
Computers & Graphics: X 2 (2019) 100010

Contents lists available at ScienceDirect

Computers & Graphics: X

journal homepage: www.elsevier.com/locate/cagx

Technical Section

Cellpackexplorer: Interactive model building for volumetric data of

complex cells�

Magdalena Schwarzl a,d,∗, Ludovic Autin b, Graham Johnson c, Thomas Torsney-Weir e,
Torsten Möller a

a University of Vienna, Währingerstraße 29, 1090 Wien, Austria
b The Scripps Research Institute, California, United States
c University of California, San Francisco (UCSF), California, United States
d Visualization Research Center, University of Stuttgart, Allmandring 19, 70569 Stuttgart, Germany
e Department of Computer Science, Swansea University, Fabian Way, Swansea, SA1 8EN, UK

a r t i c l e i n f o

Article history:

Received 20 December 2018

Revised 1 July 2019

Accepted 5 August 2019

Available online 4 October 2019

Keywords:

Interactive visual analysis

Probabilistic 3D data

Ensemble visualization

Biological data

a b s t r a c t

In this paper, we describe cellPACKexplorer, a system designed to help developers of cellPACK find errors

in and improve their algorithm. cellPACKexplorer focuses on visualizing the effects of cellPACK recipe

parameters on the final packing output. We found that the developers have two different methods for

understanding the output, numerical and visual, depending on their background. We designed cellPACK-

explorer with a flexible interface to support both types of users. We evaluated our tool through case

studies and questionnaires. Novice users were able to create cell models with cellPACK and explore the

behavior of different parameters. Further, expert users discovered an error in the code and were able to

locate the problem quickly with our new analysis tool. We conclude with a discussion of the implications

of our findings in the wider visualization community.

© 2019 Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

t

w

i

t

i

s

T

o

i

t

b

w

A

w

t

c

t

p

t

t

c

p

c

a

p

T

o

f

a

h

2

. Motivation

A typical modeling process consists of a model setup, an op-

imization process and a validation of that model. This is true

hether dealing with agent-based modeling [1], statistical model-

ng (such as regression, classification, or clustering) [2] or compu-

ational modeling [3]. However, if the parameter space is vast, or

f the optimization function is qualitative (e.g. through visual in-

pection) then this model building process can be quite tedious.

his is one of the first papers that focuses on the visual support

f model building in the biological domain. The main motivation

s to observe a very specific model building process and to show

hat visual support can tremendously speed up and help in model

uilding.

In this work we focus on cellPACK [4], an open-source frame-

ork designed to generate and refine geometric structures of
� This article was recommended for publication by S. Bruckner.
∗ Corresponding author at: University of Vienna, Währingerstraße 29, 1090 Wien,

ustria.

E-mail addresses: magda.schwarzl@gmail.com

(M. Schwarzl), t.d.torsney-weir@swansea.ac.uk (T. Torsney-Weir).

e

P

d

o

w

ttps://doi.org/10.1016/j.cagx.2019.100010

590-1486/© 2019 Published by Elsevier Ltd. This is an open access article under the CC
hole cells for researchers. The current setup of cellPACK requires

he user to specify a number of input parameters to build virtual

ells. These parameters influence the complex interactions among

he various molecular “ingredients” (e.g proteins) for a particular

acking to produce a final molecular cell. As these interactions be-

ween different parameters are very complex it is hard to predict

he output related to a specific input setting. For more complex

ases it is even impossible. The computation time for cellPACK out-

uts can be up to several days which further increases the diffi-

ulty of heuristically finding a fitting input parameter set. Further,

proper validation of the model often happens visually by com-

aring the result to textbook images (e.g. [5]) or prior experience.

he aforementioned problems are a major bottleneck for the devel-

pment of cellPACK and to the community participation required

or consensus shaping on the scale of whole cells. New approaches

re needed to make cellPACK more robust, easier to develop, and

asier to test.

We have developed cellPACKExplorer to make developing cell-

ACK easier and assist the developers of cellPACK in the ongoing

evelopment. One of the complexities of understanding the results

f cellPACK is that the packing algorithm is stochastic. In other

ords, for a particular parameter configuration cellPACK produces
BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cagx.2019.100010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cagx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagx.2019.100010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:magda.schwarzl@gmail.com
mailto:t.d.torsney-weir@swansea.ac.uk
https://doi.org/10.1016/j.cagx.2019.100010
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010

o

s

P

G

C

i

t

2

f

s

s

W

t

a

i

s

q

2

t

fi

w

a

a

w

t

t

r

u

i

u

a

d

p

m

j

e

W

a

e

t

i

s

v

2

a

s

F

i

n

o

m

c

t

g

s

s

A

e

t

an ensemble of volumes. cellPACKexplorer supports a new work-

flow to simplify the development of cellPACK, setting up cellPACK

experiments and for analyzing and sharing cellPACK outputs and

experiments.

Our contributions include a detailed user, data, and task analy-

sis comparing the model building tasks of the cellPACK developers

to model usage tasks which have been explored more thoroughly

in the visualization community [6]. We focused on aiding the de-

velopers in improving the core packing capabilities of their model

to better help them select the crucial features (input parameters),

hide less important ones from future users, and to find proper de-

faults for some others so future cellPACK users (e.g. biologists, il-

lustrators) are able to quickly create cellPACK outputs themselves.

The developers of cellPACK were able to speed up the setup to

large experiments from 30 min to 1 min and were able to analyze

ensembles of hundreds of cellPACK outputs which they could not

do before. It also revealed unknown behavior of their tool to them

and helped them to validate the influence of input parameters on

the generated outputs. Another advantage to cellPACK developers

is that cellPACKExplorer makes collaboration and sharing of exper-

iments easier.

2. Related work

The goal of cellPACKExplorer is to help the developers under-

stand the effects and the range of possible packing parameters as

they add and modify input parameters to the packing operations

of cellPACK. Our approach with cellPACKexplorer is to combine pa-

rameter space analysis [6] with ensemble analysis of the set of 3D

outputs.

We will first discuss how our work relates to existing tax-

onomies to characterize the vital user, data, and task characteris-

tics of a design study. We focus on parameter space analysis [6],

data types [7], and the computational pipeline [8].

In the language of von Landesberger et al. [8], cellPACKExplorer

has the assumption, number of combinations, ease of comprehen-

sion, and subjectivity of output requirements. Based on their sur-

vey, no tool addresses all these tasks. In terms of data, for a given

parameter combination, the cellPACK algorithm returns a set of lo-

cations for geometrically modelled proteins (ingredients). There-

fore, our data falls squarely in the category of multirun simulation

data in the framework of Kehrer and Hauser [7]. A crucial aspect of

developing effective models is understanding the expressiveness of

a model. Hence, cellPACKExplorer assists in grouping the outputs

of the model for various parameter combinations based on simi-

larity (of the output). An examination of the parameter sets that

have created these groups helps to reason about the importance of

specific parameters. Sedlmair et al. [6] identify these tasks as par-

titioning and sensitivity tasks. We compare our own work to other

methods designed for these tasks in the following sections.

2.1. Parameter space analysis on fixed models

As cellPACK is under constant development, the available pa-

rameters are constantly being extended. One of the core questions

is whether these parameters properly capture the range of realis-

tic cells or whether they might be redundant with little influence

to the final output generated. Our approach to help the develop-

ers answer such questions is to let them visually inspect the in-

fluence of new parameters on the range of possible outputs. This

could be considered as a hybrid approach between code-level de-

bugging and visual model building.

Many tools assist the user with the parametrization of a fixed

model (i.e. a fixed algorithm). These methods are usually tied to

a specific model. For example, in the context of segmented re-

gression [9] and treed regression [10], Guo et al. [11] focused
n the development and evaluation of linear models on sub-

ets of the data. This approach was extended by Mühlbacher and

iringer [12] to include non-linear trend discovery. Likewise, Mc-

regor et al. [13] present a system for Markov decision processes.

VVisual [14] provides code snippets that can be introduced into

mage processing source code to provide debugging-type visualiza-

ions.

.2. Ensemble analysis

In cellPACKExplorer we want to analyze ensembles at two dif-

erent levels. We want to group a number of outputs into distinct

ets of outputs based on large-scale differences (see the previous

ection) and analyze the smaller-scale variations within these sets.

hile there are approaches to ensemble analysis and approaches

hat treat ensembles as distributions (see Kehrer and Hauser for

n overview [7]), to the best of our knowledge there is no work

n a similar setup, that requires a flexible interface due to a con-

tantly changing underlying algorithm and changing analysis re-

uirements.

.2.1. Distributional approaches

For stochastic simulations, one usually examines the distribu-

ion of output possibilities resulting from a single parameter con-

guration. To help show these distributions, the notion of a boxplot

as extended for curves with the introduction of contour boxplots

nd curve boxplots [15,16]. These were used, for example, for visu-

lizing the range of possibilities of storm tracks. While these work

ell for showing distributions of 1D functions cellPACK produces

wo- or three-dimensional outputs which require a different solu-

ion. VAICo [17] considers a set of 2D images and computes the

egions of difference of the set, clusters them, and then gives the

ser controls to browse these differences. While the aim of VAICo

s to identify pixel level differences in images we are looking at

nderstanding structural volumetric differences in the set of (prob-

bilistic) volumes.

cellPACK is primarily intended for 3D output. Three-

imensional objects are often represented as either voxels or

arametric objects. For voxel-based data, there are visualization

ethods such as probabilistic marching cubes [18] or MOb-

ects [19]. One can also animate between all 3D objects in an

nsemble as in Ehlschlaeger et al. [20] or Lundström et al. [21].

hile animation techniques will work on general 3D output,

nimation can contribute to a higher cognitive load for users

specially if the time axis in the animation does not correspond

o time in the data [22]. In cellPACKexplorer, we combined the

ntuitive notion of a 1D distribution with the detail of 3D. We

how 1D distributions of derived metrics with a user-selectable

iew of a single projected 3D output.

.2.2. Clustering approaches

Partitioning is often done using a clustering approach. For ex-

mple, Design Galleries [23] uses a distance metric to present a

et of visually distinct possible renderings of a scene. Likewise,

luid explorer [24] clusters a set of fluid simulation animations

nto animation segments that are then inspected. While conve-

ient, both approaches to a clustered presentation of the model

utputs showed deficiencies. Hence, other researchers adopted a

ore manual adjustment. For example, Paramorama [25] is fo-

used on finding which parameter settings produce good segmen-

ations based on manual inspection of the resulting images. They

roup outputs in a hierarchical fashion based on input parameter

ettings. Paraglide [26] enables a manual partitioning of the output

pace in order to draw conclusions on the input parameter values.

n a priori partitioning scheme is not clear in the case of cellPACK-

xplorer. In addition, the partitioning scheme might be refined as

he algorithmic description (and therefore the underlying model)



M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010 3

Fig. 1. A simulation of the red blood cell distribution (1413 cells) in a blood cap-

illaries of radius 30μm and length 100μm built with cellPACK. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)

c

e

t

a

3

p

o

l

u

a

i

p

f

t

t

d

d

a

t

s

c

w

o

t

(

s

u

p

o

m

h

a

p

n

p

t

a

o

d

f

e

fl

c

t

t

p

I

r

r

d

m

n

t

p

f

b

4

s

d

t

h

t

W

t

w

u

t

A

p

a

r

5

m

t

i

z

b

t

m

o

5

c

b

t

f

m

B

e

c

hanges. An evolving model description often brings new param-

ters with unknown effects. Therefore, we support a manual par-

itioning of the data by letting the user filter on input parameters

nd metrics computed on the output.

. cellPACK

Since cellPACKExplorer is designed to work with cellPACK we

rovide an introduction to cellPACK itself here. cellPACK is an

pen-source biological software framework designed to assemble

arge-scale cells and cellular substructures from small-scale molec-

lar building-blocks. cellPACK was designed to combine data from

ll branches of biology spread over different small-scale stud-

es into comprehensive cells. As parameters reflect real biological

roperties of proteins and their interaction, cellPACK can be used

or hypothesis generation and experimentation (imitating localiza-

ions and interactions), validation, communication, education and

o view the mesoscale (10−7, . . . ,10−8m) with atomic-resolution

etail. The ultimate goal is that cellPACK will be accessible to au-

iences without a technical background and serve as a structural

nd informatics foundation for broader projects1 at the Allen Insti-

ute for Cell Biology, which aim to generate dynamic virtual repre-

entations of whole cells for predictive experimentation. cellPACK

an be used, for example, to fill an architectural engineering shape

ith concrete aggregate in preparation for earthquake simulations,

r it can fill an artery with blood cells at appropriate densities

o generate a histological representation for a medical illustration

see Fig. 1).

A major research focus of the developers of cellPACK is to create

tructural cells of the Human Immunodeficiency Virus (HIV). They

se a packing approach to place smaller building blocks (modelling

roteins and smaller cells) into larger volumes, both described ge-

metrically. A cellPACK input file (called a recipe) contains a list of

olecular building-block components (called ingredients) with be-

aviors (input parameters) that mimic biological constraints (e.g.

ttraction and repulsion). Each ingredient has its own set of input

arameters that govern how it will pack with the other compo-

ents of the cell. Fig. 2 demonstrates an example of the packing

roblem for HIV. Since HIV illustrates a rather complex scenario,

he developers use simpler models for development. One of their

pproaches is to pack spheres with different radii into a box or
1 http://www.scripps.edu/newsandviews/e%5F20150921/vmcc.html.

p

w

(

n a plane. They explore how the generated outputs change un-

er different input configurations (e.g. different parameter values

or attraction between two sphere types).

cellPACK’s input parameters can be split into two groups, gen-

ral parameters and ingredient parameters. General parameters in-

uence properties of the packing algorithm affecting the whole

ell. Two examples include the resolution of cellPACK’s spatial

racking grid, and a variety of options for how the next point on

he grid to be packed (assigned to an ingredient) is selected. This

oint is then proposed to an ingredient as position in the output.

n the literature this set of parameters is described as model pa-

ameters [27] which do not provide biological information.

Ingredient parameters on the other hand mimic the behavior of

eal-world biological proteins, they have to be set for each ingre-

ient type independently and specify which protein an ingredient

imics. An example for this parameter set is known binding part-

ers for an ingredient (i.e. attraction to a specific other ingredient

ype). They decide whether an ingredient accepts or declines the

osition proposed by the algorithm. In the literature they are re-

erred to as control parameters [27], as they are meaningful in the

iological domain.

. Methodology

cellPACKexplorer was developed over ten months using the de-

ign study methodology [28]. This period consisted of two major

evelopment circles each ending with the evaluation of a proto-

ype tool by the cellPACK developers. During the first cycle we

ad weekly meetings with the cellPACK developers. During this

ime we developed our initial user, data, and task characterization.

e also presented the developers with successively refined proto-

ypes. After we evaluated our first prototype with the developers,

e discovered that their analysis interests varied as the code was

pdated. Further we found that they preferred to keep control of

heir analysis and therefore did not like the automatic clustering.

dditionally we observed that they hardly went back to the input

art of the interface. We updated our user, data, and task char-

cterization and designed a new prototype tool. We present the

esults of this second development cycle in the following sections.

. Problem description

We analyzed the workflow of the cellPACK developers in weekly

eetings, asking them about their usual work and future goals for

he cellPACK development. After collecting this data we character-

zed their data types and tasks following the taxonomy of Mun-

ner [29]. We then synthesized what we consider the main model

uilding tasks conducted by the developers of cellPACK in order

o help them improve the understanding of their model and ulti-

ately improve cellPACK. In what follows we summarize the result

f our analysis.

.1. User characterization

The cellPACK algorithm is still under development and we fo-

used on the core developers of cellPACK as users for the time

eing. cellPACKExplorer assists them in their work of improving

he cellPACK algorithm and simplify the parameter configuration

or future users. The ultimate goal of the developers is to auto-

atically generate realistic cells of biological structures (e.g. HIV,

lood-Plasma) from small components (called ingredients). They

xtract information from reports of various small-scale studies on

hemical and biological properties of cells and convert it into input

arameters that mimic these biological constraints. In their current

orkflow the developers iteratively refine cellPACK output models

e.g. HIV or Blood-Plasma cells) by changing the input parameter

http://www.scripps.edu/newsandviews/e%5F20150921/vmcc.html


4 M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010

Fig. 2. Example of a cellPACK output that results from packing an HIV recipe. Left: the empty packing volume. Middle: different ingredients (proteins) to be packed. Right:

one stochastic packing result (of hundreds). Note the emergent complexity of the protruding green/blue ingredients, which packed with a bias towards one side of the

spherical surface, as the result of several simple molecular building blocks interacting in a variety of localized manners. Figure used with permission [4]. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

p

r

t

W

v

N

t

N

i

m

s

a

s

o

5

e

I

A

F

5

e

t

r

p

t

p

t

o

e

d

t

s

t

s

s

p

l

m

settings (model-usage) or adapting a parameter’s functionality and

adding new parameters (model-building) through updates to the

core algorithm. This loop continues until the produced outputs cor-

respond to the anticipated results. To validate that their algorithm

behaves correctly the developers build a number of different cells.

We found that different developers have different approaches in

validating the code. The cellPACK developers come from a diverse

set of backgrounds. In our case, one of them has a background in

scientific illustration and analyses the outputs visually for correct-

ness. Another developer has a technical background and focuses

on derived statistical metrics to explore and validate the outputs.

In our design process we aimed to support all types of cellPACK

developers. In order to build a system that supports both we de-

signed an interface that supports a wide range of skills and prefer-

ences. In addition, the developers do not just fine-tune cellPACKs’s

parameters to create the output of interest but rather adapt the

underlying model (i.e. the cellPACK algorithm) directly to work as

expected. We argue that an interface of high flexibility is specifi-

cally appropriate for model building in general as the underlying

algorithm changes and thereby the used analysis tools and metrics

change as well. The developers continuously update the cellPACK

algorithm, develop new recipes to create different cells and include

information from more and more studies from the literature. We

found this to be one of the distinguishing aspects of model build-

ing as opposed to model usage.

5.2. Data characterization

Since we are focusing on model building rather than model

usage, the data analyzed in cellPACKExplorer is the cellPACK al-

gorithm itself. cellPACKExplorer takes input parameter configura-

tions for cellPACK to initiate the computation of multiple cellPACK

output models. The cellPACK input parameters have different data

types. Some of them are categorical, for example, specifying which

algorithm should be used to handle intersections of ingredients.

Others are numerical, e.g. influencing the binding probabilities be-

tween ingredient types of cellPACK have changed many parts and

often add new parameters and functions. New parameters can su-

persede or otherwise affect other parameters and the downstream

results that are produced. For each input configuration, cellPACK’s

output consists of a 3D position for each copy of every ingredi-

ent type resulting in a spatial cell. Each single parametrization of

the cellPACK model produces a number of outputs by stochastically

varying the naturally occurring variations in the biological cells (i.e.

initializing the algorithm with different random seeds). These out-

puts differ through the used random number.
We define a run as the creation of R different simulation out-

uts by re-running the simulation R times with the same input pa-

ameter configuration but a different random seed input setting. In

he interface all filters work on the level of runs as atomic units.

e define an experiment to be a subset of parameters that are

aried over a range of parameter values. An experiment consists of

different runs created by N different input parameter configura-

ions. This results in N sets of R results giving a total number of

× R volumes.

At the moment the developers work with smaller datasets vary-

ng about 3 parameters and generating roughly a hundred output

odels. In the simple test cases the ingredients are simplified to

pheres of different radii and limited to about 5 ingredients with

bout ten copies per ingredient type. For the more complex models

uch as HIV the number of ingredients packed scales up to millions

f ingredients.

.3. Tasks

We first describe the current workflow of the cellPACK develop-

rs, present how we abstracted their tasks (T1-Setup through T6-

mprove) and designed cellPACKexplorer to work more efficiently.

conceptualization of our resulting approach can be found in

ig. 3.

.3.1. Current workflow

Currently, the developers use a simple trial and error [6] strat-

gy, exploring one run at a time. They create a hypothesis what

he cellPACK output for specific parameters will look like and then

un the model to verify their hypothesis. This works well for ex-

eriments with a single ingredient type and a short computation

ime. As recipes get more complex and more ingredient types are

acked, interaction effects between parameters make it impossible

o predict the output.

To analyze these recipes they compute a few outputs one by

ne to rough out parameters and ranges to sample. These simpler

xperiments consist of only two to three parameters and about ten

ifferent seeds. They also run these small experiments to confirm

hat the system is still working after changing the code. The next

tep in their analysis is to write custom scripts in Python to sample

he parameter ranges by varying less than twenty specified random

eeds and less than five parameters. They analyze the outputs vi-

ually and statistically in MS Excel. For the different analysis as-

ects the developers use a suite of different 2D or 3D viewers to

ook at the raw outputs, create density maps of multiple ensemble

embers and illustrate renderings of single output cells. Finally,



M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010 5

Fig. 3. The conceptual workflow of the developers of cellPACK using cellPACKEx-

plorer. (a) The developers’ mental representation of the workflow. They start with

a version of cellPACK code, create a number of outputs to test it (T1-Setup), and,

based on their data analysis (T2-Validate, T3-Identify, T4-Default), discuss their re-

sults (T5-Share) and create an improved version of the cellPACK code (T6-Improve).

Prior to cellPACKExplorer, generating and analyzing the data was done as a tedious

manual process. (b) cellPACKExplorer’s pipeline guides the developers through the

analysis process. (c) The setup of an experiment (see Section 7.1) as well as (d) the

analysis of the experiment (see Section 7.2) are supported through visual interactive

interfaces and improves their workflow.

t

d

c

e

o

d

a

s

w

o

a

t

5

w

i

n

U

i

o

c

p

t

c

c

a

o

s

v

g

f

o

a

i

P

b

p

v

f

a

t

t

s

p

g

s

5

h

v

a

S

(

a

m

l

a

o

t

s

c

F

m

V

E

t

(

d

s

d

n

t

P

T

T

c

c

a

6

w

t

f

a

s

a

p

c

m

(

2

e

a

t

p

hey adapt the cellPACK algorithm and start a new round of the

escribed workflow.

One bottleneck is the computation time. For a single output it

an range from one 100th of a second for simple recipes to sev-

ral days for more complex recipes packing millions of base pairs

r proteins. Another barrier is the communication overhead. One

eveloper has a background in scientific illustration and usually

sks the other developer to write scripts to set up experiments

ampling input parameters as these have to be written in python,

here he has only limited experience. For statistical analysis of the

utputs he again asks the other developer to implement scripts

nd measures. This approach requires a lot of communication be-

ween the two developers and the necessity for them to share data.

.3.2. Tasks

Based on the cellPACK developer’s current workflow and goals

e abstracted the following tasks:

T1-Setup: Experiment setup: This requires selecting a subset of

nput parameters, a range for sampling, and a decision on the

umber of samples to be generated (compare N, R in Section 5.2).

sually the technically-trained developer was responsible of creat-

ng runs and outputs as well as statistical summaries, while the

ther developer engaged in the validation with respect to biologi-

al (or other) ground truth.

T2-Validate: Model validation through output comparison: When

arts of the code are changed, it is important to make sure that

he cellPACK model is still valid and produces correct results by

omparing with data from the literature or textbooks (e.g. [5]) and

urrent domain knowledge. This requires the analysis of the prob-

bilistic volume ensemble set related to an experiment. cellPACK

utputs are checked to ensure they satisfy several statistical con-

traints like concentration of ingredients and distribution over the

olume.

T3-Identify: Identify parameters to be exposed: Parameters that

reatly impact the range of 3D outputs should be exposed to the

uture users of cellPACK. However, too many parameters could

verwhelm a new user with unnecessary complexity and hurt the

doption of cellPACK. In addition, packing parameters might not be

ntuitive to non-technical users. Therefore, the developers of cell-

ACK have to make a careful selection and need to understand the

ehavior of different parameters and their interactions.
T4-Default: Identify reasonable default values for other (hidden)

arameters: After identifying which parameters to expose, the de-

elopers of cellPACK need to decide what are reasonable defaults

or the remaining parameters. These default values should produce

ccurate results without additional configuration.

T5-Share: Share results: As the developers of cellPACK work on

he code and analysis together they need to be able to share data

o show findings to each other. This should be as automatic as pos-

ible to speed up the collaboration.

T6-Improve: improve cellPACK: The developers constantly im-

rove the quality and speed of cellPACK. In addition, the insight

ained on the impact of particular parameters leads to removing

ome and adding others.

.3.3. Proposed changes

With our new tool we aim to reduce communication over-

ead, combine all analysis into one application, enable the de-

elopers to work independently and support a more systematic

nalysis. cellPACKexplorer enables the setup of an experiment (T1-

etup) without programming knowledge through a visual interface

see Section 7.1). Afterwards the ensemble of all outputs can be

nalyzed in a visual interface (see Section 7.2). This reduces com-

unication overhead as both developers can set up, run and ana-

yze experiments independently. In the old setup outputs were an-

lyzed one by one, transferred to multiple tools and required a lot

f communication overhead. cellPACKExplorer shows several sta-

istical metrics through barcharts allowing both developers to in-

pect them. The interface of cellPACKexplorer is adjustable. Users

an add and change the metrics as the cellPACK code changes.

ig. 3 shows the workflow. While all the tasks had to be done

anually before, with cellPACKExplorer we support T1-Setup, T2-

alidate, T3-Identify and T4-Default visually. We make cellPACK-

xplorer accessible through a common web browser which makes

he data easily accessible for both developers to discuss findings

T5-Share). In the new cellPACKExplorer interface, the cellPACK

evelopers first configure an experiment (T1-Setup) visually and

tart the computation of the output ensemble followed by the

erived statistical metrics. The computation of all this data does

ot require any user interaction, therefore the developers are free

o work on other tasks. When all the data is available, the cell-

ACK developer can explore the generated ensemble (T2-Validate,

3-Identify, T4-Default) using cellPACKExplorer’s analysis interface.

hey can discuss and share the results (T5-Share) or modify the

ellPACK code (T6-Improve). This is the only task not integrated in

ellPACKExplorer and still done manually as code changes require

programmers expertise.

. Design iterations

During our collaboration with the cellPACK developers they

ere constantly updating and changing the code. Therefore we had

o account for these changes and provide a highly flexible interface

or them that adapts to these changes. In this section we will talk

bout changes that we applied to the interface throughout the de-

ign process.

In the first prototype we had both the setup of an experiment

nd the analysis in the same window. After a revision of the first

rototypes in collaboration with the cellPACK developers we de-

ided to separate the five tasks into two sequential interfaces (each

aking use of the full screen), one for the setup of an experiment

T1-Setup) and one for the analysis of the experiment results (Task

through 5). This decision is based on the observation that the

xperiment setup was done carefully by the cellPACK developers

nd once an experiment was set up they switched to different du-

ies until the computation of the ensemble of outputs was com-

lete. During the analysis of outputs it was not necessary to see



6 M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010

r

i

a

d

d

s

u

a

d

t

c

t

p

f

i

fi

c

r

r

r

e

s

p

g

t

a

w

a

s

W

p

fi

a

o

w

o

t

e

a

e

t

i

b

h

r

o

m

s

p

o

s

w

7

r

t

i

c

the input configuration. Most time is spent on the analysis of the

experiment, rarely reversing back to change the setup.

Another major change of the current design compared to the

previous prototype is how we grouped the outputs. We first used

an algorithmic clustering approach to group similar cellPACK out-

puts together. However, we observed that the developers, espe-

cially the scientific illustrator, preferred to compare outputs and

draw conclusions themselves. Although an automatic clustering

would require less work, it also limited the analysis to only the

aspects considered by the algorithm. The users wanted as much

flexibility as possible to analyze the data from various different as-

pects. Therefore, we decided to implement a manual filtering ap-

proach. This helps the users of our tool to build clusters (or groups)

based on different aspects of the data.

In the first design of the interface we used a single barchart

that showed the number of ingredients in different areas of the

packing volume. For example, one bar represented how many in-

gredients were packed in the upper left subarea. Users could filter

out results that had more than a specific number of ingredients

packed in any subarea. Although a user could clean out runs that

produced a very uneven distribution, they could not filter and an-

alyze the outputs on different aspects. With the new spreadsheet

layout, different metrics for analysis can be considered and easily

added in the future if the requirements changing.

We decided to use histograms to represent frequency of the

values sampled for the parameters and derived metrics. All input

parameters are either numeric or categorical and can be repre-

sented through histograms. The same applies to the derived met-

rics shown as histograms. Although there are many other visual

encoding to show this data type we found histograms to be best

suited. They avoid the addition of further dimensions and reduce

data to ink ratio. Additionally they work well for representing the

input parameter frequencies as well as some of the output met-

rics reducing learning requirements for the user. Further we argue

that histograms are a common and simple visual encoding for this

type of data, commonly used, well known and easy to interpret

by many potential users as well as the two developers with differ-

ent backgrounds. Other chart types we considered in early paper

prototypes. In discussion with the developers we decided for his-

tograms already for the first high-fidelity prototype.

7. cellPACKexplorer

cellPACKExplorer is built as a client-server design with a

web front-end. We chose this design as it simplifies installa-

tion and helped the developers of cellPACK to share (T5-Share)

their results and discuss findings. Plots are implemented using

D3 [30] and crossfilter [31] which supports interactive filtering of

large datasets. We used the approach of Talbot et al. [32] for axis

labeling.

We separated the six tasks into two sequential interfaces (each

making use of the full screen), one for the setup of an experiment

(T1-Setup) and one for the analysis of the experiment results (tasks

2 through 6). This decision is based on the observation that the

experiment setup is done carefully and once an experiment is set

up the developers switch to different duties until they wait for the

computation of the ensemble of outputs to be complete. Later, they

spend most of their time on the analysis of the experiment, rarely

reversing back to change the setup. For a better understanding of

the interactive nature of our tool, we provide a video demonstrat-

ing cellPACKExplorer in the supplemental material.

7.1. Input screen

The input screen (Fig. 4) supports task T1-Setup of the devel-

opers. The cellPACK developers use this screen to select a cellPACK
ecipe file and specify parameters and ranges they want to explore

n the experiment.

To address the complexity of an experiment setup and make it

ccessible for both developers (the traditional workflow was one

eveloper providing custom python scripts on request of the other

eveloper) we organized the setup of the experiment into five

teps, also reflected in the interface shown in Fig. 4. Since individ-

al parameters influence different parts of the cellPACK algorithm

nd another set of input parameter is specific for different ingre-

ient types they require different ways of specification. In addition

he second set, working on a per ingredient basis has to be set

arefully to avoid the computation of too many outputs.

(1) Set recipe: At first the developer selects a cellPACK recipe

hey want to analyze. This recipe is a .json file that specifies the

acking volume, which ingredient types to pack, and default values

or cellPACK input parameters. The recipe also declares the biolog-

cal cell structure.

(2) Number of runs and output location: The second step con-

gures the experiment and determines how many cells should be

omputed (N and R, see Section 5.2).

(3) Global packing parameters: In step 3, one sets general pa-

ameters of the simulation (see Section 3). The developer is only

equired to set the parameters they want to vary. Other parameters

emain at default values as specified by the selected recipe file. For

ach sampled parameter the cellPACK developer can also choose a

ampling method. They can either select (deterministic) grid sam-

ling or stochastically uniform sampling. All parameters that are

rid sampled are determined by a multidimensional Cartesian lat-

ice. This is ok for a small number of parameters but can lead to

combinatorial explosion quite quickly. Hence, it should be used

ith caution and only for smaller test cases.

(4) Ingredient-specific parameters: Ingredient parameters require

more complex setup as each ingredient type can have its own

et of parameter values (compare ingredient parameters Section 3).

hen using cellPACK itself, setting parameters is a very tedious

rocess since each parameter value must be set by hand in a con-

guration file. To overcome this, we provide a searchable list of all

vailable parameters. When the cellPACK developer starts typing,

nly parameters whose name matches are shown in the list. As

e focused on the developers of cellPACK, they know the names

f parameters they want to sample and therefore can save a lot of

ime using this feature. Because we observed the cellPACK develop-

rs changing the same parameter across multiple ingredients, we

dded the ability to modify parameter values for groups of ingredi-

nts. The tree representation of ingredients in the interface mimics

he structure of ingredients in a cellPACK recipe. They can select

ngredients in the tree and then select parameters and ranges to

e sampled for the selected ingredients.

(5) Execute or export experiment: Once the cellPACK developer

as finished setting up an experiment, they can either run it di-

ectly on the server or download the configuration. The download

ption is helpful if they want to run the experiment on another

achine (i.e. with more computational power), send the setup to

omeone else (i.e. developers working together), or do the com-

utation later. After the setup of the experiment, the computation

f the outputs is done offline and does not require any interaction

o the cellPACK developers can concentrate on other work while

aiting for the results to be computed.

.2. Analysis screen

Once all the outputs are computed and derived statistical met-

ics are ready, the developers use the analysis screen (Fig. 5)

o inspect the generated ensemble. The layout of our interface

s comparable to a visual spreadsheet structured as rows and

olumns. There are many reasons for this decision. First, one of the



M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010 7

Fig. 4. The input interface. Each vertical panel is one step in the setup of an experiment. From top to bottom: (1) recipe specification (2) cellPACKExplorer settings (collapsed)

(3) cellPACK general packing parameters (marked with a red a) influence general settings for the algorithm (4) cellPACK ingredient parameters (marked with a red b) are set

per ingredient type 5) start/export configuration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The analysis interface. Three main columns for (a) input parameters (b) derived statistical metrics (c) spatial output presentation.

d

a

g

f

a

d

m

t

s

t

c

t

e

v

a

o

t

g

a

o

c

evelopers already worked with spreadsheets in the context of the

nalysis. Second, we wanted a flexible interface that adapts to al-

orithmic and analysis changes. With the spreadsheet layout, dif-

erent analysis aspects (presented by columns) can be swapped in

nd out or added.

The plots for each row can be divided into three logical groups:

istribution of input parameters (Fig. 5a), distribution of derived

etrics (Fig. 5b), and renderings of the outputs (Fig. 5c). The to-

al number of runs summarized in that row is shown on the left

ide of the interface. Each row in the interface represents a fil-

ered subset of all runs of the selected experiment. This allows the
ellPACK developer to compare (T2-Validate) different subsets of

he output ensemble. A new row initially shows all runs of the

xperiment (i.e. no filters are applied and the whole output set is

isible). The cellPACK developer can interactively adapt which runs

re part of a horizontal group by creating a filter on any or several

f inputs or derived measures represented by columns in the in-

erface. The filters are combined with an AND operation such that

roups are formed where each single output of a run has to fulfill

ll the filter constraints to be part of a horizontal row. Each filter

nly influences its own horizontal row in the interface. Filters in

ellPACKExplorer can be adjusted in the bar charts directly. A click



8 M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010

t

i

p

o

w

t

v

c

n

w

a

n

a

c

d

t

o

w

g

c

c

p

s

v

h

t

i

t

c

t

i

b

e

i

t

m

fi

d

p

i

e

a

m

i

c

a

p

o

t

i

c

o

o

o

d

u

t

o

7

d

s

on any location within the chart followed by a dragging operation

limits the according parameter or output metric to the specified

range. For more details please watch the video.

The column layout provides the flexibility to add other features

(metrics) in the future or delete existing ones without changing

the interface. This is something we found to be important for the

model building workflow of the developers as the underlying al-

gorithm (cellPACK in our case) changes regularly and requires dif-

ferent analysis metrics which can be easily added and removed

without requiring the interface to change. We explain each of the

different metrics the developers currently use in turn.

7.2.1. Input parameters

The leftmost columns (Fig. 5a) show one histogram for each

sampled input parameter. It supports the developer in under-

standing an input parameter’s influence on the generated outputs

(T3-Identify) and identify good default values for parameters (T4-

Default). Only sampled input parameters which have been selected

by the developers in the input interface (Fig. 4) are shown. All oth-

ers remain at default values for the whole ensemble. The horizon-

tal axes of each graph represent the sampled parameter value (nu-

merical or categorical). The vertical axes indicates the frequency,

i.e. how often a specific value has been used to generate outputs

in that row. In case of filtering, the full histogram for all runs re-

mains transparent in the background to provide the context of the

full ensemble dataset. The updated opaque part of the histogram

shows the distribution of the currently selected subset of a row

fulfilling all the filters.

7.2.2. Derived metrics

The center set of columns (Fig. 5b) show histograms of various

derived outputs. We created these columns to help the cellPACK

developer to quickly identify subsets of interest without scrolling

through output images one by one. E.g. we watched the develop-

ers looking for outputs where some ingredients failed to pack or

outputs that took a very long computation time. All the metrics

have been developed in collaboration with the cellPACK developers

to focus on their analysis goals. To provide a consistent structure

of all columns the y axis on all histograms shows the frequency of

each value on the x axis in the whole or currently selected dataset.

This is consistent with the input parameter column.

As some graphs are computed on an ingredient basis, the cell-

PACK developer can focus on a subset of ingredients by individu-

ally selecting or deselecting them in the tree (Fig. 5b, column 5)

the same layout for ingredient selection is also used on the input

screen to support the user in the understanding of the interface.

Selecting and deselecting ingredients enables the analysis of single

ingredients, for example checking how much of the available space

it covers within the packing volume.

Finding good derived metrics is difficult and hence, they are

constantly revised. During the development of cellPACKExplorer

and as our understanding of the packing algorithm improved, we

suggested a number of new metrics. The developers of cellPACK

also requested a number of different metrics and explored differ-

ent parameters during the design process constantly updating used

metrics. As we progressed through the development of cellPACK-

Explorer, we refined the list of output metrics. The column layout

in the interface gave us the possibility to easily swap in and out

metrics and add new ones. In the current version of cellPACKEx-

plorer we show the following metrics: spaceOccupancy, usage, and

distanceAVG. These metrics show derived geometrical properties of

the cellPACK outputs:

spaceOccupancy: The developers are interested in the concentra-

tion of different ingredients as this is crucial to assure biologically

valid outputs. The SpaceOccupancy (Fig. 5b, column 1) histogram

shows the distribution of the percentage (horizontal axis) of the
otal packing volume covered by an ingredient type. For example,

f ingredient A takes up 50% of the whole cube in which we are

acking then the SpaceOccupancy value is 50%. Within each run the

ccupancy for each ingredient is averaged over all cells computed

ith different seeds. This measure gives an idea of the concentra-

ion of ingredients compared to the total volume, the denser the

olume is packed, the higher this measure will be.

Usage: An important aspect to assure that cellPACK produces

orrect outputs is to have the full usage of ingredients, i.e. the

umber of copies of an ingredient type the cellPACK developer

ants to pack should be equal to the number of copies that is

ctually packed in the generated cell. In some cases these two

umbers might differ. E.g., the ingredient might not find a place

s there is not enough space left or its parameters do not allow

ertain positions. This would result in a usage below 100%. The

evelopers want to identify these cells, and investigate them fur-

her. Ideally this histogram would only show one peak at a usage

f 100% (as is the case in the example of Fig. 5b, column 2). This

ould represent an ensemble where cellPACK could place all in-

redients specified in the recipe into the model. If this is not the

ase it means that cellPACK had to skip some ingredients as they

ould not be placed inside the cell due to their input parameters.

distanceAVG: Within a cell proteins rarely act alone. Molecular

rocesses are carried out by the interactions occurring between

pecific proteins. Moreover, the interior of cells is a crowded en-

ironment. This crowding effect can make molecules in cells be-

ave in radically different ways than in test-tube assays. It is

hus important to have a metric that can represent the crowd-

ng property of a given cell generated by cellPACK. To analyze

his in cellPACKExplorer, we developed the distanceAVG (Fig. 5b,

olumn 4) measure. It measures the distribution of pairwise dis-

ances between each ingredient instance to every other ingredient

nstance for each cellPACK output (also known as the radial distri-

ution function in physics) averaged over the subset of a run. As

ach ingredient type is repeated multiple times in a typical pack-

ng we compute a distance matrix using the average distance be-

ween ingredients. It is displayed as a heatmap (Fig. 5b, column 4),

apping low distance to white and high distances to black. In this

gure, we have only one ingredient hence there is only a single

istance in the matrix.

The run-time (Fig. 5b, column 3) of outputs generated in an ex-

eriment provides crucial information to enable the developers to

mprove cellPACK’s efficiency (T6-Improve). It shows which param-

ters have the greatest impact on the computation time. Within

n experiment it often happens that all outputs require approxi-

ately the same time except for one that takes much longer. Be-

ng able to filter on these outputs, the interface shows what input

onfiguration caused the long computation time. This metric can

lso be used to find a proper trade off between a high density of

acked ingredients and a reasonable computation time. The devel-

per can quickly assess the computation time and compare it to

he achieved accuracy of the outputs. If the developer is interested

n accuracy represented by how dense ingredients are packed in a

ell they can use the spaceOccupancy metric, showing how much

f the space is occupied by an ingredient. If they want to check

verlaps and intersections between ingredients they can make use

f the distanceAVG graph and compare pairwise distances of ingre-

ient types. Setting filters on these charts, cellPACKExplorer can be

sed to quickly focus on a subset of outputs that satisfy special cri-

eria. Subsequently, these outputs can be inspected in more detail

n the right side of the row (Section 7.2.3).

.2.3. Packing columns

The right part of the interface (Fig. 5c) gives the cellPACK

evelopers access to the direct output of cellPACK, which is a

tochastic 3D volume. The first image of (Fig. 5c) shows the



M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010 9

Fig. 6. Left column: heatmaps of all ensemble members projected along the y-axis.

Space occupied by ingredients is colored in transparent white while empty space

is colored black for all ingredients. Areas that are covered by ingredients (spheres

in the example shown) in more ensemble members appear brighter, regions that

are often empty appear gray, regions that are never occupied by an ingredient are

black (e.g. center part in the top row). Right column: one cellPACK ouput part of the

ensemble set that resulted in the heatmap shown on the left. Note the bias in the

upper row (a) towards the left edge while the rest of the volume is empty (black).

In the heatmap ingredients reaching out of the packing volume (black rectangle)

periodically come back in on the opposite site (periodic boundary condition) which

explains the white stripe on the right side in the heatmap in the upper row. The

lower row (b) shows a random uniform distribution with almost all areas having

the same brightness.

d

e

2

a

c

t

d

v

s

o

p

i

(

a

i

e

c

m

c

n

v

d

o

b

n

3

m

b

i

t

b

d

b

e

o

t

P

c

a

t

i

o

s

p

b

8

I

a

f

S

p

p

8

s

i

t

a

p

g

F

s

r

t

f

t

t

f

n

T

h

o

t

t

t

w

t

s

r

P

f

u

a

s

ensity of ingredients within the probabilistic volume for differ-

nt orthographic projections (top, right, front). In Fig. 5c, columns

and 3 have been closed by the developer as a 2D packing is

nalyzed. To compute these heatmaps the packing volume is dis-

retized into a user-defined number of subvolumes. For each of

hese subvolumes we compute the volume covered by an ingre-

ient type divided by the total volume of the voxel. The resulting

alues are mapped to varying gray levels (black means an empty

ubvolume containing no ingredients). Fig. 6 shows a comparison

f a biased cellPACK output with a lot of empty (black) space (up-

er row) and an output with uniform distribution (whole image

s grey or white meaning that there are ingredients in all voxels)

lower row). We can see that there is a bias towards the bound-

ries of the packing volume in the top row because the border

s brighter. Heatmaps have been used by the cellPACK develop-

rs before to analyze their cells. We chose to incorporate them in

ellPACKExplorer to provide access to their initially used analysis

ethods. In our experience these (direct) visual depictions of the

ells are easier to understand and were preferred by the less tech-

ically trained of our two users (cellPACK developers).

The last column (Fig. 5c, column 4) shows an interactive 3D

iew of one cellPACK output of a run in that row and gives the

eveloper the option to inspect details for specific cells. The devel-

per can interactively change which cell (run and seed) to present

y selecting a different option in the dropdown menus. Outputs

ot part of the horizontal group are disabled. To interact with the

D cell, the developer can use the mouse wheel to zoom and

ouse dragging to rotate and translate the cell. We used bill-

oard imposters for spheres to speed up the rendering. To further
mprove performance, in case of highly crowded cells (e.g. HIV),

he developer can turn on the “proxy” option: each ingredient will

e replaced by a single sphere encapsulating the original ingre-

ient’s shape. This representation shows the spherical proxy used

y cellPACK to resolve the intersections between different ingredi-

nts while packing them to form the final cell. To better analyze

ne specific cell, the whole view can be enlarged by a click on

he “zoom” button. After testing the tool, the developers of cell-

ACK were interested in the exact parameter configuration of the

ell presented in the viewer. Hence, selecting “configuration” opens

tooltip with detailed information about the sampled parameters

hat yield that specific output.

The interface can easily be adapted by closing or open-

ng columns of information (e.g. when exploring a 2D recipe,

nly one of the projected heatmaps is needed, features can be

hown/hidden depending on the analyzed parameter). After the ex-

loration of an experiment, the underlying model (cellPACK) might

e improved (T6-Improve) and a new experiment can be started.

. Evaluation

We used two different setups for the evaluation of the tool.

n addition to regular feedback from the cellPACK developers we

sked them to use the tool on their own and provide qualitative

eedback for us guided by a questionnaire (Sections 8.1, 8.2, 8.3).

econd we asked some users without a biological background or

revious knowledge about cellPACK to fulfill some tasks and also

r ovide some informal feedback (Section 8.4).

.1. Biological case study

In this case study, the cellPACK developers are interested in the

mallestProteinSize parameter specifying the density of the pack-

ng grid. Additionally they investigate the influence of the rejec-

ionThreshold of an ingredient deciding how often an instance of

n ingredient tries to find a place until it gives up and does not

ack itself. Further they also inspected the molarity of different in-

redients specifying the number of copies of each ingredient type.

ig. 7 shows this setup. They start the experiment and work on

ome other tasks while the server generates the cellPACK results.

When all the outputs are ready our users evaluated which pa-

ameter setups caused a long packing time as they want to avoid

hese and get results faster. They set a filter on the time graph and

ocus on the runs that required a long packing time. With the fil-

er set, they found out, which values for input parameters relate

o long computation times. In the test case described a high value

or the rejectionThreshold and a low smallestProteinSize in combi-

ation with a relatively high molarity causes a long packing time.

he upper row of Fig. 8 shows this scenario. This makes sense as a

igh threshold implies that the ingredient tries to pack itself very

ften and a high molarity creates many instances that try to pack

hemselves. Since the packing grid is small there are many points

o be proposed to the ingredient and different locations are close

o each other.

Next, they create a new row and look at the usage graph. There

as one run where not all the ingredients have been packed. Since

his behavior is erroneous, they want to further see which input

etup caused this and filter out all the valid runs (see Fig. 8 lower

ow). This let them discover that a small value for the smallest-

roteinSize, low rejectionThreshold and high molarity caused the

aulty result. If the rejectionThreshold is low, the ingredient gives

p in trying to find a location. Additionally with a high molarity

lot of copies try to find a location and there will not be enough

pace for all the instances to find a place.



10 M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010

Fig. 7. Example experiment setup with cellPACKExplorer. The user is interested in the global parameter smallestProteinSize, modelling the density of the packing grid.

Further they want to evaluate nbJitter, rejectionThreshold, and nbMol for an ingredient called Bacteria_Rad25_1_3.

Fig. 8. The output results from the setup shown in Fig. 7. In the upper row the user wants to see which parameter setup required a long time to pack. The filter sets this

horizontal group to focus on runs with the longest computation time. In the second row the user selected all the runs where not all ingredient copies have been placed (the

filter is set on low usage).

b

fl

(

i

o

t

a

c

cellPACKexplorer allowed the developers to quickly understand

the influence of a number of parameters in a short, interactive ses-

sion, which required many painful and tedious iterations before.

8.2. Debugging case study

The interface can be used to test new code for stability

and functionality. Specifically, the developers wanted to test the
ehavior of a new ingredient parameter, weight. This parameter in-

uences an ingredient’s decision to pack close to a binding partner

another ingredient that has already been packed). Without look-

ng at the code and using only cellPACKexplore, the other devel-

per was able to quickly validate this new feature. They added

he new weight parameter to a known recipe, and sampled it in

range from 0–100% of its range to confirm that at 0% the results

omputed by cellPACK were the same as without the parameter



M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010 11

Fig. 9. A. The original recipe prior to adding the weight parameter code shows how IngredientB (small gray spheres) always packed close to IngredientA (large red spheres)

B. The new version of the original recipe shown in A has the weight parameter added and cellPACKExplorer has been used to sample the weight probability from 0% on the

left (always bind to IngredientA) to 100% (always bind to IngredientB) on the right. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

(

1

p

d

s

a

e

t

c

t

t

S

r

t

S

t

p

I

b

c

c

g

d

h

b

o

E

s

r

e

g

t

m

d

i

(

d

u

(

8

u

a

s

a

c

c

h

r

l

i

w

t

t

c

t

t

p

t

c

o

s

o

t

a

a

t

8

n

u

w

o

t

t

r

S

e

i

f

t

e

T

defined the optimal outputs.
Fig. 9A and Fig. 9B-left). As the probability was increased up to

00% cellPACK produced results that matched the developer’s hy-

othesis of how the weighting would decreasingly influence Ingre-

ientB (see Fig. 9B-right).

The developers were able to use cellPACKExplorer for large-

cale debugging tests and to isolate more subtle issues with newly

dded code. Instead of debugging heuristically by adjusting param-

ters and viewing one result at a time, cellPACKExplorer enabled

hem to setup and analyze thousands of models at a time, which

ould reveal statistical subtleties more readily. In a typical scenario

he developer would first run small experiments and sample only

wo sets of parameters at a time with typically just two seeds (T1-

etup) to ensure the interface and the program are running cor-

ectly (T2-Validate, T3-Identify, T4-Default). If the code failed, then

hey would debug it and adapt the cellPACK algorithm (T5-Share).

econdly, they would rerun with all the parameters they want to

est with a small number of seeds (T1-Setup) to confirm that the

airwise tested parameters all worked together (T2-Validate, T3-

dentify, T4-Default). Finally, they would greatly increase the num-

er of seeds for a deep analysis to explore the behavior of the

ellPACK algorithm (T2-Validate, T3-Identify, T4-Default). If the

ellPACK output was incorrect they would adapt the cellPACK al-

orithm again (T5-Share) and start a second round.

Using this exhaustive approach and a wide sampling range, the

evelopers of cellPACK observed some problems that could not

ave been noticed with the smaller experiments they were doing

efore. Manually scrutinizing hundreds of 3D models using their

ld approaches was time consuming and prone to error. cellPACK-

xplorer’s filtering options helped them to quickly discover issues

uch as repetitive/identical models or incorrect distributions that

esulted, for example, from errors in the core code or input param-

ter configurations that caused ingredient constraints (e.g. using a

radient or specifying that two ingredient types should pack close

o each other) to be ignored or incorrectly applied.

Fig. 10 demonstrates one example of a difficult bug to spot

anually that was relatively easy to find with cellPACKexplore. The

evelopers wanted to implement a parameter that created hotspots

n some areas of the packing volume for an ingredient type. At first

row a) the parameter did not create the anticipated results, as the

istribution of the ingredient type remained uniform. After some

pdates to the code, outputs showed the anticipated distribution

row b).

.3. Qualitative questionnaire results

After testing cellPACKExplorer, we interviewed the developers

sing a semi-structured interview. The interview was structured

round 4 topics: the usability of the interface, new types of analy-

is enabled by the interface, what specific observations were made,

nd any suggestions for improvements. In summary, they described
ellPACKExplorer as being extremely helpful. It allowed simpler ac-

ess to the modelling tool making modelling more efficient. It also

elped the developers debugging the cellPACK software, optimize

ecipes and generate hypothesis in biological research. In the fol-

owing we describe their analysis approach and discuss feedback

n more detail.

A major benefit of the new system is the speed-up in their

orkflow. One developer described a time savings of up to 100

imes because they were able to setup experiments much faster

han with custom Python scripts. The fact that they could run

ellPACK and analyze cellPACK results on a web server eliminated

heir constant hassle of maintaining and running cellPACK across

he diverse collection of computers at home and at work (multi-

le operating systems, incompatible Python versions, etc). In addi-

ion, many of the manual analysis tasks done via spreadsheets and

ustom scripts is now integrated into cellPACKExplorer. The devel-

pers also were able to spot and fix an error in their code, as de-

cribed in Section 8.2. This would have been very difficult without

ur tool. Through the direct visualization of inputs and outputs,

hey are able to optimize parameter values for output generation

nd generate new hypothesis about biological behavior and inter-

ction of molecules and how these could be mapped to parame-

ers.

.4. General usability evaluation

In order to measure the transferability of cellPACKExplorer to

on-developers, we also conducted a usability evaluation with

sers who had not previously used cellPACKExplorer. We started

ith a brief introduction to cellPACKExplorer and a walk through

f the interface. Then, each participant was asked to analyze

he packing parameters for two recipes previously generated by

he cellPACK developers through the online accessible tool. Both

ecipes described a packing problem of spheres on a 2D plane.

pheres occupy the intersecting circle on the plane. The develop-

rs often use this simplified setup to quickly test code changes. It

s helpful for quick intersection tests and increased rendering per-

ormance of outputs. We chose these data sets for our study as

hey are simple and fairly easy to analyze.

In order to give context to our usability evaluation, we gave

ach participant a number of tasks, framed as a set of questions.

he participants were tasked with answering:

1. how many ingredients had been packed in each of the data sets

and their shape,

2. the input configurations where most or all ingredients found

space in the packing volume, and

3. to specify a row which contains the best runs and how they



12 M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010

Fig. 10. An example of how a subtle bug was found in the cellPACK code that was written to pack objects close together on the surface of a sphere 100% of the time. The

heatmaps quickly revealed a uniform random distribution on the spherical surface (a). The core code was adapted and a second experiment revealed the anticipated hotspots

at some locations on the surface (b).

Fig. 11. The results of user’s selection of the best runs on the first dataset. Most of the study participants with biological background focused on a high usage. This

corresponds to outputs where all ingredients have been packed. In addition they set time to be low. Only the visualization researcher (c) set the filter on the lowest

time only.

9

o

w

e

v

m

b

l

w

E

f

o

p

a

Our four participants consisted of a UXdesign expert, a bioin-

formatics specialist, a visualization researcher, and a specialist in

molecular simulation and animation. All but two participants cor-

rectly answered all questions. The others correctly answered after

explaining one of the graphs again. Fig. 11 and Fig. 12 show the fi-

nal decisions of our users (a): UXdesign expert, (b): bioinformatics

specialist, (c): visualization researcher, (d): specialist in molecular

simulation and animation) for the two datasets.

Some of our participants had troubles interpreting the derived

metrics charts. After a brief clarification they were also able to

answer questions related to this chart. In addition, some users

preferred that the x- and y-axes in the graph showing the usage

would be the other way around. The biological and UXDesigner

participants preferred the output renderings on the right side of

the interface over the numerical metrics. Two of our participants

were curious how to set up their own experiment and use cell-

PACKExplorer. We showed them how they can create their own

datsets using our input interface.
. Discussion

As we consider the close collaboration with the cellPACK devel-

pers including weekly meetings as one of our contributions we

ant to describe insights we gained during that process here.

We found that the users of cellPACKExplorer could be differ-

ntiated into two types of approaches. One was working more

isually and the other is working with numerical performance

easures. Users trained in visual confirmation (e.g. designers and

iologists) prefer the former and more technical users prefer the

atter. We also saw this during our general usability evaluation

ith users that were not involved in the development of cellPACK-

xplorer. To support this requirement we designed a flexible inter-

ace that supports both visual and numeric analysis.

Further, we observed that our users need, at times, close control

ver their analysis process. Specifically, while automatic clustering

rovides smaller groups of the ensemble dataset it also limits the

nalysis a user can do with a specific dataset. The clustering works



M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010 13

Fig. 12. The results of user’s selection of the best on dataset 2. This time all study participants set a filter constraint on low time. Some of them also set a high usage. The

visualization researcher (c) also filtered on a relatively high space occupancy.

o

fl

t

o

f

t

t

u

o

1

s

f

e

a

o

t

w

n

o

b

f

o

o

c

s

o

s

h

s

A

a

c

c

s

b

e

g

r

p

r

o

p

n

p

1

t

b

t

t

c

v

w

f

p

r

m

E

e

u

D

c

i

S

f

n a pre-defined set of features and is usually applied in the of-

ine stage of the workflow (i.e. after data generation but before

he user starts his analysis). With our approach of manual filtering

n inputs and outputs we keep the user in the loop and provide

reedom to investigate the same dataset from different aspects.

To provide recommendation for a faster design process for fu-

ure design studies we emphasize the use of a web based applica-

ion. This eases installation for the users and allows us to deploy

pdates easily. This makes it easy to access the tool for a variety

f users with different levels of technical skill.

0. Future work

While cellPACKExplorer is a great support in the analysis of

imple packings the scalability to realistic biological cells remains

uture work. A cellPACK recipe can consist of thousands of ingredi-

nts. For example, E. Coli has about 1 million proteins made up of

bout 4000 unique protein types, Mycoplasma Mycoides is formed

f about 50,000 proteins made up of about 800 unique protein

ypes. Each of these unique proteins is a separate ingredient. This

ill require a change in our interface to account for such a large

umber of ingredients.

The developers of cellPACK have requested the ability to select

ther derived metrics in the center column (Fig. 5b) and the possi-

ly to upload their own derived measures. We see a lot of potential

uture work in developing new metrics that reveal other features

f the ensemble set and can be interpreted visually as easy as the

utputs. We further realized that as the cellPACK outputs inspected

hanged some of our proposed metrics required an adaption. The

paceOccupancy and the heatmaps will not support analysis in case

f a recipe that packs ingredients on the surface of a sphere.

The flexibility of cellPACKexplorer in terms of what metrics are

hown opens it up to other application areas. For example, it could

elp to explain to meteorologists which parameters of weather

imulations influence temperature, air pressure, or precipitation.

nother possible domain is bioengineering where scientists gener-

te simulations of human organs and inspect the influence diseases

an have on potential fields of the human heart [33]. As the visual

olumns in the right most side of the interface can be closed if a

imulation does not provide visual output, our tool also is applica-

le to simulations in areas such as software engineering or math-

matics where simulations do not always result in visual outputs.
Finally we want to experiment with different sampling strate-

ies. The cellPACK developers currently prefer the ‘full combinato-

ial’ method, that creates all possible combinations for the sam-

led input parameters (after discretization of the continuous pa-

ameters). This approach does not scale well if the sampling range

r number of parameters sampled increases. We also anticipate to

rovide some guidance in choosing a proper sampling strategy and

umber of samples required to get a statistically meaningful out-

ut.

1. Conclusion

To the best of our knowledge, this work, for the first time in

he visualization literature, is presenting a task analysis of a model

uilding process in the biological domain. We specifically focus on

he development of cellPACK for generating complex virtual cells

hat are difficult to parameterize and validate. We compared and

ontrasted the challenges and tasks performed by the cellPACK de-

elopers, related to model building and model usage. Specifically,

e identified the need to add, remove, and find proper defaults

or parameters guiding the modeling process as a novel task to be

erformed. Further, the ability to incorporate and validate new de-

ived measures proved crucial and difficult for the success of the

odeling pipeline. Based on this breakdown we created cellPACK-

xplorer supporting the developers in analyzing input parameter

ffects on outputs as well as the distribution of objects in a vol-

me for a probabilistic volume ensemble dataset.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi:10.1016/j.cagx.2019.100010.

https://doi.org/10.1016/j.cagx.2019.100010


14 M. Schwarzl, L. Autin and G. Johnson et al. / Computers & Graphics: X 2 (2019) 100010

[

[

[

[

[

[

[

References

[1] Miksch F, Pichler P, Espinosa KJ, Popper N. Agent-based methods for simula-

tion of epidemics with a low number of infected persons. In: Hutchison D,

Kanade T, Steffen B, Terzopoulos D, Tygar D, Weikum G, et al., editors. Proceed-
ings of the second information and communication technology - EurAsia con-

ference (ICT-EurAsia). Information and Communication Technology, LNCS-8407.
Bali, Indonesia: Springer; 2014. p. 21–8. doi:10.1007/978-3-642-55032-4_2.

Part 1: Information & Communication Technology-EurAsia Conference 2014,
ICT-EurAsia 2014 https://hal.inria.fr/hal-01397140.

[2] Bishop CM. Pattern recognition and machine learning (Information science

and statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.; 2006.
ISBN0387310738.

[3] Committee on Mathematical Foundations of VerificationValidation, and Uncer-
tainty Quantification; Board on Mathematical Sciences and Their Applications,

Division on Engineering and Physical Sciences, National Research Council. As-
sessing the reliability of complex models: mathematical and statistical foun-

dations of verification, validation, and uncertainty quantification. The National
Academies Press; 2012. doi:10.17226/13395. ISBN 9780309256346.

[4] Johnson GT, Autin L, Al-Alusi M, Goodsell DS, Sanner MF, Olson AJ. Cellpack: a

virtual mesoscope to model and visualize structural systems biology. Nat Meth
2015;12(1):85–91. doi:10.1038/nmeth.3204.

[5] Goodsell DS. The machinery of life. Copernicus; 2009. doi:10.1007/
978-0-387-84925-6.

[6] Sedlmair M, Heinzl C, Bruckner S, Piringer H, Möller T. Visual parame-
ter space analysis: a conceptual framework. IEEE Trans Vis Comput Graph

2014;20(12):2161–70. doi:10.1109/tvcg.2014.2346321.

[7] Kehrer J, Hauser H. Visualization and visual analysis of multifaceted scientific
data: a survey. IEEE Trans Vis Comput Graph 2013;19(3):495–513. doi:10.1109/

TVCG.2012.110.
[8] von Landesberger T, Fellner DW, Ruddle RA. Visualization system requirements

for data processing pipeline design and optimization. IEEE Trans Vis Comput
Graph 2017;23(8):2028–41. doi:10.1109/TVCG.2016.2603178.

[9] Muggeo VM. Segmented: an r package to fit regression models with broken–

line relationships. R News 2008;8(1):20–5.
[10] Alexander WP, Grimshaw SD. Treed regression. J Comput Graph Stat

1996;5(2):156–75. doi:10.2307/1390778. http://www.jstor.org/stable/1390778.
[11] Guo Z, Ward MO, Rundensteiner EA, Ruiz C. Pointwise local pattern exploration

for sensitivity analysis. In: Proceedings of the 2011 IEEE conference on vi-
sual analytics science and technology (VAST). IEEE. Providence, RI: IEEE; 2011.

p. 131–40. doi:10.1109/VAST.2011.6102450.

[12] Mühlbacher T, Piringer H. A partition-based framework for building and vali-
dating regression models. IEEE Trans Vis Comput Graph 2013;19(12):1962–71.

doi:10.1109/TVCG.2013.125.
[13] McGregor S, Buckingham H, Dietterich TG, Houtman R, Montgomery C,

Metoyer R. Facilitating testing and debugging of Markov decision processes
with interactive visualization. In: Proceedings of the IEEE symposium on vi-

sual languages and human-centric computing (VL/HCC). IEEE; 2015. p. 53–61.

doi:10.1109/VLHCC.2015.7357198.
[14] Bihlmaier A, Worn H. CVVisual: interactive visual debugging of computer vi-

sion programs. In: Proceedings of the 20th conference on emerging technolo-
gies & factory automation (ETFA). IEEE; 2015. p. 1–6. doi:10.1109/etfa.2015.

7301408.
[15] Whitaker RT, Mirzargar M, Kirby RM. Contour boxplots: a method for charac-
terizing uncertainty in feature sets from simulation ensembles. IEEE Trans Vis

Comput Graph 2013;19(12):2713–22. doi:10.1109/TVCG.2013.143.
[16] Mirzargar M, Whitaker RT, Kirby RM. Curve boxplot: generalization of boxplot

for ensembles of curves. IEEE Trans Vis Comput Graph 2014;20(12):2654–63.
doi:10.1109/tvcg.2014.2346455.

[17] Schmidt J, Gröller E, Bruckner S. VAICo: visual analysis for image comparison.
IEEE Trans Vis Comput Graph 2013;19(12):2090–9. doi:10.1109/tvcg.2013.213.

[18] Pöthkow K, Weber B, Hege H-C. Probabilistic marching cubes. Comput Graph

Forum 2011;30(3):931–40. doi:10.1111/j.1467-8659.2011.01942.x.
[19] Reh A, Gusenbauer C, Kastner J, Gröller E, Heinzl C. MObjects–A novel method

for the visualization and interactive exploration of defects in industrial XCT
data. IEEE Trans Vis Comput Graph 2013;19(12):2906–15. doi:10.1109/tvcg.

2013.177.
[20] Ehlschlaeger CR, Shortridge AM, Goodchild MF. Visualizing spatial data un-

certainty using animation. Comput Geosci 1997;23(4):387–95. doi:10.1016/

S0098-3004(97)00005-8. Exploratory Cartograpic Visualisation
[21] Lundström C, Ljung P, Persson A, Ynnerman A. Uncertainty visualization in

medical volume rendering using probabilistic animation. IEEE Trans Vis Com-
put Graph 2007;13(6):1648–55. doi:10.1109/TVCG.2007.70518.

22] Tversky B, Morrison JB, Betrancourt M. Animation: can it facilitate? Int J Hum
Comput Stud 2002;57(4):247–62. doi:10.1006/ijhc.2002.1017.

23] Marks J, Andalman B, Beardsley PA, Freeman W, Gibson S, Hodgins J, et al. De-

sign Galleries: a general approach to setting parameters for computer graphics
and animation. In: Proceedings of SIGGRAPH 97. In: Annual Conference Series.

ACM; 1997. p. 389–400. doi:10.1145/258734.258887.
[24] Bruckner S, Möller T. Result-driven exploration of simulation parameter spaces

for visual effects design. IEEE Trans Vis Comput Graph 2010;16(6):1467–75.
doi:10.1109/TVCG.2010.190.

25] Pretorius AJ, Bray M-A P, Carpenter AE, Ruddle RA. Visualization of parameter

space for image analysis. IEEE Trans Vis Comput Graph 2011;17(12):2402–11.
doi:10.1109/TVCG.2011.253.

26] Bergner S, Sedlmair M, Möller T, Abdolyousefi SN, Saad A. Paraglide: interactive
parameter space partitioning for computer simulations. IEEE Trans Vis Comput

Graph 2013;19(9):1499–512. doi:10.1109/tvcg.2013.61.
[27] Santner TJ, Williams B, Notz W. The design and analysis of computer experi-

ments. Springer-Verlag; 2003. doi:10.1007/978-1-4757-3799-8.

28] Sedlmair M, Meyer M, Munzner T. Design study methodology: reflections from
the trenches and the stacks. IEEE Trans Vis Comput Graph 2012;18(12):2431–

40. doi:10.1109/TVCG.2012.213.
29] Munzner T. Visualization analysis and design. AK Peters visualization series.

Boca Raton, FL: CRC Press; 2015.
[30] Bostock M, Ogievetsky V, Heer J. D3: Data-driven documents. IEEE Trans Vis

Comput Graph 2011;17(6):2301–9. doi:10.1109/TVCG.2011.185.

[31] Square I. crossfilter. 2017. http://square.github.io/crossfilter/ [Last Accessed 18
July 2017].

32] Talbot J, Lin S, Hanrahan P. An extension of Wilkinson’s algorithm for posi-
tioning tick labels on axes. IEEE Trans Vis Comput Graph 2010;16(6):1036–43.

doi:10.1109/TVCG.2010.130.
[33] Rosen P, Burton B, Potter K, R Johnson C. muView: a visual analysis system

for exploring uncertainty in myocardial ischemia simulations; 2016. p. 49–69.
doi:10.1007/978-3-319-24523-2_3. ISBN 978-3-319-24521-8.

https://doi.org/10.1007/978-3-642-55032-4_2
https://hal.inria.fr/hal-01397140
http://refhub.elsevier.com/S2590-1486(19)30010-X/sbref0002
http://refhub.elsevier.com/S2590-1486(19)30010-X/sbref0002
https://doi.org/10.17226/13395
https://doi.org/10.1038/nmeth.3204
https://doi.org/10.1007/978-0-387-84925-6
https://doi.org/10.1109/tvcg.2014.2346321
https://doi.org/10.1109/TVCG.2012.110
https://doi.org/10.1109/TVCG.2016.2603178
http://refhub.elsevier.com/S2590-1486(19)30010-X/sbref0009
http://refhub.elsevier.com/S2590-1486(19)30010-X/sbref0009
https://doi.org/10.2307/1390778
http://www.jstor.org/stable/1390778
https://doi.org/10.1109/VAST.2011.6102450
https://doi.org/10.1109/TVCG.2013.125
https://doi.org/10.1109/VLHCC.2015.7357198
https://doi.org/10.1109/etfa.2015.7301408
https://doi.org/10.1109/TVCG.2013.143
https://doi.org/10.1109/tvcg.2014.2346455
https://doi.org/10.1109/tvcg.2013.213
https://doi.org/10.1111/j.1467-8659.2011.01942.x
https://doi.org/10.1109/tvcg.2013.177
https://doi.org/10.1016/S0098-3004(97)00005-8
https://doi.org/10.1109/TVCG.2007.70518
https://doi.org/10.1006/ijhc.2002.1017
https://doi.org/10.1145/258734.258887
https://doi.org/10.1109/TVCG.2010.190
https://doi.org/10.1109/TVCG.2011.253
https://doi.org/10.1109/tvcg.2013.61
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1109/TVCG.2012.213
http://refhub.elsevier.com/S2590-1486(19)30010-X/sbref0029
http://refhub.elsevier.com/S2590-1486(19)30010-X/sbref0029
https://doi.org/10.1109/TVCG.2011.185
http://square.github.io/crossfilter/
https://doi.org/10.1109/TVCG.2010.130
https://doi.org/10.1007/978-3-319-24523-2_3

	Cellpackexplorer: Interactive model building for volumetric data of complex cells
	1 Motivation
	2 Related work
	2.1 Parameter space analysis on fixed models
	2.2 Ensemble analysis
	2.2.1 Distributional approaches
	2.2.2 Clustering approaches


	3 cellPACK
	4 Methodology
	5 Problem description
	5.1 User characterization
	5.2 Data characterization
	5.3 Tasks
	5.3.1 Current workflow
	5.3.2 Tasks
	5.3.3 Proposed changes


	6 Design iterations
	7 cellPACKexplorer
	7.1 Input screen
	7.2 Analysis screen
	7.2.1 Input parameters
	7.2.2 Derived metrics
	7.2.3 Packing columns


	8 Evaluation
	8.1 Biological case study
	8.2 Debugging case study
	8.3 Qualitative questionnaire results
	8.4 General usability evaluation

	9 Discussion
	10 Future work
	11 Conclusion
	Declaration of Competing Interest
	Supplementary material
	References


