
Journal of Astronomy & Earth Sciences Education –November 2022 Volume 9, Number 2 

Copyright by author(s); CC-BY 17 The Clute Institute 

On the Breadth of Earth’s Shadow  
Of Lunar Eclipse - A New Approach  

To Students’ Understanding Of 
Aristarchus’s “Hypothesis 5” 

Li Jian, Beijing Planetarium, Beijing, China 
 

ABSTRACT 

The ancient Greek astronomer Aristarchus was the first astronomer to make a reasonable estimate of the distances of 
the sun and moon from the earth. In his treatise, “On the Sizes and Distances of the Sun and the Moon”, he proposed 
the “hypothesis 5” saying, "That the breadth of the shadow is two moons" in a lunar eclipse, without any argument. 
It may be estimated by measuring the size of the arc of Earth’s shadow (umbra) projecting on the lunar surface or 
other means. By studying how students interact with these concepts, we now present a new method to do the evaluation, 
showing that according to the time of the first contact and the third contact as well as the positions of the two contact 
points on lunar surface, the ratio of the breadth of Earth’s shadow to lunar diameter can be found to have a consistent 
value of around 2.85. The procedure can be designed to be a middle school science experiment to help students 
understand the motions of the Earth and Moon. 
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ncient Greek astronomer Aristarchus’s (about 315 BC - 230 BC) treatise On the Sizes and Distances 
of the Sun and the Moon (hereinafter referred to as On Sizes) has captured more attention by astronomy 
educators in recent years. From the hypothesis 1-6, he derived eighteen propositions about the sizes 

and distances of the Sun and the Moon (Berggren & Sidoli, 2007). 

His ingenious ideas could be important references for teaching and research works today. For example, the procedure 
of finding out the distance of the Moon is quite suitable for middle school science experiment. Although some of the 
data used by Aristarchus is inaccurate, which leads to a relatively large deviation in the results, the process of his 
inquiries shows the beauty and elegance of science. 

To find the distance to the Moon, he proposed a “hypothesis 5” saying "That the breadth of the shadow is two moons" 
in a lunar eclipse without any argument. It’s common to estimate it by measuring the size of the arc of Earth’s shadow 
projecting on the lunar surface (Cowley, 1989; Sigismondi, 2000). Other methods are proposed in recent years, such 
as using observations of craters during a lunar eclipse: record the time it takes for the umbral shadow to traverse a 
crater of known diameter (Lonsdale Hudson, Lu, & McNamara, 2021), and using published light curves of night sky 
brightness taken during lunar eclipses (Birriela & Adkins, 2019). 

In part III of this paper, we introduce a new measurement of the breadth of the Earth’s shadow by recording the time 
interval between the first contact and the third contact as well as the positions of the two contacts on the moon surface. 
Before that, in the following part II, we briefly summarized Aristarchus’s logic of finding the distance to the moon to 
shows that why the “hypothesis 5” is a crucial parameter in the problem of finding out the distance to the Moon. 

  

A 
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ARISTARCHUS’S LOGIC OF FINDING OUT THE DISTANCE TO THE MOON 

In the era of Aristarchus, trigonometry and analytical geometry have not yet been invented, and the geometric and 
arithmetic used in On sizes seems being obscure. Scholars had offered various interpretations, and there are some 
differences in the detail (Ladd, 2005; Mcclung, 2014). Here we brief those interpretations, as described below. 

 

Figure 1. Schematic diagram of finding the distance to the Moon. Based on On sizes. 

 

 

Aristarchus considered about the central lunar eclipse to simplify the derivations. As shown in Figure 1, the moon 
passes through the center of the Earth’s shadow. We designate the radii of the Sun, Earth and Moon as 𝑅! 𝑅", 𝑅# 
respectively. The distance to the Sun and the Moon are noted as 𝐷!,	𝐷#, and the radius of Earth's shadow is designated 
as 𝑅"!. From Figure 1, we have: 

< 𝐴+< 𝐷 =< 𝐵+< 𝐸 (1) 

Noting that A, B, D and E are all small angles (e. g. < 𝐷 is the angular radius of the Sun, which is around 0.25°, and 
< 𝐸 is even smaller; < 𝐵 is actually the horizon parallax of the Earth, i.e., about 1°, and < 𝐴 is smaller than it), we 
got: < 𝐴 ≈ 𝑠𝑖𝑛 < 𝐴 = 𝑅"!/𝐷#, < 𝐵 ≈ 𝑠𝑖𝑛 < 𝐵 = 𝑅"/𝐷#, < 𝐷 ≈ 𝑠𝑖𝑛 < 𝐷 = 𝑅!/𝐷!, < 𝐸 ≈ 𝑠𝑖𝑛 < 𝐸 = 𝑅"/𝐷!. 
Because the angular sizes of the Moon and the Sun are almost equal, we designated them as θ. Then we get: 

< 𝐷 = 𝜃/2𝑐𝑅!/𝐷! = 𝑅#/𝐷#		 (2)	

Combining these equations, it can be found that: 

𝑅!/𝑅" = (1 + 𝐷!/𝐷#)/(1 + 𝑅"!/𝑅#) (3) 

Equation (3) has two important parameters on the right side: 1, the ratio of the Sun’s distance to the Moon’s distance, 
and we simplified it as a, 𝑎 = 𝐷!/𝐷#; 2, the ratio of the breadth of the Earth’s shadow to the lunar diameter, and we 
simplified it as b, 𝑏 = 𝑅"!/𝑅#. 

We want to find out the distance to the Moon (𝐷#). That says, we should find out the expression of 𝐷#/𝑅". According 
to equation (2), we know: 

𝐷# = 2𝑅#/𝜃 (4) 

According to equation (3), we get: 

𝑅" = 𝑅!/[(1 + 𝑎)/(1 + 𝑏) (5) 
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So, it can be found that: 

𝐷#
𝑅"

=
2𝑅#(1 + 𝑎)/(1 + 𝑏)

𝑅! × 𝜃
 

It is known from (2) that 𝑅#/𝑅! = 𝐷#/𝐷! = 1/𝑎, thus: 

%!
&"
= '()*+)/()*-)

+×/
, 𝑎 = %#

%!
, 𝑏 = &"#

&!
  (6) 

The Earth's radius 𝑅"	is found by Eratosthenes, who is almost contemporary with Aristarchus. Therefore, as long as 
knowing the ratio of the Sun’s distance to the Moon’s distance a (Aristarchus had already got it through quarter moon), 
the breadth of Earth’s shadow 𝑅"!, and the angular size of the Moon or the Sun θ, the distance to the moon (𝐷#) was 
figured out.  

A NEW WAY TO FIND THE BREADTH OF EARTH’S SHADOW 

Unlike the value of 𝐷!/𝐷#, little attention had been paid to "hypothesis 5" by later scholars. It may be partly because 
of the "take it for granted" illusion that Res/Rm can be easily found out by measuring the arc of Earth’s shadow casting 
on the lunar surface. But this is found to be a relatively rough approach because of the vague of the shadow arc and 
the subjective fitting of it. For example, Costantino found a value being 2.80𝑅# to 3.56𝑅#  (Sigismondi, 2000). 
Moreover, Lonsdale et al. (2021) gave an estimation of 2.31𝑅# to 2.78𝑅# by capturing images of the whole Moon as 
it entered and left the Earth’s umbra and then drew tangents to the edge of the umbra to estimate its radius. 

Here we proposed another geometric method by measuring the time interval between the first contact and the third 
contact as well as the positions of the two contacts on lunar surface. As illustrated in Figure 2, assuming that the Moon 
first contacts with the umbra of Earth at point F (on moon surface). After the total eclipse, it lights again and makes a 
third contact with the umbra at point T. The time interval of the two contacts is t hours. 

 

Figure 2. Assuming that in a total lunar eclipse, the first contact occurs at F on the lunar surface and the third contact occurs at T. 
M is the center of the surface. The time interval between the two contacts is t hours. 

 

Then, according to the positions of F and T, students are able to draw the path of the Moon during the two contacts, 
as shown in Figure 3. We ignored the movement of the earth for the moment (in the next part, we’ll give a brief 
discussion about the affection of the motion of the Earth) for the following reasons. The angular velocity of Earth’s 
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shadow (relative to the background stars) is equal to the angular velocity of the revolution of the Earth, which is about 
360° dividing by one year. In contrast, the angular velocity of the revolution of the Moon approximates 360° dividing 
by one month (strictly, sidereal month), which is about 13 times of that of Earth’s shadow. The time interval of the 
two contacts is usually about one to three hours, and the angular displacement of Earth’s shadow should be less than 
0.12°, which is usually much less than the shadow’s breadth.  

 

Figure 3. The movement of the Moon from first contact to third contact. The larger circle represents the shadow of the Earth, and 
it is approximately unmoved during the two contacts (the time interval of the two contacts is usually about one to three hours, and 
the Earth’s shadow moves an angle less than 0.12°, which is much less than the Moon). The center of the Moon moves from M to 
M' and the center of the shadow S remains unchanged. MT’ is parallel to M’T. 

 

 

In Figure 3, 𝑅"! = 𝑆𝐹 is the angular radius of Earth’s shadow. The angular radius of the Moon is 𝑅#, and 𝑅# = 𝑀𝐹 
𝑀0𝑆 = 𝑅"!−𝑅#, 𝑆𝐹 = 𝑅"!+𝑅#. In the triangle M'MS, we have: 

𝑀0𝑀' = (𝑅"!−𝑅#)' + (𝑅"!+𝑅#)' − 2(𝑅"!−𝑅#)(𝑅"!−𝑅#)𝑐𝑜𝑠 < 𝑀0𝑆𝑀 (7) 

Then, we get: 

!!"
!#

= ""$"%/!#% $%('()*+,"$-"
%('$)*+,"$-"

 (8) 

𝑀𝑇0 is parallel to 𝑀0𝑇, thus < 𝑀0𝑆𝑀 = 1801−< 𝐹𝑀𝑇 is exactly the < 𝐹𝑀𝑇 in Figure 2 and can be measured from 
it. What’s more, we know that the length of sidereal month is 27.32 days (Karttunen, 2017), so the angular velocity 
of the Moon is: 360°/27.32 days = 0.549°/hour. Neglecting the movement of the Earth, and knowing the time interval 
between the first contact and the third contact is t hours, we can find out that M'M=0.549°/hour × t hour = 0.549°×t. 
Finally, the angular radius of the Moon is almost constant, and we may take it as +𝑅#=0.25°. Substituting these 
parameters, the equation (8) is simplified to: 
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!!"
!#

= "%./'∗1%(234,5"6$'
'()*+,5"6

 (9) 

 

Once we know the time interval t and the positions of the first and second contacts, Res/Rm can be found, and the 
distance to the Moon can be derived by equation (6). We examined this method through the total lunar eclipse occurred 
on January 31, 2018 (Espenak, 2013). The first contact occurred on 11:48:27 UT, the third contact occurred on 
14:07:51 UT, and the time interval is t = 2.32h. The angle ∠FMT was measured to be about: ∠FMT = 56°±1°. Hence, 
we got the result:  

𝑅"!
𝑅#

= D
2.41 ∗ 𝑡' + cos(561 ± 11) − 1

1 + 𝑐𝑜𝑠(561 ± 11)  

Substituting &"#
&!

= 2.83, 𝑎 ≈ 400,	and 𝜃 =2r=0.51 into equation (6), the moon’s distance 𝐷#  is found out to be 59.8𝑅". 
It’s coincidence with the actual value which varies between 57.5𝑅" and 63.7𝑅".   

More lunar eclipses have been checked and the results are listed in table 1. It shows that the calculated 𝑅"!/𝑅# are 
coincident but systematic larger than the actual values. This is because we ignored the orbital motion of the Earth. 
Noting that the maximum relative error of the four 𝑅"!/𝑅# is less than 5% (2022 May 16), the method proposed here 
seems effective. 

 

Table 1. 𝑅!"/𝑅# (the last line) obtained through four lunar eclipses. The eclipse data, i.e. the first five lines, are token from NASA 
(Espenak, 2013) and ∠FMT is measured from NASA data. The uncertainty of 𝑅!"/𝑅# is introduced by the measurement of ∠FMT. 

Date of lunar 
eclipse 

First contact 
(UT) 

Third contact 
(UT) 𝑹𝒆𝒔/𝑹𝒎 Time interval 

(t, hours) ∠FMT 𝑹𝒆𝒔/𝑹𝒎 
(eq. 9) 

2018 Jan 31 11:48:27 14:07:51 2.74 2.32 56°±1° 2.83±0.01 
2019 Jan 21 03:33:54 05:43:16 2.74 2.17 72°±1° 2.85±0.02 
2021 May 26 09:44:57 11:25:55 2.77 1.68 108°±1° 2.83±0.03 
2022 May 16 02:27:53 04:53:56 2.76 2.43 47°±1° 2.88±0.01 

 

DISCUSSION 

In practice, timing the two contacts is relatively straightforward and does not introduce too many errors to a final 
result. But there is no way to guarantee the accuracy of designating the two contact points with naked eye observations. 
As such, it would seem on that basis that Aristarchus’s “hypothesis 5” was unlikely made by this means. But in 
nowadays, we can use video cameras to find out the exact contact points, and thus land on a much more accurate result 
than Aristarchus did. 

One might further think about that there are four contacts in a total lunar eclipse, and theoretically, we can use any 
two of them to do the time and angle measurements. For example, one could record the time interval between the 
second contact and the third contact as well as the angle given by them, and then derive a corresponding equation (it 
would be different with equation 9) to obtain the value of 𝑅"!/𝑅#, just like what we did in the previous part. In 
practice, it is recommended to record all the needed information of these four contacts. In other words, the times and 
the positions on the moon surface of all the four contacts and derive more than one 𝑅"!/𝑅#, and then take an average 
to reduce the measurement errors. But we’d better be careful about the pair of contacts of the first and fourth, because 
the time interval between them maybe so long that the Earth’s orbital motion would lead to a larger error.  

As for the affection of the movement of the Earth, it would be a little bit complicated to give a complete analysis. We 
may simplify the discussion by neglecting the obliquity of the moon path, which is about 5°09’.  
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Figure 4. Neglecting the obliquity of the moon path, the Earth's shadow moves parallel to the moon from S to S’ in the time interval 
t. MM’ is the path of the Moon from the first contact to the third contact. SM” is an auxiliary line parallel to S’M’. The displacement 
of the Earth’s shadow is dramatically enlarged here. 

 

 

As illustrated in Figure 4, assuming that the Earth's shadow moves parallel to the moon during a lunar eclipse and 
noting that it moves in the same direction as the moon, the center of the shadow would move from S to S’ in the time 
interval t. SM” is an auxiliary line parallel to S’M’, and M’M”=S’S. Hence, the equation (8) should be rewritten as: 

!!"
!#

= "("$"$-$-)%/!#% $%('()*+,"$$-"
%('$)*+,"$$-"

        (10) 

where S’S equals to the angular distance that the Earth moves during time t, and is approximate to: S’S = t ×360°/365 
days = 0.041° × t. Just like the ∠M'SM in equation (8), ∠M”SM = 180° - ∠FMT' = 180° - ∠FMT. Taking the angular 
radius of the moon Rm as 0.25° and M'M = 0.549°×t, equation (10) turns into: 

!!"
!#

= "%.;<∗1%()*+,5"6$'
'()*+,5"6

      (11) 

For the total lunar eclipse occurred on 2018 Jan 31, now we get 𝑅"!/𝑅# = 2.61 ± 0.01 through equation 11, which 
is smaller than the previous result. 𝑅"!/𝑅# = values derived from the other eclipses are listed in Table 2. The relative 
errors of 𝑅"!/𝑅# =vary from 4% (2022 May 16) to 8% (2021 May 26) and are overall slightly larger than the previous 
results. This indicates the complexity of the motions of Earth and Moon. In middle school astronomy practice, it would 
be more concise to find 𝑅"!/𝑅# =from equation (8) or (9). 
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Table 2. The resulted Res/Rm from equation 11 (the last line), which take into account the orbit motion of the Earth with a zero 
obliquity of the moon path. The other lines are the same as in table 1. 

Date of 
lunar eclipse 𝑹𝒆𝒔/𝑹𝒎 Time interval 

(t, hours) <FMT 𝑹𝒆𝒔/𝑹𝒎 
(eq. 9) 

𝑹𝒆𝒔/𝑹𝒎 
(eq. 11) 

2018 Jan 31 2.74 2.32 56°±1° 2.83±0.01 2.61±0.01 
2019 Jan 21 2.74 2.17 72°±1° 2.85±0.02 2.62±0.02 
2021 May 26 2.77 1.68 108°±1° 2.83±0.03 2.56±0.03 
2022 May 16 2.76 2.43 47°±1° 2.88±0.01 2.66±0.01 

 

Not only is a total lunar eclipse extremely spectacular, but also it has been seen much more often than total solar 
eclipses. On average, a total lunar eclipse is seen almost twice every five years in the same place. It's a free astronomy 
lesson given by the nature, and more than billions of “students” attend it! Exploring the mysteries of the nature by 
eclipse observations, even if the work of our predecessors is repeated, there may be new discoveries. 
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