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FIRST ORDER THEORIES

A b s t r a c t. In this paper we prove a Lindström like theorem for the logic

consisting of arbitrary Boolean combinations of first order sentences. Specifically

we show the logic obtained by taking arbitrary, possibly infinite, Boolean com-

binations of first order sentences in countable languages is the unique maximal

abstract logic which is closed under finitary Boolean operations, has occurrence

number ω1, has the downward Löwenheim-Skolem property to ω and the up-

ward Löwenheim-Skolem property to uncountability, and contains all complete

first order theories in countable languages as sentences of the abstract logic.

We will also show a similar result holds in the continuous logic framework of [5],

i.e. we prove a Lindström like theorem for the abstract continuous logic con-

sisting of Boolean combinations of first order closed conditions. Specifically we

show the abstract continuous logic consisting of arbitrary Boolean combinations

of closed conditions is the unique maximal abstract continuous logic which is

closed under approximate isomorphisms on countable structures, is closed un-

der finitary Boolean operations, has occurrence number ω1, has the downward

Löwenheim-Skolem property to ω, the upward Löwenheim-Skolem property to

uncountability and contains all first order theories in countable languages as

sentences of the abstract logic.
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1. Introduction

One of the most significant advances in the study of abstract model theory is the col-

lection of characterizations of first order logic by Lindström. These characterizations

identify first order logic as the unique maximal logic, on classical structures, satisfying

various properties. Specifically, Lindström showed that first order logic is the unique max-

imal logic with countable occurrence number which has both the upward and downward

Löwenheim-Skolem property, and which is closed under finite Boolean operations along

with existential quantification (see [11, Thm. 3]).

While the theorem above characterizes first order logic among those logics closed under

existential quantification, it fails if we look at first order logic among those logics with

just the upward and downward Löwenheim-Skolem property and closed under finitary

Boolean operations. In fact, if we add to our logic, as a new sentence, any complete first

order theory in a countable language, then our logic will still have both the upward and

downward Löwenheim-Skolem properties. It is therefore natural to ask what happens if

we replace “closed under existential quantification” with “closed under arbitrary Boolean

operations ” (in a fixed language)? Let
∨ω Thω(Lω,ω) be the logic which is the closure of

Lω,ω under arbitrary Boolean combinations of sentences (in a fixed countable language).

In Theorem 3.9 we show that
∨ω Thω(Lω,ω) is the unique maximal logic with countable

occurrence number which contains first order logic, has the downward Löwenheim-Skolem

property to countable structures, the upward Löwenheim-Skolem property to uncountable

structures, and which is closed under arbitrary Boolean operations in fixed countable

languages.

Since Lindström first provided his characterizations of first order logic several other

logics, including L∞,ω, have been characterized as the unique maximal logic satisfying

certain properties. Recall that a logic is bounded if whenever < is a binary relation there

is no sentence which both always interprets < as a well-ordering and which has structures

in which < has arbitrarily large domain. As an example of such a characterization of L∞,ω,

one can show L∞,ω is the unique maximal logic closed under existential quantification,

finite Boolean operations, potential isomorphisms and is bounded (see [2, Thm III.3.1] for

more details). As
∨ω Thω(Lω,ω) sits squarely between Lω,ω and L∞,ω Theorem 3.9 gives

motivation to the idea that
∨ω Thω(Lω,ω) is a natural intermediate logic to study.

Over the last decade continuous first order logic has emerged as a powerful analog of

classical first order logic for dealing with structures built out of complete metric spaces.

In this paper, in Theorem 1.1, we review the notions of continuous first order logic as

well as introduce analogs of abstract logics in the continuous case. With these notions in

hand we then proceed to prove a continuous version of Theorem 3.9. Let
∨ω Thω(Lcω,ω)

be the logic which is the closure of continuous first order logic under arbitrary Boolean

combinations of sentences (in a fixed countable language). In Theorem 5.4 we show

that
∨ω Thω(Lcω,ω) is the unique maximal logic with countable occurrence number which
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contains continuous first order logic, has the downward Löwenheim-Skolem property to

structures with countable density, the upward Löwenheim-Skolem property to structures

with uncountable density, is closed under arbitrary Boolean operations in fixed countable

language and which is closed under approximate isomorphisms.

1.1. Continuous First Order Logic

We now give a brief description of the set up. For more details see [5]. By a continuous

language we mean a classical multi-sorted language where

• for each sort S there is a distinguished relation symbol dS of type S × S,

• each relation symbol and each function symbol X has associated to it a modulus

of uniform continuity, mX , i.e. a non-decreasing map from (0, 1] to (0, 1] whose

limit at 0 is 0.

In this paper τ, σ and their variants will always represent continuous languages. A

continuous τ-structureM consists of the following.

• For each sort S there is a complete bounded metric space, (SM, dMS ), such that dMS
is the distance function on the space.

• If S0, S1 are sorts and T is the product sort then (SM0 , dMS0
)×(SM1 , dMS1

) = (TM, dMT ),

i.e. the complete metric spaces associated to a product sort is the product of the

complete metric space associated to each sort.

• For each function symbol f from sort S0 to sort S1 there is a function fM : SM0 →
SM1 .

• For each relation symbol R of sort S there is a function RM : SM → [0, 1].

• For each relation symbol R of type S we have (∀x, y ∈ SM) |RM(x) − RM(y)| ≤
mR(dMS (x, y)).

• For each function symbol f with domain sort S and codomain T we have (∀x, y ∈
SM) dMT (fM(x), fM(y)) ≤ mf (d

M
S (x, y)).

We will treat constant symbols as functions from the unique trivial sort, which nec-

essarily is a 1-point space. We define the arity of a tuple to be the product of the sorts

to which the elements belong. We define the type of a relation as the product of sorts

assigned to it and the type of a function symbol from sort S to T as S → T .

If τ0 ⊆ τ1 are continuous languages andM is a continuous τ1-structure we letM|τ0 be

the continuous τ0-structure obtained by ignoring all function symbols, relation symbols

and sorts not in τ0.
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The functions ·− : [0, 1]× [0, 1] and ·
2

: [0, 1]→ [0, 1] will be important. These functions

are defined by x ·− y = max{0, x − y} and ·
2
(x) = x

2
. Note that the function ∧ : [0, 1] ×

[0, 1]→ [0, 1] given by ∧(x, y) = x ·−(x ·−y) is such that (∀x, y ∈ [0, 1])∧(x, y) = min{x, y}.
Similarly the function ∨ : [0, 1]× [0, 1]→ [0, 1] given by ∨(x, y) = 1 ·− (min(1 ·−x, 1 ·−y)) is

such that (∀x, y ∈ [0, 1]) ∨ (x, y) = max{x, y}. We will write ∧(x, y) as x ∧ y and ∨(x, y)

as x ∨ y.

A useful intuition is to imagine [0, 1] is the collection of truth values where 0 represents

full truth and the truth value of a statement is how far from full truth the statement is.

With this intuition a relation is a map from an (interpretation of) a sort to [0, 1]. Also,

under this interpretation, infx∈X is the analog of the existential quantifier from first order

logic and supx∈X is the analog of the universal quantifier from first order logic.

In continuous first order logic it is important that each relation in a language has

a uniform bound throughout all interpretations of the language. However, it is also

rarely important what that specific bound is. This sets up a choice in the presentation

of continuous structures. On the one hand we could allow relations to take arbitrary

values in [0,∞) and add to the language a bound to each relation which must hold in any

interpretation of the relation. On the other hand we could impose a uniform bound, e.g.

1, on all relations in all structures. While the first choice on its face seems slightly more

general, there is in reality very little difference between the two presentations. As such we

have chosen the latter approach and required all relations to be uniformly bounded by 1.

This loses little in terms of generality as all results in this paper go through immediately

for the other presentation of continuous structures, however it will simplify the notation

we are using.

We will let ORD represent the class of ordinals.

Definition 1.1. Suppose τ0, τ1 are continuous languages. A renaming is a bijection

ρ : τ0 → τ1 which takes sorts to sorts, functions symbols to function symbols, and relation

symbols to relation symbols such that

• for any sorts S0, . . . , Sn in τ0, ρ(S0 × · · · × Sn) = ρ(S0)× · · · × ρ(Sn),

• for any sort S in τ0, dρ(S) = ρ(dS),

• if R is a relation symbol of type S then ρ(R) is a relation symbol of type ρ(S),

• if f is a function symbol of type S → T then ρ(S) is a function symbol of type

ρ(S)→ ρ(T ),

• if X is a relation symbol or function symbol in τ0 with modulus of uniform continuity

mX , then the modulus of uniform continuity of ρ(X) is also mX , i.e. mX = mρ(X).

Given such a renaming and a continuous τ0-structure M we define the renamed

τ1-structure ρ(M) in the obvious way.
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We now make precise our definition of continuous first order logic. See [5] for more

details.

Definition 1.2. Suppose τ is a continuous language we let Lc0,0[τ ] be the collection

of atomic τ -formulas. We let Lcω,ω[τ ] be the smallest collection such that

• Lc0,0[τ ] ⊆ Lcω,ω[τ ],

• if ψ ∈ Lcω,ω[τ ] of type X × Y then infx∈X ψ, supx∈X ψ ∈ Lcω,ω[τ ] and are of type Y ,

• if ψ0, . . . , ψn−1 ∈ Lcω,ω[τ ] are of type X and α : [0, 1]n → [0, 1] is a continuous map

then α(ψ0, . . . , ψn−1) ∈ Lω,ω[τ ] of type X,

• if ψ ∈ Lcω,ω[τ ] is of type X and Y is a sort then there is a formula ψ(π0) of type

X × Y and ψ(π1) of type Y ×X.

If M is a τ structure and ψ ∈ Lω,ω[τ ] of type X we define ψM : XM → [0, 1] by

induction on the complexity of the formula in the obvious way.

We call Lcω,ω[τ ] continuous first order logic.

By a closed condition we mean an equation of the form ψ = 0 where ψ ∈ Lcω,ω[τ ] is

of type 1 (i.e. has no free variables).

Motivated by Definition 1.2 we will refer to (uniformly) continuous maps from [0, 1]n

to [0, 1] as connectives. Note that the constants 0, 1 and the functions ·− and ·
2

are

connectives.

Definition 1.3. By a continuous first order theory we mean a collection T of

closed conditions in a single continuous language τ such that there is some continuous

τ -structure with M |=
∧
T . We say a such a theory is maximal if there are no larger

theories in the same language.

Definition 1.4. We say a continuous τ -structure M is discrete if each relation,

including the distance relation, takes values in {0, 1}.

In particular if a continuous structure is discrete then every point is open. Note that

being discrete can be defined by a collection of closed conditions.

Definition 1.5. We say a continuous τ -structure M has density character κ if

there is a dense subset of M of size κ and no dense subset of size < κ.

The density character of a continuous τ -structure is, in many cases, the right analog

of cardinality. To see why this is the case observe that if M is a continuous τ -structure

and X ⊆ M is a dense subset of M then M can be uniquely recovered from X (by

taking the closure). As such, if M has density character κ, M can be completely char-

acterized by a set of size κ, even if M itself has larger cardinality. As a consequence
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many results of first order logic which deal with cardinality have continuous analogs with

respect to density character, even when the obvious analog in terms of cardinality might

not be true. A quintessential example of this phenomenon deals with the upwards and

downwards Löwenheim-Skolem theorem for continuous first order logic. Any countable

continuous first order theory with an infinite model must have a model of any infinite

density character. However, there are countable continuous first order theories, such as

the theory of [0, 1] as a metric space with constants for all rationals, which have infinite

models but no models of size less than the continuum.

Definition 1.6. A continuous first order formula ϕ ∈ Lcω,ω[τ ] is k-restricted if it

is built from atomic formulas using only connectives in {0, 1, ·
2
, ·−} (where 0, 1 are the

constant functions) and it has only k-many subformulas. We say a continuous first order

formula is restricted if it is k-restricted for some k. We will denote the collection of

restricted formulas in Lcω,ω[τ ] by Sτ .

The following is a standard fact about restricted formulas (see [5, Thm. 6.3, Prop. 6.6]).

Lemma 1.7. For every ϕ ∈ Lcω,ω[τ ] and every ε > 0 there is a restricted formula

ϕε ∈ Lcω,ω[τ ] such that for all continuous τ -structures M

sup
a∈M
|ϕ(a)− ϕε(a)| < ε.

Given two formulas ψ0, ψ1 ∈ Lcω,ω[τ ] we say ψ0 is equivalent to ψ1 if for all continuous

τ -structures M,

sup
a∈M
|ψ0(a)− ψ1(a)| = 0.

Therefore Lemma 1.7 tells us that for any formula ψ we can find restricted formulas which

are arbitrarily close to being equivalent to ψ.

In particular given two maximal theories T0 and T1, if they contain the same closed

conditions of the form ϕ = 0 where ϕ is restricted then they are the same. Note, if τ is

countable there are only countably many restricted formulas.

Definition 1.8. We define the quantifier rank of a restricted formula ϕ, qr(ϕ) by

induction as follows.

• If ϕ is an atomic formula, i.e. is built only using relations, functions symbols and

the constants 0, 1, then qr(ϕ) = 0.

• qr(ϕ
2
) = qr(ϕ).

• qr(ϕ ·− ψ) = sup{qr(ϕ), qr(ψ)}.

• qr(supx ϕ) = qr(infx ϕ) = qr(ϕ) + 1.
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If qr(ϕ) = 0 we say ϕ is quantifier-free.

Note the notion of quantifier rank can easily be extended to non-restricted formulas,

however we will not need it here. See [4] for more details on general quantifier rank.

In what follows it will be important to consider finite subsets of restricted formulas

which are sufficiently closed under translations. We now make this notion precise.

Definition 1.9. For ε > 0 we say that a finite set S of restricted formulas has

magnitude ε-translations if whenever ϕ ∈ S then there is a formula in S equivalent to

ϕ ·− ε and there is a formula in S equivalent to inf{1, ϕ+ ε}.

The intuition is that S has magnitude ε-translations if whenever ϕ is in S then we can

translate everything in S by ε (truncating outside of [0, 1] appropriately), and remain in

S.

Lemma 1.10. Suppose S is a collection of restricted formulas. For all ε > 0 there

is a smallest collection Ŝε of restricted formulas which contains S, has magnitude ε-

translations, and is closed under finite Boolean operations. Further, if S is finite so

is Ŝε.

Proof. We define a collection Snε by induction on n. First we let S0
ε = S. Now

suppose n ∈ ω and we have defined Snε . We then let Sn+1,∗
ε be the result of adding, for all

ϕ ∈ Snε the formulas among ϕ ·− ε, inf{r, ϕ+ ε}, 1 ·−ϕ which are not equivalent to formulas

in Snε . We then have if Sε is finite then |Sn+1,∗
ε | ≤ |Snε | · 4. Now let Sn+1

ε be the result of

closing Sn+1,∗
ε under conjunctions (only adding formulas which are not already equivalent

to ones in Sn+1,∗
ε ). We then have |Sn+1

ε | ≤ |P(Sn+1,∗
ε )|.

It is easy to check that at some finite stage k, which only depends on ε, we have

Skε = Sk+1
ε and this Skε is the desired minimal collection Ŝε containing S with magnitude

ε-translations and closed under finite Boolean operations. �

Lemma 1.10 tells us that adding magnitude ε-translations to a finite collection of

restricted formulas results in a finite collection of restricted formulas.

Definition 1.11. Suppose S is a finite collection of restricted formulas. We define

Qε(S, 0) = S and for n ∈ ω, Qε(S, n+ 1) is the smallest collection of restricted formulas

containing {ϕ, infx ϕ, supx ϕ : ϕ ∈ Qε(S, n)} and closed under magnitude ε-translations

and finite Boolean operations.

Note, by Lemma 1.10, for any finite collection of restricted relations S, any n, and

any ε > 0, Qε(S, n) is finite.
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1.2. Related Work

Lindström’s work (see [11]) gives us a sense in which first order logic is canonical, i.e. his

work shows us that there are a few basic properties of first order logic which isolate it

among all possible logics. While continuous logic in its current form arose from the work

of Ben-Yaacov, Berenstein, Henson, Usvyatsov, and others, equivalent notions have been

studied since Chang and Keisler’s book [8] in 1966. In particular, one of the first abstract

logic results about continuous first order logic was by Iovino in [10]. This result was not

done in terms of continuous first order logic but rather in terms of the positive bound

formulas and an approximate satisfaction relation logic of Henson (see [9]). Iovino showed

that there was no logic which properly extended Henson’s logic of positive bound formulas

and which satisfies compactness and has the elementary chain property. Like Lindström’s

theorem did for first order logic, this result gave the first concrete evidence that there was

a maximal logic for continuous structures that satisfied many of the important properties

of classical first order logic.

Lindström’s most well-known result characterizing classical first order logic, and what

is often known as Lindström’s theorem, says that if a logic is Boolean, has the downward

Löwenheim-Skolem property and satisfies compactness, then it must be first order logic.

Recently an analog of this theorem was proved for continuous first order logic by Caicedo

in [6].

Another of Lindström’s results characterizes classical first order logic as maximal

among Boolean logics which are closed under the existential quantifier and which have

the λ-omitting types property for an uncountable regular λ. In [7], Caicedo and Iovino

give an analog of this for continuous logic.

2. Abstract Continuous Logic

Over the years there have been many different types of logics which have been studied on

classical structures, e.g. first order logic, higher order logic, infinitary logic, logics with a

game quantifier, etc. Because of the breadth of different logics it is important to have the

notion of an abstract logic.

Intuitively the notion of an abstract logic has two parts. First, for every classical

language the logic must give a collection of sentences of that signature. While in most

concrete logics sentences are built up from the relation symbols, function symbols and

constant symbols by some concrete recursive procedure, in the most general case the

collection of sentences only need be a set. Second, there needs to be a satisfaction relation

which allows us to determine whether or not a structure in a given signature satisfies a

sentence in that signature. Once again in most concrete cases where sentences are built

from simpler components there is some method for determining whether or not a structure

satisfies a sentences by looking at how the structure interacts with simpler components.
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However, in the abstract case this is not necessary and we allow any notion of satisfaction

between sentences and structures which satisfies four basic properties.

The first property the satisfaction relation must have is that it is preserved under

isomorphism of structure. The second property is that it is preserved under renamings

(which can be thought of as isomorphisms of languages). The third property is that any

sentence in a smaller language is also a sentence in a larger language. And lastly, if we

have a sentence in one language and a structure in a larger language, then whether or

not the structure satisfies the sentence depends only on the reduct of the structure to the

language of the sentence.

2.1. Basic Definitions

In this section we introduce the notion of an abstract logic for continuous structures. Note

that these conditions are the analogs of the corresponding conditions in abstract model

theory for classical structures. In particular we assume the reader is familiar with [2,

Ch. 1-3]. While the main focus of this paper is on continuous logic, we will in Section 3

consider classical abstract logic. Therefore, we will always use abstract continuous logic

when referring to the abstract logic on continuous structures and abstract classical logic

when referring to abstract logic on classical structures. It will be useful to let Lc denote

the class of all continuous languages.

Definition 2.1. An abstract continuous logic is a pair (L, |=L) where

• L is a function which takes continuous languages as arguments,

• |=L is a relation between continuous structures and
⋃
τ∈Lc L[τ ],

and which satisfy the following where σ, τ and τ ∗ are arbitrary continuous languages and

M and N are arbitrary continuous τ -structures.

(i) If τ ⊆ σ then L[τ ] ⊆ L[σ].

(ii) If M |=L ϕ then ϕ ∈ L[τ ].

(iii) (Isomorphism property) If M |=L ϕ and N ∼=M then N |=L ϕ.

(iv) (Reduct Property) If ϕ ∈ L[τ ∗], τ ∗ ⊆ τ then

M |=L ϕ if and only if M|τ∗ |=L ϕ,

where M|τ∗ is the reduct of M to τ ∗.

(v) (Renaming Property) Let ρ : τ → τ ∗ be a renaming. Then for each ϕ ∈ L[τ ] there

is a sentence ϕρ ∈ L[τ ∗] such that for all τ -structures M

M |=L ϕ if and only if ρ(M) |=L ϕ
ρ.
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It is worth observing that there is an unfortunate clash of terminology between contin-

uous first order logic and classical abstract logic with regards to the notion of a sentence.

This clash comes from the dichotomy that occurs in continuous first order logic between

the notion of internal truth values vs external truth values (a dichotomy which is shared

with model theory in a topos). In continuous first order logic the collection of possible

truth values is the set [0, 1]. One therefore has a notion of an internal formula which is a

map from some sort in a structure to the set of truth values. An internal sentence is then

simply a map from the terminal object (i.e. the one element sort) into the truth values.

However, often when studying a continuous structure one needs to know whether or not

a given formula/sentence takes a given value. This gives rise to the notion of an exter-

nal sentence, i.e. one whose truth value is in {>,⊥}. In continuous logic these external

sentences are called closed conditions.

When studying abstract classical logic the objects of study are classes of structures and

we are interested in whether a given structure is in the class or not, i.e. a fact with truth

value {>,⊥}. In abstract classical logic such classes of structures are termed abstract

sentences. Similarly in abstract continuous logic the objects of study will be classes of

models, i.e. external facts which have truth values in {>,⊥}. Unlike in continuous first

order logic though there need not be a notion of internal formula associated to these

external facts. As such we will choose to follow the terminology of abstract classical

logic and, for τ a continuous language, refer to L[τ ] as the collection of L-sentences of

language τ .

We refer to |=L as the satisfaction relation of L and will omit the subscript when it

is clear from context. We will abuse notation and use L to refer to the pair (L, |=L) when

no confusion can arise. We will also abuse notation and say that ϕ ∈ L if ϕ ∈
⋃
τ∈Lc L[τ ].

For a sentence ϕ of L we let [ϕ]L be the (class sized) collection of continuous structures

M such that M |= ϕ.

Definition 2.2. We say an abstract continuous logic L1 is stronger than an abstract

continuous logic L0, written L1 ≥ L0, if for all continuous languages τ , and for all ϕ0 ∈
L0[τ ] there is a formula ϕ1 ∈ L1[τ ] where for any continuous τ -structure M

M |= ϕ0 if and only if M |= ϕ1

i.e. for every sentence in L0 there is an equivalent sentence in L1.

2.2. Properties of Abstract Continuous Logics

Now that we have our notion of abstract continuous logic we consider some properties

which we might want an abstract continuous logic to have.

Definition 2.3. We say a logic L has occurrence number κ if κ is minimal such

that for all continuous languages τ and all ϕ ∈ L[τ ] there is a subset τ0 such that ϕ ∈ L[τ0]
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and |τ0| < κ.

We then define

gf(L) := sup{|L[τ ]| : |τ | < κ}.

Note that if L has occurrence number κ then each L-sentence can informally be thought

of as having a general form in a language of size < κ, i.e. an equivalent sentence in a

language of size < κ.

Definition 2.4. We say a continuous logic L has the downward Löwenheim-Sko-

lem property to κ if for all continuous languages τ and all ϕ ∈ L[τ ] for which there

is a continuous τ -structure M of density character ≥ κ with M |= ϕ, then there is a

τ -structure M∗ such that

• M∗ has density character κ, and

• M∗ |= ϕ.

There is a similar notion of an upward Löwenheim-Skolem property to κ, however

for our purposes we will only need something weaker. We will want to start with a

structure with countable density character satisfying a sentence and know that there

exists a structure with uncountable density character satisfying the same sentence. For

our purposes we will not care about what the uncountable density character is, and

in particular will not require that all satisfiable sentences have a model with the same

uncountable density. This motivates the next definition.

Definition 2.5. We say a continuous logic L has the upward Löwenheim-Skolem

property to uncountability if whenever τ is a countable continuous language, ϕ ∈ L[τ ],

and M is a τ -structure satisfying ϕ, then there exists a τ -structure M∗ such that

• M∗ has uncountable density character, and

• M∗ |= ϕ.

We now discuss several Boolean operations a logic can be closed under.

Definition 2.6. Suppose L is an abstract continuous logic and τ is a continuous

language.

• If for every ϕ ∈ L[τ ] there is a formula ¬ϕ ∈ L[τ ] such that for all continuous

τ -structures M
not (M |= ϕ) if and only if M |= ¬ϕ

then we say L is closed under negation at τ .
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• If for all (ϕ)i∈γ ⊆ L[τ ] with γ < κ there is a formula
∨
i∈γ ϕi ∈ L[τ ] such that for

all continuous τ -structures M

M |=
∨
i∈γ

ϕi if and only if (∃i ∈ γ)(M |= ϕi)

then we say L is closed under < κ-disjunctions at τ . We say a logic is closed

under < κ-disjunctions if it is closed under< κ-disjunctions at τ for all continuous

languages τ .

• If for all (ϕ)i∈γ ⊆ L[τ ] with γ < κ there is a formula
∧
i∈γ ϕi ∈ L[τ ] such that for

all continuous τ -structures M

M |=
∧
i∈γ

ϕi if and only if (∀i ∈ γ)(M |= ϕi)

then we say L is closed under < κ-conjunctions at τ . We say a logic is closed

under < κ-conjunctions if it is closed under < κ-conjunctions at τ for all contin-

uous languages τ .

We say L is Boolean if it is closed under negation, < ω-conjunctions and < ω-

disjunctions. We say L is completely Boolean if it has an occurrence number κ and

for all continuous languages τ with |τ | < κ we have

• L is closed under negations at τ ,

• L is closed under < (gf(L))+-conjunctions and < (2gf(L))+-disjunctions at τ .

A logic is Boolean if its sentences are closed under all finitary Boolean operations. A

logic is completely Boolean if and only if every Boolean combination of sentences (in a

single language) is itself a sentence (in that language), provided that language has size at

most the occurrence number of L.

In mathematics one rarely distinguishes between isomorphic objects. As such in our

definition of an abstract continuous logic we have required the satisfaction relation to

be closed under isomorphism. However, when one lifts results from classical logic to

continuous logic one often finds that the results don’t lift precisely, but only up to arbitrary

accuracy. This idea motivates the following definition.

Definition 2.7. Suppose M and N are continuous τ -structures, ε ≥ 0 and S ⊆
Lω,ω[τ ] contains all atomic formulas. By an (ε, S)-approximate isomorphism fromM
to N we mean a relation Fε,S between two sets A and B where:

• A is dense in M and B is dense in N .
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• Whenever ϕ ∈ S, a0, . . . , ak−1 ∈ A and b0, . . . , bk−1 ∈ B are of the same arity, and∧
i<k Fε,S(ai, bi) then

|ϕM(a0, . . . , ak−1)− ϕN (b0, . . . , bk−1)| ≤ ε.

• For all a ∈ A there is a b ∈ B such that Fε,S(a, b) holds.

• For all b ∈ B there is a a ∈ A such that Fε,S(a, b) holds.

We say M and N are S-approximately isomorphic if for every ε > 0 there is an

(ε, S)-approximate isomorphism. We will omit mention of S when S is the collection of

all quantifier-free restricted formulas.

The following two lemmas are immediate.

Lemma 2.8. For τ -structures M and N the following are equivalent.

• M and N are isomorphic.

• M and N are (0,Lc0,0)-approximately isomorphic.

• M and N are (0,Lcω,ω)-approximately isomorphic.

Lemma 2.9. The relation of being approximately isomorphic is an equivalence rela-

tion.

Note that this definition is similar in spirit to the notion of approximate isomorphism

from [1] except we are not requiring that the ε-approximate isomorphisms give rise to a

map of metric structures.

Definition 2.10. We say an abstract continuous logic L is closed under S-approxi-

mate isomorphisms at ω if whenever ϕ ∈ L[τ ] and M, N are τ -structures of density

character ω which are S-approximately isomorphic, then M |= ϕ if and only if N |= ϕ.

In classical logic the analog of Lc0,0-approximate isomorphisms is the notion of potential

isomorphism. In particular an important fact which is used in the proof of the classical

version of our main theorem, i.e. Lemma 3.6, is that two countable models which are

potentially isomorphic are isomorphic and hence satisfy the same sentences. For the

continuous analog though we need to explicitly assume that our logic is closed under the

analog of potential isomorphism. However, for our purposes we will only need to assume

that our logics are closed under Lcω,ω-approximate isomorphisms and not necessarily under

Lc0,0-approximate isomorphisms.
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2.3. Examples of Abstract Continuous Logic

We now discuss several important examples of abstract continuous logics.

Definition 2.11. We let Lcω,ω denote continuous first order logic treated as an

abstract continuous logic, i.e. the abstract continuous logic where the sentences are the

closed conditions of continuous first order logic.

We now define an abstract continuous logic built up from classical first order logic.

Definition 2.12. Suppose τ is a continuous language. Let τc be the classical language

with the following properties.

• The sorts of τc consist of the sorts of τ along with a new distinguished sort R.

• The set of function symbols of τc is the union of (1) the set of function symbols of

τ , (2) the set of function symbols {Xc : X is a relation symbol of τ}, (3) a function

symbol ∆c : R→ R for all moduli of uniform continuity ∆ and (4) a function symbol

dR : R×R→ R, and a function symbol +: R×R→ R.

• The set of constants of τc is the union of the set of constants in τ along with constants

{cq}q∈Q∩[0,1] of sort R.

• There is a single relation symbol ≤ of arity R×R.

• For every relation symbol X of τ the function symbol Xc has the same domain sorts

as the relation symbol of τ and has codomain sort R.

If M is a continuous τ -structure we let Mc be the corresponding τc-structure where

(R, {cq}q∈Q,≤) is interpreted in M by ([0, 1], {q}q∈Q∩[0,1],≤[0,1]).

Given a continuous τ -structure M, we can think of Mc as the same object, but

interpreted as a classical τc-structure.

Definition 2.13. Let L∗ω,ω be the abstract continuous logic which takes a continuous

language τ and returns the collection of classical first order sentences in τc and where, for

ϕ ∈ L∗ω,ω(τ) and M a continuous τ -structure,

M |= ϕ if and only if Mc |= ϕ.

Note it is easy to see that L∗ω,ω has occurrence number ω and is Boolean. It is worth

noting that while some properties of classical first order logic generalize to L∗ω,ω, in general

Lcω,ω and L∗ω,ω can behave very differently.



MAXIMALITY FOR CONTINUOUS FIRST ORDER THEORIES 75

Lemma 2.14. Suppose

• κ is an infinite cardinal,

• τ is a continuous language of size ≤ κ,

• {ϕi}i∈κ is a collection of sentences in L∗ω,ω(τ),

• M is a continuous τ -structure such that for all i ∈ κ, M |= ϕi, and

• X ⊆M.

Then there is a continuous τ -structure M∗ such that

• X ⊆M∗ ⊆M,

• for all i ∈ κ, M∗ |= ϕi, and

• M∗ has cardinality (and hence density character) at most (|X|+ κ)ω.

Proof. Let (V,∈) be the background model of ZFC. We now define for each i ∈ ω1+1

a subset Mi ⊆M of size ≤ (|X|+ κ)ω.

Let M0 := X. Next, if we have defined Mi for all i ≤ ω · α, then let Mω·α :=⋃
i∈ω·αMi.

Finally suppose we have defined Mi and for all j < i we have defined a set Vj of size

at most (|X| + κ)ω. By the downward Löwenheim-Skolem theorem for first order logic

there is subset Vi ⊆ V such that

• (Vi,∈) is an elementary substructure of (V,∈),

• |Vi| ≤ (|X|+ κ)ω, and

•
⋃
j<i Vi ∪ {M} ∪ T C(τ) ∪ {x ∈Mj}ω ∈ Vi,

where T C(τ) is the transitive closure of τ as a set. Note that Vi |= (M |=
∧
i∈κ ϕi). Let

Mi := {m ∈M : m ∈ Vi}.
Suppose (ci)i∈ω is a Cauchy sequence in Mω1 converging to c. Then there must be

some i < ω1 such that {ci}i∈ω ⊆Mi. Therefore c ∈Mω1 and, as the Cauchy sequence was

arbitrary, Mω1 is Cauchy complete. But Mω1 |=
∧
i∈κ ϕi and |Mω1| ≤ ω1 · (|X| + κ)ω =

(|X|+ κ)ω. Hence Mω1 is our desired M∗. �

Note the above lemma shows that L∗ω,ω has the downward Löwenheim-Skolem property

to ωω for theories. It is an interesting question whether or not L∗ω,ω has the downward

Löwenheim-Skolem property to ω.
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Lemma 2.15. L∗ω,ω does not have the upward Löwenheim-Skolem property to uncount-

ability.

Proof. Let τ0 be the continuous language with a single sort S, constant symbols

{c0, c1}, no function symbols, and with dS the only relation symbol. Now consider the

sentence T which is the conjunction of the following

• dS(c0, c1) = 1

• (∀x, y : S) dS(c0, x) = dS(c0, y)→ x = y

• (∀ε : R) ε ≤ 1→ (∃x) dS(c0, x) = ε

• (∀x : S) dS(c0, x) ≤ 1

• Let η≤(x, y) := dS(c0, x) + dS(x, y) = dS(c0, y). Then η≤(x, y) is a linear ordering.

It is then easily checked that any continuous model of T must be isomorphic to

([0, 1], | · − · |) as a complete metric space. �

Note that classical first order logic does have an upward Löwenheim-Skolem theo-

rem and our result here is making fundamental use of the fact that our structures are

continuous and non-classical (and in particular that any two elements whose distance is

arbitrarily small, i.e. less than 1
n

for all n ∈ N, must have distance 0 and hence be the

same).

Similarly to classical first order logic, the logic Lcω,ω has occurrence number ω, has

both the downward Löwenheim-Skolem property to ω (see [5, Prop. 7.3]) and upward

Löwenheim-Skolem property to uncountability (which follows from the compactness of

Lcω,ω via a standard argument). However, even though Lcω,ω has < ω-conjunctions and

< ω-disjunctions it is not Boolean as it is not closed under negations.

2.4. Building Logics

When dealing with abstract logics there is often a tension between wanting the logic

to have nice properties, e.g. downward Löwenheim-Skolem property, being completely

Boolean, etc. and wanting to maximize the expressive power of the logic. In this sec-

tion we will give several ways of extending abstract continuous logics and consider the

corresponding extensions of abstract continuous first order logic.

Given an abstract continuous logic there are some obvious ways to build a (potentially)

bigger logic from it. One of the simplest is to add to the logic as sentences the collection

of the maximal theories of the logic.

Definition 2.16. We define a satisfiable theory in τ (for L) to be a collection

T := {ϕi}i∈I ⊆ L[τ ] such that there is some M where (∀i ∈ I) M |= ϕi. In this case we

say M |= T .
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We say a satisfiable theory T is maximal if there is no strictly larger satisfiable theory

in the same continuous language containing it.

In this paper we will only consider satisfiable theories and so we will drop the adjective

“satisfiable”.

It is worth noting that it need not be the case that the union of an increasing sequence

of theories Ti is itself a theory. Also worth noting is that while every maximal L[τ ] theory

is of the form

ThL(M) := {ϕ ∈ L[τ ] : M |= ϕ},

if L is not closed under negation it is possible for there to be a τ -structure M such that

ThL(M) is not maximal. However, at least for first order continuous logic, this can’t

happen.

Lemma 2.17. If M is a continuous τ -structure then ThLcω,ω(M) is a maximal τ -

theory.

Proof. Suppose toward contradiction that ThLcω,ω(M) is not maximal, i.e. there is

a continuous τ -structure N and a closed condition ψ ∈ Lcω,ω[τ ] \ ThLcω,ω(M) such that

N |= ThLcω,ω(M) ∪ {ψ}. Let ψ∗ be the continuous τ -formula with no free variables such

that ψ is ψ∗ = 0. Now as ¬(M |= ψ) there must be some r ∈ (0, 1] such thatM |= ψ∗ = r.

But then M |= max{ψ∗ − r, r − ψ∗, 0} = 0. So max{ψ∗ − r, r − ψ∗, 0} = 0 ∈ ThLcω,ω(M)

and hence N |= max{ψ∗ − r, r − ψ∗, 0} = 0. But this contradicts our assumption that

N |= ψ∗ = 0. �

Definition 2.18. For κ ∈ ORD∪{ORD} let Thκ(L) be the abstract continuous logic

where

• If |τ | ≤ κ then Thκ(L)[τ ] := {T : T is a maximal L[τ ]-theory}.

• If |τ | > κ then Thκ(L)[τ ] :=
⋃
{Thκ(L)[τ0] : τ0 ⊆ τ, |τ0| ≤ κ}.

It is straightforward to check for κ, γ ∈ ORD∪{ORD} that Thκ(Thγ(L)) is equivalent

to Thmax{κ,γ}(L). The following is also immediate from the definition.

Lemma 2.19. For any abstract continuous logic L, Thκ(L) has occurrence number

≤ κ+.

Specializing to the case of Lcω,ω we have the following result.

Lemma 2.20. Thκ(Lcω,ω) has the downward Löwenheim-Skolem property to κ, and

the upward Löwenheim-Skolem property to uncountability.
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Proof. The downward Löwenheim-Skolem property follows immediately from [5,

Prop. 7.3]. The upward Löwenheim-Skolem property follows from the compactness theo-

rem for continuous first order logic (see [5, Thm. 5.8]) in the standard way. �

Classically when we move from sentences of first order logic to theories of first order

logic we move from a Boolean logic to a non-Boolean logic (as theories are not in general

closed under negation). The fact that theories are not closed under negation can cause

difficulties and there are results which hold for the collection of first order sentences which

do not hold for the collection of first order theories because of it.

In continuous first order logic however the move from sentences to theories is often

not as significant, as even the first order sentences of continuous first order logic are not

closed under negation.

Definition 2.21. Let
∨κ L be the smallest logic containing L such that for any

language τ with |τ | ≤ κ and any collection (ψi)i∈I ⊆ L[τ ] there is a τ -sentence
∨
i∈I ψi ∈∨κ L[τ ] such that for any continuous τ -structure M

M |=
∨
i∈I

ψi if and only if (∃i ∈ I) M |= ψi.

Note that the following two lemmas are immediate from the definitions.

Lemma 2.22. If L has the downward Löwenheim-Skolem property to λ or the upward

Löwenheim-Skolem property to uncountability then so does
∨κ(L).

Lemma 2.23. If L has occurrence number κ+ so does
∨κ L.

Lemma 2.24.
∨ω Thω(Lcω,ω) is closed under Lcω,ω-approximate isomorphisms.

Proof. Suppose τ is countable and M and N are τ -structures which are Lcω,ω-

approximately isomorphic. It suffices to show that ThLcω,ω(M) = ThLcω,ω(N ). But for

any formula ϕ ∈ Lcω,ω[τ ] with no free variables and any ε we must have |ϕM−ϕN | ≤ ε as

there is an (ε,Lcω,ω)-approximate isomorphism fromM to N . But this implies ϕM = ϕN

and so ThLcω,ω(M) = ThLcω,ω(N ). �

Putting this together we have the following

Proposition 2.25. The logic
∨ω Thω(Lcω,ω) has the following properties.

(a) It has occurrence number ω1.

(b) It has the upward Löwenheim-Skolem property to uncountability and the downward

Löwenheim-Skolem property to ω.

(c) It is the minimal completely Boolean logic containing Lcω,ω.
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(d) It is closed under Lcω,ω-approximate isomorphisms.

Proof. Condition (a) follows from Lemma 2.19 and Lemma 2.23. Condition (b)

follows from Lemma 2.20 and Lemma 2.22. Condition (d) follows from Lemma 2.24.

It is immediate that
∨ω Thω(Lcω,ω) is contained in any logic that is completely Boolean

and contains Lcω,ω. However, because ThLcω,ω(M) is a maximal theory for eachM we know

that for any sentence ϕ ∈ Lcω,ω[τ ] we have

[ϕ]Lcω,ω =
⋃
{[ThLcω,ω(M)]Thω(Lcω,ω) : M |= ϕ}.

Therefore every element of Lcω,ω[τ ] is a disjunction of maximal theories and hence in∨ω Thω(Lcω,ω). Further, for every countable τ we have {[η] ∈
∨ω Thω(Lcω,ω)[τ ]} forms a

complete Boolean algebra whose atoms are {[T ] : T ∈ Thω(Lcω,ω)[τ ]}. Hence
∨ω Thω(Lcω,ω)

is completely Boolean and (c) holds.

�

3. The Classical Case

Before we move on to the proof of our main theorem it will be useful to first consider

the analogous result for classical structures, as the proof in the continuous case will be

essentially identical (modulo the different notion of back and forth system). For the rest

of this section (and this section only) we will assume all structures and languages are

classical (i.e. not continuous). In particular Lω,ω will denote ordinary first order logic.

The following result is due to Lindström (see [11, Thm. 3]) and gives a characterization

of first order logic in terms of the downward Löwenheim-Skolem property to ω and the

upward Löwenheim-Skolem property to uncountability.

Theorem 3.1 (Lindström). Suppose L is an abstract classical logic such that

(a) Lω,ω ≤ L.

(b) L has the downward Löwenheim-Skolem property to ω as well as the upward Löwenheim-Skolem

property to uncountability, where these are the obvious classical analogs.

(c) L has occurrence number ω1.

(d) L is Boolean.

(e) L is closed under existential quantification.

Then L = Lω,ω.
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Now notice that if T is a maximal first order theory in a countable language then

Lω,ω∪{T} also satisfies conditions (a), (b) and (c). Further, note that both the downward

Löwenheim-Skolem property to ω and the upward Löwenheim-Skolem property to un-

countability are closed under arbitrary Boolean operations on first order theories. There-

fore, if we let AT be the smallest Boolean logic containing Lω,ω ∪ {T} we have that AT
satisfies (a), (b), (c) and (d). In particular, if we remove condition (e), i.e. the requirement

that our logic be closed under existential quantification, then Lω,ω is no longer maximal.

We will show that in the situation where we have a logic which contains all maximal first

order theories in countable languages as sentences, if the logic also satisfies (a), (b), (c)

and (d) then every sentence is equivalent to a disjunction of countable complete first order

theories.

Definition 3.2. Let Thω(Lω,ω) be the logic such that

• If τ is countable then Thω(Lω,ω)[τ ] = {ThLω,ω(M) : M is a τ -structure} where

ThLω,ω(M) is the complete theory of M.

• If τ is uncountable then Thω(Lω,ω)[τ ] =
⋃

τ0⊆τ
|τ0|≤ω

Thω(Lω,ω)[τ0].

Definition 3.3. Let
∨ω Thω(Lω,ω) be the smallest logic such that

•
∨ω Thω(Lω,ω) contains Lω,ω.

• If τ is countable then
∨ω Thω(Lω,ω)[τ ] contains Thω(Lω,ω)[τ ] and is closed under

arbitrary disjunctions.

• If τ is uncountable then
∨ω Thω(Lω,ω)[τ ] =

⋃
τ0⊆τ
|τ0|≤ω

∨ω Thω(Lω,ω)[τ0].

So
∨ω Thω(Lω,ω) is the classical analog of

∨ω Thω(Lcω,ω). We now recall some standard

definitions which will be important that we will need for the classical analog of our main

theorem.

Definition 3.4. Suppose M,N are τ -structures. A partial isomorphism is an

isomorphism p : A→ B where A is a finite substructure ofM andB is a finite substructure

of N .

By a back and forth system of length n between M and N we mean a sequence

〈Ii〉i≤n such that

• for all i < n, {∅} ⊆ Ii+1 ⊆ Ii,

•
⋃
i≤n Ii consists of partial isomorphisms from M to N , and

• for i < n, if p ∈ Ii+1 then
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– for all a ∈M there is a b ∈ N such that p ∪ {(a, b)} ∈ Ii, and

– for all b ∈ N there is a a ∈M such that p ∪ {(a, b)} ∈ Ii.

We say a set I is a potential isomorphism between M and N if

• I is non-empty and consists of partial isomorphisms from M to N ,

• for all p ∈ I and a ∈M there is a b ∈ N such that p ∪ {(a, b)} ∈ I, and

• for all p ∈ I and b ∈ N there is a a ∈M such that p ∪ {(a, b)} ∈ I.

For more on the notion of back and forth systems and potential isomorphisms see [3,

Ch. VII.5-7]. Although they use the term partially isomorphic for potential isomorphism.

The following lemmas are standard.

Lemma 3.5. The following are equivalent for τ -structures M and N .

• M and N satisfy the same first order theory.

• For all finite τ0 ⊆ τ and all n ∈ ω there is a back and forth system of length n

between M|τ0 and N|τ0.

Lemma 3.6. If M and N are countable τ -structures and there is a potential isomor-

phism from M to N then M and N are isomorphic.

We now use Lemma 3.5 and Lemma 3.6 to prove the following classical analog of

Theorem 5.1.

Theorem 3.7. Suppose L is an abstract classical logic such that

(a) Thω(Lω,ω) ≤ L,

(b) L has the downward Löwenheim-Skolem property to ω as well as the upward Löwen-

heim-Skolem property to uncountability,

(c) L has occurrence number ω1, and

(d) L is Boolean.

Then L ≤
∨ω Thω(Lω,ω).

Proof. Suppose to get a contradiction that L 6≤
∨ω Thω(Lω,ω). Then there must be a

sentence ϕ ∈ L[τ ] which is not equivalent to any sentence in
∨ω Thω(Lω,ω). Further, as L

has occurrence number ω1 we can assume without loss of generality that τ is countable. Let

〈τi〉i∈ω be an increasing enumeration of the finite sublanguages of τ such that
⋃
i∈ω τi = τ .
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Claim 3.8. There are τ -structures M and N such that ThLω,ω(M) = ThLω,ω(N ),

M |= ϕ and N |= ¬ϕ.

Proof. Suppose not. Then for every complete τ -theory T we have either all M that

satisfy T also satisfy ϕ or allM which satisfy T do not satisfy ϕ. Let Tϕ be the collection

of theories such that all models of a theory in Tϕ satisfy ϕ. Then {M : M |= ϕ} =

{M : M |=
∨
Tϕ} and so ϕ is equivalent to

∨
Tϕ ∈

∨ω Thω(Lω,ω)[τ ] contradicting our

assumption on ϕ. �

LetM and N be as in Claim 3.8 with T = ThLω,ω(M) = ThLω,ω(N ). As L is Boolean

and T ∈ L[τ ] we have T ∧ {ϕ} ∈ L[τ ] and T ∧ {¬ϕ} ∈ L[τ ] and so by applying the

downward Löwenheim-Skolem property to ω we can assume without loss of generality

that M and N are countable.

Now let τ ∗ be the language which consists of the following:

(a) Two copies of τ , denoted τ+, τ− (with isomorphisms of languages i+ : τ → τ+ and

i− : τ → τ− witnessing they are copies of τ).

(b) A new sort N , with a relation S of arity N ×N , which is intended to represent the

natural numbers with S the successor relation.

(c) For every sort X in τ ∗ a function fX : N → X.

(d) For every finite sequence of sorts X in τ , a new relation IX of arity X+×X−×N×N ,

which is intended to represent a collection of partial isomorphisms whose domain /

codomain have arity X.

Let K∗ be the τ ∗-structure where

(A) The reduct of K∗ to τ+ is isomorphic to i+(M).

(B) The reduct of K∗ to τ− is isomorphic to i−(N ).

(C) (N,S) in K∗ is isomorphic to (N, Suc).

(D) fX in K∗ is a surjection for every sort X.

(E) IX(a,b,m, n) holds in K∗ if and only if there is a back and forth system 〈Ini 〉i≤m
between M|τn and N|τn with (a,b) ∈ Inm.

Let T ∗ := ThLω,ω(K∗).

Then by Lemma 3.5 T ∗ implies the following:

(1) The restriction to τ+ satisfies i+(T ) and the restriction to τ− satisfies i−(T ).

(2) Each fX is surjective.
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(3) S is the graph of an injective function on N such that there is a unique element

which is not in its image (which we think of as 0).

(4) If IX(a,b,m, n) holds then

– ifm is a k-fold successor and n∗ ≤ n then a and b satisfy all the same quantifier-

free formulas in τn∗ , i.e. the map p with p(a) = b is a partial isomorphism

from the i+(τn∗)-structure to the i−(τn∗)-structure, and

– if m is the successor of m∗ and Y is a sort in τ then for all n

∗ (∀y+ : Y +)(∃y− : Y −) IX×Y (ay+,by−,m∗, n), and

∗ (∀y− : Y −)(∃y+ : Y +) IX×Y (ay+,by−,m∗, n).

(5) (∀m,n : N)(∀a : X+)(∃b : X−) IX(a,b,m, n).

(6) (∀m,n : N)(∀b : X−)(∃a : X+) IX(a,b,m, n).

In other words T ∗ says that for every m and n there is a back and forth system of length

m between the τ+n -reduct and the τ−n -reduct along with surjections from N to every sort.

Note that T ∗ ∈
∨ω Thω(Lω,ω)[τ ∗] and so, as L is Boolean, we have T ∗ ∧ i+(ϕ)∧ i−(¬ϕ) ∈

L[τ ∗] and K∗ |= T ∗ ∧ i+(ϕ) ∧ i−(¬ϕ). Note we are using the fact that M and N are

countable to get the surjection from N in K∗ to each sort of K∗.

Now by the upward Löwenheim-Skolem property to uncountability there is a model

K∗∗ of T ∗ which is uncountable. As K∗∗ is uncountable, in K∗∗ the sort N must be

uncountable. Therefore, there must be some a in K∗∗ of arity N which is a k-fold successor

for every k ∈ ω, i.e. a non-standard natural number. Let τ ∗∗ := τ ∗ ∪ {c} where c is a

constant of arity N . Let T ∗∗ be the τ ∗∗-theory which contains T ∗ and says c is a k-fold

successor (for every k). Note as being a k-fold successor can be represented by a single

formula of Lω,ω[τ ∗∗], T ∗∗ is a countable theory in L[τ ∗∗]. Further, interpreting c by a in

K∗∗ shows that T ∗∗ has a model.

But if T ∗∗ has a model it must have a countable model K◦ as L has the downward

Löwenheim-Skolem property to ω. Let Q be the smallest subset of N in K◦ which contains

c and is such that whenever K◦ |= S(x, y) then {x, y} ∩Q 6= ∅ implies {x, y} ⊆ Q (i.e. Q

is the smallest (Z, Suc) copy containing c). Let

I := {p : (∃q ∈ Q) K◦ |= IX(dom(p), range(p), q, q), where X is the arity of dom(p)}.

Note that if q ∈ Q, p ∈ I with the arity of dom(p) equal to X, Y is any sort of τ , and

K◦ |= IX(dom(p), range(p), q, q) then by (4) we have

• K◦ |= (∀a : Y −)(∃b : Y +) IX×Y (aa,bb, q − 1, q − 1)

• K◦ |= (∀b : Y +)(∃a : Y −) IX×Y (aa,bb, q − 1, q − 1)



84 NATHANAEL ACKERMAN AND MARY LEAH KARKER

Therefore I is a potential isomorphism betweenM◦ := i−1+ (K◦|τ+) and N ◦ := i−1− (K◦|τ−).

But as K◦ is countable so are M◦ and N ◦. Therefore by Lemma 3.6 we must have M◦

and N ◦ are isomorphic, contradicting the fact that M◦ |= ϕ and N ◦ |= ¬ϕ.

�

The following theorem is an immediate consequence of Theorem 3.7.

Theorem 3.9.
∨ω Thω(Lω,ω) is the unique maximal logic which

(a) is stronger than Lω,ω,

(b) has the downward Löwenheim-Skolem property to ω as well as the upward Löwenheim-

Skolem property to uncountability,

(c) has occurrence number ω1,

(d) is completely Boolean.

4. Metric Scott Analysis

Classically for any two τ -structuresM andN satisfying the same theory, any finite τ0 ⊆ τ ,

and for any n ∈ N there is a maximal back and forth system (Ii)i≤n from M|τ0 to N|τ0
where (a,b) ∈ In if and only if a and b satisfy the same formulas of Lω,ω of quantifier

rank n. This association allows one to study in fine-grained detail the quantifier depth of

formulas on which two tuples agree. This technique surrounding back and forth systems

is often called the Scott analysis of a pair of structures, the study of Ehrenfeucht–Fräıssé

games.

When we move to the continuous setting the analog of this back and forth system will

be a sequence of functions which we now describe. Note these functions are very similar

to the rA,Bn functions of [4], where a continuous analog of the Scott analysis is developed,

except we allow ourselves to start with an arbitrary collection of restricted quantifier-free

formulas in the definition.

Definition 4.1. Suppose S is a finite collection of restricted quantifier-free τ -formulas

and M,N are τ -structures. For n ∈ N we define rM,N
n,S (a,b) for a ∈ M and b ∈ N (of

the same arity) by induction on n as follows.

rM,N
0,S (a,b) = sup

ϕ∈S
|ϕM(a)− ϕN (b)|

where the supremum is over formulas in S with arities compatible with a and b.

We define

rM,N
n+1,S(a,b) = sup

c∈M,d∈N
inf

c′∈M,d′∈N
rM,N
n,S (ac,bd′) ∨ rM,N

n,S (ac′,bd).
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Note as there are only finitely many formulas in S that rM,N
0,S is definable by a formula

in Lcω,ω. Therefore for all n, rM,N
n,S is definable by a formula in Lcω,ω as well.

Lemma 4.2. Suppose S is a finite collection of restricted τ -formulas.

(a) If S ⊆ S∗ where S∗ is a finite collection of restricted formulas then for all a ∈
M,b ∈ N and n ∈ ω,

rM,N
n,S (a,b) ≤ rM,N

n,S∗ (a,b).

(b) If n ≤ n∗ then for all a ∈M,b ∈ N and all collections S of restricted formulas,

rM,N
n,S (a,b) ≤ rM,N

n∗,S (a,b).

(c) Suppose τ ∗ consists of two copies of τ , denoted τ+, τ− (with isomorphisms of lan-

guages i+ : τ → τ+ and i− : τ → τ− witnessing they are copies of τ). Then there is

a formula r∗n,S ∈ Lcω,ω[τ ∗] such that for any τ ∗-structure K and any a ∈ K|τ+ and

b ∈ K|τ−
(r∗n,S)K(a,b) = rM

◦,N ◦
n,S (a,b)

where M◦ = i−1+ (K|τ+) and N ◦ = i−1− (K|τ−).

Proof. Condition (a) is immediate from the definition of rM,N
n+1,S. (c) follows immedi-

ately from the fact that S is finite and so there is a formula describing rM,N
0,S .

We now show condition (b). First note that if a ∈ M, a0 ∈ a, and b, d ∈ N then

rM,N
0,S (aa0,bd) ≥ rM,N

0,S (a,b). Therefore, by a straightforward induction we have for all

n ∈ ω,

rM,N
n,S (aa0,bd) ≥ rM,N

n,S (a,b).

Also note that if a0 ∈ a and b0 ∈ b then rM,N
0,S (aa0,bb0) = rM,N

0,S (a,b) and so, by

induction,

rM,N
n,S (aa0,bb0) = rM,N

n,S (a,b).

Putting these two equations together, and using the symmetry betweenM and N in the

definition of rM,N
n,S we have whenever a0 ∈ a and b0 ∈ b that

inf
c′∈M,d′∈N

rM,N
n,S (aa0,bd

′) ∨ rM,N
n,S (ac′,bb0) = rM,N

n,S (a,b).

But this then implies

sup
c∈M,d∈N

inf
c′∈M,d′∈N

rM,N
n,S (ac,bd′) ∨ rM,N

n,S (ac′,bd) ≥ rM,N
n,S (a,b),

and we are done. �
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Suppose Sω is the collection of all quantifier-free restricted τ -formulas and Sωn is then

the collection of all formulas of quantifier rank at most n. We have the following lemma

which is [4, Thm. 3.5].

Lemma 4.3. For a ∈M and b ∈ N and n ∈ ω,

rM,N
n,Sω (a,b) = sup

ϕ∈Sωn
|ϕM(a)− ϕN (b)|.

In particular we have the following consequence of Lemma 4.3.

Lemma 4.4. SupposeM and N are continuous τ -structures which are approximately

isomorphic. Then M and N are Lcω,ω[τ ]-approximately isomorphic.

Proof. Suppose ε > 0, Aε ⊆M andB ⊆ N are dense and Fε,Sω satisfies the conditions

of Definition 2.7. We therefore have whenever Fε,Sω(a,b) holds and ϕ is quantifier-free

that |ϕM(a)− ϕN (b)| ≤ ε. In particular this implies that rM,N
0,Sω (a,b) ≤ ε.

Now assume that n ∈ ω and for all a ∈ A, b ∈ B, Fε,Sω(a,b) implies rM,N
n,Sω (a,b) ≤ ε.

Then, as A and B are dense in M and N we have for all a ∈ A, b ∈ B with Fε,Sω(a,b),

rM,N
n+1,Sω = sup

c∈M,d∈N
inf

c′∈M,d′∈N
rM,N
n,Sω (ac,bd′) ∨ rM,N

n,S (ac′,bd)

= sup
c∈A,d∈B

inf
c′∈A,d′∈B

rM,N
n,Sω (ac,bd′) ∨ rM,N

n,S (ac′,bd) ≤ ε.

Therefore, by Lemma 4.3 we have that |ϕM(a)−ϕN (b)| ≤ ε for all formulas of Sωn+1. So,

byLemma 1.7 and by induction (Fε,Sω)ε>0 witnesses thatM andN are Lcω,ω-approximately

isomorphic. �

The following corollary is then immediate.

Corollary 4.5. Lcω,ω is closed under approximate isomorphisms at ω.

We would like an analog of Lemma 4.3 to hold where Sω is replaced by an arbitrary

finite collection of restricted formulas. Unfortunately generalizing the proof of Lemma 4.3

runs into a fundamental issue when S is not closed under all translations of formulas by a

fixed constant (i.e. when we don’t necessarily have ϕ+ c ∈ S whenever ϕ ∈ S). However,

if we are closed under sufficiently small translations we can get a bound on the difference

between rM,N
n,S (a,b) and supϕ∈Sn |ϕM(a)− ϕN (b)|.

Proposition 4.6. Suppose S is a finite collection of restricted quantifier-free τ -formulas

closed under subformulas and finite Boolean operations and which has magnitude ε-translations.

Let M,N be τ -structures. Then for a ∈M and b ∈ N we have the following.∣∣rM,N
n,S (a,b)− sup

ϕ∈Qε(S,n)
|ϕM(a)− ϕN (b)|

∣∣ ≤ n · ε
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where Qε(S, n) is as in Definition 1.11.

Proof. If n = 0 this follows from the definition of rM,N
0,S . Assume as the inductive

hypothesis that the lemma is true for n. Fix t ∈ [0, 1] and assume rM,N
n+1,S(a,b) > t to

show supϕ∈Qε(S,n) |ϕM(a)− ϕN (b)| > t− (n+ 1) · ε.
By the definition of rM,N

n+1,S(a,b) either there is a c ∈ M such that for all d ∈ N ,

rM,N
n,S (ac,bd) > t or there is a d ∈ N such that for all c ∈ M, rM,N

n,S (ac,bd) > t. We

assume the former with the case of the latter being identical.

By the inductive hypothesis for each d ∈ N there is a ϕd ∈ Qε(S, n) such that

|ϕMd (ac) − ϕNd (bd)| > t − n · ε. But, because Qε(S, n) has magnitude ε-translations, we

can choose ϕd such that ϕMd (ac) > t− n · ε ≥ ε ≥ ϕNd (b, d) ≥ 0.

Note that there are at most finitely many non-equivalent ϕd as each ϕd ∈ Qε(S, n)

and Qε(S, n) is finite. Hence if we let ϕ∗ :=
∧
d∈N ϕd then ϕ∗ ∈ Qε(S, n). Now let

ψ(xxx) := supy ϕ
∗(xxx, y). Therefore ψM(a) > t − n · ε ≥ ε ≥ ψN (b). But as ψ ∈ (S, n+ 1)

we have supϕ∈(S,n+1) |ϕM(a)− ϕN (b)| > t− (n+ 1) · ε.
Now assume supϕ∈Qε(S,n+1) |ϕM(a) − ϕN (b)| > t. Then there must be some formula

ϕ ∈ Qε(S, n+ 1) such that |ϕM(a)− ϕN (b)| > t. If ϕ is of the form ψ
2

then we replace ϕ

by ψ. If ϕ is of the form ψ0 ·− ψ1 then |ψMi (a)− ψNi (b)| > t for some i ∈ {0, 1}. We then

replace ϕ by ψi. By repeatedly doing this we can find a ϕ such that either ϕ = infx ψ or

ϕ = supx ψ (for some ψ ∈ Qε(S, n)).

We will now consider the case when ϕ = supx ψ, the case when ϕ = infx ψ being

similar. As Qε(S, n) has magnitude ε-translations, by replacing ψ with an appropriate

translation, we can assume that the following inequalities hold, ϕM(a) > t ≥ ε ≥ ϕN (b) ≥
0. So there is a c ∈M such that ψM(ac) > t and for all d ∈ N , ψN (b, d) ≤ ε. We therefore

have by the inductive hypothesis that for all d ∈ N , rM,N
n,S (ac,bd) > t − n · ε − ε and so

rM,N
n+1,S(a,b) > t− (n+ 1) · ε.

�

5. The Continuous Case

We now prove our main theorem, which is the continuous analog of Theorem 3.7.

Theorem 5.1. Suppose L is an abstract continuous logic such that

(a) Thω(Lcω,ω) ≤ L.

(b) L has the downward Löwenheim-Skolem property to ω as well as the upward Löwenheim-Skolem

property to uncountabiliy.

(c) L has occurrence number ω1.

(d) L is Boolean.
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(e) L is closed under approximate isomorphisms at ω.

Then L ≤
∨ω Thω(Lcω,ω).

Proof. Suppose the contrary, namely that L 6≤
∨ω Thω(Lcω,ω). Then there must be a

sentence ϕ ∈ L[τ ] which is not equivalent to any sentence in
∨ω Thω(Lcω,ω). Further, as L

has occurrence number ω1 we can assume without loss of generality that τ is countable.

Claim 5.2. There are τ -structures M and N such that ThLcω,ω(M) = ThLcω,ω(N ),

M |= ϕ and N |= ¬ϕ.

Proof. Suppose not. Then for every complete τ -theory T we have that either all M
which satisfy T also satisfy ϕ or all M which satisfy T do not satisfy ϕ. Let Tϕ be the

collection of theories such that all models of a theory in Tϕ satisfy ϕ. Then {M : M |=
ϕ} = {M : M |=

∨
Tϕ} and so ϕ is equivalent to

∨
Tϕ. But

∨
Tϕ ∈

∨ω Thω(Lcω,ω)[τ ],

contradicting our assumption on ϕ. �

LetM and N be as in Claim 5.2 with T = ThLcω,ω(M) = ThLcω,ω(N ). As L is Boolean

and T ∈ L[τ ] we have T ∧ {ϕ} ∈ L[τ ] and T ∧ {¬ϕ} ∈ L[τ ], and so by applying the

downward Löwenheim-Skolem property to ω we can assume without loss of generality

that M and N have countable density character.

Now let 〈Si〉i∈ω be an increasing sequence of finite sets of restricted τ -formulas such

that

• All restricted τ -formulas are in
⋃
i∈ω Si.

• For all k ∈ ω, Sk has magnitude 1
2k

-translations.

Now let τ ∗ be the language which consists of the following.

• Two copies of τ , denoted τ+, τ− (with isomorphisms of languages i+ : τ → τ+ and

i− : τ → τ− witnessing they are copies of τ).

• A new sort N , with a relation S which is intended to represent the natural numbers

with S the successor relation along with a relation≤ of arity N×N which is intended

to represent a linear ordering.

• For every sort X in τ ∗ a function fX : N → X.

• For every finite sequence of sorts X in τ new relations IX of arity X+×X−×N×N .

Let K∗ be the τ ∗ structure such that

• K∗|τ+ = i+(M) and K∗|τ− = i−(N ),

• (N,S) = (N, Suc),
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• IX(a,b,m, n) = rm,Sn(a,b),

• fX is any map onto a dense subset of X in K∗. Note because the distances of X in

K∗ are bounded, any such map is uniformly continuous.

Let T ∗ := ThLcω,ω(K∗). Note T ∗ satisfies all of the following.

• The restriction to τ+ satisfies i+(T ) and the restriction to τ− satisfies i−(T ).

• (N, dN) is a discrete metric space.

• For each sort X, supx∈X infn∈N dX(x, fX(n)) = 0, i.e. the image of N under fX is

dense.

• S is the graph of an injective function on N such that there is a unique element

which is not in its image (which we think of as 0). Note this can be expressed in

continuous logic as (N, dN) is discrete.

• If n ∈ N is an n0-fold successor and m ∈ N is an m0-fold successor then

IX(a,b,m, n) ≥ r∗m0,Sn0
(a,b)

where r∗m0,Sn0
(xxx,yyy) is as the formula defining rm0,Sn0

(xxx,yyy). This follows from Lemma

4.2 (a) and (b). Note that because r∗m0,Sn0
(xxx,yyy) is a formula of Lω,ω(Lcω,ω) then this

inequality is expressible by a sentence of Lcω,ω.

• If m ∈ N is the successor of m∗ ∈ N , n∗ ≤ n ∈ N , and Y is a sort of τ then

IX(a,b,m, n) ≥
sup

c∈Y +,d∈Y −
inf

c′∈Y +,d′∈Y −
IX×Y (ac,bd′,m∗, n∗) ∨ IX×Y (ac′,bd,m∗, n∗).

• If ! is the empty product of sorts, n is a n0-fold successor then I!(∅, ∅, n, n) ≤ n0

2n0
.

This follows from Proposition 4.6 and the fact that ThLcω,ω(M) = ThLcω,ω(N ).

In other words T ∗ says that for m,n ∈ N, IX(a,b,m, n) acts like rm,Sn(a,b) (and in

particular bounds it).

Note T ∗ ∈ Thω(Lcω,ω)[τ ∗] by Lemma 2.17. So, as L is Boolean, we have T ∗ ∧ i+(ϕ) ∧
i−(¬ϕ) ∈ L[τ ∗].

Therefore, because L has the upward Löwenheim-Skolem property to uncountability

there must be an uncountable model K+ of T ∗ ∧ i+(ϕ) ∧ i−(¬ϕ). But then in K+ we

must have some sort with uncountable density and so, because the image of N under fX
is dense in each sort, we must have that N is uncountable. Hence there must be some a

in K+ of sort N which is a k-fold successor for every k ∈ ω. Let τ ∗∗ := τ ∗∪{c} where c is
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a constant of sort N . Let K∗∗ be the τ ∗∗-structure whose reduct to τ ∗ is K+ and where

cK
∗∗

= a. Let T ∗∗ be the τ ∗∗-theory of K∗∗. Note T ∗∗ says c is a k-fold successor (for

every k) as being a k-fold successor can be represented by a single formula of Lcω,ω[τ ∗∗].

But as T ∗∗ has a model it must have a model K◦ with countable density character as

T ∗∗ ∈ Thω(Lcω,ω)[τ ] and Thω(Lcω,ω) has the downward Löwenheim-Skolem property to ω.

Let M◦ := i−1+ (K◦|τ+) and N ◦ := i−1− (K◦|τ+).

Claim 5.3. M◦ and N ◦ are approximately isomorphic.

Proof. For notational convenience, for k ∈ ω let c◦ − k denote the unique element of

arity N in K◦ whose k-fold successor is c.

Suppose ε > 0. Let {ai}i∈ω be a dense subset ofM◦ and {bi}i∈ω a dense subset of N ◦.
We now define two sequences 〈ej〉j∈ω of elements ofM◦ and 〈dj〉j∈ω of elements of N ◦ by

induction. For notational convenience for k ∈ ω we will let ek = (ei)i<k and dk = (di)i<k.

Our inductive hypothesis will be that

IX(en,dn, c
◦ − n, c◦ − n) ≤

∑
0≤j<n

2−j−3ε <
ε

4
.

Stage 0: T ∗∗ implies that I∅(∅, ∅, c◦, c◦) ≤ k
2k

for all k such that c◦ is a k-successor. But

as c◦ is non-standard we have I∅(∅, ∅, c◦, c◦) = 0 and so the inductive hypothesis holds.

Stage 2n: Let e2n be the least element of 〈ai〉i∈ω which does not occur in e2n. Suppose

e2n is of arity Y2n. We know that

IX(e2n,d2n, c
◦ − 2n, c◦ − 2n) ≥

sup
e∈Y +

2n,d∈Y
−
2n

inf
e′∈Y +

2n,d
′∈Y −2n

[
IX×Y2n(e2ne,d2nd

′, c◦ − (2n+ 1), c◦ − (2n+ 1))

∨ IX×Y2n(e2ne
′,d2nd, c

◦ − (2n+ 1), c◦ − (2n+ 1))
]
.

Therefore we can find a d2n such that

IX×Y2n(e2ne2n,d2nd2n, c
◦−(2n+1), c◦−(2n+1)) ·−IX(e2n,d2n, c

◦−2n, c◦−2n) < 2−2n−1ε.

The inductive hypothesis therefore holds for this stage.

Stage 2n+ 1: Let d2n+1 be the least element of 〈bi〉i∈ω which does not occur in d2n+1.
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Suppose d2n+1 is of arity Y2n+1. We know that

IX(e2n+1,d2n+1), c
◦ − (2n+ 1), c◦ − (2n+ 1)) ≥

sup
e∈Y +

2n+1,d∈Y
−
2n+1

inf
e′∈Y +

2n+1,d
′∈Y −2n+1

[
IX×Y2n+1(e2n+1e,d2n+1d

′, c◦ − (2n+ 2), c◦ − (2n+ 2))

∨ IX×Y2n+1(e2n+1e
′,d2n+1d, c

◦ − (2n+ 2), c◦ − (2n+ 2))
]
.

Therefore we can find a e2n+2 such that

IX×Y2n+1(e2n+1e2n+1,d2n+1d2n+1, c
◦ − (2n+ 2), c◦ − (2n+ 2))

·− IX(e2n+1,d2n+1, c
◦ − (2n+ 1), c◦ − (2n+ 1)) < 2−2n−1ε.

The inductive hypothesis then holds for this stage as well.

Let E = {ei}i∈ω and D := {di}i∈ω. Note E is dense inM◦ and D is dense in N ◦. Let

Fε(e, d) hold if and only if e = ei and d = di for some i ∈ ω. Let ψ ∈ Lcω,ω[τ ] and let ψ∗ be a

restricted formula such that for all continuous τ -structuresM∗, supa∈M∗ |ψ(a)−ψ∗(a)| ≤
ε
4
. Note that such a ψ exists by Lemma 1.7. Let ` be the smallest number such that

ψ∗ ∈ Q2−`(S`, `).

Note for any sequence xxx = (x0, . . . , xn−1) ∈ E and yyy = (y0, . . . , yn−1) ∈ D such that∧
i≤n Fε(xi, yi) there is some k ∈ ω such that

• k > `,

• k
2k
< ε

4
,

• {xi}i<n ⊆ {ei}i<k, and

• {yi}i<n ⊆ {di}i<k.

In particular as IX(ek,dk, c
◦ − k, c◦ − k) ≤ ε

4
holds by the above argument, where X

is the arity of ek, we have rk,Sk(xxx,yyy) ≤ rk,Sk(ek,dk) ≤ ε
4
.

Therefore, by Proposition 4.6 and the fact that ψ∗ ∈ Q2−`(S`, `) ⊆ Q2−k(Sk, k), the

latter of which has 1
2k

translations, we have

|ψM(xxx)− ψN (yyy)| ≤ |(ψ∗)M(xxx)− (ψ∗)N (yyy)|+ 2 · ε
4

≤ sup
ϕ∈Q

2−k (Sk,k)

|ϕM(ek)− ϕN (dk)|+ 2 · ε
4

≤ rk,Sk(ek,dk) +
k

2k
+ 2 · ε

4

≤ ε

4
+
ε

4
+ 2 · ε

4
= ε
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Therefore F is an (ε,Lcω,ω)-approximate isomorphism between M◦ and N ◦. So, because

ε was arbitrary we have that M◦ and N ◦ are Lcω,ω-approximately isomorphic and hence

approximately isomorphic.

�

But by construction M◦ |= ϕ and N ◦ |= ¬ϕ and by assumption L is closed under

approximate isomorphisms at ω, getting us our contradiction.

�

In particular the following is immediate.

Theorem 5.4.
∨ω Thω(Lcω,ω) is the unique maximal logic which

(a) is stronger than Lcω,ω,

(b) has the downward Löwenheim-Skolem property to ω as well as the upward Löwenheim-Skolem

property to uncountability,

(c) has occurrence number ω1,

(d) is completely Boolean, and

(e) is closed under approximate isomorphisms at ω.

6. Open Questions

We now list some open questions.

• Does Theorem 5.1 hold if we remove the condition that our logic is closed under

approximate isomorphisms?

• Does L∗ω,ω have the downward Löwenheim-Skolem property to ω?
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