TJyÞ þ DðGy;SIxÞ

" #
with a > 0; a <

1

2
; or

ðDÞ HðFx;GyÞa a½DðFx;TJyÞ þ DðGy;SIxÞ� þ b½DðFx;SIxÞ þ DðGy;TJyÞ�

þ gdðSIx;TJyÞ

with 2aþ 2b þ g < 1, or

ðEÞ HðFx;GyÞa a½DðFx;TJyÞ þ DðGy;SIxÞ� with a <
1

2
; or
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ðFÞ HðFx;GyÞa b½DðFx;SIxÞ þ DðGy;TJyÞ� with b <
1

2
; or

ðGÞ HðFx;GyÞa gdðSIx;TJyÞ with g < 1:

Proof. Corollaries corresponding to contractions (A), (B), and (C) can be deduced
directly from Theorem 3.2 by choosing g ¼ 0, b ¼ 0, b ¼ g ¼ 0, respectively. The
corollary corresponding to contraction condition (D) also follows from Theorem
3.2 by noting that

fDðFx;TJyÞg2 þ fDðGy;SIxÞg2

DðFx;TJyÞ þ DðGy;SIxÞ a
½DðFx;TJyÞ þ DðGy;SIxÞ�2

DðFx;TJyÞ þ DðGy;SIxÞ

¼ DðFx;TJyÞ þ DðGy;SIxÞ:

Finally, one may note that the contraction conditions (E), (F) and (G) are special
cases to the contraction condition (D).

Remark 3.1. The foregoing corollary presents generalized hybrid fixed point theo-
rems corresponding to the results contained in Fisher [3, 4], Kannan [12, 13] and
Hardy-Rogers [5].

Theorem 3.3. Let S;T ; I ; J;F and G be the same as defined in Theorem 3.2 sat-

isfying (i), (iii) and condition (ii) is replaced by

(ii) 0 the pairs ðSI ;FÞ and ðTJ;GÞ are compatible.

Then the conclusions (a), (b) and (c) (of Theorem 3.2) remain true.

Proof. Proceeding as in Theorem 3.2, one can show that fyng is a Cauchy
sequence which converges to a point z in X. Further, from (3.2.2) and (3.2.3), we
recall that

HðFx2n;Gx2nþ1Þa ydðy2n; y2nþ1Þ þ
aþ b

1 þ aþ b
y2nþ1 ðn ¼ 0; 1; 2; . . .Þ

which yields that the sequence

fFx0;Gx1;Fx2; . . . ;Gx2n�1;Fx2n;Gx2nþ1; . . .g

is a Cauchy sequence in the complete metric space
�
CBðX Þ;H

�
and hence con-

verges to some M A CBðXÞ. Consequently, the subsequences fFx2ng and fGx2nþ1g
also converge to M.

Now

Dðz;MÞa dðz;TJx2nþ1Þ þ DðTJx2nþ1;MÞ;

a dðz;TJx2nþ1Þ þ HðFx2n;MÞ:
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On letting n ! y, we get z A M as M is closed. Further the compatibility of F and
SI implies that

H
�
F ðSIx2nÞ;SIðFx2nÞ

�
! 0 as n ! y:

But D
�
SIðTJx2nþ1Þ;F ðSIx2nÞ

�
aH

�
FðSIx2nÞ;SIðFx2nÞ

�
. So in view of the conti-

nuity of SI , we get D
�
SIz;FðSIx2nÞ

�
! 0 as n ! y.

Similarly, as the pair ðTJ;GÞ is compatible with TJ continuous, we get

D
�
TJz;GðTJx2nþ1Þ

�
! 0 as n ! y:

Now arguing as in Theorem 3.2, one can prove (a), (b) and (c).

Next, using Theorem 3.3, we give a common fixed point theorem for single-
valued mappings in metric spaces. For this let F and G denotes the single-valued
mappings from a metric sapce ðX ; dÞ into itself in Theorem 3.3, then we have the
following:

Theorem 3.4. Let S;T ; I ; J;F and G be continuous self-mappings of a metric

space ðX ; dÞ such that the pairs ðSI ;F Þ and ðTJ;GÞ are compatible. If

FðXÞJTJðXÞ, GðX ÞJSIðXÞ and for all x; y A X, either

dðFx;GyÞa a
fdðFx;TJyÞg2 þ fdðGy;SIxÞg2

dðFx;TJyÞ þ dðGy;SIxÞ

" #

þ b½dðFx;SIxÞ þ dðGy;TJyÞ� þ gdðSIx;TJyÞ; ð3:4:1Þ

if dðFx;TJyÞ þ dðGy;SIxÞ0 0, a; b; gb 0, 2aþ 2b þ g < 1, or

dðFx;GyÞ ¼ 0 if dðFx;TJyÞ þ dðGy;SIxÞ ¼ 0: ð3:4:2Þ

Then SI ;TJ;F and G have a unique common fixed point z in X. Moreover, z is a

unique common fixed point of the pairs ðSI ;FÞ and ðTJ;GÞ.
Further, if the pairs ðS; IÞ; ðIS; IÞ; ðS;F Þ; ðF ; IÞ; ðT ; JÞ; ðJT ; JÞ; ðT ;GÞ and ðG; JÞ

commute at the points of coincidence, then z remains a unique common fixed point of

S; I ;T ; J;F and G separately.

Proof. The existence of the point w with SIw ¼ Fw and TJw ¼ Gw for contrac-
tion condition (3.4.1) follows from Theorem 3.2. Hence we need to prove the
same for condition (3.4.2). For this dðFw;TJwÞ þ dðGw;SIwÞ ¼ 0 implies that
dðFw;GwÞ ¼ 0, which gets us

Fw ¼ SIw ¼ TJw ¼ Gw:

Since the pair ðSI ;FÞ is compatible and SIw ¼ Fw, therefore by Lemma 2.2, we
have
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SIðFwÞ ¼ FFw ¼ F ðSIwÞ ¼ SIðSIwÞ; ð3:4:3Þ

which implies that dðFFw;TJwÞ þ d
�
Gw;SIðFwÞ

�
¼ 0, which due to (3.4.2) yields

dðFFw;GwÞ ¼ 0, giving thereby FFw ¼ Gw, and we obtain

F ðSIwÞ ¼ FFw ¼ Gw ¼ SIw; ð3:4:4Þ

Therefore SIw ¼ z is a fixed point of F. Further, (3.4.3) and (3.4.4) implies that

Fz ¼ SIz ¼ z:

Similarly, we can show that

Gz ¼ TJz ¼ z:

Using (3.4.2), as dðFz;TJzÞ þ dðGz;SIzÞ ¼ 0, it follows that dðFz;GzÞ ¼ 0 and so
Fz ¼ Gz. Therefore, the point z is a common fixed point of SI ;TJ;F and G.

The rest of the proof is straight forward, henced it is ommited. This evidently
completes the proof.

4. Related Examples

Our first example is furnished to demonstrate the validity of the hypotheses and
degree of generality of Theorem 3.2. (resp. Theorem 3.1)

Example 4.1. Consider X ¼ ½0; 1� with usual metric. Define self-mappings
Fx ¼ x=12, Tx ¼ x=2, Jx ¼ x=4, Gx ¼ x=16, Sx ¼ x=5, Ix ¼ 5x=6 so that
TJx ¼ x=8 and SIx ¼ x=6. Clearly GðXÞ ¼ ½0; 1=16�H ½0; 1=6� ¼ SIðXÞ and
FðXÞ ¼ ½0; 1=12�H ½0; 1=8� ¼ TJðX Þ. Also the pairs of mappings ðSI ;FÞ and
ðTJ;GÞ are commuting hence weakly commuting or compatible or weakly com-
patible.

Now for any x; y in X, one can have

HðFx;GyÞ ¼ dðFx;GyÞ

¼ x

12
� y

16

��� ��� ¼ 1

2

x

6
� y

8

��� ��� ¼ 1

2
dðSIx;TJyÞ

a a
½dðFx;TJyÞ�2 þ ½dðGy;SIxÞ�2

dðFx;TJyÞ þ dðGy;SIxÞ

" #
þ b½dðFx;SIxÞ þ dðGy;TJyÞ�

þ 1=2dðSIx;TJyÞ;

which verifies the contraction condition (3.2.1) with g ¼ 1=2 and 2aþ 2b < 1=2.
Clearly ‘0’ is the unique common fixed point of F ;G;S;T ; I and J.
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However, our unification is genuine because for x ¼ 0, y ¼ 1 the contraction
condition (3.2.1) with a ¼ g ¼ 0 implies 1=16a b=16 or bb 1 which is a contra-
diction. Also for x ¼ 1, y ¼ 0 the contraction condition (3.2.1) with b ¼ g ¼ 0
implies 1=12a 5a=36 or 2ab 6=5 which is again a contradiction.

We conclude by observing that the conditions x0 y, Fx0Fy, Gx0Gy are
necessary in Theorem 3.2. To substantiate this, we consider the following example.

Example 4.2. Consider X ¼ ½0; 1� with usual metric. Define Sx ¼ 1 � x, Ix ¼ 2x,
Tx ¼ 1 � 2x, Jx ¼ x=2, Fx ¼ Gx ¼ f0; 1g so that SIx ¼ 1 � 2x and TJx ¼ 1 � x

for all x A X .

It is straight forward to note that all the conditions of Theorem 3.2 (a) are sat-
isfied except x0 y, Fx0Fy, Gx0Gy. One can note that TJð1=2Þ ¼ 1=2 B
Fð1=2ÞVGð1=2Þ and SIð1=3Þ ¼ 1=3 B F ð1=3ÞVGð1=3Þ which show that F ;G;SI

and TJ have no coincidence or fixed points.
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