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The purpose of the present paper is to introduce a generalized discrete probability distribution and obtain some results regarding
moments, mean, variance, and moment generating function for this distribution. Further, we show that for specific values it
reduces to various well-known distributions. Finally, we give a beautiful application of this distribution on certain analytic univalent
functions.

1. Introduction

Let the series ∑∞𝑛=0 𝑎𝑛, where 𝑎𝑛 ≥ 0, ∀𝑛 ∈ 𝑁 is convergent
and its sum is denoted by 𝑆, that is,

𝑆 = ∞∑
𝑛=0

𝑎𝑛. (1)

Now, we introduce the generalized discrete probability distri-
bution whose probability mass function is

𝑝 (𝑛) = 𝑎𝑛𝑆 , 𝑛 = 0, 1, 2, . . . . (2)

Obviously 𝑝(𝑛) is a probability mass function because 𝑝(𝑛) ≥0 and ∑𝑛 𝑝𝑛 = 1.
Now, we introduce the series

𝜙 (𝑥) = ∞∑
𝑛=0

𝑎𝑛𝑥𝑛. (3)

From (1) it is easy to see that the series given by (3) is
convergent for |𝑥| < 1 and for 𝑥 = 1 it is also convergent.
Definition 1. If 𝑋 is a discrete random variable which can
take the values 𝑥1, 𝑥2, 𝑥3, . . . with respective probabilities𝑝1, 𝑝2, 𝑝3, . . . then expectation of 𝑋, denoted by 𝐸(𝑋), is
defined as

𝐸 (𝑋) = ∞∑
𝑛=1

𝑝𝑛𝑥𝑛. (4)

Definition 2. The 𝑟th moment of a discrete probability distri-
bution about𝑋 = 0 is defined by

𝜇󸀠𝑟 = 𝐸 (𝑋𝑟) . (5)

Here 𝜇󸀠1 is known as mean of the distribution and variance of
the distribution is given by 𝜇󸀠2 − (𝜇󸀠1)2.
Moments about the Origin

(1)

𝜇󸀠1 =
∞∑
𝑛=0

𝑛𝑝 (𝑛)
= ∞∑
𝑛=0

𝑛𝑎𝑛𝑆
= 1𝑆
∞∑
𝑛=1

𝑛𝑎𝑛
= 𝜙󸀠 (1)

𝑆 .

(6)

(2)

𝜇󸀠2 =
∞∑
𝑛=0

𝑛2𝑝 (𝑛)

= ∞∑
𝑛=0

𝑛2 𝑎𝑛𝑆
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= 1𝑆
∞∑
𝑛=0

{𝑛 (𝑛 − 1) + 𝑛} 𝑎𝑛

= 1𝑆 [∞∑
𝑛=2

𝑛 (𝑛 − 1) 𝑎𝑛 +
∞∑
𝑛=1

𝑛𝑎𝑛]

= 1𝑆 [𝜙󸀠󸀠 (1) + 𝜙󸀠 (1)] .
(7)

(3)

𝜇󸀠3 =
∞∑
𝑛=0

𝑛3𝑝 (𝑛)

= ∞∑
𝑛=0

{𝑛 (𝑛 − 1) (𝑛 − 2) + 3𝑛 (𝑛 − 1) + 𝑛} 𝑎𝑛𝑆
= 1𝑆 [∞∑

𝑛=3

𝑛 (𝑛 − 1) (𝑛 − 2) 𝑎𝑛 + 3∞∑
𝑛=2

𝑛 (𝑛 − 1) 𝑎𝑛

+ ∞∑
𝑛=1

𝑛𝑎𝑛]

= 1𝑆 [𝜙󸀠󸀠󸀠 (1) + 3𝜙󸀠󸀠 (1) + 𝜙󸀠 (1)] .

(8)

(4)

𝜇󸀠4 =
∞∑
𝑛=0

𝑛4𝑝 (𝑛)

= ∞∑
𝑛=0

{𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛 − 3) + 6𝑛 (𝑛 − 1) (𝑛 − 2)
+ 7𝑛 (𝑛 − 1) + 𝑛} 𝑎𝑛𝑆

= 1𝑆 [𝜙𝑖V (1) + 6𝜙󸀠󸀠󸀠 (1) + 7𝜙󸀠󸀠 (1) + 𝜙󸀠 (1)] .

(9)

Definition 3. Themean of the distribution is given by

Mean = 𝜇󸀠1 = 𝜙󸀠 (1)
𝑆 . (10)

Definition 4. The variance of the distribution is given by

Variance = 𝜇󸀠2 − (𝜇󸀠1)2

= 1𝑆 [
[
𝜙󸀠󸀠 (1) + 𝜙󸀠 (1) − (𝜙󸀠 (1))2

𝑆 ]
]

. (11)

Definition 5. The moment generating function (m.g.f.) of a
random variable𝑋 is denoted by𝑀𝑋(𝑡) and defined by

𝑀𝑋 (𝑡) = 𝐸 (𝑒𝑡𝑋) . (12)

Theorem 6. The moment generating function of generalized
discrete probability distribution is given by

𝑀𝑋 (𝑡) = 𝜙 (𝑒𝑡)
𝑆 . (13)

Proof. One has

𝑀𝑋 (𝑡) = 𝐸 (𝑒𝑡𝑋)
= ∞∑
𝑛=0

𝑒𝑡𝑛𝑝 (𝑛)

= ∞∑
𝑛=0

𝑒𝑡𝑛 𝑎𝑛𝑆
= 𝜙 (𝑒𝑡)

𝑆 .

(14)

2. Some Consequences

By specializing the values of 𝑎𝑛, we obtain the following well-
known discrete probability distributions.

(1) Let 𝑎𝑛 = 𝜌𝐵(𝑛, 𝜌 + 1), where 𝜌 > 0, 𝑛 ∈𝑁 = {1, 2, 3, . . .}; then it reduces to Yule–Simon
Distribution [1].

(2) Let 𝑎𝑛 = 𝑝𝑛/𝑛, where 0 < 𝑝 < 1, 𝑛 ∈ 𝑁 = {1, 2, 3, . . .};
then it reduces to Logarithmic Distribution [1].

(3) Let 𝑎𝑛 = 𝑚𝑛/𝑛! and then it reduces to Poisson
distribution [1, 2].

(4) Let 𝑎𝑛 = 𝑘𝐶𝑛(𝑝/(1 − 𝑝))𝑛, 𝑛 = 0, 1, 2, . . . , 𝑘; then it
reduces to Binomial Distribution [1, 2].

(5) Let 𝑎𝑛 = 𝑘𝐶𝑛𝐵(𝑛 +𝛼, 𝑛 − 𝑘+𝛽), 𝑛 = 0, 1, 2, . . . , 𝑘; then
it reduces to Beta-Binomial Distribution [1].

(6) Let 𝑎𝑛 = (1 − 𝑝)𝑛, 𝑛 = 0, 1, 2, . . .; then it reduces to
Geometric Distribution [1].

(7) Let 𝑎𝑛 = 1/𝑛𝑠, where 𝑠 ∈ (1,∞) and 𝑛 ∈ 𝑁; then it
reduces to Zeta Distribution [1].

(8) Let

𝑎𝑛 = {{{
𝑝, if 𝑛 = 1
1 − 𝑝, if 𝑛 = 0 (15)

and then it reduces to Bernoulli Distribution [1, 2].

3. Applications on Certain Classes of
Univalent Functions

LetA denote the class of functions 𝑓 of the following form:

𝑓 (𝑧) = 𝑧 + ∞∑
𝑛=2

𝐴𝑛𝑧𝑛, (16)

which are analytic in the open unit disk U = {𝑧 : 𝑧 ∈ 𝐶
and |𝑧| < 1}. As usual, by S we shall represent the class of
all functions in A which are univalent in U and further, we
denote T be the subclass of S consisting of functions of the
following form:

𝑓 (𝑧) = 𝑧 − ∞∑
𝑛=2

󵄨󵄨󵄨󵄨𝐴𝑛󵄨󵄨󵄨󵄨 𝑧𝑛. (17)
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In 1988, Altintas and Owa [3] introduced the class 𝑇(𝜆, 𝛼),
(𝛼 (0 ≤ 𝛼 < 1), 𝜆 (0 ≤ 𝜆 < 1)), being the subclass of T
consisting of functions which satisfy the following condition:

R{ 𝑧𝑓󸀠 (𝑧)
𝜆𝑧𝑓󸀠 (𝑧) + (1 − 𝜆) 𝑓 (𝑧)} > 𝛼, (𝑧 ∈ U) . (18)

Also, they introduce 𝐶(𝜆, 𝛼), (𝛼 (0 ≤ 𝛼 < 1), 𝜆 (0 ≤𝜆 < 1)), being the subclass ofT consisting of functionswhich
satisfy the following condition:

R{ 𝑓󸀠 (𝑧) + 𝑧𝑓󸀠󸀠 (𝑧)
𝑓󸀠 (𝑧) + 𝜆𝑧𝑓󸀠󸀠 (𝑧)} > 𝛼, (𝑧 ∈ U) . (19)

By using (18) and (19) we have

𝑓 (𝑧) ∈ 𝐶 (𝜆, 𝛼) ⇐⇒ 𝑧𝑓󸀠 (𝑧) ∈ 𝑇 (𝜆, 𝛼) . (20)

It is easy to see that for 𝜆 = 0 the classes 𝑇(𝜆, 𝛼) and 𝐶(𝜆, 𝛼)
reduce to the classes of starlike functions of order 𝛼 (0 ≤ 𝛼 <1), 𝑇∗(𝛼) and the convex functions of order 𝛼 (0 ≤ 𝛼 < 1),𝐶(𝛼), respectively, studied by Silverman [4].

Mostafa [5] and Porwal and Dixit [6] obtain certain
conditions for hypergeometric functions and generalized
Bessel functions, respectively, for these classes.

Now, we introduce a power series whose coefficients are
probabilities of the generalized distribution:

𝐾𝜙 (𝑧) = 𝑧 + ∞∑
𝑛=2

𝑎𝑛−1𝑆 𝑧𝑛. (21)

Further, we define the following function:

𝑇𝐾𝜙 (𝑧) = 𝑧 − ∞∑
𝑛=2

𝑎𝑛−1𝑆 𝑧𝑛. (22)

The convolution (or Hadamard product) of two series𝑓(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 and 𝑔(𝑧) = ∑∞𝑛=0 𝑏𝑛𝑧𝑛 is defined as the
power series:

(𝑓 ∗ 𝑔) (𝑧) = ∞∑
𝑛=0

𝑎𝑛𝑏𝑛𝑧𝑛. (23)

Next, we introduce the convolution operator 𝑇𝐾𝜙(𝑓, 𝑧)
for functions 𝑓 of the form (17) as follows:

𝑇𝐾𝜙 (𝑓, 𝑧) = 𝑇𝐾𝜙 (𝑧) ∗ 𝑓 (𝑧) = 𝑧 − ∞∑
𝑛=2

󵄨󵄨󵄨󵄨𝐴𝑛󵄨󵄨󵄨󵄨 𝑎𝑛−1𝑆 𝑧𝑛. (24)

Recently, Porwal [7] introduced a Poisson distribution
series whose coefficients are probabilities of Poisson distribu-
tion and established a correlation between Statistics andGeo-
metric FunctionTheory which opened up a new direction of
research. After the appearance of this paper some researchers
(e.g., Ahmad et al. [8], Murugusundaramoorthy [9], and
Porwal and Kumar [10]) obtained some new and interesting
results by usingHypergeometricDistribution, PoissonDistri-
bution, and Confluent Hypergeometric Distribution. In the
present paper motivated with the above-mentioned work, we
obtain necessary and sufficient conditions for 𝑇𝐾𝜙(𝑧) and𝑇𝐾𝜙(𝑓, 𝑧) in the classes 𝑇(𝜆, 𝛼) and 𝐶(𝜆, 𝛼).

To prove our main theorem, we need the following
lemma.

Lemma 7 (see [11]). If 𝑓 ∈ 𝑅𝜏(𝐴, 𝐵) is of the form (16) then

󵄨󵄨󵄨󵄨𝐴𝑛󵄨󵄨󵄨󵄨 ≤ (𝐴 − 𝐵) |𝜏|𝑛 , (𝑛 ∈ 𝑁 \ {1}) . (25)

The bounds given in (25) are sharp.

Lemma 8 (see [3]). A function 𝑓(𝑧) defined by (17) is in class𝑇(𝜆, 𝛼), if and only if
∞∑
𝑛=2

[𝑛 − 𝜆𝛼𝑛 − 𝛼 + 𝜆𝛼] 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼. (26)

Lemma 9 (see [3]). A function 𝑓(𝑧) defined by (17) is in class𝐶(𝜆, 𝛼), if and only if
∞∑
𝑛=2

𝑛 [𝑛 − 𝜆𝛼𝑛 − 𝛼 + 𝜆𝛼] 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼. (27)

Theorem 10. If 𝑇𝐾𝜙(𝑧) that is of form (22) is in class 𝑇(𝜆, 𝛼),
if and only if

1𝑆 [(1 − 𝛼𝜆) 𝜙󸀠 (1) + (1 − 𝛼) [𝜙 (1) − 𝜙 (0)]] ≤ 1 − 𝛼. (28)

Proof. Since

𝑇𝐾𝜙 (𝑧) = 𝑧 − ∞∑
𝑛=2

𝑎𝑛−1𝑆 𝑧𝑛, (29)

according to Lemma 8, we have to show that

∞∑
𝑛=2

[𝑛 (1 − 𝜆𝛼) − 𝛼 (1 − 𝜆)] 𝑎𝑛−1𝑆 ≤ 1 − 𝛼. (30)

Now
∞∑
𝑛=2

[𝑛 (1 − 𝛼𝜆) − 𝛼 (1 − 𝜆)] 𝑎𝑛−1𝑆
= 1𝑆 [(1 − 𝛼𝜆) ∞∑

𝑛=2

(𝑛 − 1) 𝑎𝑛−1 + (1 − 𝛼) ∞∑
𝑛=2

𝑎𝑛−1]

= 1𝑆 [(1 − 𝛼𝜆) ∞∑
𝑛=1

𝑛𝑎𝑛 + (1 − 𝛼) ∞∑
𝑛=1

𝑎𝑛]
= 1𝑆 [(1 − 𝛼𝜆) 𝜙󸀠 (1) + (1 − 𝛼) [𝜙 (1) − 𝜙 (0)]]
≤ 1 − 𝛼.

(31)

This completes the proof of Theorem 10.

Theorem 11. If 𝑇𝐾𝜙(𝑧) that is of form (22) is in class 𝐶(𝜆, 𝛼),
if and only if

1𝑆 [(1 − 𝛼𝜆) 𝜙󸀠󸀠 (1) + (3 − 2𝛼𝜆 − 𝛼) 𝜙󸀠 (1)
+ (1 − 𝛼) [𝜙 (1) − 𝜙 (0)]] ≤ 1 − 𝛼.

(32)
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Proof. Since

𝑇𝐾𝜙 (𝑧) = 𝑧 − ∞∑
𝑛=2

𝑎𝑛−1𝑆 𝑧𝑛, (33)

according to Lemma 9, we have to prove that
∞∑
𝑛=2

𝑛 [𝑛 (1 − 𝜆𝛼) − 𝛼 (1 − 𝜆)] 𝑎𝑛−1𝑆 ≤ 1 − 𝛼. (34)

Now
∞∑
𝑛=2

𝑛 [𝑛 (1 − 𝛼𝜆) − 𝛼 (1 − 𝜆)] 𝑎𝑛−1𝑆
= 1𝑆 [(1 − 𝛼𝜆) ∞∑

𝑛=2

(𝑛 − 1) (𝑛 − 2) 𝑎𝑛−1
+ (3 − 2𝛼𝜆 − 𝛼) ∞∑

𝑛=2

(𝑛 − 1) 𝑎𝑛−1 + (1 − 𝛼) ∞∑
𝑛=2

𝑎𝑛−1]
= 1𝑆 [(1 − 𝛼𝜆) 𝜙󸀠󸀠 (1) + (3 − 2𝛼𝜆 − 𝛼) 𝜙󸀠 (1)
+ (1 − 𝛼) [𝜙 (1) − 𝜙 (0)]] ≤ 1 − 𝛼.

(35)

Thus the proof of Theorem 11 is established.

Theorem 12. If 𝑓 ∈ 𝑅𝜏(𝐴, 𝐵) is of form (17) and the operator𝑇𝐾𝜙(𝑓, 𝑧) defined by (24) is in the class 𝐶(𝜆, 𝛼), if and only if
(𝐴 − 𝐵) |𝜏|𝑆

⋅ ∞∑
𝑛=2

[(1 − 𝛼𝜆) 𝜙󸀠 (1) + (1 − 𝛼) (𝜙 (1) − 𝜙 (0))] ≤ 1
− 𝛼.

(36)

Proof. By Lemma 9, it suffices to prove that

𝑃1 =
∞∑
𝑛=2

𝑛 [𝑛 − 𝜆𝛼𝑛 − 𝛼 + 𝜆𝛼] 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼. (37)

Since 𝑓 ∈ 𝑅𝜏(𝐴, 𝐵) then by using Lemma 7 we have

󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ (𝐴 − 𝐵) |𝜏|𝑛 . (38)

Hence

𝑃1 ≤ (𝐴 − 𝐵) |𝜏|𝑆
∞∑
𝑛=2

[𝑛 (1 − 𝛼𝜆) − 𝛼 (1 − 𝜆)] 𝑎𝑛−1
= (𝐴 − 𝐵) |𝜏|𝑆

∞∑
𝑛=2

[(𝑛 − 1) (1 − 𝛼𝜆) + (1 − 𝛼) 𝑎𝑛−1]
= (𝐴 − 𝐵) |𝜏|𝑆
⋅ ∞∑
𝑛=2

[(1 − 𝛼𝜆) 𝜙󸀠 (1) + (1 − 𝛼) (𝜙 (1) − 𝜙 (0))] ≤ 1
− 𝛼.

(39)

Thus the proof of Theorem 12 is established.

4. An Integral Operator

In this section, we introduce an integral operator 𝑇𝐺𝜙(𝑧) as
follows:

𝑇𝐺𝜙 (𝑧) = ∫𝑧
0

𝑇𝐾𝜙(𝑡)𝑡 𝑑𝑡, (40)

andwe obtain a necessary and sufficient condition for𝑇𝐺𝜙(𝑧)
belonging to class 𝐶(𝜆, 𝛼)
Theorem 13. If𝑇𝐾𝜙(𝑧) is defined by (22), then𝑇𝐺𝜙(𝑧) defined
by (40) is in class 𝐶(𝜆, 𝛼), if and only if (28) satisfies.
Proof. Since

𝑇𝐺𝜙 (𝑧) = 𝑧 − ∞∑
𝑛=2

𝑎𝑛−1𝑛𝑆 𝑧𝑛 (41)

by Lemma 9, we have to prove that

∞∑
𝑛=2

𝑛 [𝑛 (1 − 𝜆𝛼) − 𝛼 (1 − 𝜆)] 𝑎𝑛−1𝑛𝑆 ≤ 1 − 𝛼. (42)

Now
∞∑
𝑛=2

𝑛 [𝑛 (1 − 𝜆𝛼) − 𝛼 (1 − 𝜆)] 𝑎𝑛−1𝑛𝑆
= ∞∑
𝑛=2

[𝑛 (1 − 𝜆𝛼) − 𝛼 (1 − 𝜆)] 𝑎𝑛−1𝑆
= 1𝑆 [(1 − 𝛼𝜆) ∞∑

𝑛=2

(𝑛 − 1) 𝑎𝑛−1 + (1 − 𝛼) ∞∑
𝑛=2

𝑎𝑛−1]

= 1𝑆 [(1 − 𝛼𝜆) ∞∑
𝑛=1

𝑛𝑎𝑛 + (1 − 𝛼) ∞∑
𝑛=1

𝑎𝑛]
= 1𝑆 [(1 − 𝛼𝜆) 𝜙󸀠 (1) + (1 − 𝛼) [𝜙 (1) − 𝜙 (0)]]
≤ 1 − 𝛼.

(43)

This completes the proof of Theorem 13.
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